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Abstract

Although multimodal large language models (MLLMs) exhibit remarkable rea-
soning capabilities on complex multimodal understanding tasks, they still suffer
from the notorious “hallucination” issue: generating outputs misaligned with ob-
vious visual or factual evidence. Currently, training-based solutions, like direct
preference optimization (DPO), leverage paired preference data to suppress hal-
lucinations. However, they risk sacrificing general reasoning capabilities due to
the likelihood displacement. Meanwhile, training-free solutions, like contrastive
decoding, achieve this goal by subtracting the estimated hallucination pattern from
a distorted input. Yet, these handcrafted perturbations (e.g., add noise to images)
may poorly capture authentic hallucination patterns. To avoid these weaknesses
of existing methods, and realize “robust” hallucination mitigation (i.e., maintain-
ing general reasoning performance), we propose a novel framework: Decoupling
Contrastive Decoding (DCD). Specifically, DCD decouples the learning of posi-
tive and negative samples in preference datasets, and trains separate positive and
negative image projections within the MLLM. The negative projection implicitly
models real hallucination patterns, which enables vision-aware negative images
in the contrastive decoding inference stage. Our DCD alleviates likelihood dis-
placement by avoiding pairwise optimization and generalizes robustly without
handcrafted degradation. Extensive ablations across hallucination benchmarks
and general reasoning tasks demonstrate the effectiveness of DCD, i.e., it matches
DPQO’s hallucination suppression while preserving general capabilities and out-
performs the handcrafted contrastive decoding methods. Code is available in
https://github.com/HKUST-LongGroup/DCD.

1 Introduction

Today’s multimodal large language models (MLLMs) [1} 2} 3} 4} 5] have demonstrated remarkable
general reasoning capabilities by integrating visual and textual understanding, facilitating applications
such as medical image analysis [6, 7] and multimodal search engines [[8]. Despite their versatility, a
critical limitation persists: MLLMs may generate outputs that contradict obvious factual evidence or
misrepresent visual inputs, known as the hallucination problem [9} 10} 11} [12]]. For instance, models
may describe objects absent from an image (e.g., claiming a “dog” in a cat-only scene) or fabricate
implausible relationships (e.g., asserting “a person riding a bicycle” when only a bicycle is
present). Such hallucinations erode users trust and hinder deployment in high-stakes domains like
healthcare [6] or autonomous driving [13].
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Figure 1: Comparison between existing hallucination mitigation methods and DCD. (a) Training-
based method (e.g., DPO [14]): DPO directly optimizes the likelihood gap between positive (correct)
and negative (hallucinatory) responses using preference datasets. However, maximizing this gap (y™
vs. y~ ) can inadvertently lower the probability of both responses, causing likelihood displacement
and potential degradation of general reasoning capabilities. Here, v, , ¥, and ¥y~ denote images,
questions, positive responses, and negative responses, respectively; 6 represents model parameters,
and « is the contrastive decoding coefficient. (b) Training-free method (e.g., VCD [[15])) vs. DCD:
Traditional contrastive decoding (VCD) reduces hallucinations by comparing model outputs from
original (v™) and artificially distorted (v™; e.g., noise-added) visual inputs at inference time.

I‘FR%I

1A

B

i

[

logg (y|v, x)
logg (y|v, x)

Training Steps Training Steps (a)

To mitigate this hallucination issue, recent training-based approaches [16, [17, [18| 19} 20] draw
inspiration from reinforcement learning from human feedback (RLHF) [21], a finetune paradigm
that aligns models with human preferences. These RLHF methods typically involve two stages:
1) Hallucination Preference Dataset Construction. Recent efforts [L16, [17, [18} |19} 120} 22] collect
paired positive-negative samples to form the preference dataset, where positive responses are the
correct answers and negative responses are the hallucinatory answers. These “high-quality” negative
samples are often collected from model-generated hallucinatory outputs, ensuring alignment with
the real hallucination observed in MLLMs. 2) Preference Optimization Training. Direct preference
optimization (DPO) [[14] is the most prevalent and well-explored approach to train MLLMs with
preference datasets. It bypasses complex reinforcement learning pipelines by directly maximizing
the likelihood gap between positive and negative responses. While DPO demonstrates efficacy
in hallucination mitigation, this paired-sample optimization process risks inducing a likelihood
displacement problem [23]]: By maximizing the gap between positive and negative answers, DPO
may inadvertently lower the probabilities of both responses (as shown in Figure[I|(a)). It potentially
sacrifices the model’s general reasoning capabilities and leads to performance degradation in open-
ended tasks.

In parallel, training-free methods [15} 124} 25 126} 1277, 28, |29] resort to contrastive decoding [30] to
alleviate hallucination. They hold the assumption that MLLM is easier to have the hallucination
issue with distorted inputs. For example, image perturbations disrupt semantic coherence and amplify
hallucinatory tendencies. By transferring the log-likelihood differences of model outputs with that
of distorted images, contrastive decoding methods force MLLM to focus more on images details
(cf- Figure[T(b)). However, existing perturbation strategies are handcrafted and artificial, such as
adding noise to images [15]]). Therefore, these artificial contrastive distributions may not reflect the
authentic hallucinations produced by MLLMs, as they are vision-and-text agnostic and can introduce
uncertainty noise in the decoding process [27] which is not robust in complex tasks.

In this paper, we aim to avoid these weaknesses of existing methods, and realize a more robust hallu-
cination mitigation. By “robust”, we hope the method can not only significantly reduce hallucination
cases, but also preserve general capabilities on challenging reasoning tasks. To this end, we propose
a novel framework: Decoupling Contrastive Decoding (DCD). Specifically, DCD has two designs:
1) Decoupling Learning. We decouple pairwise positive-negative samples learning of preference
dataset into separate learning to alleviate likelihood displacement. 2) Vision-aware Negative Image.
We learn a negative image projector from negative samples, to replace the vision-and-text agnostic
image perturbations in contrastive decoding.

In the training phrase, we utilize positive and negative samples to separately train a positive image
projection and a negative image projection in MLLMs. By decoupling the learning of positive
and negative samples, our approach not only circumvents the likelihood displacement problem
inherent to DPO but also generalizes robustly across diverse domains. In the inference stage, we
adopt the negative image projection to project original image features into “negative” image features
in contrastive decoding. Unlike synthetic perturbations which may distort legitimate contextual
relationships instead of specifically suppressing hallucinatory features, model-generated negative



samples in preference datasets accurately capture real hallucination distributions. In this way,
our learnable negative image projection which is trained on negative samples implicitly models
hallucination patterns in contrastive decoding. Our method ensures that hallucination suppression is
guided by real hallucination patterns rather than handcrafted perturbations, thereby preserving the
model’s ability to generate coherent and creative outputs in open-ended scenarios.

To validate the effectiveness of the proposed DCD, we conduct extensive experiments across multiple
benchmarks, including hallucination-specific benchmarks [31}132} 33} 134] and general multimodal rea-
soning tasks [35/36, 137, 138]]. Our DCD achieves comparable hallucination suppression performance
to DPO while maintaining or even improving accuracy on general benchmarks, whereas DPO incurs
noticeable performance degradation in general ability benchmarks. Compared to contrastive decoding
methods, DCD demonstrates superior generalization, outperforming it across all benchmarks.

Moreover, thanks to the decoupled learning design, our method even can learn from negative samples
solely (i.e., only train a negative image projection). When fine-tuning a projector solely on negative
(hallucinatory) responses from the preference dataset, we observe significant hallucination mitigation,
whereas training on the positive responses yields marginal improvement. This phenomenon suggests
that the model has already internalized sufficient knowledge about positive responses in the supervised
fine-tuning phase, and the following RLHF phase provides limited gains. In contrast, we are the
first to reveal that: Explicitly learning from negative samples equips the model with discriminative
awareness of hallucination patterns, which complements its existing knowledge. Looking forward,
we hope our observations will pave the way for new advancements in hallucination mitigation and
more general MLLM alignment.

Conclusively, our contributions are as follows:

1) Decoupled Learning for Robust Alignment. We propose Decoupled Contrastive Decoding
(DCD), the first framework to separate positive/negative sample optimization from preference
datasets in MLLM training. It alleviates the likelihood displacement problem in DPO [14],
preserving general capabilities while mitigating hallucinations.

2) Vision-Aware Hallucination Suppression. We introduce a learnable negative image
projector trained on real hallucinatory samples. Unlike handcrafted perturbations (e.g.,
VCD [[135])), this projector generates distortions grounded in actual MLLM errors, enabling
precise suppression of hallucinations.

3) Paradigm Shift in Preference Learning. We reveal that negative samples alone suffice for
hallucination mitigation, challenging the prevailing preference-learning paradigm—showing
that explicit modeling of errors (not just positive alignment) is critical for robustness.

4) Comprehensive Experiments. Extensive ablations and results demonstrate that our method
achieves competitive performance with training-based methods (e.g., DPO [14]) on halluci-
nation benchmarks while maintaining general ability.

2 Related Work

Multimodal Large Language Model (MLLM). MLLMs have witnessed remarkable advancements
these days. Previous arts [39] 40, 1411 142] have shaped the paradigm of current MLLMs’ architecture:
a vision encoder [43} 44] to process visual input, an LLM [45] 46] to reason and generate text, and a
cross-modal projector [40, 47, 48] to bridge the gap between the visual and textual representations.
The training for MLLMs typically involves two main stages: pre-training and post-training. The
large-scale pre-training stage [49]] provides the model with a strong foundation of general knowledge.
The post-training alignment stage consists of two phases: supervised fine-tuning (SFT) [49] and
reinforcement learning from human feedback (RLHF) [14, 50, |51} [52]]. This process refines the
model’s task-specific performance and encourages alignment with human preferences. Building upon
this foundation, current research continuously pushes the boundaries of their capabilities [53} 154}
551156, 15, 157]]. Meanwhile, some research investigates alternative architectures that could shape the
future of MLLMs, such as Omni [58] 59,160, 61]], MoE [62, 163! 164]], Encoder-Free [65} 66, 167]], and
Any-to-Any [68. 169 (70, [71]].

Hallucination Preference Alignment. To reduce hallucinations and align the model with human
values, prior efforts are made via instruction tuning [21]] or reinforcement learning from human
feedback (RLHF) [14, 150, |51} 52]. Some preliminary efforts extend such preference alignment
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Figure 2: Comparison of DCD with DPO [14] and VCD [15] in the training and inference
stages. (a) Training stage: DPO jointly optimizes positive—negative responses, risking likelihood
displacement. Our method (DCD) separately learns positive and negative image projections to avoid
this issue. (b) Inference stage: VCD uses artificial noise as negative inputs, whereas DCD leverages
learned negative visual features that reflect authentic hallucination patterns, enhancing effective
hallucination suppression.

techniques to Multimodal Large Language Models (MLLMs) [22, 20]. RLHF-V [16] collected a
fine-grained preference dataset with annotated correctional human feedback. In contrast, BPO [18]
utilized an automatic method to construct preference datasets, by distorting the image inputs of
of MLLMs to obtain biased responses. Similarly, RLAIF-V [17] and VLFeedback [19] obtain
large-scale human-level preference annotations through MLLMs. These preference datasets offer a
promising foundation for mitigating hallucination and bias. Our approach leverages these datasets for
positive and negative projection learning.

Contrastive Decoding. Contrastive Decoding was introduced by Li et.al. [30] to mitigate LLMs’
undesirable outputs during text generation. As hallucinations are more common in the “amateur”
model, they can be constrained by maximizing the log-likelihood difference between an “expert" and
an “amateur". Existing methods extend this technique to MLLMs to combat hallucinations through
various debiasing strategies. Text-debiasing methods generate positive logits by amplifying image
attention [72]], or negative text-biased logits via image manipulations, such as noisy images [[15]],
no images [/3]], edited images [29], and downsampling [29]]. Image-debiasing methods generate
negative image-biased logits via disturbance instructions [74]] or select from the differences between
field-of-view pairs [24]]. Unlike these approaches, our method leverages preference datasets to train
separate positive and negative projections which provides a robust contrastive signal, unbiased by
text or image manipulations.

3 Preliminary

Direct Preference Optimization (DPO). DPO [14] is an alignment framework that directly optimizes
an MLLM to adhere to human preferences. Given a preference dataset D = {(z,v, Y, yi)} of
prompts x, images v, positive responses ¥.,, and negative responses ¥y;, DPO leverages a pairwise
loss to align the model 7y with human feedback. The core objective function can be formulated as:

7o (Y|, v) o (yi|z, v)
L 0) = —-E ~p |1 log ————% — Blog ————= ||,
ppo () (z,0,Yw,y1)~D |:Og0' (6 og Teet (Yo |2, ) Blog Teet (1|2, v)

ey

where T is a reference model (i.e., initial SFT model), 3 is a hyperparameter constant, and o

denotes the sigmoid function. The term log % represents the log-probability difference

between the optimized model and the reference model, effectively acting as an implicit reward signal.



By maximizing the likelihood of positive responses over negative ones under this reparameterization,
DPO circumvents reward modeling while maintaining stable optimization.

Likelihood Displacement [23] identifies a critical limitation in DPO’s optimization mechanism. This
occurs because DPO’s pairwise loss only maximizes the relative likelihood gap between preference
pairs (Y., ;) while allowing an arbitrary distortion of absolute probabilities for other responses.
Consequently, the model may experience degraded performance on non-preference tasks the reference
model previously handled well.

Visual Contrastive Decoding (VCD). MLLMs process visual inputs v and textual queries x to
generate responses y through auto-regressive decoding. The token probability distribution at each
time step ¢ is:

p@(yt|v7xay<t) X exXp (logitg(yt|v,x,y<t)) ) (2)
where y.; denotes the generated token sequence prior to time step ¢. Despite their capabilities,
MLLMs frequently exhibit object hallucinations: generating textual descriptions that contradict
visual evidence. Visual Contrastive Decoding (VCD) [15] is a training-free method designed to
mitigate object hallucinations in MLLMs.

In VCD, the model processes both the original visual input v and a distorted version v’, which is gener-
ated by introducing controlled noise to v. By comparing the output distributions pg (y;|v, x, y<;) and
po(y:|v', z,y<+), VCD adjusts the decoding process to suppress tokens that are likely hallucinations.
The adjusted probability distribution pycq(y|v, v’, ) is computed as:

Pred(Ye|v, V', 2, y<i) = softmax [(1 + «) - logity (y¢|v, T, y<¢) — o - logity (ye|v', z,y<1)],  (3)

where « is a hyperparameter controlling the influence of the distorted input. However, these artificial
contrastive distributions may not accurately reflect the real hallucinations generated by MLLMs, as
they are vision-and-text agnostic and can introduce uncertainty in the decoding process.

4 Decoupling Contrastive Decoding

As shown in Figure 2] our method decouples the learning of positive and negative responses through
three key components: (1) Negative Samples Learning, which trains a learnable hallucination
projection to model error patterns; (2) Positive Samples Learning, which preserves the model’s
fidelity to ground-truth responses; and (3) Contrastive Decoding, which suppresses hallucinations by
contrasting original and learned negative representations.

4.1 Motivation

To address the likelihood displacement problem inherent in DPQO’s joint optimization of positive
and negative responses, we propose Decoupling Contrastive Decoding (DCD, Algorithm[I]) to
decouple their learning processes—separately enhancing the model’s fidelity to positive samples
while explicitly suppressing hallucinatory patterns from negative ones. Drawing inspiration from
VCD’s contrastive suppression mechanism, we hypothesize that hallucination mitigation can be
achieved by contrasting the original visual context against a learnable negative projection that
encodes plausible hallucinatory deviations, rather than relying on handcrafted perturbations. Unlike
VCD’s static noise-based distortions, which may misalign with authentic hallucination distributions,
our learnable projection dynamically adapts to capture domain-agnostic hallucination features during
training. By decoupling positive and negative learning, our approach circumvents the collateral
suppression of non-preference responses while preserving the model’s general reasoning capabilities.

4.2 Negative Samples Learning

We train a hallucination-aware negative image projection g4(v) to encode visual features that correlate
with hallucinatory patterns. Given a negative (hallucinated) response y; paired with image v, we
optimize g4 to maximize the likelihood of generating y; when using the negative visual embedding
U = gy (v):

Eneg = 7]E(m,v,yl) logWQ(yl‘Iaﬁl)v 4
where 6 is the parameter of the MLLM. This forces g4 to learn transformations of v that align with
the error distribution in y;, effectively mapping v to a “hallucination-primed” embedding space.



Algorithm 1: Decoupling Contrastive Decoding

Input: MLLM 7y, textual input x, image v, positive response y,,, negative response ¥,
suppression strength «
Output: Generated response y based on x and v
Initialize g4 and g, identically
while fraining do
Compute negative embedding: 9; = g4 (v)
Update g4 by minimizing Loeg = —E (54,4, log 7o (1], 0)
Compute positive embedding: 9, = gy (v)
Update gy, by minimizing Lpos = —E(4.4,4.,) 108 7o (Y| T, Tw)
end
while inference do
Initialize yo = BOS,t =1
while y; # EOS do
Compute positive logit,, = logity(y:|z, Vw, y<t)
Compute negative logit, = logit, (y:|x, 1, y<¢)
Compute contrastive logit = (1 4 a) - logit,, — «a - logit,
Y¢ = arg maxyey softmax (logit)
t=t+1
end

end

4.3 Positive Samples Learning

To preserve factual alignment, we concurrently train the original image projection g, (v) using
positive samples (x, v, Yy ):

Epos = _]E(ac,vﬁyw) 1Og Wo(yw|$, er)7 Uy = gw(v)- (5)

Crucially, g, and g, are initialized identically but updated independently, allowing the model to
maintain a dedicated pathway for faithful visual grounding while g4 specializes in hallucination
patterns. The language model parameters 6 remain shared across both objectives.

4.4 Inference Stage

During inference, we suppress hallucinations by contrasting token likelihoods conditioned on the
positive (7,,) and negative (v;) embeddings:

logit,, = logity (y:|x, Vw, y<t) (6)
logitl = 1Ogit9 (yt|.’17, 6[7 y<t> (7)
logit = (1 4 a) - logit,, — « - logit, 8)

where o modulates the suppression strength. Unlike VCD’s static noise perturbations, 7; = g4(v) is
dynamically adapted to the input image v, ensuring hallucination suppression aligns with contextually
plausible hallucinations rather than arbitrary distortions.

5 Experiments

5.1 Experiment Setup

Hallucination Preference Datasets. We evaluated our approach on four widely-used hallucination
preference datasets: RLHF-V [16] (human-annotated visual preferences), BPO [18] (data-augmented
synthetic preference pairs), RLAIF-V [17] (Al-annotated preferences), and VLFeedback [19] (dense
visual faithfulness annotations). For VLFeedback, we threshold responses using Visual Faithfulness
scores (above four were considered positive, and those below two were considered negative), while
others provide explicit preference pairs. Our method leverages both positive and negative samples to
learn disentangled projections, with ablation studies on negative-only training.



General Performance Hallucination
SEED MathVistal MMStar  MMMU | MM-Vet! —¢ MM siont| V128
core Rate |

LLaVA-1.5 [1] 58.57 27.9 30.20 34.6 23.7 1.79 0.70 39.22 35.69
+ VCD [15] 56.98 27.0 31.33 33.1 24.4 1.64 0.72 39.01 35.30
Fine-tuned on RLHF-V [16]
DPO [14] 57.37 28.5 33.30 33.6 244 1.97 0.65 38.07 35.87
SimPO [75] 58.00 28.1 33.40 33.0 26.7 1.95 0.69 36.70 35.98
Ours (Neg Only) 58.60 27.8 0.7 33.00 0.40 34.7 25.1 1.6 1.80 0.17 070{ 0.05 40.38 36.59
Ours (Pos. & Neg.) [58.55 28.0_05 34.53 34.5 250-17 177020 0.6940.04 40.48 36.84
Fine-tuned on BPO [18]
DPO [14] 54.48 26.6 33.00 35.6 29.7 1.61 0.64 37.85 36.21
SimPO [75] 57.07 27.6 32.47 343 27.3 1.24 0.80 39.53 36.58
Ours (Neg. Only) [58.60 28.3 33.20 344 151294 3 2.00 0.66.0.02 40.17 37.34
Ours (Pos. & Neg.) |58.61 27.9 34.47 34115295 g2 1.66 0.60 39.54 37.35
Fine-tuned on RLAIF-V [17]
DPO [14] 57.43 26.8 33.13 34.9 25.5 1.90 0.66 35.96 35.62
SimPO [75] 57.89 27.8 32.80 332 27.1 1.67 0.71 36.80 36.24
Ours (Neg. Only) 58.57 28.7 33-07—(],()6 34.3,()_(; 25.6,1_5 1.70,()2(] 0.724,(]‘()(; 39.85 36.68
Ours (Pos. & Neg.) [58.56 28.4 34.53 340 09 | 25516 1.86_004 0.69, 003 39.43 36.73
Fine-tuned on VLFeedback [19]
DPO [14] 56.87 26.9 32.27 33.0 26.6 2.18 0.68 31.55 34.53
SimPO [75] 58.24 28.0 31.47 32.7 27.0 1.74 0.75 30.28 34.98
Ours (Neg. Only) |58.62 27.5 33.20 34.4 26.1_09 1.83_035 0.6940.01 39.75 36.60
Ours (Pos. & Neg.) |58.59 28.1 34.61 34.1 27.3 1.80_0.35 0.7040.02 39.96 37.11

Table 1: Performance comparison on general and hallucination benchmarks. “Neg. Only” means
only trained on negative samples of preference datasets, “Pos. & Neg.” is trained in both positive
and negative samples, | indicates lower is better, and, * denotes that the values of MMHal are not
counted on the average score. 1 For those benchmarks which need GPT to evaluate, we utilized

GPT-40 24-05-13.

Evaluation Benchmarks. We evaluated our
proposed method’s ability to mitigate hallu-
cination and maintain general performance
across diverse tasks. Hallucination Bench-
marks: We used MM-Vet [34] (open-ended
VQA), MMHal [32]] (hallucination severity
scoring), HallusionBench [33]] (adversarial vi-
sual contradictions), and POPE [31] (object
existence verification) to assess the hallucina-
tion. General Benchmarks: We selected SEED-
Bench [36] (multimodal understanding), MM-
Star [38] (complex VQA), and MMMU [37]]
(multi-discipline university-level problems) for
general performance evaluation. These bench-
marks provide comprehensive coverage of tasks
for MLLMs. We also evaluated our method
on MathVista [35] to assess the performance
on mathematical visual reasoning. We reported
accuracy for most benchmarks. For MMHal,
we reported the average score and hallucination
rate. For POPE, we report accuracy and F1-
score across all three sampling settings (random,
popular, and adversarial).

Implementation Details. We conduct our ex-
periments on LLaVA 1.5-7B [1]], training only
the image projection layer while keeping all
other parameters frozen. For training, we use
the above four hallucination-related preference

Random Popular | Adversarial

Acc Fl | Acc Fl1 | Acc Fl
LLaVA-1.5 [1] 86.70 85.23|84.73 83.63|83.53 82.22
+ VCD [15] 87.73 87.16|85.38 85.06|80.88 81.33
Fine-tuned on RLHF-V [16]
DPO [14] 78.77 73.31(78.57 73.12|77.80 72.41
SimPO [75] 76.33 69.02(76.07 68.78 |75.73 68.48
Ours (Neg. Only) |87.07 85.51|85.83 84.35|83.47 82.18
Ours (Pos. & Neg.)|86.97 85.39(85.77 84.26|83.47 82.16
Fine-tuned on BPO [18]
DPO [14] 85.87 84.14|84.47 82.84|82.67 81.29
SimPO [75] 86.27 84.59|85.37 83.75|82.73 81.35
Ours (Neg. Only) |87.80 86.60|86.25 85.11|83.67 82.84
Ours (Pos. & Neg.) | 87.67 86.45|86.20 85.08|83.73 82.87
Fine-tuned on RLAIF-V [17]
DPO [14] 86.50 85.01|85.40 83.99|82.20 81.14
SimPO [75] 84.20 81.48|83.53 80.85|82.27 79.68
Ours (Neg. Only) |88.83 87.95|86.13 85.45|83.27 82.94
Ours (Pos. & Neg.)|88.70 87.77{86.03 85.30|83.23 82.85
Fine-tuned on VLFeedback [19]
DPO [14] 74.03 64.9373.87 64.78|73.57 64.52
SimPO [75] 78.43 72.64|78.33 72.55|77.76 72.03
Ours (Neg. Only) |87.03 85.48|85.87 84.38|83.43 82.15
Ours (Pos. & Neg.)|87.27 85.69|85.72 84.45|83.53 82.24

Table 2: Performance comparison on POPE [31]]
which is about existing problems (i.e., “Yes”/*No”
hallucination questions). “Neg. Only” means only
trained on negative samples of preference datasets,
“Pos. & Neg.” is trained in both positive and nega-

tive samples.

datasets: RLHF-V [16] is trained for 2 epochs, while the remaining datasets are trained for 1 epoch
each on NVIDIA A100 80GB. Hyperparameters for contrastive decoding follow the configuration
recommended in VCD [15]], ensuring consistency with this baseline approach. For the DPO baseline,

we follow the training setting of BPO [18]].



SEED MM-Vet Hallusion ACIZOPI;I SEED MM-Vet Hallusion ACIZOPI;I
LLaVA-1.5[1] |58.57 237 39.22  84.73 83.63 LLaVA-1.5[1]]58.57 237 39.22  84.73 83.63
Add Noise 56.98 244 39.01 85.67 84.16 Random 58.34  26.1 39.49 86.10 84.93
Other image 57.39 25.1 37.01 86.13 84.97 Pre-train 58.50 264 39.74 84.83 83.74
Nega. Projection | 58.60  29.4 40.17 86.25 85.11 SFT 58.60 294 40.17 86.25 85.11

Table 3: Ablation study of the type of negative
image embedding used to contrastive decoding.
“Add Noise” is adding noise to the image to get
negative image embedding which is adopted by
VCD [15], “Other image” means randomly sam-
pling another image as negative image embedding,
and “Nega Projection” is our method trained on
BPO [18] which utilizes a negative image projec-
tion to get negative image embedding. We present

Table 4: Ablation study of types to initialize
weight for negative image projection. “Random”
means randomly initialing the projection weights,
“Pre-train” denotes utilizing the model’s pre-train
stage projection weights to initial, and “SFT” is
using the model’s supervised-finetuning stage pro-
jection weights to initial. This experiment is
trained on BPO [18]]. For POPE [31]], we report
the results of the adversarial set here.

the adversarial set results for POPE [31].

5.2 Quantitative Results

Table [I] and Table 2] demonstrate DCD’s effectiveness across hallucination and general reasoning
benchmarks:

Hallucination Suppression. Our approach outperforms DPO [14]] and VCD [15] on POPE (Table ,
improving F1 score over DPO across dataset variants. Notably, adversarial POPE accuracy reaches
83.73% (vs. DPO’s 82.67%), indicating robustness to challenging distractors. On open-ended
hallucination metrics (Table[T)), we achieve comparable performance or outperform DPO on MM-Vet
and reduce MMHal hallucination rates, validating our method’s capacity to suppress hallucinations
without over-constraining free-form responses.

General Capability Preservation. Crucially, our method avoids DPO’s performance degradation in
general reasoning tasks. On MMStar and MathVista (Table[I)), we surpass DPO while maintaining
SEED-Bench accuracy within 0.1% of the original LLaVA-1.5. This contrasts with DPO’s 1.2-4.1 %
drops on SEED-Bench, confirming that likelihood displacement undermines DPO’s generalizability.
DCD even enhances MathVista performance by 0.6-1.9 %, suggesting that hallucination suppression
improves numerical reasoning by reducing spurious correlations.

Comparison to VCD. While VCD marginally improves POPE accuracy, it degrades performance
on complex benchmarks like MathVista (—0.9 %) and open-end benchmarks like HallusionBench
(—0.2 %). Our method outperforms VCD across all metrics, demonstrating that learned negative
embeddings better capture authentic hallucination patterns than static noise perturbations.

5.3 Ablation Studies

To better understand the effectiveness of our method, we conduct comprehensive ablation experiments
analyzing key design choices. All experiments use the same base model and training configuration
for fair comparison.

Types of Negative Image Embedding. We first investigate different strategies for obtaining negative
image embeddings in contrastive decoding. As shown in Table|3] the naive noise injection approach
(adding 500-step noise to original images in VCD [[15]) improves performance on POPE [31] (a binary
hallucination benchmark contains “Yes” or “No” question) but degrades general multimodal under-
standing ability on SEED-Bench [36]. Randomly using other images as negatives partially preserve
general capabilities while further boosting POPE performance, but introduces significant performance
drops on HallusionBench [33]], which contains adversarial visual contradictions. Our learnable
negative projection approach achieves the best balance - it substantially improves performance on
hallucination benchmarks (MM-Vet [34]], HallusionBench, and, POPE) while maintaining SEED-
Bench performance. This demonstrates that explicitly learning hallucination patterns outperforms
heuristic-based negative sampling.

Negative Projection Initialization. Table 4] compares initialization strategies for the negative
image projection module. Initializing with supervised fine-tuning stage weights yields significantly
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Figure 3: Comparison of visualization samples among VCD [15], DPO [14], and our method (trained
negatives solely on BPO [18]]).

better results than random initialization or using pre-trained stage weights. We attribute this to
better alignment with the hallucination patterns observed in MLLMs after instruction tuning. The
pre-trained stage weights, while containing general visual knowledge, lack specific signals about
common hallucination errors made by supervised fine-tuned models.

Positive and Negative Learning. @ We con-

ducted an ablation experiment to further assess SEED MM-Vet Hallusion ACP;OP];ZJI

the effectiveness of positive and negative sam-  TIaVA-T5[I][5857 237 3922 84.73 83.63
ples in preference datasets. As shown in Ta-  Positive 58.64 243 39.43  85.73 84.18
ble[3] learning solely from positive samples does ~ Negative 58.60 294  40.17 8625 85.11
not result in significant performance improve- ~Pos- &Neg. |5861 29.5 3954 8620 85.08

ments. In contrast, learning solely from negative  Table 5: Ablation study of positive and negative
samples leads to greater performance enhance- samples learning. “Postive” means only learn from
ments on hallucination benchmarks such as MM-  positive samples, “Negative” denotes only learn
Vet [34], HallusionBench [33]], and POPE [31]. from negative samples, and “Pos. & Nega.” is
Thanks to our approach of decoupling positive  trained in both positive and negative samples. This
and negative sample learning, all of our learn- experiment is trained on BPO [18]. For POPE [31]],

ing methods (“Positive”, “Negative”, and “Posi  we report the results of the adversarial set here.
& Nega”) do not experience performance degradation on the general ability benchmark SEED-

Bench [36]. We conclude that in preference datasets, the most benefit is derived from negative
samples. This is because the model has already encountered many positive samples during the
supervised fine-tuning stage, but has not been exposed to negative samples during this stage.

5.4 Qualitative Analysis

Case Study. In the Ist row of Figure 3] VCD fails to address the hallucination issue in the table
scene, whereas both DPO and our method succeed. However, on the right side, DPO provides an
incorrect answer and responds oddly by self-questioning and using another language (e.g., Japanese
here) due to the likelihood displacement. In the 2nd row (samples from SEED-Bench), VCD and DPO
incorrectly answered general ability questions that the baseline model (LLaVA-1.5 7B) originally
answered correctly, while our method can preserve baseline model’s original capability.

Hallucination Generated by Negative Images. As illustrated in the first row of Figure ] adding
noise to an image sometimes fails to induce hallucinations in the model. Using such noisy images
as negative examples in contrastive decoding may decrease the probability of arriving at the correct
answer, leading to reduced performance. Our learnable negative image projection triggers likely
hallucinations in the original image (e.g., in the bottom left image of Figure [d] “motorcycle” and



“people”). This approach generates potential hallucinations based on the original image and helps
mitigate them through contrastive decoding.

Question: Explain the elements of the image with thorough attention to detail. Question:
What is
° VCD: The image features a red and black tractor parked in a grassy field, covering
&0 surrounded by a few other vehicles. The tractor is the main focus of the the fruit?
é scene, with its vintage design and classic appearance.
> In addition to the tractor, there are several other vehicles in the VCD: The
ks background, including a truck and a car. The truck is located on the right ' it is
Zz side of the tractor, while the car is positioned further back on the left side. covered in
The field appears to be a gathering place for various vehicles and plastic wrap.
machinery, possibly for an event or exhibition.
° Ours: The image features a large, red tractor parked in a field. The
b tractor is surrounded by a variety of other vehicles, including a truck, a 0““ The
E . car, and a motorcycle. The field is filled with grass, and there are fruit is .
= several people scattered throughout the scene, some of whom are covered in
B=) B standing near the vehicles. The sky is blue, and the sun is shining a layer of
= brightly, creatin rm and inviting atmosphere. The image captures a chocolate.
5 ghtly, creating a warm a 2 P! ge cap

moment of leisure and relaxation, as the people and vehicles enjoy the
outdoors.

Figure 4: Model response generated by using negative image embeddings as inputs for positive image
embeddings. For “VCD”, we utilize noisy images as image inputs and for “Ours”, we utilize negative
image projection to project image inputs.

6 Conclusion

We introduce a novel method to mitigate hallucinations in MLLMs by decoupling the learning
of positive and negative outputs through positive and negative image projections. This approach
dynamically models authentic hallucination patterns, effectively suppressing contradictions without
compromising general reasoning capabilities. Unlike training-based methods (e.g., DPO) which suffer
from the likelihood displacement issue, or training-free methods (e.g., VCD) which rely on static
perturbations, DCD optimizes vision-aware negative image features in contrastive decoding. This
enables competitive hallucination reduction while maintaining performance in open-ended tasks. Our
experiments demonstrate that focusing on negative (hallucinatory) samples significantly enhances the
model’s discriminative awareness, complementing the knowledge gained from supervised fine-tuning.
This work advances the deployment of trustworthy MLLMs in high-stakes scenarios by striking a
balance between accuracy and creativity.
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Appendix

A Social Impacts

Our work addresses the critical challenge of hallucination in multimodal large language models
(MLLMs), with profound implications for the safe deployment of Al systems across socially sensitive
domains. By mitigating factual contradictions and visual misrepresentations, our method enhances
model reliability in high-stakes applications such as medical diagnostics and autonomous driving.
Beyond safety-critical scenarios, our approach fosters trust in Al-assisted decision-making tools for
education, legal documentation, and content moderation by ensuring outputs align with observable
evidence. This reliability is particularly crucial for combating misinformation in an era of Al-
generated content proliferation. Additionally, our findings on the importance of negative sample
learning offer insights for developing more efficient alignment frameworks, potentially democratizing
access to robust MLLMs for resource-constrained institutions.

B Limitations

While our method achieves robust hallucination mitigation, two key limitations warrant consideration.
First, the contrastive decoding framework inherently doubles computational overhead during inference
due to parallel processing of original and negative-projected image features. Second, our negative
image projection relies on the quality and diversity of hallucination patterns in preference datasets.
While current datasets predominantly cover common object hallucinations (e.g., spurious object
mentions), they may underrepresent complex multimodal hallucinations involving spatial reasoning
or causal relationships. Future work could explore adaptive weighting mechanisms to handle such
edge cases.

C Additional Experiments

Results on Qwen 2.5 VL 3B. As shown in Table [AT] and Table [A2] on a lightweight yet strong
backbone, DCD preserves—or slightly improves—general capability while consistently suppressing
hallucinations. Averaged over settings, our method surpasses DPO in three of four preference regimes,
with "Pos.&Neg.” typically the most stable variant. Overall, these appendix results support DCD’s
supervision- and model-agnostic transferability: learned negative embeddings—especially with joint
positive-negative training—capture authentic hallucination patterns and extend cleanly to compact
backbones, pointing to straightforward scaling on Qwen variants and broader preference signals.

D Theoretical Foundation

1. Key Proposition: A Sufficient Condition for Eliminating Likelihood Displacement
From Pairwise to Decoupled Optimization. DPO maximizes a paired log gap:
EDPO(G) = _E(z,v,er,y*) [log U(ﬂ [1Og o (y+ | z, U) - IOg o (y7 | Z, U)} )] 3

which guarantees the gap widens but is agnostic to the absolute values of log 7 (y* | ,v) and
log mg(y~ | @, v). As aresult, both likelihoods can drift downward—the likelihood displacement
effect that degrades general reasoning (see Figure[I{a) DPO in the paper).

Our Decoupled Objective. Instead, we minimize two independent cross-entropies:
mwiﬂ E ooyt [—logma (v | 2, 94(v))], m¢iﬂ E oo,y [~ logmo (v~ | 2, 94(v))] ,
and combine the results only at inference time:
lgg\it = (1+ «) logit,, — « logit, .

As shown in Figure 1(a) Ours, this ensures that log mg(y™ | x,v) increases while log mg(y~ |
x,v) is suppressed. This construction provides a lower-bound guarantee on general reasoning
performance, consistent with our empirical results (Table[T} SEED-Bench).
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2. Necessity and Sufficiency of the Negative Projector

Theoretical View. We interpret the negative image projection g4 as learning an adversarial negative
distribution q4(v) in the vision-feature space 1V, which maximizes

KL(p(y | ,0) || oy | 2.90(0)))

equivalent to maximizing the InfoNCE lower bound. Thus, learning only the negative projector
implicitly provides a gradient-shaped penalty during inference, which explains why our Neg-only
training consistently reduces hallucination.

Empirical Evidence. As shown in Table |1} the Neg-only variant nearly matches Pos + Neg on
hallucination benchmarks, and clearly outperforms Pos-only. To our knowledge, ours is the first
work to show that negative-only learning can suffice.

General Performance Hallucination
SEED MathVistat MMStar MMMU | MM-Vet' %Hallusionf Average
core Rate |

Qwen 2.5 VL 3B 66.67 61.0 53.27 44.4 52.5 2.01 0.69 50.68 54.75
+ VCD [135] 65.15 64.1 52.53 44.9 52.5 1.96 0.71 49.21 54.73
Fine-tuned on RLHF-V [16]
DPO [14] 66.61 60.9 53.53 44.8 51.3 1.83 0.73 50.81 54.66
SimPO [75] 66.89 61.2 53.07 44.9 50.1 2.07 0.68 49.63 54.30
Ours (Neg. Only) 65.00,1149 62.4 53.53 44.3,()_(;() 53.2 1.98,(”]9 0-70+(],()2 51.94 55.06
Ours (Pos. & Neg.) [66.30_ 59 62.7 54.80 444 50| 54.5 2.43 0.57 52.37 55.85
Fine-tuned on BPO [18]
DPO [14] 66.96 63.8 53.13 453 524 1.84 0.69 52.66 55.71
SimPO [75] 66.92 63.2 53.67 45.1 51.5 2.35 0.55 53.68 55.68
Ours (Neg. Only) 67.11 60.2,;;_5() 52‘93,(],71 46.6 53.8 1.9770_;;3 0.68+(]_1;; 53.31,()_;;7 55.66,()_()5
Ours (POS & Neg) 67.12 63.2,()_(;() 53.07,(”;(] 46.9 53.2 2.55 0.52 53267()12 56.13
Fine-tuned on RLAIF-V [17]
DPO [14] 66.84 60.8 53.13 44.6 52.9 1.58 0.76 50.16 54.74
SimPO [75] 66.32 60.2 52.67 45.1 45.6 2.55 0.59 46.37 52.71
Ours (Neg. Only) [64.70_214 61.1 52.87 .06 46.7 53.0 1.99 41 0.71 52.47 55.14
Ours (Pos. & Neg.) |65.61_1 23 60.9 50.27 586 45.8 53.5 2.30 0.61 52.68 54.79
Fine-tuned on VLFeedback [19]
DPO [14] 66.74 60.5 52.33 44.6 53.1 2.14 0.66 48.27 54.26
SimPO [75] 66.96 62.3 52.87 44.6 51.9 2.33 0.68 48.05 54.45
Ours (Neg. Only) [65.80_1 16 61.2_1.19 53.13 45.2 53.0_¢p.10 221 0.66_¢.00 51.79 55.02
Ours (Pos. & Neg.) [66.25_y.71 61.0_1 37 53.60 45.6 54.7 3.15 0.46 51.69 55.47

Table Al: Performance comparison on general and hallucination benchmarks for Qwen 2.5 VL 3B.
‘Neg. Only’ means only trained on negative samples of preference datasets, ‘Pos. & Neg.’ is trained
with both positive and negative samples, | indicates lower is better, and * denotes that the MMHal
values are not counted in the Average score. T For benchmarks requiring GPT evaluation, we follow
the same setting as the main table (e.g., GPT-40 24-05-13).

16



Random Popular | Adversarial
Acc  FlI | Acc F1 | Acc Fl

Woodpecker[76] | 85.51 86.67|83.51 84.33|82.35 83.00
Qwen 2.5 VL 3B |88.90 87.67|87.87 86.68|86.67 85.55

+ VCD [I3] 88.93 87.79 (87.33 86.27|85.80 84.85
Fine-tuned on RLHF-V [16]

DPO [14] 88.83 87.58 87.83 86.61|86.60 85.46
SimPO [[75] 88.07 86.59 (87.27 85.82|86.23 84.84

Ours (Neg. Only) |89.57 88.54|88.30 87.32|86.80 85.92
Ours (Pos. & Neg.)|89.30 88.18|87.93 86.87 |86.87 85.87
Fine-tuned on BPO [18]
DPO [14] 89.40 88.29 (88.20 87.13|86.87 85.89
SimPO [[75] 88.17 86.72(87.23 85.82|86.07 84.72
Ours (Neg. Only) |91.37 90.77|89.07 88.58|86.76 86.51
Ours (Pos. & Neg.)|90.90 90.20|89.33 88.70|86.63 86.23
Fine-tuned on RLAIF-V [17]
DPO [14] 89.23 88.08 [88.10 86.99|86.67 85.64
SimPO [75] 89.57 88.46|88.40 87.33|86.90 85.93
Ours (Neg. Only) |91.37 90.80|88.40 88.02|86.07 85.95
Ours (Pos. & Neg.)|90.30 89.56|88.53 87.89|85.80 85.41
Fine-tuned on VLFeedback [19]
DPO [14] 87.77 86.21(87.07 85.53|86.00 84.52
SimPO [[75] 87.03 85.20(86.40 84.59|85.50 83.74
Ours (Neg. Only) |90.03 89.08 |88.47 87.58|87.07 86.28
Ours (Pos. & Neg.)|89.27 88.17|88.00 86.96|85.90 85.02

Table A2: Performance comparison on POPE [31]
with Qwen 2.5 VL 3B. “Neg. Only” uses only
negative samples from preference datasets; ‘“Pos.
& Neg.” uses both positive and negative samples.

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction introduce our proposed method and its effective-
ness.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in the appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.
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* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: [NA]
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide the implementation details in the experiments section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: The code will be released after the review.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Answer: [Yes]
Justification: We provide the experimental setting in the experiment section.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to limited computational resources, we run each experiment once and
report the results.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We run our experiments in NVIDIA A100 80GB, which is included in our
implementation details.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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9.

10.

11.

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We reviewed the NeurIPS Code of Ethics and confirm that our research
complies with all listed principles.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the social impacts in the appendix.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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14.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We used open-source datasets and cited them.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:
Justification: Our paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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