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Abstract: The problem of generalization in learning from demonstration (LfD)
has received considerable attention over the years, particularly within the context
of movement primitives, where two prominent approaches have emerged. While
one leverages via-points to adapt skills locally by modulating demonstrated trajec-
tories, the other relies on so-called task-parameterized models that encode move-
ments with respect to different coordinate systems, using a product of probabilities
for generalization. While the former are well-suited to precise, local modulations,
the latter aim at generalizing over large regions of the workspace and often involve
multiple objects. Addressing the quality of generalization by leveraging both ap-
proaches simultaneously has received little attention. In this work, we propose an
interactive imitation learning framework that simultaneously leverages local and
global modulations of trajectory distributions. Building on the kernelized move-
ment primitives (KMP) framework, we introduce novel mechanisms for skill mod-
ulation from direct human corrective feedback. Our approach particularly exploits
the concept of via-points to incrementally and interactively 1) improve the model
accuracy locally, 2) add new objects to the task during execution and 3) extend
the skill into regions where demonstrations were not provided. We evaluate our
method on a bearing ring-loading task using a torque-controlled, 7-DoF, robot [1].
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Figure 1: By demonstrating on the
same table, users inadvertently intro-
duce low vertical axis variance in mul-
tiple demonstrations of a ring-loading
task, causing TP-GMM [2] to fail to
generalize to different table heights.

Task-parameterized Gaussian mixture models (TP-
GMMs) [2] are a popular approach to encoding the vari-
ations and correlations across multiple demonstrations,
facilitating skill generalization. Unlike earlier attempts
such as dynamic movement primitives (DMPs) [3] and
other probabilistic models for movement primitives like
Gaussian mixture models (GMMs) [4], TP-GMMs are
better suited for adapting to new situations, including
those involving multiple objects [5]. TP-GMMs build lo-
cal representations of demonstrated trajectories with re-
spect to objects of interest, represented by their poses.
They then generalize the demonstrations to new situa-
tions, by formulating generalization as a fusion problem,
where each object’s local model is weighed against the
others in a continuous fashion through a product of Gaus-
sians, generating a trajectory distribution for the robot to track. Despite their adaptability, TP-GMMs
are prone to modeling errors, particularly when imperfect demonstrations introduce ambiguity be-
tween objects, which affects generalization when task conditions change, see Fig. 1. In addition,
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introducing new objects into a learned skill (by defining new task parameters), requires providing
new demonstrations and training a new model, when often simple modulations of the original model
would suffice. In this paper, we propose to alleviate these issues via interactive imitation learning
[6]. We do this by modulating local models from physical user feedback, both improving the gen-
eralization of taught skills – by locally correcting errors – and permitting their incremental re-use.
Notably, adaptations are applied only locally, with respect to objects of interest, yielding an updated
skill model which accurately generalizes new behaviors to new situations.

Record demonstrations and train local models

Interactive local via-points enhance 
sub-optimal demonstrations

Interactively extend skill to regions without demonstrations

New object

?

1.

Interactive incremental imitation learning 

New objects added to skill through
interactive uncertainty reduction

Object 1 Object 2

Figure 2: Approach overview. Users provide demonstra-
tions fitted locally to different objects using KMPs (top).
The resulting model, TP-KMP, is interactively adjusted to
improve generalization and augment the demonstrated skill.
An interactive strategy to add via-points locally, with respect
to different objects, is the cornerstone of our approach, en-
abling correction of skills (center-left), addition of new ob-
jects (center-right), and skill augmentation (bottom).

We argue that in order to modu-
late skills locally, we require an un-
derlying skill representation that 1)
encodes trajectory distributions with
both aleatoric and epistemic uncer-
tainties [7] and 2) allows for trajec-
tory modulation trivially when mod-
ifications of the original demonstra-
tions are required. To achieve this
we build on the kernelized movement
primitives (KMP) framework [8] (see
Sec. 3 for a background review).
Although task-parameterization of
KMPs is briefly introduced in [8],
the adaptation of local models has re-
ceived little attention. We address
the adaptation of local models by in-
vestigating when, where and how to
add via-points. The result is an in-
teractive learning framework of task-
parameterized skills with local trajec-
tory modulation (Sec. 4) that 1) per-

mits the interactive correction of model imperfections locally, such that corrections ‘move’ with
objects, 2) allows the definition of new task parameters interactively, when tasks change to require
new/different objects and 3) ensures compliant interaction when extending skills beyond their ini-
tial duration by regulating stiffness based on the epistemic uncertainty, while simultaneously adding
via-points. Figure 2 provides an overview of our approach. Our experimental evaluation (Sec. 5)
shows that our framework permits users to incrementally build on an initial model of a skill by in-
teractively correcting errors and adding new behaviors in any task phase (we discuss the results and
provide conclusions in Sections 6–7). Appendices A.1–A.2 summarize notations and acronyms.

2 Related work

Task-parameterized GMMs and variations. Several works have emerged both to address limi-
tations of [2] and introduce new features. In [9] Huang et al. propose to associate confidence factors
to the different task parameters, allowing to regulate their influence during task execution. Zhu et al.
[10] introduce an algorithm to generate new data artificially by sampling from underlying models
and re-training the models to improve generalization. Building on [9], Sun et al. [11] and Sena et al.
[12] introduce strategies to optimize frame relevance given task objectives. Similar re-optimization
is required in incremental approaches for TP models, such as [13], which also relies on an underlying
GMM. Recently, Yao et al. [14], propose to replace the GMM representation by a ProMP [15], in-
troducing the idea of improving generalization by modulating TP models with via-points. However,
via-points are defined globally and projected locally on all frames. This creates ambiguity when
task parameters change, since all frames have high confidence on the via-point positions, requiring
the re-definition of via-points every time a task changes. Although these approaches improve gener-
alization in some scenarios, they do not permit adding new task parameters to existing models and,
most importantly, they do not provide interactive capabilities to incrementally refine skills.
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Interactive imitation learning. The emergence of interactive imitation learning [6] highlights the
importance of complementing the strengths of classical machine learning methods with interactive
mechanisms when acquiring skills in the real world. Along these lines, Franzese et al. [16] introduce
the concept of interactive task-frame selection, focusing on object-centered skills in a similar spirit
to TP approaches, despite not contemplating the learning of trajectory distributions. Interactive
incremental learning approaches in LfD include state-based representations [17, 18, 19, 20, 21],
where skills are learned as time-independent autonomous systems and modulated directly in task
space by introducing new state-action pairs. In 2019, Huang et al. [8] introduced KMPs, aiming
for a probabilistic representation that can be adapted to pass through new via-points after the initial
demonstration phase. Despite introducing a TP formulation of KMP, the authors do not explore the
combination of interactive via-point-based modulation with object-centered representations.

Our approach and contribution. We extend on the combination of [2] with KMP-based local
trajectory representations, referred to as TP-KMP, leveraging the intuitive addition of via-points af-
ter initial demonstration by specifying their location and covariance, as proposed in [8]. In previous
work [14], via-points were added globally for obstacle avoidance, necessitating re-demonstration
when objects were moved. In contrast, we add via-points locally, allowing them to move with the
objects. Defining via-points with low covariance assigns high importance to the corresponding ob-
jects when applied to local models, favoring via-points in new situations. Our framework uses this
property, incorporating human feedback, often investigated for trajectory modulation [22], to specify
via-point locations. Building on this insight, we further develop an interactive learning framework
for defining new task parameters with large variance and improving skills incrementally. This is
based on epistemic uncertainty, as shown in [23], where KMPs compute both aleatoric and epistemic
uncertainties—randomness in data and model knowledge gaps, respectively [7]. Uncertainty quan-
tifications, essential in robotics [24, 25, 26], allow us to define robot behaviors through uncertainty-
aware stiffness regulation strategies [27, 28], similar to Bayesian mixture models [29, 30].

3 Preliminaries

Let us denote a set of demonstrations by {{sh,m, ξh,m}Hh=1}Mm=1, where s ∈ RI and ξ ∈ RO

represent input and output, and I, O, M , H , are the dimensions of input and output, number of
demonstrations and trajectory length, respectively. Similarly to many popular LfD approaches [4, 8,
15], we focus on extracting the relationship between s and ξ from demonstrations. Depending on
the task, s is often time or robot state while ξ represents desired poses or velocities. In Sec. 3 and
Sec. 4 we keep these generic except when concrete examples help explain new concepts.

Task-parameterized movement models. In TP models [2] a frame p = 1, . . . , P is described
by so-called task parameters b(p),A(p), which represent the position and orientation of an ob-
ject with respect to a common reference frame (e.g. the robot base)1, where demonstrations are
recorded. Demonstrated outputs are projected locally, into the coordinate systems of different ob-
jects, through ξ(p) = A(p)−1 (

ξ − b(p)
)
. Local datasets are modeled probabilistically yielding a

Gaussian distribution N (µ(p),Σ(p)) for every input s. During skill execution, local distributions
are mapped to the common frame, as both task parameters and inputs change with time t, through
µ̂

(p)
t = A

(p)
t µ

(p)
t + b

(p)
t , Σ̂(p)

t = A
(p)
t Σ

(p)
t A

(p)⊤

t . Values of b(p),A(p) may differ from those seen
during the demonstrations, and, through µ̂

(p)
t , Σ̂(p)

t , each frame provides a model of ξ from its per-
spective. The distributions from different coordinate systems are fused by a product of Gaussians,
resulting in a new distribution N (µt,Σt), in the common frame, with parameters

µt = Σt

P∑
p=1

Σ̂
(p)−1

t µ̂
(p)
t , Σt =

(
P∑

p=1

Σ̂
(p)−1

t

)−1

. (1)

1Task parameters can represent a number of affine transformations commonly found in robotics [2]. Here,
as in other works [9, 10, 11, 14], we use them to represent the coordinate systems of objects of interest.
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The solution of (1) favors models with low variance, being an efficient way to extract features from
local models that were consistent across demonstrations, facilitating generalization to new situations.

Kernelized movement primitives (KMPs). KMPs [8] are used in LfD to predict the distribution
of ξ given observations of s. A KMP is initialized with a reference trajectory distribution comprised
of N Gaussians with parameters {µn,Σn}Nn=1, computed from human demonstrations for inputs
sn=1,...,N using a GMM. For a test input s∗, the expectation and covariance of ξ(s∗) are given by

E [ξ(s∗)]=k∗ (K + λ1Σ)
−1

µ, (2)

cov [ξ(s∗)]=α
(
k∗∗ − k∗ (K + λ2Σ)

−1
k∗⊤

)
, (3)

where K = [k̂(s1)
⊤, . . . , k̂(sN )⊤], k∗ = k̂(s∗), with k̂(si) = [k(si, s1), . . . ,k(si, sN )],

k∗∗ = k(s∗, s∗), k(si, sj) = k(si, sj)I and k(si, sj) is a kernel function. Moreover, µ =[
µ⊤

1 . . .µ⊤
N

]⊤
, Σ = blockdiag (Σ1, . . . ,ΣN ) and λ1, λ2, α are hyperparameters. The kernel ma-

trices are denoted as K,k∗ and k∗∗. From (2)–(3) it follows that if, for a certain µn, the covariance
Σn is small, the expectation at sn will be close to µn. This provides a principled way for trajectory
modulation. Indeed, if, for a new input s̄, one wants to ensure that the expectation passes through a
desired µ̄, it suffices to manually add the pair {µ̄, Σ̄} to the reference distribution provided that Σ̄
is small enough. This both makes (2) closely match µ̄ and lowers the covariance (3) to match Σ̄.

4 Interactive local trajectory modulation with TP-KMP

Similarly to [8], we define a local KMP as a model Θ(p) = {b(p),A(p),D(p)} with associated task
parameters b(p),A(p) and D(p) = {s(p)n ,µ

(p)
n ,Σ

(p)
n }Nn=1. µ(p), Σ(p) are computed from output data

projected locally ξ(p), using a GMM. A TP-KMP is a set of P local KMPs: Θ = {Θ(p)}Pp=1, where
each local KMP generates a distribution N (µ(p),Σ(p)), computed from (2)–(3), which is used in
(1). We introduce an approach to interactively add via-points to local KMPs at any moment of a
task, allowing users to intuitively improve models trained on sub-optimal demonstrations.

4.1 Interactive trajectory modulation with local via-points

In our approach, users add via-points via physical corrections locally, in different object frames,
as opposed to in a common global frame. This enables the adaptation of robot behavior without
retraining the model from scratch. Adding via-points in the relevant local frames has the advantage
that corrections ‘move’ with the objects when task conditions change, facilitating generalization.
The via-point mechanism of KMP entails the definition of a small covariance matrix, automatically
assigning high importance in the Gaussian product (1) to local KMPs that receive new via-points.

Algorithm 1 Trajectory modulation with local via-points

1: Define external force threshold γF , distance threshold γξ and via-point variance γΣ
2: Input: P local KMPs Θ(p) = {b(p),A(p),D(p)}Pp=1 trained from {{sh,m, ξh,m}Hh=1}Mm=1
3: for time-step t in all time-steps T do
4: if interaction is triggered then ▷ Button press, force or distance trigger (see Section 4.1)
5: v̄t = {s̄ = t, µ̄ = ξt, Σ̄ = γΣI} ▷ create global via-point
6: p∗ = argminp ||µ̄− b(p)|| ▷ Find p∗ (see Section 4.1)
7: v̄(p

∗) = {s̄(p∗), µ̄(p∗), Σ̄(p∗)} ▷ Map via-point v̄t locally to p∗ (see Section 3)
8: D(p∗) ←D(p∗) ∪ v̄(p

∗) ▷ Update local KMP p∗ with via-point
9: Recompute K(p), k∗

(p) and k∗∗
(p) for all p where via-points were added (see Sec. 3)

Defining and adding local via-points. To incorporate kinesthetic feedback from users during task
execution, we introduce via-points at specific inputs and outputs, where corrections are made. Let us
assume a time-driven TP-KMP, where s(p) = t, and ξ(p) = x(p) is the end-effector position mapped
to frame p. We further assume that the robot tracks a reference ξ̂t = µt computed from (1) with a
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stiffness that is low enough to allow deviations from the desired path through physical interaction.
We propose three different feedback modalities to trigger new via-points:

• Distance: via-points are added if the distance between the measured output ξt deviates
from the reference ξ̂t by a pre-defined threshold ||ξ̂t − ξt|| > γξ.

• Force: via-points are added if the external force applied at the end-effector Ft exceeds a
pre-defined threshold ||Ft|| > γF .

• Button press: as some collaborative robots have button interfaces at the end-effector, via-
points can be triggered through button pressing.

In all cases, a via-point is defined globally, in a common frame, as v̄t = {s̄ = t, µ̄ = ξt, Σ̄ = γΣI},
where γΣ is a small scalar factor. Different feedback modalities provide users with various options
depending on the robot and task. Force-based adaptation is well-suited for tasks (or sub-tasks) that
require little or no contact with the environment, where the robot can interpret external forces as
human intention. A distance criteria is suitable for tasks where the robot has low stiffness and thus
would not measure high external forces when perturbed. Button presses are a flexible approach,
however not all collaborative robots have such functionality. In Section 5, we showcase the role of
various feedback modalities. When a new global via-point v̄t is defined, we rely on a proximity-
based criteria to determine which KMP to apply it to. For this, we identify the closest frame to the
via-point, p∗ = argminp ||µ̄t − b(p)||. The via-point is then mapped to the selected frame through
µ̄(p∗) = (A(p∗))−1(µ̄− b(p

∗)), Σ̄(p∗) = (A(p∗))−1Σ̄(A(p∗)⊤)−1 (see Section 3 for details) and
added to its KMP, entailing the recomputation of kernel-related matrices K(p∗),k

∗
(p∗) and k∗∗

(p∗).The
algorithm for interactively adding via-points to local frames is summarized in Algorithm 1.

Algorithm 2 Interactively adding a new object to a TP-KMP

1: Input: TP-KMP Θ = {Θ(p)}Pp=1, variance prior γD, new task parameters b(P+1),A(P+1).
2: Create a placeholder local KMP

- Define D(P+1): D(P+1) = {s(P+1)
N = s

(P )
n ,µ

(P+1)
n = 0,Σ

(P+1)
n = γDI}Nn=1

- Define local KMP: Θ(P+1) = {b(P+1),A(P+1),D(P+1)}
- Compute K(P+1), k∗

(P+1) and k∗∗
(P+1)

- Add new local KMP to TP-KMP: Θ← Θ ∪Θ(P+1), P = P + 1
3: Add via-points to new KMP interactively using Algorithm 1

Adding new objects through interactive via-point definition. Our approach permits adding new
objects to a skill during runtime, without requiring a new set of demonstrations. Instead, we leverage
Algorithm 1 to build on an existing TP-KMP, Θ = {Θ(p)}Pp=1, by interactively adding via-points
in the frames of new objects. To achieve this, we employ two key steps. Firstly, we associate to
the new task parameters b(P+1),A(P+1) a placeholder local KMP with the same inputs as other
local KMPs, zero means and high variances, defined by a large scalar γD. Due to the high variance,
the placeholder KMP has a negligible influence in the Gaussian product (1), not affecting the task
unless via-points are added to it. Next, we use Algorithm 1 to add via-points to the placeholder
KMP, interactively reducing the uncertainty at precise locations, enabling the model to adapt without
requiring new demonstrations. Algorithm 2 summarizes the procedure to add new objects.

4.2 Uncertainty-aware skill extension in regions without demonstrations

Popular variable impedance schemes found in LfD regulate the robot stiffness by the inverse of
covariance matrices [23, 28]. When the latter represent the aleatoric uncertainty, they provide an
efficient way for robots to be more precise, by being stiffer, where demonstrations showed less
variance, following a minimum intervention control principle [28, 31]. In the case of epistemic
uncertainty, such schemes contribute to improved safety [23]. Kernel hyperparameters are typically
optimized for the training data, but their choice influences the behavior of the model in regions
where data was not shown. For instance, the kernel length depends on the scale of the input domain,
but it also dictates how quickly the epistemic uncertainty increases when moving away from the
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training data.2 Having ways to clearly distinguish between the two types of uncertainty enables
users to better design variable impedance strategies. Similarly to [30], the covariance prediction of
KMP can be decomposed into two terms, corresponding to aleatoric and epistemic components:

cov [ξ(s∗)] = k∗∗ − k∗K−1k∗⊤︸ ︷︷ ︸
Σ∗

ep

+k∗ (K +K(λΣ)−1K
)−1

k∗⊤︸ ︷︷ ︸
Σ∗

al

. (4)

See A.3 for the derivation. The term Σ∗
ep is the same as the variance prediction in Gaussian process

regression [32], corresponding to the epistemic part of the KMP covariance. The remaining term
Σ∗

al gives the aleatoric uncertainty. Using a Cartesian impedance controller, from (4), we propose to
compute the robot end-effector stiffness3 using

GP = w1 ·
(
δepΣ

∗
ep

)−1
+ w2 · (δalΣ∗

al)
−1

, (5)
where w1 ∈ [0, 1] is a sigmoid function that depends on the epistemic uncertainty
w1(σ

2
ep) = 1/(1 + e−c1(σ

2
ep−c2)), with σ2

ep = tr(Σ∗
ep)/O, and w2 = 1 − w1. Through the param-

eters c1 > 0, c2 one is able to regulate the rate at which the robot stiffness switches between being
governed by Σ∗

ep and Σ∗
al, while ensuring continuity in the resulting accelerations. Parameters δep,

δal re-scale the uncertainties without modifying the kernel parameters, allowing, for example, Σ∗
ep

to have a stronger influence in GP far from the training data, contributing to safety. We leverage (5)
to facilitate the acquisition of new data outside of the training region through physical interactions,
while being optimal in a minimal intervention sense [28, 31], in regions where data was provided.

5 Evaluation

We evaluate our approach on a torque-controlled 7-DoF robot in an industrial scenario where an in-
ner ring of a ball bearing needs to be transferred between two boxes (‘box 1’ and ‘box 2’) placed at
different locations on a workbench. We provide M = 4 demonstrations with different box positions,
see Fig. 1-top and Appendix A.4.2. We use a time-driven representation with sh,m = th,m/Tm,
where t is a time step, and learn the end-effector position ξh,m = xh,m. In order to easily re-scale
the skill duration, we map all the inputs to the interval [0, 1] by dividing them by the duration of each
demonstration Tm. The experiments start with P = 2, with task parameters b(p),A(p) representing
the box positions and orientations, respectively. All local KMPs were initialized from GMMs with
12 components, trained on locally projected data, and N = 500 inputs, equally spread over the input
space. We chose a Matérn kernel (ν = 5/2) with length scale l = 0.1 and noise variance 1.0 (see
[32]). Other KMP hyperparameters were λ1 = 0.1, λ2 = 1, α = 1, chosen empirically. In all exper-
iments, via-points are added with γΣ = 1 × 10−8. Our algorithm successfully generalizes to novel
box positions. However, when they deviate significantly from the demonstrated ones, TP-GMM [2],
as well as the original TP-KMP formulation [8] fail (see Fig. 1-bottom). Also see Appendix A.4.3.

Experiment 1: Improving generalization with interactively-defined local via-points. Since all
demonstrations are given at the same height, the model has a high confidence for the z coordinate in
all frames, which leads to poor generalization when one of the boxes is moved to a different height
(Fig. 1-bottom). If box 2 is moved to a lower height, the trade-off found by the model, from the
expected vertical motions in the two frames, is not high enough to successfully move the ring out
of box 1, leading to a collision. Using Algorithm 1, we have the ability to directly correct the robot
and set via-points based on corrections made online. In this experiment we used an external force
trigger, with threshold γF = 20N . Figure 3 shows the results obtained for this experiment. With
the robot running the model, a user applies a force at the robot end-effector, helping it avoid the
collision and successfully move the ring out of the box. Via-points are added to the frame of box
1 and, through b(1),A(1), are mapped to the global frame. With the added via-points, the robot
achieves a success rate of 93% across 15 box configurations (with three different heights), improved
over the 60% success rate of TP-GMM [2] and original TP-KMP [8] baselines (see Appendix A.4.5).

2Similar arguments can be made for other hyperparameters such as the noise variance, see [23].
3We assume a controller u = GP (ξ̂ − ξ) −GDξ̇, where GP , GD are stiffness and damping gains, ξ̂, ξ,

ξ̇ are the end-effector desired state, current state and current velocity. GD is chosen empirically.
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Box 1

Box 2

Figure 3: Improving generalization with interactively-defined local via-points. Since the robot
would fail, a correction is shown close to box A, indicated by via-points in orange.

New Object

Box 1

Camera

Box 2

Figure 4: Interactively adding a new object to existing skill. We add a
camera to the scene, associate it with a new frame and add via-points to
pass in front of the camera, this time by pressing a button.

Experiment 2: Inter-
actively adding a new
object to skill. We in-
troduce a new challenge
by requiring the robot to
inspect the ring using a
camera, before placing
it in box 2. For this,
the user increments the
existing skill by interac-
tively adding via-points
to a new frame, given by

the camera pose, using Algorithm 2. The new via-points adapt the robot’s trajectory to pass in front
of the camera before placing the ring in box 2. In this experiment we use the button interfaces in
the robot’s last link to trigger new via-points through button presses. We further use P = 3, due
to the new frame, and γD = 1 × 104. The experimental results are shown in Fig. 4. With the task
running, the user adds new via-points near the camera (top-right), reducing the uncertainty in the
camera frame. Once the model is updated with the new via-points, new executions pass in front of
the camera (bottom-right). See A.4.6 for generalization results to a new camera location.

Figure 5: Left: Computing stiffness gains from
(3) leads to increased interaction forces at non-
demonstrated inputs. Right: Using our approach
(4)–(5) the robot reacts quickly to the increase in
the epistemic uncertainty, lowering its stiffness.

Experiment 3: Incremental learning at non-
demonstrated inputs. We further add a cam-
era to the robot end-effector, which validates
the correct insertion of the ring in box 2. This
requires the robot to move up after placing
the ring – a skill extension to a set of in-
puts that were not shown in the demonstra-
tions (t > 1.0). We leverage (5) to ensure that
the robot becomes compliant by swiftly lower-
ing its stiffness in response to the increase in
epistemic uncertainty. We set c1 = 5 × 103,
c2 = 1.5× 10−3, δep = 1× 103, δal = 1, cho-
sen empirically. We consider a baseline where
the gains are computed from the original KMP
covariance (3) as GP = (cov [ξ(s∗)])−1. To
address numerical issues and ensure a maximum stiffness value we regularize cov [ξ(s∗)], δalΣ∗

al,
δepΣ

∗
ep with a small scalar 1.5 × 10−3. Figure 5 shows that using our approach (5) the interaction

forces after t = 1.0 are negligible. Note that far from the training data, the KMP expectation (2)
converges to zero as we assume a zero mean prior (similarly to GPs [32]). With the improved safety
introduced by (5), the user is able to add via-points such that the robot moves up after the ring in-
sertion. In this experiment we used a distance threshold with γξ = 0.2m, taking advantage of the
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reference trajectory going to zero to trigger the definition of via-points. The bottom-left image in
Fig. 6 shows the increase in distance as via-points are added, while the plots on the right show the
resulting robot motion and uncertainties. Appendices A.4.7, A.4.8 show the global model resulting
from Experiments 1–3 and the detailed stiffness profiles from Experiment 3 respectively.

6 Discussion

Camera

Box 1

Box 2

Figure 6: Adding via-points at t > 1.0.

Analysis of the results. Fig. 3
shows that in Experiment 1 an
external force trigger successfully
allows for the definition of via-
points in the nearest frame (that
of box 1). Thanks to a small via-
point variance, the via-points are
mapped to the global frame by
(1) improving generalization qual-
ity by avoiding a collision. Fig. 4,
Experiment 2 illustrates how the

definition of a placeholder frame with large variance can be used in combination with the via-point
insertion mechanism from Experiment 1 to introduce behaviors with respect to objects that were
not present in the demonstrations. Particularly, one observes that the variance in frame 3 decreases
after the via-points are added, with the latter being successfully mapped to the global frame. Finally,
Experiment 3 shows how our stiffness regulation approach leverages the epistemic uncertainty to
enhance the robot’s compliance beyond the initial set of demonstrations. While one could argue
that a similar effect could be achieved by manually lowering the stiffness at t > 1.0, this would
require manually keeping track of the duration of demonstrations, as well as the exact locations of
newly added via-points. Our approach automates this by relying on the data properties, increasing
the epistemic uncertainty both before and after via-points as well (Fig. 6-right). Also see Fig. 13.

Limitations. In our approach, via-points are added in all Cartesian DoFs, even though a correction
might only be required in a subset thereof (e.g. height in the first experiment). Since KMPs allow the
definition of via-point covariances with different diagonal entries, one can, in principle, selectively
set higher precision only on the DoFs that receive a corrective action (keeping the others as in the
training data). This, however, requires a more complex interaction mechanism which extracts the
user intention, a topic that we plan to address in future research. Another possible limitation is
that our approach currently does not allow for defining via-points for inputs where via-points have
already been added. This makes our approach better tailored to building on libraries of pre-trained
models (without via-points) that can be interactively refined and adapted to new tasks, rather than
building on the same model over long periods of time. To provide users with more options for skill
re-use, in future work we will investigate mechanisms to interactively remove via-points.

7 Conclusion

We presented an interactive imitation learning framework that leverages both local and global mod-
ulations of trajectory distributions to address the problem of generalization in learning from demon-
stration (LfD). To improve the generalization quality and incrementally add new features to a demon-
strated skill, the framework allows the interactive definition of local via-points. This is facilitated
by a variable impedance scheme that leverages epistemic uncertainties to augment skills beyond
the demonstrations. Our results, evaluated on a ring-loading task using a torque-controlled, 7-DoF
robot, show that our framework permits users to incrementally build on an initial model of a skill by
interactively correcting errors and adding new behaviors in any phase of the task. This work has sig-
nificant implications for the development of robots that can learn from demonstration and generalize
their skills to new situations, making them more versatile and effective in real-world applications.
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[8] Y. Huang, L. Rozo, J. Silvério, and D. Caldwell. Kernelized movement primitives. The
International Journal of Robotics Research (IJRR, 38:833–852, 05 2019. doi:10.1177/
0278364919846363. 2, 3, 4, 6, 13, 14, 16
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A Additional material

A.1 Key notations

Table 1 summarizes the key notations used in our framework.
Table 1: Description of key notations

I ∈ N ≜ Input dimension
O ∈ N ≜ Output dimension
M ∈ N ≜ Number of demonstrations
H ∈ N ≜ Number of data points per demonstration
N ∈ N ≜ Number of gaussians per KMP
s ∈ RI ≜ Input variable
ξ ∈ RO ≜ Output variable
{{sh,m, ξh,m}Hh=1}Mm=1 ≜ Set of demonstrations
x ≜ End-effector position in Cartesian space
P ∈ N ≜ Number of frames in a TP-KMP
p = 1, . . . , P ≜ Frame index
p∗ ≜ closest frame to a given via-point
b(p), A(p) ≜ Task parameters of frame p
s(p), ξ(p) ≜ Demonstrations represented locally in frame p
µ(p), Σ(p) ≜ Local mean and covariance of frame p

µ̂(p), Σ̂(p) ≜ Mean and covariance of frame p in global frame
v̄ = {s̄, µ̄, Σ̄} ≜ Via-point in global frame
v̄(p) = {s̄(p), µ̄(p), Σ̄(p)} ≜ Via-point in local frame p

D(p) = {s(p)n ,µ
(p)
n ,Σ

(p)
n }Nn=1 ≜ Local reference trajectory distribution

Θ(p) = {b(p),A(p),D(p)} ≜ Local KMP
Θ = {Θ(p)}Pp=1 ≜ TP-KMP
λ1, λ2 ≜ Regularization terms for KMP mean and covariance
α ≜ Scaling factor for KMP covariance
l ≜ Length scale of the kernel
k(., .) ≜ Kernel function
K, k∗, k∗∗ ≜ Kernel matrices for different combinations of inputs
K(p), k∗

(p), k
∗∗
(p) ≜ p th local KMP kernel matrices

Σ∗
ep, Σ∗

al ≜ Epistemic and aleatoric terms of KMP covariance
σ2
ep ≜ Epistemic variance (diagonal element of Σ∗

ep)
F ≜ External force measured at the end-effector
γF ≜ Threshold for triggering force-based via-points
γξ ≜ Threshold for triggering trajectory-based via-points
γΣ ≜ Prior covariance of new via-points
γD ≜ Prior covariance of placeholder KMP
w1, w2 ≜ Weights of epistemic and aleatoric uncertainty
c1, c2 ≜ Sigmoid function parameters
δep, δal ≜ Epistemic and aleatoric scaling factors
GP , GD ≜ Stiffness and damping gains
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A.2 Key acronyms

Table 2 shows a glossary of important acronyms in our approach.
Table 2: Glossary of important acronyms

LfD ≜ Learning from Demonstration
DoF ≜ Degrees of Freedom
TP ≜ Task Parameterization
(TP)-GMM ≜ (Task parameterized)- Gaussian Mixture Model [2]
(TP)-GMR ≜ (Task parameterized)- Gaussian Mixture Regression [2]
(TP)-KMP ≜ (Task parameterized)- Kernelized Movement Primitive [8]
DMP ≜ Dynamic Movement Primitives [3]
ProMP ≜ Probabilistic Movement Primitives [15]
LfEC ≜ Learning from Extrapolated Corrections [33]
LfI ≜ Learning from Interventions [34]

A.3 Decomposition of KMP covariance into a sum of epistemic and aleatoric terms

We here show that, similarly to [30], the covariance prediction of KMP can be decomposed into two
distinct terms, corresponding to aleatoric and epistemic components. Using the Woodbury identity
(A+UBV )−1 = A−1 −A−1U

(
B−1 + V A−1U

)−1
V A−1 with V = U = I , we can re-

write (3) as (omitting α for the sake of the derivation):

cov [ξ(s∗)] = k∗∗ − k∗
[
K−1 −K−1

(
K−1 + (λΣ)−1

)−1
K−1

]
k∗⊤ (6)

= k∗∗ − k∗K−1k∗⊤ + k∗K−1
(
K−1 + (λΣ)−1

)−1
K−1k∗⊤ (7)

= k∗∗ − k∗K−1k∗⊤︸ ︷︷ ︸
Σ∗

ep

+k∗ (K +K(λΣ)−1K
)−1

k∗⊤︸ ︷︷ ︸
Σ∗

al

, (8)

where, in the last step, we used A−1
(
A−1 +B−1

)−1
A−1 =

(
A+AB−1A

)−1
. We further drop

the explicit dependence on s∗, for simplicity, and use the superscript ‘∗’. Note the clear separation
between the two terms in (4). The term Σ∗

ep is the same as the variance prediction in Gaussian
process regression [32], corresponding to the epistemic part of the KMP covariance. The remaining
term Σ∗

al gives the aleatoric uncertainty.

For illustrative purposes, we trained a KMP on a 2D dataset with input data on the interval [0; 1] and
computed the mean and covariance using (2), (3) and (4) for the [−0.5; 1.5] interval, including both
terms Σ∗

ep and Σ∗
al. In Fig. 7a and Fig. 7b we plot the epistemic and aleatoric terms, respectively.

Figure 7c shows that their sum gives the same result the original KMP formulation (3), which can
be seen in Fig. 7d.

A.4 Experimental details and additional evaluations

A.4.1 Approach comparison

In Table 3 we compare our approach to other task-parameterized approaches on feature level. For
completeness we also compare to non-task-parameterized approaches. However, as shown in [5]
task-parameterized approaches are more suitable for adapting to new situations, including those
involving multiple objects. To the best of our knowledge, we are the first to present a task-
parameterized approach allowing interactive modulations, extending of the skill with new frames
and the application of local via-points, making it possible to move corrections with their corre-
sponding objects. We are also unique in providing aleatoric as well as the epistemic uncertainties,
which allow usage where those values are needed individually (like shown in Sec. 4.2). Since our
approach offers the most features to adapt and extend motion primitives incrementally, we believe it
shows the most potential for different application scenarios.
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(a) Epistemic uncertainty part of the KMP prediction
Σ∗

ep (4).
(b) Aleatoric uncertainty part of the KMP prediction

Σ∗
al (4).

(c) KMP covariance prediction as
cov[ξ(s∗)] = Σ∗

ep +Σ∗
al (4).

(d) Original KMP covariance prediction [8],
computed from (3).

Figure 7: The proposed KMP covariance prediction (4) is computed explicitly as a sum of epistemic
and aleatoric terms. Training data are shown as dotted black lines. Solid lines represent means and
shaded areas are uncertainties.

Table 3: Comparison of related approaches. Ours is the only one having both uncertainties and
offers the most tools to adapt motion primitives. *available jointly but not used for interaction

aleatoric
uncertainty

epistemic
uncertainty

global
via-point

local
via-point

new
frames

interactive
modulation

Task-parameterized approaches
TP-GMM/GMR [2] ✓ - - - - -
TP-ProMP [14] ✓ - ✓ - - -
vanilla TP-KMP [8] ✓* ✓* ✓ - - -
Our approach ✓ ✓ ✓ ✓ ✓ ✓
Non-task-parameterized approaches
GP/GPR [35] ✓* ✓* ✓ - - -
DMP [3] - - ✓ - - -
LfEC [33] - - ✓ - - ✓
LfI [34] - - ✓ - - ✓

In Table 4 we compare our approach to other LfD approaches (with a strong focus on task-
parameterized formulations) in terms of performance. For this comparison, we followed the evalu-
ation framework of Yao et al. [14] and ran both TP-KMP [8] and our interactive approach on the
pick-and-place task; the results are based on 100 runs with different start and end points. TP-KMP
[8] performs similarly to TP-ProMP [14]. In contrast, our approach showed significant improve-
ment at both the start and end points, delivering the best results in this comparison for start and end
precision. This is due to showed corrections at the start and end-point, which we did by locally
adding via-points at the origin of the corresponding reference frames. Please note that we did not in-

Table 4: Mean ± standard deviation distance from ground truth for the pick-and-place task from
Yao et al. [14]. All results besides TP-KMP [8] and our approach are taken from [14]. The others
are generated using the data and code provided by [14]. We added via-points to the start and stop
positions.

Start (mm) End (mm) Average (mm)
ProMP [15] 107.78 ± 7.99 137.84 ± 18.10 250.68 ± 137.13

TP-GMM (time-based) [2] 28.22 ± 14.90 74.11 ± 48.06 58.76 ± 21.43
TP-GMM (dynamic) [2] 27.54 ± 15.56 129.42 ± 100.18 83.45 ± 43.01

KMP [8] 25.80 ± 11.39 73.99 ± 36.44 57.48 ± 21.62
TP-ProMP [14] 32.62 ± 11.39 48.60 ± 20.68 48.51± 12.21

TP-KMP [8] 39.30 ± 29.06 6.93 ± 5.08 51.95 ± 26.44
Our approach (with via-points) 3.88× 10−4 ± 2.54× 10−4 1.16× 10−3 ± 6.38× 10−4 50.23 ± 25.58
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clude via-points besides at start and end since, similarly to [14], we did not consider other via-points
necessary for improving precision in this task.

A.4.2 Demonstration recordings

We recorded four demonstrations, where the robot picks an inner ring of a ball bearing out of a
box and places it inside another box, see Fig. 8 for the setup. We use different box poses for each
demonstration and record the data by kinesthetically teaching a torque-controlled 7-DoF manipula-
tor running a gravity compensation controller. Figure 9 shows the collected demonstrations, together
with their local distributions from the perspective of frames 1 and 2, as well as the global frame (for
the task parameters of demonstration 1).

1.

Box 1Box 2

3.

1.

Box 1Box 2

2.

Box 1Box 2

4.

Box 1

Box 2

Figure 8: Overview of the four given demonstrations, where an inner ring of a ball bearing is trans-
ferred from one box to another. The poses of the boxes differ in each demonstration. Exemplary
demonstration trajectories are indicated as a red line, moving from ’Box 1’ to ’Box 2’.

Figure 9: Recorded demonstrations in local and global frames. The demonstrations are shown as a
black doted line. The red lines and shaded area represent the mean and one standard deviation. The
distribution in the global frame is generated from the task parameters of demonstration 1.

A.4.3 Hyper-parameter overview

Table 5 shows the different hyperparameters used in this paper and a tested range of values to pro-
vide a guideline for choosing hyperparameters. We also explained what an increase or decrease of
the individual parameter would lead to. In practice, the choice of parameters involves trade-offs be-
tween smoothness and precision in the robot’s movement (owing largely to the kernel-based nature
of our approach). This is evident in our findings (see Fig. 14–15), which demonstrate how differ-
ent parameter settings can affect the robot’s performance without necessarily impacting success or
failure.
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Table 5: Hyper-parameter overview
Hyper-parameter Used in

paper
Validated

range/options
working

Remark

Amount of gaussians N 12 7 – 40 ↑N : for more complex and/or longer tasks
Regularization term KMP mean λ1 0.1 0.1 – 1.0 ↑λ1: for closer following the mean distribution of the KMP
Regularization term KMP variance λ2 1.0 0.1 – 1.0 ↑λ2: for closer following the variance distribution of the KMP
Scaling factor for KMP covariance α 1.0 0.1 – 1.0 -
Length scale of kernel l 0.1 0.1 - 0.7 ↑ l: for smoother predictions, but less accuracte
Kernel function k(., .) matern2 matern2 / rbf -
Sigmoid function parameter c1 5 ×103 1 – 1× 104 ↑c1: control gains switch more quickly between aleatoric and epistemic uncertainty
Sigmoid function parameter c2 1.5× 10−3 1× 10−4 – 1 ↑c2: epistemic uncertainty takes over for larger values of σ2

ep
Epistemic scaling factor δep 1× 103 1 – 1× 104 ↑δep: increases the influence of epistemic uncertainty
Aleatoric scaling factor δal 1 1 – 1× 104 ↑δal: increases the influence of aleatoric uncertainty

A.4.4 KMP hyperparameter sensitivity analysis

We examine the impact of KMP hyperparameter choices in Section 5 on the generated trajectories
and associated uncertainties. For a more comprehensive analysis, readers are referred to the original
source [8]. In the following, when varying parameters, the remaining ones are kept to the values
used in 5.

Figure 10 shows the effect of l and λ1 in the mean trajectory. Lower values of l tend to overfit the
data, resulting in less smooth trajectories, an effect we can see in 10–left. A similar effect occurs
when decreasing λ1, which acts as a regularization term in KMP solution (see [8] for details).

Figure 10: Cartesian position x from Box 1 frame (Fig.9, top-left). The different line colors corre-
spond to different length scales l (left) and λ1 (right), which we compared.

In Fig. 11–left we see the effect of varying λ2. Similarly to λ1, decreasing λ2 tends to lead to a
poorer fit of the observed covariances. Figure 11–right shows the effect of the factor α, which scales
up/down the covariance to further improve the fit to the data. Note that, in Section 5, we used α = 1,
as done in [8].

Figure 11: Cartesian position x from Box 1 frame. The different line colors correspond to different
λ2 (left) and re-scaling factor α (right), which we compared.

A.4.5 Generalization success rate for different conditions of the ring-loading task

Table 6 shows the individual successes and failures, as well as the success rates, for various box
locations in the ring-loading task, comparing the performance of TP-GMM [2], TP-KMP [8] and
our approach (TP-KMP with via-points from Experiment 1). Scenarios 5 and 15 were created by
the authors, informed by their experience with scenarios where task-parameterized approaches may
underperform. All the other 13 conditions were created in a user-informed manner by asking col-
leagues familiar with the workbench about configurations used in previous experiments and related
projects. The aim of this section is to show how our contributions improve upon our baseline (TP-
KMP) in various generalization tasks, therefore we did not compare to other approaches such as
TP-ProMP [14] (a comparison on feature level can be found in Table 3).
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We treated any collisions with the environment that exceeded a pre-defined force threshold as fail-
ures. Notably, our method achieves a 93% success rate, compared to 60% with TP-GMM/TP-KMP.
While our approach generally excels, there is one notable exception (Configuration #5), where a
failure occurs due to a scenario that is significantly different from the demonstrations. In all demon-
strations, the movement proceeds from left to right, while Configuration #5 would require the move-
ment to be entirely reversed. By defining additional via-points, it was ultimately possible to achieve
success using our approach. Nevertheless, we argue that if the task significantly deviates from what
was demonstrated, a new set of demonstrations should be provided.

A.4.6 Generalization of camera via-points to new camera location

Figure 12 shows the generalization of the via-points added to the camera frame in Experiment 2 to a
new camera location. Notice how, for instance, the x coordinate of the via-points in the global frame
increases to match the new camera location, which is farther away from the robot base than that in
Fig. 4.

New Object

Figure 12: Left: Via-points with respect to the camera frame are generalized to different locations
in the robot workspace, since they ‘move’ with the task parameters. Right: Trajectory distribution
for a camera location different from Fig. 4, showing the generalization properties of our method.

A.4.7 Final model from Experiments 1–3

Figure 13 illustrates the expected robot motion after Experiments 1–3 (left) and the observed robot
motion in terms of its Cartesian coordinates (right). The results demonstrate that the robot accurately
follows the via-points, transitioning smoothly between them while adapting its precision to account
for aleatoric uncertainty.

As the demonstrations are mapped to local frames, the robot does not need to align with these
demonstrations in the global coordinate system. Instead, it is fulfilling the precision requirements
of each frame model, extracted from (1), namely the new via-points. The robot remains stationary
for t > 1.0, indicating a period of high compliance. At around t > 1.2, the robot begins to move in
response to the emergence of via-points primarily along the z-axis, until it reaches the point where
the camera checks the box.

Experiment 3 demonstrates that our approach allows for the compliant extension of a skill beyond
its initial duration, which we argue is an important feature in LfD approaches. Particularly, since
providing long demonstrations can be cumbersome, we believe that such an interactive and incre-
mental framework is ideally suited to gradual and more intuitive skill transfer. It should be noted
that just as a skill can be extended for t > 1.0, leveraging uncertainty-aware stiffness regulation and
via-point definition also allows it to be extended for t < 0.0, such as to pick up a new object or
change a tool before starting. A good practice for time-driven skills is to re-scale the input domain
after via-points are added for unseen time instants, as this facilitates further skill extensions.
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Overall, we believe that the capability to build on and refine existing skills, instead of re-
demonstrating new skills each time even small variations occur, is a valuable feature for modern
collaborative robots. The final execution of our experimental evaluation, as well as the steps leading
up to it, described in Experiments 1–3, can be seen in detail in the accompanying video.

Box 1

Box 2

Camera

Camera

Figure 13: Final skill execution after Experiments 1–3. Left: Expected robot motion. The robot
moves from box 1, passes in front of the newly introduced camera, moving to box 2 and finally
moving upwards to verify the correct ring placement. Orange crosses indicate via-points. Right:
Robot motion in Cartesian coordinates over time. The solid red lines shows the observed robot
trajectories. Both aleatoric uncertainties are also depicted, as well as demonstrations and via-points.

A.4.8 Detailed stiffness profiles for Experiment 3 with hyperparameter sensitivity analysis

Analysis of the effect of l. Figures 14–15 give a detailed view of the stiffness profiles which
we observed in Experiment 3 (we focus on the x dimension for simplicity). In Fig. 14 we see

Figure 14: Stiffness values GP for the x dimension, before via-points are added. Left: Stiffness
computed using the original KMP covariance (3), through GP = (cov [ξ(s∗)])−1. Right: Stiffness
computed using our approach that separates epistemic and aleatoric uncertainties (5). The different
line colors correspond to different kernel lenghts l, which we compared.

Figure 15: Stiffness values GP for the x dimension, after via-points are added. Left and right plots
show the curves obtained with uncertainties computed from (3) and (4), respectively, similarly to
Fig. 14. Our approach (using uncertainty split) successfully makes the robot compliant in regions
without data.

the stiffness profiles before any via-points are added at t > 1.0. The left plot shows that after
the skill ends at t = 1.0, the stiffness computed by inverting the covariance (3) decreases slowly
to zero, an effect that is more noticeable as the kernel length l increases. This behavior explains
the increased force profiles that we observed in Fig. 5, bottom left, since the robot collides with
the box for a few instants as the stiffness approaches zero, making it unsafe to interact with. The
right plot shows how our proposed approach (5) makes the stiffness approach zero faster and with
lower sensitivity to the value of l. The parameter c2 in the activation function allows regulation
of the epistemic uncertainty threshold at which GP transitions from being governed by aleatoric
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uncertainty to epistemic uncertainty. For this reason, even minor increases in epistemic uncertainty
are sufficient to trigger a decrease in stiffness making the robot compliant and resulting in the lower
interaction forces seen in Fig. 5, bottom right. Due to the continuity of the sigmoid function, the
transition happens without discontinuities in the generated control actions.

Figure 15 shows that after via-points are added, our approach successfully makes the robot compliant
in regions without data, regardless of the kernel length scale, demonstrating improved safety and
efficiency.

Analysis of the effect of c1, c2. Figure 16 shows the stiffness profiles for changing values of c1, c2,
using our approach (5) in the scenario with via-points after t = 1.0. In Fig. 16–left, we observe that
increasing c1 has the effect of more rapidly reaching minimum stiffness after t = 1.0. As discussed
in 4.2, this is because it regulates how quickly the sigmoid function continuously switches between
0 and 1, which in our approach dictates the values of w1, w2. A more rapid switch is ensured by
higher values of c1. Figure 16–right highlights that smaller values of c2 result in an earlier triggering
of the transition. In summary, while c1 regulates the rate of change, c2 adjusts the set-point of the
switching.

Note that, for certain choices of c2 (in our experiments we used c2 = 1.5 × 10−3), lower values
of c1 generate values of w1 which are close to, but not exactly, 1.0. This deviation slightly reduces
stiffness in regions influenced by aleatoric uncertainty (e.g., t < 1.0), as shown in Fig. 16–left. A
similar effect is observed with c2 (right), where lower c2 values lead to increased stiffness in those
regions. In our experiments we followed an approach of tuning c1, c2 based on the desired switching
timing and adjusted δal and δep to achieve the desired stiffness range for our robotic system.

Figure 16: Stiffness values GP for the x dimension, in the scenario where via-points are added after
t = 1.0. The different line colors correspond to different sigmoid function parameters c1 and c2.

Analysis of the effect of δal, δep. Finally, Fig. 17 shows the stiffness profiles for changing values
of δal, δep, using our approach (5) in the scenario with via-points. In Fig. 17–left we see that
increasing δal has the effect of decreasing the overall stiffness in the regions where training data
is present. This is due to δal enlarging the predicted covariance Σ∗

al. Similarly, smaller values of
δep (e.g., δep = 1.0, which directly applies the epistemic uncertainty from (4) to compute stiffness)
may not sufficiently amplify the uncertainty to ensure that stiffness approaches zero outside the
training data (e.g. the time instant just after t = 1.0 in Fig. 7b–right). This reinforces our argument
for introducing scaling parameters for the uncertainties, which are not tied to the KMP model’s
data fit but are instead focused on shaping the desired behavior of the system in leveraging these
uncertainties.

Figure 17: Stiffness values GP for the x dimension, in the scenario where via-points are added after
t = 1.0. The different line colors correspond to different epistemic and aleatoric scaling factors γal
and γal.
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Table 6: Quantitative evaluation of 15 different task parameterized scenarios. successful,
successful but contact force was above 10 N, failure, * successful but only after correct-

ing the whole trajectory, which we count as failure.
# Configuration TP-GMM vanilla TP-KMP Ours

1 Box 1Box 2

2
Box 1Box 2

3
Box 1Box 2

4
Box 1

Box 2

5 Box 1

Box 2

*

6
Box 1

Box 2

7
Box 1

Box 2

8
Box 1

Box 2

9 Box 1Box 2

10
Box 1

Box 2

11
Box 1Box 2

12
Box 1Box 2

13
Box 1Box 2

14 Box 1

Box 2

15
Box 1

Box 2

Success rate: 60 % 60 % 93.33 %

20


	Introduction
	Related work
	Preliminaries
	Interactive local trajectory modulation with TP-KMP
	Interactive trajectory modulation with local via-points
	Uncertainty-aware skill extension in regions without demonstrations

	Evaluation
	Discussion
	Conclusion
	Additional material
	Key notations
	Key acronyms
	Decomposition of KMP covariance into a sum of epistemic and aleatoric terms
	Experimental details and additional evaluations
	Approach comparison
	Demonstration recordings
	Hyper-parameter overview
	KMP hyperparameter sensitivity analysis
	Generalization success rate for different conditions of the ring-loading task
	Generalization of camera via-points to new camera location
	Final model from Experiments 1–3
	Detailed stiffness profiles for Experiment 3 with hyperparameter sensitivity analysis



