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Abstract

Data subset selection refers to the process of finding a small subset of training data
such that the predictive performance of a classifier trained on it is close to that of
a classifier trained on the full training data. A variety of sophisticated algorithms
have been proposed specifically for data subset selection. A closely related problem
is the active learning problem developed for semi-supervised learning. The key step
of active learning is to identify an important subset of unlabeled data by making use
of the currently available labeled data. This paper starts with a simple observation
– one can apply any off-the-shelf active learning algorithm in the context of data
subset selection. The idea is very simple – we pick a small random subset of
data and pretend as if this random subset is the only labeled data, and the rest
is not labeled. By pretending so, one can simply apply any off-the-shelf active
learning algorithm. After each step of sample selection, we can “reveal” the label
of the selected samples (as if we label the chosen samples in the original active
learning scenario) and continue running the algorithm until one reaches the desired
subset size. We observe that surprisingly, this active learning-based algorithm
outperforms all the current data subset selection algorithms on the benchmark tasks.
We also perform a simple controlled experiment to understand better why this
approach works well. As a result, we find that it is crucial to find a balance between
easy-to-classify and hard-to-classify examples when selecting a subset.

1 Introduction

Modern deep learning have achieved unprecedented success by leveraging hyper-scale networks
trained on ever-larger datasets, e.g., GPT-3 [1], CLIP [2], and ViT [3]. However, with such a massive
amount of data, practitioners often suffer from huge computational costs for model training, hyper-
parameter tuning, and model architecture search. For example, training GPT-3 on 45 Tera-bytes of text
data takes weeks or months even with intense GPU parallelization [4]. Reducing these computational
costs is of vital important because it can accelerate model development cycles, reduce the energy
consumption (e.g., CO2 emission) [5], and even facilitate democratization of AI [6]. In this regard,
many attempts have been devoted to prune the training dataset to enables efficient learning.

Data subset selection aims to reduce the size of training set by finding a core subset that generalizes
on par with the full training set [7, 8]. Previous studies try to sort and select some fraction of training
examples according to their difficulty for model training under the assumption that hard examples
are more helpful for generalization. To do so, various score functions have been proposed, e.g.,
uncertainty-based [9], loss-based [10, 6, 11], geometry-based [12, 13, 14], and gradient-based [15, 16,
17] scores. The prior art has proved their effectiveness by comparing the predictive performance of
the model trained on the selected subsets and that of the model trained on the full data.
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Figure 1: Test accuracy of existing data sub-
set selection methods and AL baselines on
CIFAR10. While AL baselines do not use la-
bels when selecting samples, they beat every
subset selection method.

A closely related, but different, problem is active
learning (AL). AL was originally developed for the
following semi-supervised learning setting. One is
given with small labeled data and large unlabeled
data. The given labeled data set is not large enough,
so one would like to obtain a larger labeled dataset
by labeling the unlabeled data. However, not all
unlabeled examples are equal, i.e., some of them will
be more useful than the others once labeled. Since
labeling is costly and time-consuming, it is critical
to identify which examples are more useful than the
others so that we can prioritize labeling important
ones given a labeling budget. AL is a principled
approach to solving this problem – see [18] for a
detailed survey of AL for deep learning.

While AL is developed with semi-supervised learning problems in mind, it is inherently related to the
data subset selection problem in that both are concerned with finding important subsets. In fact, it
is straightforward to observe that any AL algorithm can be modified so that it can be used for the
data subset problem. The idea is strikingly simple – we start with a small random subset of data
and pretend as if it is the only labeled data; train a classifier on the selected subset; augment the
subset with a number of training examples selected by an AL algorithm; and repeat the training and
augmenting steps until selecting the target number of subset examples.

In this paper, we show that AL can be a strong baseline for data subset selection. As shown in Figure
1, we observe that a simple AL algorithm, such as AL (Margin) [19], outperforms every state-of-
the-art data subset selection algorithm in terms of test accuracy regardless of the selection ratios.
We demonstrate the superiority of this baseline using various architectures and datasets including
CIFAR10, CIFAR100, and a subset of ImageNet.

This is very surprising in that AL does not use the ground truth labels when selecting examples
whereas the subset selection does; AL uses less information than subset selection but achieves better
performance. We also perform a simple controlled experiment to better understand why this baseline
works well. As a result, we find that it is crucial to find a balance between easy-to-classify and
hard-to-classify examples when selecting a subset. Accordingly, we contend that it now becomes an
open problem to develop a new subset selection algorithm that outperforms our simple AL baseline.

2 Preliminary

2.1 Data Subset Selection

Problem Setup. Let D = {(xi, yi)}mi=1 be a given training set obtained from a joint distribution
X ×Y , where m denotes the number of training examples, X and Y denote the input space and label
space, respectively. Data subset selection aims to identify the most informative subset S ⊂ D, so that
the model θS trained on S can maintain possibly close generalization performance to the model θD
trained on the entire training set D.

Related Work. Coleman et al. [9] shows that the uncertainty-based scores, e.g., Confidence [20],
Margin [19], and Entropy [21], can be effective metrics for subset selection in that selecting lower
confident examples is more helpful for model generalization than selecting higher confident ones.
Some work used the geometric distance in the feature space to avoid selecting examples with
redundant information. Herding [12] incrementally extends the selected coreset by greedily adding
a data example which can minimize the distance between the center of the coreset and that of the
original training set. kCenterGreedy [14] selects k examples that maximize the distance coverage
on the entire unlabeled data. Recently, many approaches try to directly exploit the components of
deep learning with given ground-truth labels. Forgetting [10] selects examples that are easy to be
forgotten by the classifier, and it finds such samples by counting how frequently predicted label
changes during several warm-up training epochs. GraNd [6] uses the average norm of gradient vector
to measure the contribution of each examples for minimizing the training loss. GradMatch [16]
and CRAIG [15] try to find an optimal coreset that its gradient can be matched with the gradient
of full training set. Glister [17] introduces a bi-level optimization framework that the outer loop is
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for selecting the coreset which can be solved by a greedy algorithm. Submodular functions, such
as Graph Cut, Facility Location, and Log Determinant, which measure the diversity of information,
have also been shown to be useful for data subset selection [22].

2.2 Active Learning

Problem Setup. Let U = {xi}mi=1 be a given unlabeled set, where xi ∼ X . Active learning aims to
select the most informative examples from U and turn them into the labeled set L ⊂ D by assigning
the ground-truth label y on each example x with a human oracle. The AL process—selecting, labeling,
and training—repeats for multiple rounds, say r rounds, until attaining the target number of examples.
Usually, the initial labeled set L0 are selected randomly. The labeled set L extends gradually by
adding a newly selected set for each rounds, i.e., L←L∪Lr.

Related Work. Numerous AL scores for measuring informativeness of examples without given
the ground-truth labels have been proposed [18, 23]. One typical type is uncertainty-based score,
such as soft-max Confidence [20], Margin [19], and Entropy [21], which is calculated on the final
prediction probability of the model. Some approaches measures uncertainty by using the Monte Carlo
Dropout [24] throughout multiple forward passes [25, 26]. LL [27] uses the predicted loss obtained
by a small loss prediction module which is jointly learned with the target model. Another popular
type of methods is diversity-based sampling which incorporates a clustering [28, 29, 30] or greedy
selection algorithm [14] to select diverse examples that well-represent the entire data distribution.

2.3 Applying Active Learning Algorithm to Data Subset Selection

Given a fully labeled dataset D, one can pretend that label information is not given and view it as
U . Then, one can choose a small labeled random subset L0 from D. One can obtain the indices of
chosen samples by running one step of an active learning algorithm on L0. By retrieving the labels of
these samples from D, one can simulate the oracle labeling process, hence obtaining L1. One can
repeat this process until this process reaches the desired subset size.

3 Experiment

3.1 Experiment Setting

Datasets. We perform the data subset selection and active learning on three datasets; CIFAR10 [31],
CIFAR100 [31], and ImageNet-30 [32], a subset of ImageNet [33] containing 30 classes.
Algorithms. We compare with a random selection, six subset selection algorithms, including
Margin [19], Forgetting [10], GraNd [6], kCenterGreedy [14], GraphCut [22], and Glister [17], and
three AL algorithms, AL (Margin) [19], AL (Conf) [20], and AL (LL) [27].
Implementation Details. For all datasets, we conduct the performance comparison with the selection
ratios of {10%, 20%, . . . , 90%}. For data subset selection methods, following the prior work [7], a
warm-up training of 10 epochs on the entire training set is preceded to calculate the difficulty scores.
For AL baselines, we randomly select 2% of training examples as the initial labeled set, and add 2% of
training examples at every AL round. We run every experiment three times and report the average of
the best accuracy. More implementation details with training configurations can be found in Appendix
A. The code is available at https://github.com/dongmean/AL_vs_SubsetSelection.

3.2 Performance Comparison.

Table 1 shows the detailed performance of data subset selection methods and AL baselines over
various selection ratios on CIFAR10, CIFAR100, and ImageNet30 with ResNet-18. See Appendix A
for the result with VGG architecture. The overall performance curves for CIFAR10 are illustrated in
Figure 1 and those for CIFAR100 and ImageNet30 are depicted in Figure 3 in Appendix B.

In general, AL baselines outperform all subset selection methods over the most selection ratios.
Specifically, AL (Margin) succeeds to maintain the full test accuracy within an error of 0.5% until the
selection ratio of 50% for CIFAR10, 80% for CIFAR100, and 70% for ImageNet30. On the other
hand, the performance of subset selection methods drastically degrade when the selection ratio is very
low and is sometimes even worse than Random, e.g., for CIFAR10, every subset selection method
except Forgetting is worse than Random at the selection ratios of 10% and 20%.
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Table 1: Performance comparison of data subset selection and AL methods on CIFAR10, CIFAR100,
and ImageNet30. We train ResNet-18 from scratch on the selected set. The best results are in bold.

Datasets Select Ratios 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

CIFAR10

Random 78.4±0.9 88.1±0.5 91.0±0.3 91.9±0.2 93.2±0.3 94.3±0.2 94.7±0.2 94.8±0.1 95.1±0.2 95.5±0.2
Margin 73.2±1.3 85.5±0.9 91.3±0.5 93.6±0.3 94.5±0.2 94.9±0.3 95.1±0.1 95.4±0.2 95.5±0.1 95.5±0.2

Forgetting 79.0±1.0 89.8±0.9 92.3±0.4 93.6±0.4 93.8±0.3 94.6±0.4 95.0±0.2 95.1±0.2 95.4±0.2 95.5±0.2
GraNd 75.4±1.2 88.6±0.6 92.4±0.4 93.3±0.5 94.2±0.4 94.6±0.3 95.0±0.2 95.1±0.2 95.5±0.2 95.5±0.2

kCentGreedy 75.2±1.7 87.3±1.0 91.2±0.6 92.2±0.5 93.8±0.5 94.2±0.4 94.4±0.3 95.1±0.2 95.5±0.2 95.5±0.2
GraphCut 74.0±1.5 86.3±0.9 90.2±0.5 91.5±0.4 93.8±0.5 94.2±0.4 94.4±0.3 95.1±0.2 95.5±0.2 95.5±0.2

Glister 75.7±1.0 86.3±0.9 90.1±0.7 91.5±0.5 93.3±0.6 93.6±0.6 94.5±0.4 94.8±0.3 95.2±0.2 95.5±0.2
AL(Margin) 84.5±0.7 91.0±0.5 93.9±0.4 94.5±0.3 95.3±0.2 95.3±0.2 95.4±0.2 95.5±0.2 95.5±0.1 95.5±0.2
AL(Conf) 83.6±0.7 90.5±0.4 93.8±0.4 94.8±0.3 95.1±0.3 95.3±0.2 95.4±0.2 95.4±0.2 95.5±0.2 95.5±0.2
AL(LL) 85.0±0.9 91.2±0.7 93.8±0.6 94.4±0.5 95.0±0.4 95.2±0.4 95.4±0.3 95.5±0.3 95.5±0.2 95.5±0.2

CIFAR100

Random 32.0±0.9 53.6±0.6 63.6±0.5 67.2±0.5 71.0±0.3 73.1±0.4 75.2±0.2 76.1±0.3 77.5±0.2 78.7±0.2
Margin 18.7±2.1 38.2±1.6 58.1±0.8 65.1±0.6 70.1±0.5 73.3±0.3 75.4±0.3 76.9±0.4 78.5±0.2 78.7±0.2

Forgetting 35.4±1.0 54.7±0.9 64.6±0.7 68.6±0.8 71.5±0.4 73.7±0.5 75.5±0.3 76.1±0.3 76.9±0.3 78.7±0.2
GraNd 30.8±1.9 49.4±1.0 62.8±0.9 68.1±0.6 70.5±0.3 72.5±0.4 74.5±0.3 76.4±0.2 77.8±0.2 78.7±0.2

kCentGreedy 33.9±1.5 56.2±0.9 64.5±0.6 69.8±0.4 72.1±0.5 74.3±0.4 75.8±0.3 77.2±0.2 77.8±0.2 78.7±0.2
GraphCut 36.3±1.1 56.0±0.8 65.5±0.6 69.5±0.4 71.1±0.4 73.8±0.4 75.4±0.2 76.4±0.2 78.0±0.2 78.7±0.2

Glister 36.4±1.0 55.5±1.0 63.9±0.8 69.1±0.7 71.2±0.6 73.5±0.4 75.0±0.3 76.9±0.2 77.6±0.2 78.7±0.2
AL(Margin) 36.0±1.0 57.3±0.5 66.0±0.6 70.4±0.5 73.6±0.5 76.1±0.4 77.2±0.3 78.2±0.3 78.5±0.2 78.7±0.2
AL(Conf) 36.1±1.6 55.7±1.0 65.8±0.7 70.6±0.5 73.7±0.4 76.1±0.5 77.1±0.3 78.0±0.2 78.4±0.2 78.7±0.2
AL(LL) 33.1±1.9 55.3±1.3 64.9±0.8 70.3±0.7 73.1±0.5 75.9±0.5 77.0±0.3 78.2±0.3 78.5±0.2 78.7±0.2

ImageNet30

Random 69.3±0.7 83.7±0.5 86.9±0.4 90.3±0.3 92.2±0.3 93.0±0.2 94.6±0.3 95.2±0.2 95.4±0.2 96.1±0.1
Margin 56.9±1.1 77.3±0.7 83.7±0.5 90.5±0.4 92.9±0.2 94.4±0.3 95.1±0.2 95.8±0.2 96.0±0.1 96.1±0.1

Forgetting 64.1±0.9 85.4±0.7 87.3±0.5 90.9±0.3 93.6±0.4 94.8±0.2 94.9±0.2 95.1±0.2 95.3±0.2 96.1±0.1
GraNd 69.3±0.9 85.7±0.5 90.0±0.5 92.4±0.4 93.6±0.3 94.7±0.4 95.1±0.2 95.5±0.2 95.7±0.1 96.1±0.1

kCentGreedy 69.7±0.9 84.1±0.5 88.9±0.4 91.6±0.3 93.4±0.2 94.4±0.3 95.1±0.2 95.3±0.2 95.6±0.2 96.1±0.1
GraphCut 71.9±0.6 83.0±0.3 88.5±0.3 91.2±0.3 92.9±0.2 93.7±0.3 94.4±0.2 95.3±0.2 95.6±0.2 96.1±0.1

Glister 72.4±0.7 82.9±0.5 87.0±0.4 91.2±0.3 92.7±0.3 93.3±0.3 94.2±0.2 95.0±0.2 95.8±0.2 96.1±0.1
AL(Margin) 71.9±0.9 86.7±0.5 90.1±0.4 93.3±0.4 94.5±0.3 95.1±0.2 95.6±0.3 95.8±0.2 96.0±0.2 96.1±0.1
AL(Conf) 70.7±1.1 87.0±0.5 90.3±0.5 93.1±0.4 94.3±0.3 95.1±0.2 95.5±0.4 95.7±0.2 96.0±0.1 96.1±0.1
AL(LL) 68.4±1.5 85.5±0.7 89.3±0.6 93.1±0.5 94.7±0.2 95.3±0.2 95.6±0.3 95.8±0.2 96.0±0.2 96.1±0.1

3.3 Quick Analysis: Why a Simple AL Algorithm is Better than Data Subset Selection?

One main difference between data subset selection and AL is that AL starts from a small random initial
set. We study the effect of the random set to subset selection with a simple controlled experiment.
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Figure 2: Effect of the random initial
set on performance.

Experiment Setup. We first train a warm-up classifier on the
entire CIFAR10 for 10 epochs. Our goal is to compare the
accuracy of the model trained on subset of two cases. For the
first case, we randomly select 5,000 examples from CIFAR10
as an initial set. Then, using the warm-up classifier, we
calculate the Margin score on the remaining 45,000 examples
and divide them into 9 bins, i.e., 5,000 examples per bin,
according to the score. Next, we compose 5 subsets by only
combining each odd-numbered bin with the random initial
set (10,000 examples per each subset). For the second case,
using the warm-up classifier, we calculate the Margin score on the entire 50,000 examples and divide
them into 5 bins, i.e., 10,000 examples per bin, according to the score.

Result. Figure 2 shows the performance of selected subset with or without the random initial set.
With the random initial set (blue line), the performance increases according to the uncertainty level
of each bin; the hardest examples are the most helpful in improving model performance. In contrast,
without the random initial set (yellow line), the model performance is not the best at the bin of
highest uncertainty, which can explain the drastic performance drop of subset selection methods in
low selection ratio in Section 3.2. This indicates that the hardest examples give the greatest benefit to
model generalization only when they are used together with easy examples. Based on this finding,
we further show the data subset selection can be improved by adding two main components in AL;
random initial set and multi-round data selection (the result can be found in Appendix D).

4 Conclusion

In this work, we showed that AL can be a strong baseline for data subset selection via extensive
experimental results on multiple datasets. This is surprising as AL does not use the ground-truth
label information when selecting samples. We expect that our observation calls a new attention to
developing a new data subset selection algorithm that can outperform the AL baselines.
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Active Learning is a Strong Baseline for Data Subset Selection
(Supplementary Material)

A Implementation Details

For CIFAR10 and CIFAR100 datasets, we train ResNet-18 [34] and VGG-19 [35] from scratch for
200 epochs using SGD with batch size 128, momentum 0.9, weight decay 5×10−4, and initial
learning rate 0.1 with the cosine decay scheduler. For data augmentation, we apply random horizontal
flipping and random crop with 4-pixel padding. For ImageNet-30 dataset, we train ResNet-18 and
VGG-16 from scratch for 200 epochs using SGD with batch size 128, weight decay 5×10−4, and
initial learning rate 0.1 with the cosine decay scheduler. For data augmentation, we resize the images
to 256× 256, randomly crop it to 224× 224, and apply random horizontal flipping.

For implementation of all data subset selection algorithms, we use the code in DeepCore library3.
The hyperparameters for all algorithms are favorably configured following the original papers. All
algorithms are implemented with PyTorch 1.8.0 and executed on a single NVIDIA Tesla A100 GPU.

B Performance Curves on CIFAR100 and ImageNet30

Figure 3 illustrates the overall performance curves of data subset selection algorithms and an AL
baseline on CIFAR100 and ImageNet30 with ResNet-18. Similar to the result in Figure 1 on CIFAR10,
AL (Margin) outperforms all the subset selection algorithms over the most selection ratios. Among
the subset selection algorithms, Margin shows the most extreme performance drop as the selection
ratio becomes lower.

C Results with VGG Architecture

Table 2 shows the detailed performance of data subset selection and an AL baseline with VGG-19
architecture for CIFAR10 and CIFAR100 and VGG-16 architecture for ImageNet30. Similar to
Section 3.2, AL (Margin) wins all data subset selection methods regardless of the selection ratios.
Specifically, AL (Margin) succeeds to maintain the full test accuracy within an error of 0.5% until the
fraction ratio of 50% for CIFAR10, 80% for CIFAR100, and 70% for ImageNet30. This indicates
that AL is better than data subset selection is consistent across the network architectures.

D Effect of Random Subset and Multi-round Selection to Subset Selection

Experiment Setup. We make two modified versions of a data subset selection algorithm (Margin)
where each of which incorporates two main components of AL; 1) random initial set, and 2) multi-
round selection, respectively. For the first version, we randomly extract 2% of data examples from the
entire training set and perform data subset selection with the warm-up training on the non-extracted
98% of training set. Then, when selecting the final subset, we combine the randomly extracted
examples with some fraction of hardest examples, e.g., when the target selection ratio is 10%, we
select 8% of hardest examples from the training set and combine it with already extracted 2% random
examples. For the second version, we repeatedly remove 2% of the easiest examples from the
entire training set and redo the warm-up training on the remaining set whenever we remove the
examples until reaching to the target selection ratio. This version also selects the examples that are
less hard than the original data subset selection with one-shot warm-up training, because the accuracy
of warm-up training gradually decreases as less amount of examples is remained by the repeated
example removal; the uncertainty score becomes less confident. We train ResNet-18 [34] with the
same training configuration in Appendix A

Result. Table 3 shows the performance of two modified versions of Margin. Overall, both versions
outperforms the original Margin, which means balancing easy-to-classify and hard-to-classify is
beneficial to data subset selection. Nevertheless, each version is not yet better than the AL (Margin),
which benefits both random initial set and multi-round selection.

3https://github.com/PatrickZH/DeepCore

7

https://github.com/PatrickZH/DeepCore


E Problem Scope

While a number of prior studies have focused on finding a subset in the early learning phase to reduce
the time to train a model once so that avoid losing the computational gain of training on less data, we
focus on the problem that we train models multiple times on the selected subset (hyper-parameter
tuning, neural architecture search, continual learning, etc.), where the computational cost is not a
primary concern.
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(b) Test accuracy on ImageNet30.

Figure 3: Performance comparison of existing data subset selection methods and AL baselines on
CIFAR100 and ImageNet30 with ResNet-18.

Table 2: Performance comparison of data subset selection and AL on CIFAR10 and CIFAR100 with
VGG-19, and on ImageNet30 with VGG-16. The best results are in bold.

Datasets Select Ratios 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

CIFAR10

Random 76.7±0.8 85.6±0.6 89.8±0.4 91.5±0.3 92.5±0.3 93.1±0.2 93.3±0.2 93.4±0.3 93.7±0.2 94.1±0.2
Margin 48.3±1.5 81.6±0.7 89.0±0.4 91.4±0.4 92.9±0.3 93.3±0.3 93.5±0.2 93.8±0.2 94.0±0.1 94.1±0.2

Forgetting 66.7±1.1 85.6±0.5 89.8±0.5 91.5±0.3 92.5±0.3 93.1±0.2 93.3±0.2 93.4±0.2 93.8±0.2 94.1±0.2
GraNd 52.0±1.3 83.7±0.4 89.7±0.5 92.0±0.4 92.9±0.4 93.4±0.3 93.8±0.2 93.8±0.1 94.1±0.2 94.1±0.2

kCentGreedy 76.8±0.8 86.1±0.6 88.7±0.4 90.9±0.4 91.8±0.3 92.6±0.2 92.9±0.3 93.5±0.2 93.8±0.2 94.1±0.2
GraphCut 77.2±0.6 84.9±0.5 88.0±0.4 89.8±0.3 91.1±0.4 92.3±0.3 93.2±0.2 93.5±0.2 94.1±0.2 94.1±0.2

Glister 76.7±0.7 85.0±0.5 87.9±0.4 90.1±0.4 90.9±0.3 91.8±0.3 92.3±0.3 93.1±0.2 93.5±0.2 94.1±0.2
AL(Margin) 78.0±0.6 86.1±0.6 89.9±0.4 92.3±0.4 93.1±0.2 93.6±0.2 93.8±0.2 93.8±0.2 94.1±0.2 94.1±0.2

CIFAR100

Random 28.3±1.2 48.9±1.0 58.0±0.7 62.6±0.5 64.8±0.5 67.3±0.4 69.2±0.3 70.9±0.3 71.9±0.3 73.5±0.2
Margin 14.6±2.2 35.5±1.7 50.0±1.0 58.1±0.7 63.1±0.5 66.7±0.4 69.7±0.3 71.6±0.4 73.3±0.2 73.5±0.2

Forgetting 29.9±1.9 52.1±1.2 59.0±0.9 63.9±0.6 67.1±0.5 68.6±0.5 69.6±0.4 71.3±0.3 72.5±0.2 73.5±0.2
GraNd 25.7±2.0 47.2±1.4 57.2±1.1 63.8±0.9 66.6±0.6 68.5±0.5 70.2±0.3 71.9±0.3 72.8±0.2 73.5±0.2

kCentGreedy 22.2±1.6 49.4±1.3 57.9±0.9 62.7±0.7 66.5±0.5 68.0±0.6 69.3±0.4 71.9±0.3 72.6±0.3 73.5±0.2
GraphCut 29.9±1.5 49.1±1.1 57.1±0.8 62.4±0.5 65.7±0.6 68.0±0.4 69.2±0.4 70.8±0.3 72.5±0.2 73.5±0.2

Glister 21.5±1.9 49.4±1.2 57.7±0.8 63.0±0.8 66.0±0.6 67.7±0.5 69.7±0.4 71.1±0.3 72.2±0.2 73.5±0.2
AL(Margin) 28.2±1.9 49.6±1.0 59.1±0.6 64.6±0.5 69.3±0.4 70.1±0.4 71.9±0.3 73.0±0.2 73.4±0.2 73.5±0.2

ImageNet30

Random 69.6±0.8 80.9±0.5 85.9±0.3 90.1±0.3 91.6±0.3 93.3±0.3 93.7±0.2 94.6±0.3 94.8±0.2 95.7±0.1
Margin 53.8±1.5 76.3±0.8 84.6±0.5 90.8±0.5 93.1±0.4 94.2±0.4 95.0±0.2 95.2±0.3 95.4±0.2 95.7±0.1

Forgetting 63.8±1.1 81.4±0.8 88.1±0.6 90.6±0.5 93.0±0.3 93.3±0.3 93.6±0.3 94.6±0.2 95.2±0.2 95.7±0.1
GraNd 64.3±1.1 80.0±0.8 88.6±0.6 90.9±0.4 92.2±0.3 93.0±0.4 93.8±0.3 94.5±0.2 95.2±0.1 95.7±0.1

kCentGreedy 66.3±1.0 81.3±0.7 88.7±0.6 90.4±0.4 91.7±0.4 93.3±0.3 93.7±0.2 94.4±0.2 94.9±0.2 95.7±0.1
GraphCut 68.3±1.2 81.7±0.6 87.3±0.5 89.2±0.3 91.9±0.3 92.8±0.3 93.5±0.2 94.1±0.3 94.9±0.2 96.1±0.1

Glister 69.1±0.7 80.8±0.5 87.2±0.5 89.6±0.4 91.5±0.3 92.8±0.3 93.5±0.3 94.3±0.2 94.7±0.2 95.7±0.1
AL(Margin) 69.5±1.2 84.6±0.6 89.1±0.6 92.5±0.4 93.8±0.4 94.9±0.3 95.3±0.3 95.4±0.2 95.7±0.1 95.7±0.1

Table 3: Effect of incorporating random initial set and multi-round selection into data subset selection
on CIFAR10 with ResNet-18.

Select Ratio 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Margin 73.2±1.3 85.5±0.9 91.3±0.5 93.6±0.3 94.5±0.2 94.9±0.3 95.1±0.1 95.4±0.2 95.5±0.2 95.5±0.2

Margin + Random Init 81.2±1.2 88.4±0.7 92.1±0.5 93.9±0.4 94.7±0.3 95.1±0.2 95.4±0.2 95.5±0.2 95.5±0.2 95.5±0.2
Margin + Multi Round 80.1±1.0 89.2±0.5 93.0±0.3 94.3±0.4 94.8±0.3 95.3±0.3 95.4±0.2 95.5±0.2 95.5±0.2 95.5±0.2

AL(Margin) 84.5±0.7 91.0±0.5 93.9±0.4 94.5±0.3 95.3±0.2 95.3±0.2 95.4±0.2 95.5±0.2 95.5±0.1 95.5±0.2
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