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ABSTRACT

We study the unique, less-well understood problem of generating sparse adversar-
ial samples simply by observing the score-based replies to model queries. Sparse
attacks aim to discover a minimum number—the l0 bounded—perturbations to
model inputs to craft adversarial examples and misguide model decisions. But,
in contrast to query-based dense attack counterparts against black-box models,
constructing sparse adversarial perturbations, even when models serve confidence
score information to queries in a score-based setting, is non-trivial. Because, such
an attack leads to: i) an NP-hard problem; and ii) a non-differentiable search
space. We develop the BRUSLEATTACK—a new, faster (more query efficient)
Bayesian algorithm for the problem. We conduct extensive attack evaluations in-
cluding an attack demonstration against a Machine Learning as a Service (MLaaS)
offering exemplified by Google Cloud Vision and robustness testing of adversar-
ial training regimes and a recent defense against black-box attacks. The proposed
attack scales to achieve state-of-the-art attack success rates and query efficiency
on standard computer vision tasks such as ImageNet across different model ar-
chitectures. Our artifacts and DIY attack samples are available on GitHub. Im-
portantly, our work facilitates faster evaluation of model vulnerabilities and raises
our vigilance on the safety, security and reliability of deployed systems.

1 INTRODUCTION

We are amidst an increasing prevalence of deep neural networks in real-world systems. So, our
ability to understand the safety and security of neural networks is critical to our trust in machine
intelligence. We have heightened awareness of adversarial attacks (Szegedy et al., 2014)—crafting
imperceptible perturbations in inputs to manipulate deep perception systems to produce erroneous
decisions. In real-world applications such as machine learning as a service (MLaaS) from Google
Cloud Vision or Amazon Rekognition, the model is hidden from users. Only, access to model deci-
sions (labels) or confidence scores are possible. Thus, crafting adversarial examples in black-box
query-based interactions with a model is both interesting and practical to consider.

Why Study Query-Based Sparse Attacks Under Score-Based Responses? Since confidence
scores expose more information compared to model decisions, we can expect fewer queries to elicit
effective attacks and, consequently, the potential for developing attacks at scale under score-based
settings. Various similarity measures—lp norms—are used to quantitatively describe adversarial
example perturbations. Particularly, l2 and l∞ norm is used to quantify dense perturbations for
attacks. In contrast, l0 norm quantifies sparse perturbations aiming to perturb a tiny portion of
the input. While dense attacks are widely explored, the success of sparse-attacks, especially under
score-based settings, has drawn much less attention and remains less understood (Croce et al., 2022).
This leads to our lack of knowledge of model vulnerabilities to sparse perturbation regimes.

Why are Score-Based Sparse Attacks Hard? Constructing sparse perturbations is incredibly diffi-
cult as minimizing l0 norm leads to an NP-hard problem (Modas et al., 2019; Dong et al., 2020) and
a non-differentiable search space that is mixed (discrete and continuous) (Carlini & Wagner, 2017).
Now, for a given l0 constraint or number of pixels, we need to search for both the optimal set of
pixels to perturb in a source image and the pixel colors—-floats in [0, 1]. Solutions are harder, if we
aim to achieve both query efficiency and high attack success rate (ASR) for high resolution vision
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Figure 1: Targeted Attack. Malicious instances are generated by BRUSLEATTACK with different perturbation
budgets against three Deep Learning models on ImageNet. An image with ground-truth label Minibus is
misclassified as a Warplane. Interestingly, in contrast to needing 220 pixels to mislead the Vision Trans-
former, BRUSLEATTACK requires only 80 perturbed pixels to fool ResNet-based models (more visuals in
Appendix R). Evaluation against Google Cloud Vision is in Section 4.4 and Appendix Q.

tasks such as ImageNet. The only scalable attempt to the challenges, SPARSE-RS (Croce et al.,
2022), applies a stochastic search method to seek potential solutions.

Our Proposed Algorithm. We consider a new formulation to cope with the problem and construct
the new search method–BRUSLEATTACK. We propose a search for a sparse adversarial example
over an effective, lower dimensional search-space. In contrast to the prior stochastic search and
pixel selection method, we guide the search by prior knowledge learned from historical information
of pixel manipulations (past experience) and informed selection of pixel level perturbations from
our lower dimensional search space to tackle the resulting combinatorial optimization problem.

Contributions. Our efforts increase our understanding of less-well understood, hard, score-based,
query attacks to generate sparse adversarial examples. Notably, only a few studies exist on the
robustness of vision Transformer (ViT) architectures to sparse perturbation regimes. This raises a
critical concern over their reliable deployment in applications. Therefore, we investigate the fragility
of both CNNs and ViTs against sparse adversarial attacks. Figure 1 demonstrates examples of our
attack against models on the ImageNet task while we summarize our main contributions below:

• We formulate a new sparse attack—BRUSLEATTACK—in the score-based setting. The
algorithm exploits the knowledge of model output scores and our intuitions on: i) learning
influential pixel information from historical pixel manipulations; and ii) informed selection
of pixel perturbations based on pixel dissimilarity between our search space prior and a
source image to accelerate the search for a sparse adversarial example.

• As a first, investigate the robustness of ViT and compare its relative robustness with ResNet
models on the high-resolution dataset Imagenet under score-based sparse settings.

• We demonstrate the significant query efficiency of our algorithm over the state-of-the-art
counterpart in different datasets, against various deep learning models as well as defense
mechanisms and Google Cloud Vision in terms of ASR & sparsity under 10K query budgets.

2 RELATED WORK

Non-Sparse (Dense) Attacks (l2, l∞). Extensive past works studied dense attacks in white-
box (Goodfellow et al., 2014; Madry et al., 2018; Carlini & Wagner, 2017; Dong et al., 2018; Wong
et al., 2019; Xu et al., 2020) and black-box settings (Chen et al., 2017; Tu et al., 2019; Liu et al.,
2019; Ilyas et al., 2019; Andriushchenko et al., 2020; Shukla et al., 2021; Vo et al., 2022b). Due to
non-differentiable, high-dimensional and mixed (continuous & discrete) search space encountered
in sparse settings, adopting these methods is non-trivial (see analysis in Appendix E). Recent work
has explored sparse attacks in white-box settings (Papernot et al., 2016; Modas et al., 2019; Croce
& Hein, 2019; Fan et al., 2020; Dong et al., 2020; Zhu et al., 2021). Here we mainly review sparse
attacks in black-box settings but compare with a white-box sparse attack for interest in Section 4.2.
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Decision-based Sparse Attacks (l0). Only few recent studies, POINTWISE (Schott et al., 2019) and
SPARSEEVO (Vo et al., 2022a), have tackled the difficult problem of sparse attacks in decision-
based settings. The fundamental difference between decision-based and score-based settings is the
output information (labels vs scores) and the need for a target class image sample in decision-
based algorithms. The label information hinders direct optimization from output information. So,
decision-based sparse attacks rely on an image from a target class (targeted attacks) and gradient-
free methods. This leads to a different set of problem formulations. We study and demonstrate
that sparse attacks formulated for decision-based settings do not lead to query-efficient attacks in
score-based settings in Section 4.2.

Score-based Sparse Attacks (l0). A score-based setting seemingly provides more information than
a decision-based setting. But, the first attack formulations (Narodytska & Kasiviswanathan, 2017;
Zhao et al., 2019; Croce & Hein, 2019) suffer from prohibitive computational costs (low query
efficiency) and do not scale to high-resolution datasets i.e. ImageNet. The recent SPARSE-RS
random search algorithm in (Croce et al., 2022) reports the state-of-the-art, query-efficient, sparse
attack and is a significant advance. But, large query budgets are still required to achieve low sparsity
on high resolution tasks such as ImageNet in the more difficult targeted attacks.

3 PROPOSED METHOD

We focus on exploring adversarial attacks in the context of score-based and sparse settings. First,
we present the general problem formulation for sparse adversarial attacks. Let x ∈ [0, 1]c×w×h be
a normalized source image, where c is the number of channels and w, h is the width and height
of the image and y is its ground truth label—the source class. Let f(x) denote a vector of all
class probabilities—softmax scores—from a victim model and f(r|x) denote the probability of
class r. An attacker aims to search for an adversarial example x̃ ∈ [0, 1]c×w×h such that x̃ can be
misclassified by the victim model (untargeted setting) or classified as a target class ytarget (targeted
setting). Formally, in a targeted setting, for a given x, a sparse attack aiming to search for the best
adversarial example x∗ can be formulated as a constrained combinatorial optimization problem:

x∗ = argmin
x̃

L(f(x̃), ytarget) s.t. ∥x − x̃∥0 ≤ B , (1)

where ∥∥0 is the l0 norm denoting the number of perturbed pixels, B denotes a budget of perturbed
pixels and L denotes the loss function of the victim model f ’s predictions. This loss may be different
from the training loss and remains unknown to the attacker. In practice, we adopt the loss functions
in (Croce et al., 2022), particularly cross-entropy loss in targeted settings and margin loss in untar-
geted settings. The problem with Equation 1 is the large search space as we need to search colors,
float numbers in [0, 1], for perturbing some optimal combination of pixels in the source image x.

3.1 NEW PROBLEM FORMULATION TO FACILITATE A SOLUTION

Sparse attacks aim to search for the positions and color values of perturbed pixels; for a normalized
image, the color value of each channel of a pixel—RGB color value—can be a float number in
[0, 1]. Consequently, the search space is enormous. Instead of searching in the mixed (discrete and
continuous), high-dimensional search space, we consider turning the mixed search space problem
into a lower-dimensional, discrete search space problem. Subsequently, we propose a formulation
that will aid the development of a new solution to the combinatorial search problem.

Proposed Lower Dimensional Search Space. We introduce a simple but effective perturbation
scheme. We uniformly sample, at random, a color image x′ ∈ {0, 1}c×w×h—which we call
the synthetic color image—to define the color of perturbed pixels in the source image x. In this
manner, each pixel is allowed to attain arbitrary values in [0, 1] for each color channel, but the
dimensionality of the space is reduced to a discrete space of size w×h. The resulting search space is
eight times smaller than the perturbation scheme in SPARSE-RS (Croce et al., 2022) (see an analysis
in Appendix H). Surprisingly, our proposal is incredibly effective, particularly in high-resolution
images such as ImageNet (we provide a comparative analysis with alternatives in Appendix I).

Search Problem Over the Lower Dimensional Space. Despite the lower-dimensional nature of
the search space, a combinatorial search problem persists. As a remedy, we propose changing the
problem of finding x̃ to finding a binary matrix u for selecting pixels to perturb in x to construct an
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adversarial instance. To that end, we consider choosing a set of pixels in the given image x to be
replaced by pixels from the synthetic color image x′ ∈ {0, 1}c×w×h. These pixels are determined
by a binary matrix u ∈ {0, 1}w×h where ui,j = 1 indicates a pixel to be replaced. The adversarial
image is then constructed as x̃ = ux′ + (1 − u)x where 1 denotes the matrix of all ones with di-
mensions of u, and each element of u corresponds to one pixel of x with c channels. Consequently,
manipulating each pixel of x̃ corresponds to manipulating an element in u. Therefore, rather than
solving Equation 1, we consider the equivalent alternative (proof is shown in Appendix G):

u∗ = argmin
u

ℓ(u) s.t. ∥u∥0 ≤ B , (2)

where ℓ(u) := L(f(ux′ + (1−u)x), ytarget). Although the problem in 2 is combinatorial in nature
and does not have a polynomial time solution, the formulation facilitates the use of two simple
intuitions to iteratively generate better solutions—i.e. sparse adversarial samples.

3.2 A BAYESIAN FRAMEWORK FOR THE l0 CONSTRAINED COMBINATORIAL SEARCH

Bird Bird Bird Bird Bird Dog

Round

Perturbed Images 

Loss
Predicted label

Dirichlet
probability density
over the simplex

Figure 2: A Sampling and Update illustration. The attack aims to mislead a model into misclassi-
fying a Bird image as Dog. Assuming that in round t − 1, an adversarial instance is classified as
Bird and loss ℓ = 4.8. We visualize three elements of αposterior for simplicity. Let {p1, p2, p3} de-
note three perturbed pixels with corresponding posterior parameters {αposterior

1 , αposterior
2 , αposterior

3 }. Assume
that in round t, two pixels p1, p2 remain while p3 is replaced by p4 because a loss reduction is observed
from 4.8 to 1.9. All {αposterior

1 , αposterior
2 , αposterior

3 , αposterior
4 } are updated using Equation 6 but we visualize

{αposterior
1 , αposterior

2 , αposterior
4 }. Since αposterior

4 is new and has never been selected before, it is small in value
(and represented using colder colors). From t to t + 45, while sampling and learning to find a better group of
perturbed pixels, αposterior is updated. Because p1 has a high influence on the model’s prediction (represented
using warmer colors), it is more likely to remain, while p2, p4 are more likely to be selected for a replacement
due to their lower impact on the model decision. In round t + 46, pixel p2 is replaced by p5 because a loss
reduction is observed from 1.9 to 0.6. Now, the predicted label is flipped from Bird to Dog.

It is clear that some pixels impart a more significant impact on the model decision than others. As
such, given a binary matrix u with a set of selected elements—representing a candidate solution, we
can expect some of these elements, if altered, to be more likely to result in an increase in the loss
ℓ(u). Then, our assumption is that some selected elements must be hard to manipulate to reduce the
loss, and as such, should be unaltered. Retaining these selected elements is more likely to circumvent
a bad solution successfully. In other words, these selected elements may significantly influence the
model’s decision and are worth keeping. In contrast to a stochastic search for influential pixels, we
consider learning the influence of each element based on the history of pixel manipulations.

The influence of these elements can be modeled probabilistically, with the more influential elements
attaining higher probabilities. To this end, we consider a categorical distribution parameterized by
θ, because we aim to select multiple elements and this is equivalent to multiple draws of one of
many possible categories. It then follows to consider a Bayesian formulation to learn θ similar to
Abbasnejad et al. (2017). We adopt a general Bayesian framework and design the new components
and approximations needed to learn θ. We can expect a new solution, u(t), generated according to
θ to more likely outweigh the current solution and guide the future candidate solution towards a pixel
combination that more effectively minimizing the loss ℓ(u). Next, we describe these components
and defer the algorithm we have designed, incorporating these components to Section 3.3.
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Prior. In Bayesian statistics, the conjugate prior distribution of the categorical distribution is the
Dirichlet distribution. Thus, we give θ a prior distribution defined by a Dirichlet distribution with
the concentration parameter α as P(θ;α) := Dir(α).

Sampling u(t). For t > 0, given a solution—binary matrix u(t−1)—and θ(t), we aim to: i) select
and preserve highly influential selected elements (Equation 3); and ii) draw new elements from
unselected elements (Equation 4), conditioned upon u(t−1) = 1 and u(t−1) = 0, respectively, to
jointly yield a new solution u(t) (Equation 5). Concretely, we can express this process as follows:

v
(t)
1 . . . ,v

(t)
b ∼ Cat(v | θ(t),u(t−1) = 1), (3)

q
(t)
1 , . . . , q

(t)
B−b ∼ Cat(q | θ(t),u(t−1) = 0), (4)

u(t) = [∨bk=1v
(t)
k ] ∨ [∨B−b

r=1 q
(t)
k ] . (5)

Here v(t)
k , q

(t)
r ∈ {0, 1}w×h, B denotes a total number of selected elements (a perturbation budget),

b denotes the number of selected elements remaining unchanged, and ∨ denotes logical OR operator.

Updating θ(t) (Using Our Proposed Likelihood). Finding the exact solution for the underlying
parameters θ(t) of the categorical distribution in Equation 3 and Equation 4 to increase the likelihood
of yielding a better solution for u(t) in Equation 5 is often intractable. Our approach is to find an
estimate of θ(t) by obtaining the expectation of the posterior distribution of the parameter, which is
learned and updated over time through Bayesian inference. Notably, since the prior distribution of
the parameter is a Dirichlet, which is the conjugate prior of the categorical (i.e. distribution of u),
the posterior of the parameter is also Dirichlet. Formally, at each step t > 0, updating the posterior
and θ(t) is formulated as follows:

αposterior
i,j = αprior

i,j + s
(t)
i,j (6)

P(θ | α,u(t−1), ℓ(t−1)) : = Dir(αposterior) (7)

θ(t) = Eθ∼P(θ|α,u(t−1),ℓ(t−1))[θ], (8)

where αprior = α(0) is the initial concentration parameter, αposterior = α(t) denotes the updated
concentration parameter (illustration in Figure 2) and s

(t)
i,j = ((a

(t))
i,j + z)/(n

(t)
i,j + z))−1. Here, z is

a small constant (i.e. 0.01) to ensure that the nominator and denominator are always non-zero (this
smoothing technique is applied since the nominator and denominator can be zero when “never”
manipulated pixels are selected), a(t)i,j is the accumulation of altered pixel i, j (i.e. u

(t)
i,j = 0 and

u
(t−1)
i,j = 1) when it leads to an increase in the loss, i.e. ℓ(t) ≥ ℓ(t−1), and n

(t)
i,j is the accumulation

of selected pixel i, j in the mask u(t). Formally, a(t)i,j and n
(t)
i,j can be updated as follows:

a
(t)
i,j =

{
a
(t−1)
i,j + 1 if ℓt ≥ ℓ(t−1) ∧ u

(t)
i,j = 1 ∧ u

(t−1)
i,j = 0

a
(t−1)
i,j otherwise

(9)

n
(t)
i,j =

{
n
(t−1)
i,j + 1 if u

(t)
i,j = 1 ∨ u

(t−1)
i,j = 1

n
(t−1)
i,j otherwise

(10)

3.3 SPARSE ATTACK ALGORITHM FORMULATION WITH OUR BAYESIAN FRAMEWORK

Using the Bayesian framework for l0 constrained combinatorial search in Section 3.2, we devise our
sparse attack (Algorithm 1) illustrated in Figure 3 and discuss it in detail as follows:

Initialization (Algorithm 2). Given a perturbation budget B and a zero-initialized matrix u, N first
solutions are generated by uniformly altering B elements of u to 1 at random. The initial u(0) is the
solution incurring the lowest loss ℓ(0). θ(0) is the expectation of αprior presented in Appendix M.3.

Generation (Algorithm 3). It is necessary here to balance exploration versus exploitation, as in
other optimization methods. Initially, to explore the search space, we aim to manipulate a large
number of selected elements. When approaching an optimal solution, we aim at exploitation to
search for a solution in a region nearby a given solution and thus alter a small number of selected
elements. Therefore, we use the combination of power and step decay schedulers to regulate a
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Figure 3: BRUSLEATTACK algorithm (Algo. 1). We aim to search for a set of pixels to replace in the source
image x by corresponding pixels in a synthetic color image x′. In the solution, binary matrix u(t), white and
black colors denote replaced and non-replaced pixels of the source image, respectively. Instead of a stochastic
search, we employ our Bayesian framework in §3.2. First, we aim to retain useful elements in the solution
u(t) by learning from historical pixel manipulations. For this, we explore and learn the influence of selected
elements by capturing it in the model θ using our general Bayesian framework in §3.2—darker colors illustrate
the higher influence of selected elements (Algo. 4). Second, we generate new pixel perturbations based on
θ with the intuition that a larger pixel dissimilarity M between our search space x′ and a source image can
possibly move the adversarial to the decision boundary faster and accelerate the search (Algo. 3).

Algorithm 1: BRUSLEATTACK

Input: source image x, synthetic color image x′, source label y, target label ytarget, model f
query limit T , scheduler parameters m1,m2, initial changing rate λ0

perturbation budget B, a number of initial samples N , concentration parameters αprior

1 Create Dissimilarity Map M using Equation 11
2 u(0), ℓ(0) ← INITIALIZATION(x,x′, y, ytarget, N,B, f)

3 t← 1, a(0) ← 0, n(0) ← u(0)

4 Calculate θ(0) using αprior and Equation 8
5 while t < T and y(t) ̸= ytarget do
6 λ(t) ← λ0(t

m1 +mt
2)

7 u(t) ← GENERATION(θ(t),M ,u(t−1), λ(t))

8 ℓ(t) ← L(f(u(t)x′ + (1− u(t))x), ytarget)

9 y(t) ← argmaxr f(r|u(t)x′ + (1− u(t))x)

10 u(t), ℓ(t),θ(t),a(t),n(t) ← UPDATE (u(t), ℓ(t),u(t−1), ℓ(t−1),a(t),n(t))
11 t← t+ 1
12 end while
13 return u(t)

number of selected elements altered in round t. This scheduler is formulated as λt = λ0(t
m1 +mt

2),
where λ0 is an initial changing rate, m1,m2 are power and step decay parameters respectively.
Concretely, we define a number of selected elements remaining unchanged as b = ⌈(1− λt)B⌉.
Given a prior concentration parameter αprior, to generate a new solution in round t, we first find
αposterior as in Equation 6 and estimate θ(t) as in Equation 8. We then generate v

(t)
k and q

(t)
r as in

Equation 3 and Equation 4, respectively. A new solution u(t) can be then formed as in Equation 5.
Nonetheless, the naive approach of sampling q

(t)
r as in Equation 4 is ineffective and achieves a low

performance at low levels of sparsity as shown in Appendix K. When altering unselected elements
that are equivalent to replacing non-perturbed pixels in the source image with their corresponding
pixels from the synthetic color image, the adversarial instance moves away from the source image
by a distance. At a low sparsity level, since a small fraction of unselected elements are altered, the
adversarial instance is able to take small steps toward the decision boundary between the source and
target class. To mitigate this problem (taking inspiration from (Brunner et al., 2019)) we employ a
prior knowledge of the pixel dissimilarity between the source image and the synthetic color image.
Our intuition is that larger pixel dissimilarities lead to larger steps. As such, it is possible that altering
unselected elements with a large pixel dissimilarity moves the adversarial instance to the decision
boundary faster and accelerates optimization. The pixel dissimilarity is captured by a dissimilarity
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map M as follows:

M =

∑2
c=0 |xc − x′

c|
3

, (11)

where c denotes a channel of a pixel. In practice, to incorporate M into the step of sampling q
(t)
r ,

Equation 4 is changed to the following:

q
(t)
1 , . . . , q

(t)
B−b ∼ Cat(q | θ(t)M ,u(t−1) = 0) (12)

Update (Algorithm 4). The generated solution u(t) is associated with a loss ℓ(t) given by the loss
function in Equation 2. This is then used to update αposterior (Equation 6 and illustration in Figure 2)
and the accepted solution as the following:

u(t) =

{
u(t) if ℓ(t) < ℓ(t−1)

u(t−1) otherwise
(13)

4 EXPERIMENTS AND EVALUATIONS

Attacks and Datasets. For a comprehensive evaluation of BRUSLEATTACK, we compose of evalua-
tion sets from CIFAR-10 (Krizhevsky et al.), STL-10 (Coates et al., 2011) and ImageNet (Deng
et al., 2009). For CIFAR-10 and STL-10, we select 9,000 and 60,094 different pairs of the source
image and target class respectively. For ImageNet, we randomly select 200 correctly classified
test images evenly distributed among 200 random classes from ImageNet. To reduce the compu-
tational burden of the evaluation tasks in the targeted setting, five target classes are randomly chosen
for each image. For attacks against defended models with Adversarial Training, we randomly select
500 correctly classified test images evenly distributed among 500 random classes from ImageNet.
We compare with the state-of-the-art SPARSE-RS (Croce et al., 2022).

Models. For convolution-based networks, we use models based on a state-of-the-art architecture—
ResNet—(He et al., 2016) including ResNet18 achieving 95.28% test accuracy on CIFAR-10,
ResNet-9 obtaining 83.5% test accuracy on STL-10, pre-trained ResNet-50 (Marcel & Rodriguez,
2010) with a 76.15% Top-1 test accuracy, pre-trained Stylized ImageNet ResNet-50—ResNet-50
(SIN)—with a 76.72% Top-1 test accuracy (Geirhos et al., 2019) on ImageNet. For the attention-
based network, we use a pre-trained ViT-B/16 model achieving 77.91% Top-1 test accuracy (Doso-
vitskiy et al., 2021). For robust ResNet-50 models 1, we use adversarially pre-trained l2/ l∞ models
(l2-At and l∞-AT) (Logan et al., 2019) with 57.9% and 62.42% clean test accuracy respectively.

Evaluation Metrics. We define a sparsity metric as the number of perturbed pixels divided by the
total pixels of an image. To evaluate the performance of an attack, we use Attack Success Rate
(ASR). A generated perturbation is successful if it can yield an adversarial example with sparsity
below a given sparsity threshold, then ASR is defined as the number of successful attacks over the
entire evaluation set at different sparsity thresholds. We measure the robustness of a model by the
accuracy of that model under an attack at different query limits and sparsity levels.

4.1 ATTACK TRANSFORMERS & CONVOLUTIONAL NETS

We carry out comprehensive experiments on ImageNet under the targeted setting to investigate
sparse attacks against various Deep Learning models (standard ResNet-50, ResNet-50 (SIN) and
ViT). The results for the targeted and untargeted setting are detailed in Appendix B. Additional
results on STL-10 and CIFAR-10 are provided in Appendix C and D respectively.

Convolutional-based Models. Figure 4a and 4b show that, at sparsity 0.4% (≈ 200
224×224 ),

BRUSLEATTACK achieves slightly higher ASR than SPARSE-RS while at sparsity 1.0% (≈
500

224×224 ), our attack significantly outweighs SPARSE-RS at different queries. Particularly, from
2K to 6K queries, BRUSLEATTACK obtains about 10% higher ASR than SPARSE-RS. Interestingly,
with a small query budget of 6K queries, BRUSLEATTACK to achieve ASR higher than 90%.

Attention-based Model. Figure 4c demonstrates that at sparsity of 0.4% BRUSLEATTACK achieves
a marginally higher ASR than SPARSE-RS whereas at sparsity of 1.0% our attack demonstrates

1https://github.com/MadryLab/robustness
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Figure 4: Targeted setting on ImageNet. a-c) ASR of BRUSLEATTACK and SPARSE-RS against different
models at sparsity levels of 0.4% (dashed lines) and 1.0% (solid lines); d) Accuracy of different models against
BRUSLEATTACK at sparsity levels (0.4% dash, 1.0% solid; in-between sparsity levels in Appendix B).

significantly better ASR than SPARSE-RS. At 1.0% sparsity and with query budgets above 2K, our
method achieves roughly 10 % higher ASR than SPARSE-RS. Overall, our method consistently
outperforms the SPARSE-RS in terms of ASR across different query budgets and sparsity levels.

The Robustness of Transformer versus CNN. Figure 4d demonstrates the robustness of ResNet-
50, ResNet-50 (SIN) and ViT models to adversarially sparse perturbation in the targeted settings. We
observe that the performance of all three models degrades as expected. Although ResNet-50 (SIN)
is more robust to several types of image corruptions than the standard ResNet-50 by far as shown
in (Geirhos et al., 2019), it is as vulnerable as its standard counterpart against sparse adversarial
attacks. Interestingly, our results in Figure 4d illustrate that ViT is much less susceptible than ResNet
family against adversarially sparse perturbation. At the sparsity of 0.4% and 1.0 %, the accuracy
of ViT is pragmatically higher than both ResNet models under our attack across different queries.
Interestingly, BRUSLEATTACK merely requires a small query budget of 4K to degrade the accuracy
of both ResNet models to the same accuracy of ViT at 10K queries. These findings can be explained
that ViT’s receptive field spans over the whole image (Naseer et al., 2021) because some attention
heads of ViT in the lower layers pay attention to the entire image (Paul & Chen, 2022). It is thus
capable of enhancing relationships between various regions of the image and is harder to be evaded
than convolutional-based models if a small subset of pixels is manipulated.

4.2 COMPARE WITH PRIOR DECISION-BASED AND l0-ADAPTED ATTACK ALGORITHMS

A
SR

 (
%

)

Sparsity (%)

Our A�ack

Pointwise
SparseEvo

ResNet-50

10K PGD0

20K

20K

Figure 5: Targeted attacks on the
ImageNet task against ResNet-
50. ASR comparisons between
BRUSLEATTACK and baselines:
i) SPARSEEVO and POINTWISE
(SOTA algorithms from decision-
based settings); ii) PGD0 (whitebox).

In this section, we compare our method (10K queries) with
baselines—SPARSEEVO (Vo et al., 2022a), Pointwise (Schott
et al., 2019) (both 20K queries) and PGD0 (Croce & Hein,
2019; Croce et al., 2022) (white-box)—in targeted settings.
Figure 5 demonstrates that BRUSLEATTACK significantly out-
performs SPARSEEVO and PGD0. For SPARSEEVO and Point-
wise, this is expected because decision-based attacks and have
only access to the hard label. For PGD0, it is surprised but un-
derstandable since in the l0 project step, PGD0 has to identify
the minimum number of pixels required for projecting such
that the perturbed image remains adversarial but to the best of
our knowledge, there is no effective projection method to iden-
tify the pixels that can satisfy this projection constraint. Solv-
ing l0 projection problem also lead to another NP-hard prob-
lem (Modas et al., 2019; Dong et al., 2020) and hinders the
adoption of dense attack algorithms to the l0 constraint. More-
over, the discrete nature of the l0 ball impedes its amenability
to continuous optimization (Croce et al., 2022). Additional re-

sults for l0 adapted attacks on CIFAR-10 are presented in Appendix E.

4.3 ATTACK DEFENDED MODELS

BRUSLEATTACK versus SPARSE-RS. In this section, we investigate the robustness of sparse attacks
(with a budget of 5K queries) against adversarial training-based models using Projected Gradient
Descent (PGD) proposed by (Madry et al., 2018)—highly effective defense mechanisms against
adversarial attacks (Athalye et al., 2018) and Random Noise Defense (RND) (Qin et al., 2021)—a
recent defense method designed for black-box attacks. The robustness of the attacks is measured by

8
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the degraded accuracy of defended models under attacks at different sparsity levels. The stronger
an attack is, the lower the accuracy of a defended model is. Table 1 shows that BRUSLEATTACK
consistently outweighs SPARSE-RS against different defense methods and different sparsity levels.
Additional results on CIFAR-10 is provided in Appendix F.

Table 1: Robustness comparison (lower ↓ is stronger) against undefended and defended models employing
widely applied adversarial train regimes and the recent RND balckbox attack defence on the ImageNet task.
Robustness is measured by the degraded accuracy of models under attacks at different sparsity levels.

Sparsity Undefended Model l∞-AT l2-AT RND
SPARSE-RS BRUSLEATTACK SPARSE-RS BRUSLEATTACK SPARSE-RS BRUSLEATTACK SPARSE-RS BRUSLEATTACK

0.04% 33.6% 24.0% 43.8% 42.2% 89.8% 88.4% 90.8% 85.0%
0.08% 13.2% 6.8% 26.8% 24.4% 81.2% 79.2% 82.2% 72.6%
0.12% 7.6% 2.6% 19.0% 18.4% 75.8% 73.8% 73.6% 61.0%
0.16% 5.2% 1.0% 16.6% 14.8% 71.4% 69.2% 64.8% 51.4%
0.2% 4.6% 1.0% 12.2% 11.8% 68.4% 66.4% 56.8% 42.6%

Undefended and Defended Models. The results in Table 1 shows the accuracy of undefended ver-
sus defended models against sparse attacks across different sparsity levels. In particular, under
BRUSLEATTACK and sparsity of 0.2%, the accuracy of ResNet-50 drops to 1% while l∞-AT model
is able to obtain 11.8%. However, l2-AT model and RND strongly resist adversarially sparse pertur-
bation and remains high accuracy around 66.4% and 42.6 % respectively. Therefore, l2-AT model
and RND are more robust than l∞-AT model to defense a model against sparse attacks.
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Figure 6: Demonstration of sparse attacks against GCV in targeted settings with a budget of 5K queries and
sparsity of 0.5% ≈ 250

224×224
. BRUSLEATTACK can yield adversarial examples for all clean images with less

queries than SPARSE-RS while SPARSE-RS fails to yield adversarial examples for Mushroom, Camera,
Watch, & Building images. Illustration on GCV API (online platform) is shown in Appendix Q.

4.4 ATTACK DEMONSTRATION AGAINST A REAL-WORLD SYSTEM

To illustrate the applicability and efficacy of BRUSLEATTACK against real-world systems, we attack
the Google Cloud Vision (GCV) provided by Google. Attacking GCV is considerably challenging
since 1) the classifier returns partial observations of predicted scores with a varied length based on
the input and 2) the scores are neither probabilities (softmax scores) nor logits (Ilyas et al., 2018;
Guo et al., 2019). To address these challenges, we employ the marginal loss between the top label
and the target label and successfully demonstrate our attack against GCV. With a budget of 5K
queries and sparsity of 0.5%, BRUSLEATTACK can craft a sparse adversarial example of all given
images to mislead GCV whereas SPARSE-RS fails to attack four of them as shown in Figure 6.

5 CONCLUSION

In this paper, we propose a novel sparse attack—BRUSLEATTACK. We demonstrate that when at-
tacking different Deep Learning models including undefended and defended models and in different
datasets, BRUSLEATTACK consistently achieves better performance than the state-of-the-art method
in terms of ASR at different query budgets. Tremendously, in a high-resolution dataset, our compre-
hensive experiments show that BRUSLEATTACK is remarkably query-efficient and reaches higher
ASR than the current state-of-the-art sparse attack in score-based settings.
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OVERVIEW OF MATERIALS IN THE APPENDIX

We provide a brief overview of the extensive set of additional experimental results and findings
in the Appendices that follows. Notably, given the significant computational resource required to
mount blackbox attacks against models and our extensive additional experiments, we have employed
CIFAR-10 for the comparative studies. Importantly, our empirical results have already established
the generalizability of our attack across CNN models, ViT models, three datasets and Google Cloud
Vision.

1. A list of all notation used in the paper (Appendix A).
2. Evaluation of score-based sparse attacks on ImageNet (targeted settings at sparsity levels

between and including 0.4% and 1.0%; and untargeted settings) (Appendix B).
3. Evaluation of score-based sparse attacks on STL-10 to demonstrate generalization (Ap-

pendix C).
4. Evaluation of score-based sparse attacks on CIFAR-10 demonstrate generalization (Ap-

pendix D).
5. Additional evaluation of attack algorithms adopted for sparse attacks (l0 attacks) (Ap-

pendix E)
6. Comparing BRUSLEATTACK and SPARSEEVO to supplement the results in Figure 5 (Ap-

pendix E.1)
7. Demonstrating the impact of the Bayesian framework based search (Comparison with an

adapted SPARSE-RS using our synthetic images. Notably, this addresses the feedback in
the Meta Review) (Appendix E.2)

8. A Discussion Between BRUSLEATTACK (Adversarial Attack) and B3D (Black-box Back-
door Detection) (Appendix E.6)

9. Additional evaluation of score-based sparse attacks against state of the art robust models
from Robustbench (Appendix F).

10. Proof of the optimization reformulation (Appendix G)
11. An analysis of the search space reformulation and dimensionality reduction. (Appendix H).
12. An analysis of different generation schemes for synthetic images we considered (Ap-

pendix I).
13. Study of BRUSLEATTACK performance under different random seeds (Appendix J).
14. An analysis of the effectiveness of the dissimilarity map employed in our proposed attack

algorithm (Appendix K).
15. Detailed information on the consistent set of hyper-parameters employed, initialization

value for αprior and computation resources used (Appendix L).
16. The notable performance invariance to hyper-parameter choices studies with CIFA-10

and ImageNet (Appendix M).
17. Additional study of employing different schedulers (Appendix N).
18. Detailed implementation and pseudocodes of different components of BRUSLEATTACK

(Appendix O).
19. Detailed information on the evaluation protocols BRUSLEATTACK (Appendix P).
20. Visualizations of sparse attack against Google Cloud Vision (Appendix Q).
21. Additional visualizations of dissimilarity maps and sparse adversarial examples (Ap-

pendix R).
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A NOTATION TABLE

In this section, we list all notations in Table 2 to help the reader better understand the notations used
in this paper.

Table 2: Notations used in the paper.

Notation Description
x Source image
x̃ Synthetic color image
y Source class

ytarget Target class
f(x) Softmax scores

L(.) or ℓ(.) Loss function
B A budget of perturbed pixels
b A number of selected elements remaining unchanged

u(t) A binary matrix to determine perturbed and unperturbed pixels
v(t) A binary matrix to determine perturbed pixels remaining unchanged
q(t) A binary matrix to determine new pixels to be perturbed
αprior An initial concentration parameter

αposterior An updated concentration parameter
θ Parameter of Categorical distribution

Dir(α) Dirichlet distribution
Cat(θ) Categorical distribution
λ0 An initial changing rate
m1 A power decay parameter
m2 A step decay parameter
M Dissimilarity Map

w, h, c Width, height and number of channels of an image

B SPARSE ATTACK EVALUATIONS ON IMAGENET

Table 3: ASR at different sparsity levels across different queries (higher is better). A comprehensive compar-
ison among different attacks (SPARSE-RS and BRUSLEATTACK) against various Deep Learning models on
ImageNet in the targeted setting.

Query ResNet-50 ResNet-50(SIN) ViT
SPARSE-RS BRUSLEATTACK SPARSE-RS BRUSLEATTACK SPARSE-RS BRUSLEATTACK

Sparsity = 0.4%
4000 49.9% 57.3% 40.5% 47.8% 21.5% 26.0%
6000 65.5% 69.4% 55.0% 60.4% 31.8% 37.3%
8000 74.1% 77.3% 63.3% 66.6% 39.6% 43.9%

10000 79.1% 82.7% 68.5% 70.9% 45.2% 49.0%
Sparsity = 0.6%

4000 59.6% 75.1% 49.7% 66.2% 30.8% 40.7%
6000 74.0% 86.3% 65.6% 77.8% 43.7% 52.0%
8000 85.0% 90.3% 77.6% 83.4% 52.2% 61.0%

10000 90.9% 93.0% 84.3% 87.0% 61.7% 67.3%
Sparsity = 0.8%

4000 65.8% 84.3% 56.3% 76.7% 38.2% 49.4%
6000 79.2 90.6% 71.1% 87.0% 50.2% 63.4%
8000 87.9% 94.3% 81.9% 91.0% 60.0% 72.2%

10000 93.4% 96.4% 89.6% 92.4% 69.6% 79.0%
Sparsity = 1.0%

4000 69.3% 88.6% 59.2% 82.4% 43.1% 56.8%
6000 82.1 94.2% 75.6% 91.4% 56.1% 72.4%
8000 89.8% 96.8% 83.8% 94.0% 65.6% 81.3%

10000 94.3% 97.7% 91.0% 95.5% 74.3% 86.8%
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Targeted Settings. Table 3 shows the detailed ASR results for sparse attacks on high-resolution
dataset ImageNet in the targeted settings shown in Section 4.1. The results illustrate that the
proposed method is consistently better than SPARSE-RS across different sparsity levels from 0.4 %
to 1.0 %.
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Figure 7: a-c) Untargetted Setting. ASR versus the number of model queries against different Deep Learning
models at sparsity levels (0.4%, 1.0%); d) Accuracy versus the number of model queries for model robustness
comparison against BRUSLEATTACK, in the untargeted setting and at sparsity levels (0.04% = 40

224×224
,

0.2% = 100
224×224
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Untargeted Settings. In this section, we verify the performance of sparse attacks against different
Deep Learning models including ResNet-50, ResNet-50 (SIN) and ViT models in the untargeted
setting up to a 5K query budget. We use an evaluation set of 500 random pairs of an image and a
target class to conduct this comprehensive experiment. Our results in Table 4 and Table 7a-c show
that BRUSLEATTACK is marginally better than SPARSE-RS across different sparsity levels when
attacking against ViT. For ResNet-50 and ResNet-50 (SIN), at lower sparsity or lower query limits,
our proposed attack outperforms SPARSE-RS while at higher query budgets or higher sparsity levels,
SPARSE-RS is able to obtain slightly lower ASR than our method. In general, BRUSLEATTACK
consistently outperforms SPARSE-RS and only needs 1K queries and sparsity of 0.2% (100 pixels)
to achieve above 90% ASR against both ResNet-50 and ResNet-50 (SIN).

Table 4: ASR at different sparsity levels across different queries (higher is better). A comprehensive compari-
son among different attacks (SPARSE-RS and BRUSLEATTACK) and various DL models on ImageNet in the
untargeted setting.

Query ResNet-50 ResNet-50(SIN) ViT
SPARSE-RS BRUSLEATTACK SPARSE-RS BRUSLEATTACK SPARSE-RS BRUSLEATTACK

Sparsity = 0.04%
1000 52.4% 58.8% 51.0% 55.4% 29.0% 31.2%
2000 58.4% 65.0% 59.2% 63.6% 36.2% 37.4%
3000 61.8% 68.4% 63.8% 67.0% 41.0% 41.2%
4000 65.4% 70.4% 65.8% 68.2% 44.2% 44.4%
5000 66.4% 72.4% 66.6% 69.2% 46.4% 46.7%

Sparsity = 0.08%
1000 72.8% 77.4% 73.8% 75.8% 47.2% 50.6%
2000 81.2% 86.8% 80.4% 83.4% 57.6% 61.0%
3000 84.6% 89% 84.4% 87.0% 64.2% 67.8%
4000 85.6% 90.4% 86.6% 88.2% 69.6% 72.6%
5000 86.8% 90.8% 87.0% 88.6% 72.6% 74.6%

Sparsity = 0.16%
1000 87.0% 89.4% 87.6% 88.0% 64.8% 68.6%
2000 90.8% 95.2% 92.0% 94.0% 78.4% 81.4%
3000 93.4 96.8% 94.8% 95.6% 85.0% 86.4%
4000 94.4% 97.6% 96.2% 97.0% 87.0% 89.2%
5000 94.8% 98.4% 96.8% 97.4% 89.8% 90.0%

Sparsity = 0.2%
1000 88.6% 92.2% 90.2% 91.0% 71.2% 73.0%
2000 92.4% 96.6% 94.4% 95.0% 82.6% 84.4%
3000 94.4 97.8% 95.8% 96.4% 87.4% 89.8%
4000 95.2% 98.4% 97.2% 98.0% 90.8% 91.0%
5000 95.4% 98.6% 98.2% 98.4% 92.2% 92.6%

Relative Robustness Comparison among Models. To compare the relative robustness of different
models, we evaluate these models against our attack. Table 4 and Figure 7d confirm our observations
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about relative robustness of ResNet-50 (SIN) to the standard ResNet-50 in the targeted setting (pre-
sented in Section 4.1). It turns out that ResNet-50 (SIN) is as vulnerable as the standard ResNet-50
even though it is robust against various types of image distortion. Interestingly, ViT is more robust
than its convolutional counterparts under sparse attack. Particularly, at sparsity of 0.2% and 2K
queries, while the accuracy of both ResNet-50 and ResNet-50 (SIN) is down to about 5%, ViT is
still able to remain ASR around 15%.

C SPARSE ATTACK EVALUATIONS ON STL10 (TARGETED SETTINGS)

We conduct more extensive experiments on STL-10 in the targeted setting with all correctly clas-
sified images of the evaluation set (60,094 sample pairs and image size 96×96). Table 5 provides a
comprehensive comparison for different attacks across different sparsity levels ranging from 0.11%
(10 pixels) to 0.54% (50 pixels). Particularly, with only 50 pixels, BRUSLEATTACK needs solely
3000 queries to achieve ASR beyond 92% whereas SPARSE-RS only reaches ASR of 89.64%.

Table 5: ASR (higher is better) at different sparsity levels in targeted settings. A comprehensive comparison
between SPARSE-RS and BRUSLEATTACK against ResNet9 on a full evaluation set from STL-10.

Methods Q=1000 Q=2000 Q=3000 Q=4000 Q=1000 Q=2000 Q=3000 Q=4000
Sparsity = 0.22% Sparsity = 0.44%

SPARSE-RS 53.82% 61.65% 65.84% 68.0% 73.34% 81.47% 85.24% 87.49%
BRUSLEATTACK 57.69% 65.05% 68.8% 71.22% 78.21% 85.03% 88.31% 90.26%

Sparsity = 0.33% Sparsity = 0.54%
SPARSE-RS 65.6% 74.0% 78.0% 80.65% 78.66% 86.31% 89.64% 91.61%

BRUSLEATTACK 70.27% 77.55% 81.16% 83.42% 83.29% 89.78% 92.55% 94.08%

D SPARSE ATTACK EVALUATIONS ON CIFAR-10 (TARGETED SETTINGS)

In this section, we conduct extensive experiments in the targeted setting to investigate the robustness
of sparse attacks on an evaluation set of 9,000 pairs of an image and a target class from CIFAR-10
(image size 32×32). Sparsity levels range from 1.0% (10 pixels) to 3.9% (40 pixels). Table 6
provides a comprehensive comparison of different attacks in the targeted setting. Particularly, with
only 20 pixels (sparsity of 2.0 %), BRUSLEATTACK needs solely 500 queries to achieve ASR be-
yond 90% whereas SPARSE-RS only reaches ASR of 89.21%. Additionally, with only 300 queries,
BRUSLEATTACK is able to reach above 95% of successfully crafting adversarial examples with
solely 40 pixels. Overall, our attack consistently outperforms the SPARSE-RS in terms of ASR and
this confirms our observations on STL-10 and ImageNet.

Table 6: ASR (higher is better) at different sparsity thresholds in the targeted setting. A comprehensive com-
parison among different attacks (SPARSE-RS and BRUSLEATTACK) against ResNet18 on an evaluation set of
9,000 pairs of an image and a target class from CIFAR-10.

Methods Q=100 Q=200 Q=300 Q=400 Q=500

Sparsity = 1.0%
SPARSE-RS 36.22% 50.6% 58.17 % 62.59% 66.26%

BRUSLEATTACK 42.32% 54.73% 61.49% 65.33% 68.21%
Sparsity = 2.0%

SPARSE-RS 60.51% 76.1% 83.13% 86.89% 89.21%
BRUSLEATTACK 66.01% 79.19% 84.84% 88.27% 90.24%

Sparsity = 2.9%
SPARSE-RS 71.29% 85.67% 91.21% 94.28% 95.78%

BRUSLEATTACK 75.54% 88.22% 92.91% 95.2% 96.59%
Sparsity = 3.9%

SPARSE-RS 75.91% 90.21% 94.78% 96.97% 97.98%
BRUSLEATTACK 80.44% 91.24% 95.43% 97.4% 98.48%
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E COMPARING BRUSLEATTACK WITH OTHER ATTACKS ADAPTED FOR
SCORE-BASED SPARSE ATTACKS FOR ADDITIONAL BASELINES

E.1 ADDITIONAL EVALUATIONS WITH DECISION-BASED SPARSE ATTACK METHODS

In this section, we carry out a comprehensive experiment on CIFAR-10 in the targeted setting
(more difficult attack). In our experimental setup, we use an evaluation set of 9000 different pairs of
the source image and target classes (1000 images distributed evenly in 10 different classes against 9
target classes) to compare BRUSLEATTACK (500 queries) with SPARSEEVO (2k queries) introduced
in (Vo et al., 2022a). We compare ASR of different methods across different sparsity thresholds. The
results in Figure 8 demonstrate that our attack significantly outperforms SparseEvo. This is expected
because SparseEvo is a decision-based attack and has only access to predicted labels.

ResNet-18/CIFAR-10
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Figure 8: Targeted attacks on CIFAR-10 against ResNet-18. ASR comparisons between BRUSLEATTACK
and baselines i) SPARSE-RS and adapted l0-HSJA (decision-based settings); ii) PGD0 (whitebox).

Alternative Loss. We acknowledge that Vo et al. (2022a) may point out an alternative fitness
function based on output scores by replacing optimizing distortion with optimizing loss. However,
they did not evaluate their attack method with an alternative fitness function in score-based setting.
Employing this alternative fitness function may not obtain a low sparsity level because minimizing
the loss does not surely result in a reduction in the number of pixels. Additionally, the Binary
Differential Recombination (BDR) in (Vo et al., 2022a) is designed for optimizing l0 distortion not a
loss objective (i.e. alters perturbed pixels to non-perturbed pixels which is equivalent to minimizing
distortion). Hence, naively adapting SPARSEEVO (Vo et al., 2022a) to score-based settings may not
work well.

To demonstrate that, we conduct an experiment on CIFAR-10 using the same experimental setup
(same evaluation set of 9000 image pairs and a query budget of 500) described above.

• First approach, we adapted the attack method in (Vo et al., 2022a) to the score-based setting
with an alternative fitness function for minimizing loss based on the output scores. We
observed this attack always fails to yield an adversarial example with a sparsity level below
50%.

• Second approach, we adapted SPARSEEVO by employing the alternative fitness function,
synthetic color image and slightly modifying BDR. Our results in Table 7 show that the
adapted SPARSEEVO can create sparse adversarial examples but is unable to achieve a
comparable performance to BRUSLEATTACK.

Overall, even with significant improvements, the sparse attack proposed in (Vo et al., 2022a) with
an alternative fitness function does not achieve as good performance as BRUSLEATTACK with a low
query budget.

Clarifying Differences Between BRUSLEATTACK and SPARSEEVO (Decision-Based Sparse
Attack). Vo et al. (2022a) develops an algorithms for a sparse attack but assumes a decision-
based setting. We compared agianst the attack method and provided results in Figure 5 in the main
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Table 7: ASR comparison between our proposal and SPARSEEVO (Alternative Loss) on CIFAR-10.

Sparsity Our Proposal SPARSEEVO (Alternative Loss)
1.0% 68.21% 54.78%
2.0% 90.24% 68.75%
2.9% 96.59% 74.0%
3.9% 98.48% 78.56%

article. Although both works aim to propose sparse attacks, key differences exist, as expected; we
explain these differences below:

• While both works discuss how they reduce dimensionality (a dimensionality reduction
scheme) leading to a reduction in search space from C × H × W to H × W , Vo et al.
(2022a) neither propose a New Problem Formulation nor give proof of showing the equiv-
alent between the original problem in Equation (1) and the New Problem Formulation in
Equation (2) as we did in Section 3.1 and Appendix G.

• Our study and Vo et al. (2022a) propose similar terms binary matrix u versus binary vec-
tor v as well as an interpolation between x and x′. However, a binary vector x in (Vo
et al., 2022a) evolves to reduce the number of 1-bits while a binary matrix u in our study
maintains a number of 1-elements during searching for a solution.

• We can find a similar notion of employing a starting image (a pre-selected image from
a target class) in (Vo et al., 2022a) or synthetic color image (pre-defined by randomly
generating) in our study. However, it is worth noting that applying a synthetic color image
to Vo et al. (2022a) does not work in the targeted setting. For instance, to the best of our
knowledge, there is no method can generate a synthetic color image that can be classified
as a target class so the method in (Vo et al., 2022a) is not able to employ a synthetic color
image to inialize a targeted attack. In contrast, employing a starting image as used in (Vo
et al., 2022a) does not result in query-efficiency as shown in Table 8, especially at low
sparsity levels.

Overall, although the score-based setting is less strict than the decision-based setting, our study is
not a simplified version of Vo et al. (2022a).

Table 8: A comparison of ASR between our proposal (Synthetic Color Image) and employing a starting image
as in (Vo et al., 2022a) on CIFAR-10.

Sparsity Our Proposal Use starting image
1.0% 68.21% 62.68%
2.0% 90.24% 87.17%
2.9% 96.59% 94.37%
3.9% 98.48% 97.17%

E.2 IMPACT OF THE BAYESIAN FRAMEWORK BASED SEARCH (ADAPTED SPARSE-RS
USING SYNTHETIC IMAGES)

In this section, we conduct an experiment on ImageNet and in targeted settings to compare the
performance of our method and adapted SPARSE-RS employing synthetic images. Specifically, we
replace the update step in SPARSE-RS by fixing the colors to be changed to the ones in a synthetic
image. We employ the same evaluation dataset as discussed in Section 4.2.

The results in Table 9 demonstrate that adapted SPARSE-RS is less query-efficient than BRUSLEAT-
TACK and even the original SPARSE-RS. In order words, the adapted SPARSE-RS does not benefit
from space reduction by employing synthetic images. A possible reason is that the stochastic pixel
selection scheme in SPARSE-RS does not leverage historical information on pixel manipulation to
determine high and low-influential pixels for preservation or replacement. Therefore, solely em-
ploying synthetic images without our proposed learning framework based on historical information
regarding pixel manipulation is not found to achieve high query efficiency.
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Table 9: ASR at different sparsity levels across different query budgets (higher is better). A comprehensive
comparison among different attacks (SPARSE-RS and BRUSLEATTACK) against various Deep Learning mod-
els on ImageNet in the targeted setting.

Query SPARSE-RS SPARSE-RS (Synthetic Images) BRUSLEATTACK

Sparsity = 0.4%
4000 49.9% 49.2% 57.3%
6000 65.5% 63.5% 69.4%
8000 74.1% 73.6% 77.3%

10000 79.1% 79.3% 82.7%
Sparsity = 0.6%

4000 59.6% 58.7% 75.1%
6000 74.0% 73.8% 86.3%
8000 85.0% 85.0% 90.3%

10000 90.9% 90.0% 93.0%
Sparsity = 0.8%

4000 65.8% 62.9% 84.3%
6000 79.2 78.7% 90.6%
8000 87.9% 87.7% 94.3%

10000 93.4% 92.9% 96.4%
Sparsity = 1.0%

4000 69.3% 67.3% 88.6%
6000 82.1 81.8% 94.2%
8000 89.8% 89.7% 96.8%

10000 94.3% 93.8% 97.7%

E.3 l0 ADAPTATIONS OF DENSE ATTACKS

Adapted l0 Attacks (White-box). To place the blackbox attack results into context by using a
whitebox baseline and to provide a baseline for blackbox attack adaptations to l0, we explore a
strong white-box l0 attack. We used PGD0 (Croce & Hein, 2019)—the attack is adaptation of
the well-known PGD (Madry et al., 2018) attack. To this end, we compare BRUSLEATTACK with
white-box adapted l0 attack PGD0 using the same evaluation set from CIFAR-10 as decision-based
attacks.

The results in Figure 8 demonstrate that our attack significantly outperforms PGD0 at low sparsity
threshold and is comparable to PGD0 at high level of sparsity. Surprisingly, our method outweighs
white-box, adapted l0 attack PGD0. It is worth noting that there is no effective projection method to
identify the pixels that can satisfy sparse constraint and solving the l0 projection problem also en-
counters an NP-hard problem. Additionally, the discrete nature of the l0 ball impedes its amenability
to continuous optimization (Croce et al., 2022).

Adapted l0 Attacks (Decision-based, Black-box). It is interesting to adapt l2 attacks such as HSJA
(Chen et al., 2020), QEBA (Li et al., 2020), or CMA-ES (Dong et al., 2020) method for face recog-
nition tasks to l0 attacks. Consequently, we adopted the HSJA method to an l0 constraint algorithm
called l0-HSJA to conduct a study. For l0-HSJA, we follow the experiment settings and adapted
l0-HSJA in (Vo et al., 2022a) and refer to (Vo et al., 2022a) for more details. Notably, the same
approach could be adopted for QEBA (Li et al., 2020). The results in Table 10 below illustrate the
average sparsity for 100 randomly selected source images, where each image was used to construct a
sparse adversarial sample for the 9 different target classes on CIFAR-10—hence we conducted 900
attacks or used 900 source-image-to-target-class pairs. The average sparsity across different query
budgets is higher than 90% even up to 20K queries. Therefore, the ASR is always 0% at low levels
of sparsity (i.e. 4%) (shown in Figure 8). These results confirm the findings in (Vo et al., 2022a) and
demonstrate that l0-HSJA (20K queries) is not able to achieve good sparsity (lower is better) when
compared with our attack method. Consequently, applying an l0 projection to decision-based dense
attacks does not yield a strong sparse attack.

Similar to the problem of PGD0, adapted l0-HSJA has to determine a projection that minimizes l0
(the minimum number of pixels) such that the projected instance is still adversarial. To the best
of our knowledge, no method in a decision-based setting is able to effectively determine which
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pixels can be selected to be projected such that the perturbed image does not cross the unknown
decision boundary of the DNN model. Solving this projection problem may also lead to another
NP-hard problem (Modas et al., 2019; Dong et al., 2020) and hinders the adoption of these dense
attack algorithms to the l0 constraint. Consequently, any adapted method, such as HSJA or other
dense attacks, is not capable of providing an efficient method to solve the combinatorial optimization
problem faced in sparse settings.

Table 10: Mean sparsity at different queries for a targeted setting. A sparsity comparison between l0-HSJA on
a set of 100 image pairs on CIFAR-10.

Queries 4000 8000 12000 16000 20000
l0-HSJA 93.66% 94.73% 95.88% 96.74% 96.74%

E.4 COMPARING BRUSLEATTACK WITH ONE-PIXEL ATTACK

In this section, we conduct an experiment to compare BRUSLEATTACK with the One-Pixel At-
tack Su et al. (2019). We conduct an experiment with 1000 correctly classified images by ResNet18
on CIFAR10 in untargeted settings (notably the easier attack, compared to targeted settings) using
ResNet18 These images are evenly distributed across 10 different classes. We compare ASR be-
tween our attack and One-Pixel at different budgets e.g. one, three and five perturbed pixels. For
One-Pixel attack2, we used the default setting with 1000 queries. To be fair, we set the same query
limits for our attack. The results in Table 11 show that our attack outperforms the One-Pixel attack
across one, three and five perturbed pixels, even under the easier, untargeted attack setting.

Table 11: ASR comparison (higher ↑ is stronger) between One-Pixel and BRUSLEATTACK against ResNet18
on CIFAR-10.

Perturbed Pixels One-Pixel BRUSLEATTACK

1 pixel 19.5% 27.9%
3 pixel 41.9% 69.9%
5 pixel 62.3% 86.4%

E.5 BAYESIAN OPTIMIZATION

We are interested in the application of Bayesian Optimization for high-dimensional, mix search
space. Recently, (Wan et al., 2021) has introduced CASMOPOLITAN, a Bayesian Optimization
for categorical and mixed search spaces, demonstrating that this method is efficient and better than
other Bayesian Optimization methods in searching for adversarial examples in score-based settings.
Therefore, we study and compare our method with CASMOPOLITAN in the vision domain and
the application of seeking sparse adversarial examples. We note that:

• CASMOPOLITAN solves problem 1 directly by searching for altered pixel positions and
the colors for these pixels. In the meanwhile, our method aims to address problem 2,
which is reformulated to reduce the dimensionality and complexity of the search space
significantly. In general, CASMOPOLITAN aims to search for both color values and
pixel positions, whilst BRUSLEATTACK only seeks pixel locations.

• To handle high dimensional search space in an image task, CASMOPOLITAN employs
different downsampling/upsampling techniques. It first downscales the image and searches
over a low-dimensional space, manipulates and then upscales the crafted examples. Un-
like CASMOPOLITAN, our method–BRUSLEATTACK–does not reduce dimensionality
by downsampling the original search space but only seeks pixels in an image (source im-
age) and replaces them with corresponding pixels from a synthetic color image (a fixed and
pre-defined image) (see Appendix H for our analysis of dimensionality reduction).

2https://github.com/Harry24k/adversarial-attacks-pytorch
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• CASMOPOLITAN is not designed to learn the impact of pixels on the model decisions
but treats all pixels equally, whereas BRUSLEATTACK aims to explore the influence of
pixels through the historical information of pixel manipulation.
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Figure 9: Targeted attacks on CIFAR-10 with a query budget of 250. ASR comparisons between
BRUSLEATTACK and CASMOPOLITAN (Bayesian Optimization).

We use the code3 provided in (Wan et al., 2021) and follow their default settings. We evaluate both
BRUSLEATTACK and CASMOPOLITAN on an evaluation set of 900 pairs of a source image and
a target class from CIFAR-10 (100 correctly classified images distributed evenly in 10 different
classes versus the 9 other classes as target classes for each image) with a query budget of 250. The
results in Figure 9 show that BRUSLEATTACK consistently and pragmatically outperforms CAS-
MOPOLITAN across different sparsity levels. This is because:

• The mixed search space in the vision domain, particularly in sparse adversarial attacks, is
still extremely enormous even if downsampling to a lower dimensional search space. It
is because CASMOPOLITAN still needs to search for a color value for each channel of
each pixel from a large range of values (see Appendix H for our analysis of dimensionality
reduction).

• Searching in a low-dimensional search space and upscaling back to the original search
space may not provide an effective way to yield a strong sparse adversarial perturbation.
This is because manipulating pixels in a lower dimensional search space may not have
the same influence on model decisions as manipulating pixels in the original search space.
Additionally, some indirectly altered pixels stemming from upsampling techniques may
not greatly impact the model decisions.

E.6 A DISCUSSION BETWEEN BRUSLEATTACK (ADVERSARIAL ATTACK) AND B3D
(BLACK-BOX BACKDOOR DETECTION)

Natural Evolution Strategies (NES). A family of black-box optimization methods that learns a
search distribution by employing an estimated gradient on its distribution parameters Wierstra et al.
(2008); Dong et al. (2021). NES was adopted for score-based dense (l2 and l∞ norms) attacks in
Ilyas et al. (2018) since they mainly adopted a Gaussian distribution for continuous variables. How-
ever, solving the problem posed in sparse attacks involving both discrete and continuous variables
leads to an NP-hard problem Modas et al. (2019); Dong et al. (2020). Therefore, naively adopting
NES for sparse attacks is non-trivial.

The work B3D Dong et al. (2021), in a defense for a data poisoning attack or backdoor attack,
proposed an algorithm to reverse-engineer the potential Trojan trigger used to activate the backdoor
injected into a model. Although the method is motivated by NES and operates in a score-based
setting involving both continuous and discrete variables, as with a sparse attack problem, they are
designed for completely different threat models (backdoor attacks with data poisoning versus adver-
sarial attacks). Therefore it is hard to make a direct comparison. However, more qualitatively, there

3https://github.com/xingchenwan/Casmopolitan
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are a number of key differences between our approach and those relevant elements in Dong et al.
(2021).

1. Method and Distribution differences: Dong et al. (2021) learns a search distribution deter-
mined by its parameters through estimating the gradient on the parameters of this search
distribution. In the meantime, our approach is to learn a search distribution through
Bayesian learning. While Dong et al. (2021) employed Bernoulli distribution for work-
ing with discrete variables, we used Categorical distribution to search discrete variables.

2. Search space (larger vs. smaller): B3D searches for a potential Torjan trigger in an enor-
mous space as it requires to search for pixels’ position and color. Our approach reduces
the search space and only searches for pixels (pixels’ position) to be altered so our search
space is significantly lower than the search space used in Dong et al. (2021) if the trigger
size is the same as the number of perturbed pixels.

3. Perturbation pattern (square shape vs. any set of pixel distribution): Dong et al. (2021) aims
to search for a trigger which usually has a size of 1× 1, 2× 2 or 3× 3 so the trigger shape
is a small square. In contrast, our attack aims to search for a set of pixels that could be
anywhere in an image and the number of pixels could be varied tremendously (determined
by desired sparsity). Thus, the combinatorial solutions in a sparse attack problem can be
larger than the one in Dong et al. (2021) (even when we equate the trigger size to the
number of perturbed pixels).

4. Query efficiency (is a primary objective vs. not an objective): Our approach aims to search
for a solution in a query-efficiency manner while it is not clear how efficient the method is
to reverse-engineer a trigger.

F EVALUATIONS AGAINST l2, l∞ ROBUST MODELS FROM ROBUSTBENCH
AND l1 ROBUST MODELS

Table 12: A robustness comparison (lower ↓ is stronger) between SPARSE-RS and BRUSLEATTACK against
undefended and defended models employing l∞, l2 robust models on CIFAR-10. The attack robustness is
measured by the degraded accuracy of models under attacks at different sparsity levels.

Sparsity Undefended Model l∞-Robust Model l2-Robust Model
SPARSE-RS BRUSLEATTACK SPARSE-RS BRUSLEATTACK SPARSE-RS BRUSLEATTACK

0.39% 26.5% 24.2% 65.9% 65.0% 84.7% 84.2%
0.78% 7.8% 6.4% 48.1% 46.0% 70.6% 68.3%
1.17% 2.5% 2.0% 38.1% 35.1% 57.6% 54.3%
1.56% 0.6% 0.6% 28.8% 26.4% 44.4% 43.8%

l2, l∞ Robust Models. To supplement our demonstration of sparse attacks (BRUSLEATTACK and
SPARSE-RS) against defended models on ImageNet in Section 4.3, we consider evaluations
against SoTA robust models from RobustBench4 (Croce et al., 2020) on CIFAR-10. We eval-
uate the robustness of sparse attacks (BRUSLEATTACK and SPARSE-RS) against the undefended
model ResNet-18 and two pre-trained robust models as follows:

• l2 robust model: “Augustin2020Adversarial-34-10-extra”. This model is a top-7 robust
model (over 20 robust models) in the leaderboard of robustbench.

• l∞ robust model: “Gowal2021Improving-70-16-ddpm-100m”. This model is a top-5 robust
model (over 67 robust models) in the leaderboard of robustbench.

We use 1000 samples correctly classified by the pre-trained robust models and evenly distributed
across 10 classes on CIFAR-10. We use a query budget of 500. We compare the accuracy of differ-
ent models (undefended and defended models) under sparse attacks across a range of Sparsity from
0.39% to 1.56%. Notably, defended models are usually evaluated in the untargeted setting to show
their robustness. The range of sparsity in the untargeted setting is usually smaller than the range of
sparsity used in the targeted setting. Thus, in this experiment, we use a smaller range of sparsity

4https://github.com/RobustBench/robustbench
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than the one we used in the targeted setting. Our results in Table12 show that BRUSLEATTACK out-
performs SPARSE-RS when attacking undefended and defended models. The results on CIFAR-10
also confirm our observations on ImageNet.

l1 Robust Models. We also evaluate our attack method’s robustness against l1 robust models. There
are two methods AA-I1 Croce & Hein (2021) and Fast-EG-1 Jiang et al. (2023) for training l1
robust models. Although Croce & Hein (2021) and Jiang et al. (2023) illustrated their robustness
against l1 attacks, Fast-EG-1 is the current state-of-the-art method (as shown in Jiang et al. (2023)).
Therefore, we chose the l1 robust model trained by the Fast-EG-1 method for our experiment. In this
experiment, we use 1000 images correctly classified by l1 pre-trained model5 on CIFAR-10. These
images are evenly distributed across ten classes. To keep consistency with previous evaluation,
we also use a query budget of 500 and compare the accuracy of the robust model under sparse
attacks. The results in Table 13 show that our attack outperforms BRUSLEATTACK across different
sparsity levels. Interestingly, l1 robust models are relatively more robust to sparse attacks then other
adversarial training regimes in Table 12, this could be because l0 bounded perturbations are enclosed
in the l1-norm ball.

Table 13: A robustness comparison (lower ↓ is stronger) between SPARSE-RS and BRUSLEATTACK against
undefended and defended models employing l1 robust models on CIFAR-10. The attack robustness is mea-
sured by the degraded accuracy of models under attacks at different sparsity levels.

Sparsity Undefended Model l1-Robust Model
SPARSE-RS BRUSLEATTACK SPARSE-RS BRUSLEATTACK

0.39% 26.5% 24.2% 86.6% 85.8%
0.78% 7.8% 6.4% 75.8% 74.8%
1.17% 2.5% 2.0% 68.5% 64.8%
1.56% 0.6% 0.6% 59.4% 55.9%

G REFORMULATE THE OPTIMIZATION PROBLEM

Solving the problem in Equaion 1 lead to an extremely large search space because of searching
colors—float numbers in [0, 1]—for perturbing some pixels. To cope with this problem, we i)
reduce the search space by synthesizing a color image x′ ∈ {0, 1}c×w×h—that is used to define
the color for perturbed pixels in the source image (see Appendix H), ii) employ a binary matrix
u ∈ {0, 1}w×h to determine positions of perturbed pixels in x.

When selecting a pixel, the colors of all three-pixel channels are selected together. Formally, an
adversarial instance x̃ can be constructed as follows:

x̃ = (1− u)x+ ux′ (14)

Proof of The Problem Reformulation. Given a source image x ∈ [0, 1]c×w×h and a synthetic
color image x′ ∈ {0, 1}c×w×h. From Equation 14, we have the following:

x̃ = (1− u)x+ ux′

x̃− (1− u)x = ux′

ux̃+ (1− u)x̃− (1− u)x = ux′

(1− u)(x̃− x) = u(x′ − x̃)

We consider two cases for each pixel here:

1. If ui,j = 0: then (1− ui,j)(x̃i, j − xi, j) = 0, thus x̃i, j = xi, j

2. If ui,j = 1: then ui,j(x
′
i,j − x̃i, j) = 0, thus x̃i, j = x′

i, j

Therefore, manipulating binary vector u is equivalent to manipulating x̃ according to 14. Hence,
optimizing L(f(x̃), y∗) is equivalent to optimizing L(f((1− u)x+ ux′), y∗).

5https://github.com/IVRL/FastAdvL1
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H ANALYSIS OF SEARCH SPACE REFORMULATION AND DIMENSIONALITY
REDUCTION

Sparse attacks aim to search for the positions and color values of these perturbed pixels. For a nor-
malized image, the color value of each channel of a pixel—RGB color value—can be a float number
in [0, 1] so the search space is enormous. The perturbation scheme proposed in (Croce et al., 2022)
can be adapted to cope with this problem. This perturbation scheme limits the RGB values to a set
{0, 1} so a pixel has eight possible color codes {000, 001, 010, 011, 100, 101, 110, 111} where
each digit of a color code denotes a color value of a channel. This scheme may result in notice-
able perturbations but does not alter the semantic content of the input. However, this perturbation
scheme still results in a large search space because it grows rapidly with respect to the image size.
To obtain a more compact search space, we introduce a simple but effective perturbation scheme.
In this scheme, we uniformly sample at random a color image x′ ∈ {0, 1}c×w×h—synthetic color
image—to define the color of perturbed pixels in the source image x. Additionally, we use a binary
matrix for selecting some perturbed pixels in x and apply the matrix to x′ to extract color for these
perturbed pixels as presented in Appendix G. Because x′ is generated once in advance for each
attack and has the same size as x, the search space is eight times smaller than using the perturbation
scheme in (Croce et al., 2022). Surprisingly, our elegant proposal is shown to be incredibly effective,
particularly in high-resolution images such as ImageNet.

Synthetic color image. Our attack method does not optimize but pre-specify a synthetic color
image x′ by using our proposed random sampling strategy in our algorithm formulation. This
synthetic image is generated once, dubbed a one-time synthetic color image, for each attack. We
have chosen to generate it once rather than optimizing it because:

• We aim to reduce the dimensionality of the search space to find and adversarial example.
Choosing to optimize the color image would lead to a difficult combinatorial optimization
problem.

– Consider what we presented in Section 3.1. To solve the combinatorial optimization
problem in Equation 1, we might search a color value for each channel of each pixel–a
float number in [0,1] and this search space is enormous. For instance, if we need to
perturb n pixels and the color scale is 2m, the search space is equivalent to Cc×n

2m×c×w×h .
– To alleviate this problem, we reformulate problem in Equation 1 and proposed a search

over the subspace {0, 1}c×w×h. However, the size of this search space is still large.
– To further reduce the search space, we construct a fixed search space—a pre-defined

synthetic color image x′ ∈ {0, 1}c×w×h for each attack. The search space is now
reduced to Cn

w×h. It is generated by uniformly selecting the color value for each
channel of each pixel from {0, 1} at random (as presented in Appendix H and G).

• In addition, a pre-defined synthetic color image x′-–a fixed search space—benefits our
Bayesian algorithm. If keeping optimizing the synthetic color image x′, our Bayesian
algorithm has to learn and explore a large number of parameters which is equivalent to
Cc×n

2m×c×w×h and we might not learn useful information fast enough to make the attack
progress.

• Perhaps, most interestingly, our attack demonstrates that a solution for the combinatorial
optimization problem in Equation 1 can be found in a pre-defined and fixed subspace.

Searching for pixels’ position and color concurrently. In general, changing the color of the pixels
in searches led to significant increases in query budgets. In our approach, we aim to model the
influence of each pixel bearing a specific color, probabilistically, and learn the probability model
through the historical information collected from pixel manipulations. So, we chose not to first
search for pixels’ position and search for their color after knowing the position of pixels but we aim
to do both simultaneously. In other words, the solution found by our method is a set of pixels with
their specific colors.

I DIFFERENT SCHEMES FOR GENERATING SYNTHETIC IMAGES

In this section, we analyze the impact of different schemes including different random distributions,
maximizing dissimilarity and low color search space.
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Different random distributions. Since the synthetic color images are randomly generated, we can
leverage Uniform or Gaussian distribution or our method. Because the input must be within [0, 1], we
can sample x′ from U [0, 1] or N (µ, σ2) where µ = 0.5, σ = 0.17. For our method, we uniformly
sample at random a color image x′ ∈ {0, 1}c×w×h. In order words, each channel of a pixel
receives a binary value 0 or 1. The results in Table 14 show that generating a synthetic color image
from Uniform distribution is better than Gaussian distribution but it is worse than our simple method.
The experiment illustrates that different schemes of generating the synthetic color image at random
have different influences on the performance of BRUSLEATTACK and our proposal outweighs other
common approaches across different sparsity levels. Particularly at low query budgets (i.e. up to
300 queries) and low perturbation budgets (i.e. sparsity up to 3%), our proposal outperforms the
other two by a large margin. Therefore, the empirical results show our proposed scheme is more
effective in obtaining good performance. Most interestingly, as pointed out by HSJA authors (Chen
et al., 2020), the question of how best to select an initialization method or in their case initial target
image remains an open-ended question worth investigating.

Table 14: Target setting. ASR (higher is better) at different sparsity thresholds in the targeted setting. A com-
prehensive comparison among different strategies of synthetic color image generation to initialize BRUSLEAT-
TACK attack against ResNet18 on CIFAR-10.

Methods Q=100 Q=200 Q=300 Q=400 Q=500

Sparsity = 1.0%
Uniform 32.18% 41.68% 48.09 % 52.38% 55.48%
Gaussian 21.29% 29.87% 35.0 % 38.72% 41.53%

Ours 42.32% 54.73% 61.49% 65.33% 68.21%
Sparsity = 2.0%

Uniform 54.04% 69.08% 76.48% 80.91% 83.76%
Gaussian 40.02% 55.17% 63.2 % 68.58% 72.28%

Ours 66.01% 79.19% 84.84% 88.27% 90.24%
Sparsity = 2.9%

Uniform 65.82% 80.62% 87.84% 91.39% 93.38%
Gaussian 52.4% 69.91% 78.42 % 83.24% 86.39%

Ours 75.54% 88.22% 92.91% 95.2% 96.59%
Sparsity = 3.9%

Uniform 73.04% 86.32% 92.33% 95.02% 96.34%
Gaussian 61.0% 77.26% 84.88 % 89.63% 91.94%

Ours 80.44% 91.24% 95.43% 97.4% 98.48%

Maximizing dissimilarity. There may be different ways to implement your suggestion of gener-
ating a synthetic color image x′ that maximize the dissimilarity between the original image x and
x′. But to the best our knowledge, no effective method can generate a random color image x′ that
maximize its dissimilarity with x.

Our approach to this suggestion is to find the inverted color values of x by creating an inverted
image xinvert to explore color values different from x. We then find the frequency of these color
values (in each R, G, B channel) in xinvert. Finally, we generate a synthetic color image x′ such that
the more frequent color values (in R, G, B channels) in xinvert will appear more frequently in x′. By
employing the frequency information of color values in x, we can create a synthetic color image x′

that is more dissimilar to x. In practice, our implementation is described as follow:

• Yield the inverted image xinvert = 1 - x. Note that x ∈ [0, 1]c×w×h

• Create a histogram of pixel colors (for each R, G, B channel) to have their frequency in
xinvert.

• Then we randomly generate a synthetic color image based on the frequency of color values
that allows us to maximize the dissimilarity.

The results in Table 15 show that an approach of maximizing the dissimilarity (using frequency
information) yields better performance at low sparsity levels as we discussed in Appendix K. How-
ever, it does not result in better performance at high levels of sparsity if compared with our proposal.
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Table 15: ASR comparison between using a synthetic color image uniformly generated at random (our pro-
posal) and maximizing dissimilarity on CIFAR-10.

Sparsity Our Proposal Maximizing Dissimilarity
1.0% 68.21% 70.16%
2.0% 90.24% 90.75%
2.9% 96.59% 95.78%
3.9% 98.48% 97.85%

Low color search space. Instead of reducing the space from 8 color codes to a fixed random one,
we consider choosing between 2-4 random colors. That would allow us to search not only in the
position space of the pixels but also in their color space without increasing search space significantly.
The results in Table 16 show that expanding color space leads to larger search space. Consequently,
this approach may require more queries to search for a solution and results in low ASR, particularly
with a small query budget.

Table 16: ASR comparison between using a fixed random color search space (our proposal) and two or four
random color search space on CIFAR-10.

Sparsity Our Proposal Two Random Colors Four Random Colors
1.0% 68.21% 60.11% 57.9%
2.0% 90.24% 78.12% 78.1%
2.9% 96.59% 85.89% 90.67%
3.9% 98.48% 91.23% 95.28%

J BRUSLEATTACK UNDER DIFFERENT RANDOM SEEDS

It is possible that the initial generated by uniformly selecting the color value for each channel of each
pixel from {0, 1} at random (as presented in Appendix H and Appendix G) could impact perfor-
mance. We investigate this using Monte Carlo experiments. To analyze if our attack is sensitive to
our proposed initialization scheme. We run our attack 10 times with different random seeds for each
source image and target class pair. This also generates 10 different synthetic color images (x′) for
each source image and target class pair. We chose an evaluation set of 1000 source images (evenly
distributed across 10 random classes) and used each one and our attack to flip the label to 9 different
target classes. So we conducted (1000× 9 source-image-to-target-class pairs) × 10 (ten because we
generated 10 different for each pair) attacks (90K attacks) against ResNet18 on CIFAR-10. We
report the min, max, average and standard deviation ASR across the entire evaluation set at different
sparsity levels. The results in Table 17 show that our method is invariant to the initialization of x′.
Therefore, our initialization scheme does not affect the final performance of our attacks reported in
the paper. Actually, the more complex task of optimizing x′ and devising efficient algorithms to
explore the high dimensional search space or the generation of better image synthesizing schemes
(initialization schemes) to boost the attack performance leaves interesting works in the future.

Table 17: ASR (Min, Mean, Max and Standard Deviation) of our attack methods across the entire evaluation
set at different sparsity levels with a query budget of 500, with 10 different random seeds for each attack on
CIFAR-10.

Sparsity ASR (Min) ASR (Mean) ASR (Max) Standard Deviation
1%(10 pixels) 68.14 % 68.36 % 68.66% 0.35
2%(20 pixels) 90.24% 90.76% 91.38% 0.48

2.9%(30 pixels) 96.62% 96.71% 96.78% 0.11
3.9%(40 pixels) 98.17% 98.35% 98.49% 0.13
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K EFFECTIVENESS OF DISSIMILARITY MAP

In this section, we aim to investigate the impact of employing the dissimilarity map as our prior
knowledge.

On CIFAR-10. Similarly, we conduct another experiment on an evaluation set which is composed
of 1000 correctly classified images (from CIFAR-10) evenly distributed in 10 classes and 9 target
classes per image. However, to reduce the burden of computation when studying hyper-parameters,
we use a query budget of 500. The results in Table 18 confirm our observation on ImageNet.

Table 18: ASR comparison between with and without using Dissimilarity Map on CIFAR-10.

Sparsity With Dissimilarity Map Without Dissimilarity Map
1.0% 68.21% 67.16%
2.0% 90.24% 89.42%
2.9% 96.59% 95.96%
3.9% 98.48% 97.92%

On ImageNet. We conduct a more comprehensive experiment in terms of query budget to show
more interesting results. In this experiment, we use the same evaluation set of 500 samples from
ImageNet used in Section 4 and in the targeted setting. The results in Table 19 show that em-
ploying prior knowledge of pixel dissimilarity benefits our attack, particularly at a low percentage
of sparsity rather. At a high percentage of sparsity, BRUSLEATTACK adopting prior knowledge
only achieves a comparable performance to BRUSLEATTACK without prior knowledge. Notably, at
a sparsity of 0.2%, BRUSLEATTACK is slightly worse than SPARSE-RS. Nonetheless, employing
prior knowledge of pixel dissimilarity improve the performance of BRUSLEATTACK and makes it
consistently outweigh SPARSE-RS.

Table 19: ASR at different sparsity thresholds and queries (higher is better) for a targeted setting. A comparison
between SPARSE-RS, BRUSLEATTACK (without Dissimilarity Map) and BRUSLEATTACK (with Dissimilarity
Map) on an evaluation set of 500 pairs of an image and a target class on ImageNet

.
Methods Q=2000 Q=4000 Q=6000 Q=8000 Q=10000

Sparsity = 0.2%
SPARSE-RS 9.4% 20.6% 29.6 % 33.4% 38.4%

BRUSLEATTACK (without Dissimilarity Map) 8.8% 19.6% 27.4 % 34.4% 38.2%
BRUSLEATTACK 12% 23.6% 31.6% 36.6% 40.4%

Sparsity = 0.4%
SPARSE-RS 23.6% 48.4% 63.0% 72.6% 78.8%

BRUSLEATTACK (without Dissimilarity Map) 30.2% 53.4% 64.4% 73.0% 78.6%
BRUSLEATTACK 33.2% 54.2% 66.8% 76% 82.4%

Sparsity = 0.6%
SPARSE-RS 29.6% 57.6% 73.2% 85.8% 92.0%

BRUSLEATTACK (without Dissimilarity Map) 43.6% 71.6% 85.0% 91.8% 94.6%
BRUSLEATTACK 45.4% 75.6% 87.4% 91.8% 94.6%

L HYPER-PARAMETERS, INITIALIZATION AND COMPUTATION RESOURCES

All experiments in this study are performed on two RTX TITAN GPU (2 × 24GB) and four RTX
A6000 GPU (4 × 48GB). We summarize all hyper-parameters used for BRUSLEATTACK on the
evaluation sets from CIFAR-10, STL-10 and ImageNet as shown in Table 20 . Notably, only
the initial changing rate λ0 is adjusted for different resolution datasets i.e. STL-10 or ImageNet
; thus, our method can be easily adopted for different vision tasks. Additionally, to realize an attack,
we randomly synthesize a color image x′ for each attack. At initialization step, BRUSLEATTACK
randomly creates 10 candidate solutions and choose the best.
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Table 20: Hyper-parameters setting in our experiments

Parameters CIFAR-10 STL-10 ImageNet
Untargeted Targeted Untargeted Targeted Untargeted Targeted

m1 0.24 0.24 0.24 0.24 0.24 0.24
m2 0.997 0.997 0.997 0.997 0.997 0.997
λ0 0.3 0.15 0.3 0.15 0.3 0.05

αprior 1 1 1 1 1 1

M HYPER-PARAMETERS STUDY

In this section, we conduct comprehensive experiments to study the impacts and the choice of
hyper-parameters used in our algorithm. The experiments in this section are mainly conducted on
CIFAR-10. For λ0, we conduct an additional experiment on ImageNet.

M.1 THE IMPACT OF m1,m2

In this experiment, we use the same evaluation set on CIFAR-10 mentioned above. To investigate
the impact of m1, we set m2 = 0.997 and change m1 = 0.2, 0.24, 0.28. Likewise, we set
m1 = 0.24 and change m2 = 0.993, 0.997, 0.999 to study m2. The results in Table 21 show that
BRUSLEATTACK achieves the best results with m1 = 0.24 and m2 = 0.997.

Table 21: ASR of BRUSLEATTACK with different values of m1,m2 on CIFAR-10.

Sparsity Fixed m2 = 0.997 Fixed m1 = 0.24
m1 = 0.2 m1 = 0.24 m1 = 0.28 m2 = 0.993 m2 = 0.997 m2 = 0.999

1.0% 67.32% 68.21% 67.48% 67.34% 68.21% 67.21%
2.0% 88.67% 90.24% 88.94% 89.64% 90.24% 89.12%
2.9% 95.37% 96.59% 95.54% 96.25% 96.59% 95.82%
3.9% 97.24% 98.48% 97.68% 97.59% 98.48% 96.21%

M.2 THE IMPACT OF λ0

On CIFAR-10. Similarly, we conduct another experiment on the same evaluation set which is
composed of 1000 correctly classified images (from CIFAR-10) as described above. We use the
same query budget of 500. We use m1 = 0.24 and m2 = 0.997 and change λ0 = 0.15 to study
the impact of λ0. Our results in Table 22 show that BRUSLEATTACK achieves the best results with
λ0 = 0.15.

Table 22: ASR of BRUSLEATTACK with different values of λ0 on CIFAR-10.

Sparsity λ0 = 0.1 λ0 = 0.15 λ0 = 0.2

1.0% 68.05% 68.21% 68.12%
2.0% 89.38% 90.24% 88.33%
2.9% 96.15% 96.59% 95.56%
3.9% 98.16% 98.48% 97.08%

On ImageNet. We use 500 random pairs of an image and a target class from ImageNet in a
targeted setting. We carry on a more comprehensive experiment in terms of query budgets. Figure
10 shows that with different initial changing rates λ0, BRUSLEATTACK obtains the best results
when λ0 is small such as 0.03 or 0.05. However, at a small sparsity budget, λ0 = 0.03 often
achieves lower ASR than λ0 = 0.05 as shown in Table 23 because it requires more queries to make
changes and move towards a solution. Consequently, λ0 should not be too small. If increasing λ0,
BRUSLEATTACK reaches its highest ASR slower than using small λ0. Hence, the initial changing
rate has an impact on the overall performance of BRUSLEATTACK.
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Figure 10: ASR versus
model queries on ImageNet.
BRUSLEATTACK against ResNet-
50 with sparsity of 1.0 % in a
targeted setting to show the im-
pacts of different hyper-parameters
on BRUSLEATTACK.

Table 23: ASR at different sparsity levels and queries (higher is better)
in a targeted setting. A comparison between λ0 = 0.03 and λ0 = 0.05
on a set of 500 pairs of an image and a target class on ImageNet

Initial changing rate Q=2000 Q=4000 Q=6000 Q=8000 Q=10000

Sparsity = 0.2%
λ0 = 0.03 10.2% 22.6% 29.2 % 35.6% 41.4%
λ0 = 0.05 12% 23.6% 31.6% 36.6% 40.4%

Sparsity = 0.4%
λ0 = 0.03 31% 53.6% 65.6% 74.2% 80%
λ0 = 0.05 33.2% 54.2% 66.8% 76% 82.4%

Sparsity = 0.6%
λ0 = 0.03 45.4% 75.4% 84.6% 89.8% 92.8%
λ0 = 0.05 45.4% 75.6% 87.4% 91.8% 94.6%

M.3 THE CHOICE OF αprior

In this section, we discuss the choice of αprior and provide an analysis on the convergence time.

• αprior = 1 (αi = 1 where i ∈ [1, k]). In our proposal, we draw multiple pixels
(equivalent to multiple elements in a binary matrix u) from the Categorical distribution
(K categories) parameterized by θ = [θ1, θ2, ..., θK ]. When initializing an attack, we
have no prior knowledge of the influence of each pixel that is higher or lower than other
pixels on the model’s decision so it is sensible to assume all pixels have a similar influence.
Consequently, all pixels should have the same chance to be selected for perturbation (to
be manipulated). To this end, the Categorical distribution where multiple pixels are drawn
from should be a uniform distribution and θ1 = θ2 = ... = θK = 1

K .
We note that Dirichlet distribution is the conjugate prior distribution of the Categorical dis-
tribution. If the Categorical distribution is a uniform distribution, Dirichlet distribution is
also a uniform distribution. In probability and statistics, Dirichlet distribution (parameter-
ized by a concentration vector α = [α1, α2. . . , αK ], each αi represents the i-th element
where K is the total number of elements) is equivalent to a uniform distribution over all of
the elements when α = [α1, α2. . . , αK ] = [1, 1, . . . , 1]. In other words, there is no prior
knowledge favoring one element over another. Therefore, we choose αprior = 1.

• αprior < 1 (αi < 1 where i ∈ [1, k]). We have αposterior = αprior + s(t) and
s(t) = (a(t)+z)/(n(t)+z)−1. So we have αposterior = αprior+(a(t)+z)/(n(t)+z)−1.
Because (a(t) + z)/(n(t) + z) ≤ 1, we cannot choose αprior < 1 to ensure that the
parameters controlling the Dirichlet distribution are always positive (αposterior > 0).

• αprior > 1 (αi > 1 where i ∈ [1, k]). Since αposterior = αprior + (a(t) + z)/(n(t) +
z) − 1 and 0 < (a(t) + z)/(n(t) + z) ≤ 1, if αprior ≫ 1, in the first few iterations,
αposterior almost remains unchanged so the algorithm will not converge. If αprior > 1,
the farther from 1 αprior is, the more subtle the αposterior changes. Now, the update
(a(t) + z)/(n(t) + z) needs more iterations (times) to significantly influence αposterior.
In other words, the proposed method requires more time to learn the Dirichlet distribution
(update αposterior). Thus, the convergence time will be longer. Consequently, the larger
αi is, the longer the convergence time is.

N BRUSLEATTACK WITH DIFFERENT SCHEDULERS

We carry out a comprehensive experiment to examine the impact of different schedulers including
cosine annealing and step decay. In this experiment, we use the same evaluation set with 1000
images from CIFAR-10 evenly distributed in 10 classes and 9 target classes per image and we use
the same query budget (500 queries). The results in Table 24 show the ASR at different sparsity
levels. These results show that our proposed scheduler slightly outperforms all other schedulers.
Based on the results, Step Decay or Cosine Annealing schedulers can be a good alternative.
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Table 24: ASR comparison between using a Power Step Decay (our proposal) and other schedulers on
CIFAR-10.

Sparsity Our Proposal Step Decay Cosine Annealing
1.0% 68.21% 68.11% 68.02%
2.0% 90.24% 89.34% 89.15%
2.9% 96.59% 96.12% 95.89%
3.9% 98.48% 98.26% 98.18%

O ALGORITHM PSEUDOCODES

Initialization. Algorithm 2 presents pseudo-code for attack initialization as presented in Section 3.3.

Algorithm 2: Initialization
Input: source image x, synthetic color image x′ source label y, target label ytarget

number of initial samples N ,perturbation budget B, victim model fM
1 ℓ←∞
2 for i = 1 to N do
3 Generate u′ by uniformly enabling B bits of 0 at random
4 ℓ′ ← L(fM (g(u′;x,x′)), y∗)
5 if ℓ′ < ℓ then
6 u← u′, ℓ← ℓ′

7 end for
8 return u, ℓ

Generation. Algorithm 3 presents pseudo-code for generating new data point as presented in Sec-
tion 3.3.

Algorithm 3: Generation
Input: probability θ, bias map M , mask u, changing rate λ

1 b← ⌈(1− λ)B⌉
2 v1 . . . ,vb ∼ Cat(v | θ,u = 1)
3 q1 . . . ,vB−b ∼ Cat(q | θM ,u = 0)

4 u(t) = [∨bk=1v
(t)
k ] ∨ [∨B−b

r=1 q
(t)
k ]

5 return u

Update. Algorithm 4 presents pseudo-code for updating an accepted mask (a solution in round t)
and estimated θ(t) as presented in Section 3.3 and illustrated in Figure 2.

P EVALUATION PROTOCOL

In this section, we present the evaluation protocol used in this paper.

1. In the targeted attack settings.

• SparseRS (Croce et al., 2022) evaluation with ImageNet: Selected 500 source images.
But each source image class was flipped to only one random target class using the
attack. So that is a total of 500 source-image-to-target class attacks. This evaluation
protocol may select the same target class to attack in the 500 attacks conducted. Thus,
this could lead to potential biases in the results because some classes may be easier to
attack than others.
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Algorithm 4: Update

Input: previous mask and lossu(t−1), ℓ(t−1),current mask and loss u(t), ℓ(t),small constant z,
matrices a(t),n(t)

1 a← a(t),n← n(t)

2 ni,j∈{[i,j]|(u(t−1)∨u(t))i,j=1} increase by 1
3 if ℓ(t) < ℓ(t−1) then
4 u← u(t), ℓ← ℓ(t)

5 else
6 u← u(t−1), ℓ← ℓ(t−1)

7 ai,j∈{[i,j]|(u(t−1)⊕(u(t−1)∧u(t)))i,j=1} increase by 1
8 end if
9 s← a+z

n+z -1
10 Update αposterior using s and Equation 6
11 Update θ using αposterior and Equation 8
12 return u, ℓ,θ,a,n

• To avoid the problem, in the targeted attack setting, we followed the evaluation pro-
tocol used in (Vo et al., 2022a). Essentially, we flip the label of the source image
to several targeted classes, this can help address potential biases caused by relatively
easier classes getting selected multiple times for a target class.

• Our evaluation with ImageNet: We randomly selected 200 correctly classified
source images evenly distributed among 200 random classes. But, in contrast to
SparseRS, we selected 5 random target classes to attack for each source image. In
total we did 200 × 5 = 1000 source-image-to-target class attacks on ImageNet for
targeted attacks.

2. In the untargeted attack setting (attacks against defended models), we conducted 500 at-
tacks (similar to SparseRS). We randomly selected 500 correctly classified test images
from 500 different classes for attacks.

3. Further, our unique and exhaustive testing with CIFAR-10 and STL-10 corroborates
ImageNet results given the significant amount of resources it takes to attack the high-
resolution ImageNet (224× 224) models.

• For STL-10 we conducted 60,093 attacks against each deep learning model (6,677 of
all 10,000 images in the test set which are correctly classified versus 9 other classes as
target classes for each source image). We used every single test set image in STL-10
(96× 96) in our attacks to mount the exhaustive evaluation where no image from the
test set was left out.

• For CIFAR-10 (32 × 32) we conducted 9,000 attacks against each deep learning
model (1000 random images correctly classified versus the 9 other classes as target
classes for each source image).

4. For evaluations against a real-world system (GCV) in the significantly more difficult tar-
geted setting (not the untargeted setting), we provide new benchmarks for attack demonstra-
tion because we provide a comparison between BRUSLEATTACK and the previous attack,
SPARSE-RS. To make it clear, we provide a brief comparison as follows:

• Other related past studies (dense attacks)(Ilyas et al., 2018; Guo et al., 2019), showcase
an attack against a real-world system but uses 10 attacks. While Ilyas et al. (2018)
illustrated only one successful example when carrying out an attack against Google
Could Vision.

• Importantly, we did not simply use our method only, as in (Ilyas et al., 2018; Guo et al.,
2019) but demonstrated a comparison between BRUSLEATTACK and SPARSE-RS. In
practice, we used 10 samples for each attack, so there are 20 attacks.

In general, our evaluation protocol is much stronger than the one used in previous studies. We evalu-
ate on three different datasets CIFAR-10, STL-10 (not evaluated in prior attacks) and ImageNet
with ResNet-50, ResNet-50 (SIN), Visitation Transformer (not evaluated in prior attacks).
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Q VISUALIZATIONS OF ATTACK AGAINST GOOGLE CLOUD VISION

Table 25 and Figure 11, Table 26 and Figure 12 show our attack against real-world system Google
Cloud Vision API.

Table 25: Demonstration of sparse attacks against GCV in targeted settings. BRUSLEATTACK is able to
successfully yield adversarial instances for all five examples with less queries than SPARSE-RS. Especially, for
the example of Mushroom, SPARSE-RS fails to attack GCV within a budget of 5000 queries. Demonstration
on GCV API (online platform) is shown in Figure 11.

Examples

No Attack Car Flower Fire Truck Vehicle Mushroom

BRUSLEATTACK
Window Yellow Pepper Window Window Landscape

(1.8K Queries) (99 Queries) (328 Queries) (1.83K Queries) (490 Queries)

SPARSE-RS Window Yellow Pepper Window Window Mushroom
(4.66K Queries) (211 Queries) (395 Queries) (3.3K Queries) (>5K Queries)

No Attack (Clean input) Our Attack SparseRSa) b) c)

Figure 11: a) demonstrates results for clean image (no attack) predicted by Google Cloud Vision (GCV). b)
shows the predictions from GCV for adversarial examples crafted successfully by BRUSLEATTACK with less
than 3,000 queries and sparsity of 0.05 %. c) shows the results from GCV for adversarial examples crafted by
SPARSE-RS with the same sparsity. But SPARSE-RS needs more queries than BRUSLEATTACK to successfully
yield adversarial images or fail to attack with query budget up to 5,000 as shown in Table 25.
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Table 26: Demonstration of sparse attacks against GCV in targeted settings. BRUSLEATTACK is able to
successfully yield adversarial instances for all five examples with less queries than SPARSE-RS. Especially, for
the example of Mushroom, SPARSE-RS fails to attack GCV within a budget of 5000 queries. Demonstration
on GCV API (online platform) is shown in Figure 12.

Examples

No Attack Reflex Camera Y.L.Slipper Watch Building Stop Sign

BRUSLEATTACK
Circle Flowering Plant Jewellry Gas Material P

(3.8K Queries) (899 Queries) (2.9K Queries) (983 Queries) (2.77K Queries)

SPARSE-RS Gas Flowring Plant Font Fixture Font
(>5K Queries) (988 Queries) (>5K Queries) (>5K Queries) (>5K Queries)

No Attack (Clean input) Our Attack SparseRSa) b) c)

Figure 12: a) demonstrates results for clean image (no attack) predicted by Google Cloud Vision (GCV). b)
shows the predictions from GCV for adversarial examples crafted successfully by BRUSLEATTACK with less
than 3,000 queries and sparsity of 0.05 %. c) shows the results from GCV for adversarial examples crafted by
SPARSE-RS with the same sparsity. But SPARSE-RS need more queries than BRUSLEATTACK to successfully
yield adversarial images or fail to attack with query budget up to 5,000 as shown in Table 25.
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R VISUALIZATIONS OF SPARSE ADVERSARIAL EXAMPLES AND
DISSIMILARITY MAPS

In this section, we illustrate:

• Sparse adversarial examples, sparse perturbation crafted by our methods versus salient re-
gion produced by GradCAM method Selvaraju et al. (2017) or attention map produced by
a ViT model Dosovitskiy et al. (2021).

• Sparse adversarial examples crafted by BRUSLEATTACK when attacking ResNet-50,
ResNet-50 (SIN) and Vistion Transformer.

• Dissimilarity Map produced from a pair of a source and a synthetic color images.

Figure 13 and 14 illustrate sparse adversarial examples and spare perturbation of images from
ImageNet in targeted and untargeted settings. In targeted settings, we use a query budget of 10K,
while in untargeted settings, we set a query limit of 5K. We use GradCAM and Attention Map from
ViT to demonstrate salient and attention regions. The sparse perturbation δ is the absolute difference
between source images and their sparse adversarial. Formally, sparse perturbations can be defined
as δ = |x− x̃|.
The results show that for ResNet-50, the solutions found do not need to perturb salient regions on
an image to mislead the models (both targeted and untargeted attacks). Attacks with ViT models in
untargeted settings also lead to a similar observation. Interestingly, for some images e.g. a snake
or a goldfinch in Figure 13, we observe that a set of perturbed pixels yielded by our method is
more concentrated in the attention region of ViT. This seems to indicate some adversarial solutions
achieves their objective by degrading the performance of a ViT. This is perhaps not an unexpected
observation, given the importance of attention mechanisms to transformer models.

Green mamba

Figure 13: Targeted Attack. Visualization of Adversarial examples crafted by BRUSLEATTACK with a budget
of 10K queries. In the image of sparse perturbation, each pixel is zoomed in 9 times (9×) to make them more
visible.
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Green mamba

Figure 14: Untargeted Attack. Visualization of Adversarial examples crafted by BRUSLEATTACK with a
budget of 5K queries. In the image of sparse perturbation, each pixel is zoomed in 9 times (9×) to make them
more visible.

Figure 15 and 16 demonstrate some examples of adversarial examples yielded by BRUSLEATTACK
when attacking different deep learning models (ResNet-50, ResNet-50 (SIN) and Vision Trans-
former) in targeted settings produced using a 10K query budget.
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ResNet-50

60 pixels  
(0.12% sparsity)

ResNet-50 
(SIN)

Vision
Transformer

Predicted as
Target class
Snail 

70 pixels  
(0.14% sparsity)

100 pixels  
(0.2% sparsity)

Sparse
Adversarial
Example 

20 pixels  
(0.04% sparsity)

Traffic 

Light

20 pixels  
(0.04% sparsity)

20 pixels  
(0.04% sparsity)

Sparse
Adversarial
Example 

Original image

Original image Predicted as
Target class

Figure 15: Visualization of Adversarial examples crafted by BRUSLEATTACK with a budget of 10K queries.
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ResNet-50

60 pixels  
(0.12% sparsity)

ResNet-50 
(SIN)

Vision
Transformer

Predicted as
Target class
chickadee 

50 pixels  
(0.1% sparsity)

120 pixels  
(0.24% sparsity)

Sparse
Adversarial
Example 

100 pixels  
(0.2% sparsity)

Peke

100 pixels  
(0.2% sparsity)

100 pixels  
(0.2% sparsity)

Sparse
Adversarial
Example 

Original image

Original image Predicted as
Target class

Figure 16: Visualization of Adversarial examples crafted by BRUSLEATTACK with a budget of 10K queries.
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Figure 17 illustrates some examples of Dissimilarity Map yielded by a source image and a synthetic
color image.

Source Image
Synthetic  

color image Dissimilarity Map Source Image
Synthetic 

color space Dissimilarity Map

Source Image
Synthetic  

color image Dissimilarity Map Source Image
Synthetic 

color space Dissimilarity Map

Figure 17: Visualization of Dissimilarity Maps between a source image and a synthetic color image.
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