
From Complex to Atomic: Enhancing Augmented Generation via
Knowledge-Aware Dual Rewriting and Reasoning

Jinyu Wang * 1 Jingjing Fu * 1 Rui Wang 1 Lei Song 1 Jiang Bian 1

Abstract

Recent advancements in Retrieval-Augmented
Generation (RAG) systems have significantly en-
hanced the capabilities of large language models
(LLMs) by incorporating external knowledge re-
trieval. However, the sole reliance on retrieval
is often inadequate for mining deep, specialized
knowledge and performing the logical reasoning
necessary to tackle domain-specific complex ques-
tions. To address these challenges, we present
an approach, which is designed to extract, com-
prehend, and utilize specialized knowledge in an
atomic manner while simultaneously construct-
ing a coherent rationale. At the heart of our
approach lie four pivotal components: a knowl-
edge atomizer that extracts atomic tags from raw
data, a query proposer that generates subsequent
questions to facilitate the original inquiry, an
atomic retriever that locates knowledge based
on atomic knowledge alignments, and an atomic
selector that determines which atomic tag and
chunk pair to query, guided by the retrieved in-
formation. Through this approach, we imple-
ment a knowledge-aware task decomposition strat-
egy that iteratively builds the rationale in align-
ment with the initial question and the acquired
knowledge. We conduct comprehensive experi-
ments to demonstrate the efficacy of our approach
across various benchmarks, particularly those re-
quiring multihop reasoning steps. A substantial
performance improvement of up to +10.1 (20.4%)
over the second-best method underscores the po-
tential of the approach in complex, knowledge-
intensive applications. The code is publicly avail-
able at https://github.com/microsoft/PIKE-RAG.
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Figure 1. Complex questions are typically decomposed into sub-
questions following either a chain-shaped or tree-shaped path, with
chunk retrieval used to gather relevant information for resolution.
Unlike previous approaches, our method seamlessly integrate the
question decomposition with information retrieval through atomic
knowledge alignment by dual rewriting upon questions and chunks,
and dynamically determine follow-up sub-questions by atomic
pair retrieval and selection, enabling an adaptive and interactive
decomposition path that evolves based on the retrieved knowledge.

1. Introduction
Large Language Models (LLMs) have revolutionized the
field of natural language processing by demonstrating the
capability to generate coherent and contextually relevant
text and the versatility to execute a diverse spectrum of lin-
guistic tasks, ranging from text completion to translation
and summarization (Achiam et al., 2023; Touvron et al.,
2023). Despite their broad capabilities, LLMs exhibit pro-
nounced limitations when tasked with specialized queries in
professional domains (Ling et al., 2024; Wang et al., 2023a).
This primarily arises from the scarcity of domain-specific
training material (e.g., unpublished documents) and an in-
complete understanding of specialized knowledge and ratio-
nale within these domains (e.g., industry-specific acronyms,
company-specific operational rules). As a result, LLMs
may produce responses that are not only potentially erro-
neous but also lack the detail and precision required for
expert-level engagement (Bender et al., 2021).
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Figure 2. Case demonstration of Self-Ask and KAR3. By proposing multiple atomic queries, KAR3 effectively retrieves the relevant
knowledge chunk, whereas the single deterministic follow-up question approach employed by Self-Ask fails to align with the knowledge
base’s schema, resulting in a retrieval failure.

To mitigate these issues, RAG (Lewis et al., 2020) has
emerged as a promising solution, augmenting LLMs with
external knowledge retrieval to anchor generated content.
By supplementing or even replacing the knowledge encoded
within LLMs, RAG frameworks aim to improve factual-
ity and relevance. However, existing RAG systems often
struggle with domain-specific complex tasks. For example,
answering a query like “please provide the product name
of the latest biosimilar for HUMIRA that has been suc-
cessfully approved.” requires more than retrieving scattered
specialized knowledge (e.g., biosimilar for HUMIRA) from
multiple sources. It demands logical reasoning on eligible
products and their approval timelines to synthesize a precise
and reliable response. Current RAG methods predominantly
rely on plain text retrieval, which may fail to effectively
capture correlations within domain-specific expression, and
often employ question decomposition without considering
available knowledge, leading to suboptimal sub-question
generation, ineffective retrieval and reasoning failures.

In this work, we argue that advancing RAG requires
knowledge-aware processing, especially on question decom-
position and information retrieval, and iterative reasoning
to effectively address complex, multi-step questions in pro-
fessional domains.

Knowledge-aware Processing for Domain-Specific Com-
prehension Addressing complex, logic-driven tasks in spe-

cialized domains requires knowledge extraction and com-
prehension to deeply understand both the user’s information
needs and the underlying context of the retrieved data. For
example, specialized questions in fields like medicine, law,
or finance often involve domain-specific terminology and
logic, which generic LLMs may fail to grasp fully. Tra-
ditional RAG systems that retrieve text passages based on
keyword matching (Ram et al., 2023; Jiang et al., 2023)
or embedding similarity (Gao et al., 2023) may retrieve
contextually relevant information, that may lack semantic
precision, insufficient for answering intricate questions.

Iterative Reasoning for Complex Query Resolution Com-
plex reasoning tasks, where the answer depends on synthe-
sizing information from multiple sources, demand the de-
composition of the original question into a series of simpler,
interrelated sub-questions (Press et al., 2023). Nonethe-
less, this approach may face obstacles in domains where the
knowledge is not readily accessible to LLMs. We argue that
the decomposition in such domains should be contextual,
rather than a standalone operation, meaning that decom-
posed queries can be answered with the retrieved knowledge
and context progressively and evolve into refining subse-
quent queries. This iterative approach allows the system
to evolve its understanding of the user’s inquiry, ensuring
that follow-up questions are informed by the most recent
retrieval results.
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We introduce a novel framework, KAR3-RAG, which em-
ploys a knowledge-aware dual rewriting and reasoning
mechanism. Our approach features a dynamic interaction
between question rewriting and knowledge retrieval, en-
abling the system to adaptively refine both the query and
the retrieved context at each iteration, as illustrated in Fig-
ure 1. The core components of our system include Knowl-
edge atomizer, decomposing raw data into atomic tags for
more granular retrieval, Query proposer, generating follow-
up questions based on the evolving context, Atomic re-
triever, identifying and retrieving relevant knowledge based
on atomic knowledge alignments, and Atomic selector, de-
termining the most relevant follow-up questions based on
the retrieved information. More specially, the atomic tags
are formulated as relevant inquiries that can be answered
by the given chunk, thereby encompassing the multifaceted
knowledge of the chunk and facilitating effective retrieval.
Atomic query proposals are raised to inquiry the knowledge
that is helpful to answer the question better. By leverag-
ing these components, our system can iteratively refine its
understanding of both the question and the retrieved knowl-
edge, enabling more accurate and context-aware reasoning
over multiple hops. We demonstrate the advantages of task
decomposition and atomic retrieval on a real-world case, as
shown in Figure 2. Our approach not only enables multi-
faceted task decomposition, but also alleviates the misalign-
ment between the corpus formulation and the query through
atomic tagging of the corpus.

Our key contributions are as follows: 1) We propose a
knowledge-aware RAG framework that incorporates re-
trieved knowledge into question decomposition, enabling
iterative exploration of the reasoning path. 2) We introduce
an atomic knowledge alignment approach by dual writing
that tightly couples query decomposition with retrieval, sig-
nificantly improving retrieval efficiency. 3) We report on
comprehensive experimental and ablation studies that vali-
date the superior performance of our approach across mul-
tiple benchmark datasets, achieving up to 20.4% increase
over the second-best method.

2. Related work
2.1. RAG

RAG has emerged as a promising solution that effectively
incorporates external knowledge to improve the generation
of LLMs. Naive RAG systems retrieve pertinent informa-
tion from external data sources and integrate it into the
context of the question prompt as supplementing knowl-
edge for contextually relevant generation (Ram et al., 2023).
Advanced RAG approaches implement specific enhance-
ments across the pre-retrieval, retrieval, and post-retrieval
processes, including query optimization (Ma et al., 2023;
Zheng et al., 2023), multi-granularity chunking (Chen et al.,

2023; Zhong et al., 2024), mixed retrieval (Yang, 2023) and
re-ranking (Cohere, 2023). On one hand, efforts focus on
query rewriting, either explicitly (Zheng et al., 2024) or
implicitly (Gao et al., 2022), to enhance retrieval perfor-
mance. On the other hand, several studies transform raw
data sources into structured data, ultimately converting them
into valuable knowledge for more effective retrieval and rea-
soning (Wang et al., 2023b; Zheng et al., 2024; Raina &
Gales, 2024; Liang et al., 2024). In our system, we intro-
duce atomic rewriting for both queries and chunks, which
achieves multi-granularity question decomposition and com-
prehensively extract inherent knowledge from chunks.

To tackle complex tasks such as summarization (Hayashi
et al., 2021) and multihop reasoning (Ho et al., 2020), re-
cent research focuses on developing advanced coordination
schemes that leverage existing RAG modules to collabora-
tively address these challenges. Iter-RetGen (Shao et al.,
2023) and DSP (Khattab et al., 2023) employ retrieve-read
iteration to leverage generation response as the context for
next round retrieval. FLARE (Jiang et al., 2023) proposes a
confidence-based active retrieval mechanism. Our approach
adopts an iteration-based pipeline that leverages context-
aware reasoning process, enabling the adaptive formulation
of follow-up questions for each iteration and reducing the
difficulty of retrieval and reasoning of complex tasks.

2.2. Multihop QA

Multihop Question Answering (MHQA) (Yang et al., 2018)
require reasoning over multiple pieces of information, often
scattered across different sources. This task presents unique
challenges as it necessitates not only retrieving relevant
information but also effectively combining and reasoning
over the retrieved pieces to arrive at a correct answer. The
traditional graph-based methods in MHQA solves the prob-
lem by building graphs and inferring on graph neural net-
works(GNN) to predict answers (Qiu & other authors, 2019;
Fang & other authors, 2020). With the advent of LLMs,
recent graph-based methods (Li & Du, 2023; Panda et al.,
2024; Liang et al., 2024) have evolved to construct KGs for
retrieval and generate response through LLMs. However,
constructing a high-quality domain-specific KG is costly,
and the structured triple format imposes inherent constraints
on contextual representation, limiting its expressiveness.
Self-RAG (Zhang et al., 2024a)and beam-retrieval (Asai
et al., 2023) treating MHQA as a supervised problem, ne-
cessitating labeled data and additional training.

Another branch of methods decomposes multihop ques-
tions into sub-questions following either a chain-shaped
path (Trivedi et al., 2023; Khattab et al., 2023; Feng et al.,
2023; Xu et al., 2024) or tree-shaped path (Zhang et al.,
2024b; Jiapeng et al., 2024; Cao et al., 2023), as depicted
in Figure 1. The sub-questions guide sequential chunk re-
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Figure 3. Overview of the KAR3-RAG workflow, illustrating knowledge atomizing by the atomizer, and knowledge-aware task decompo-
sition using the query proposer, atomic retrieval and atomic selector. The query proposer generates atomic query proposals based on
the original question and reference context. These proposals are used to retrieve the relevant atomic tags, producing retrieved atomic
pairs. The atomic selector chooses the most relevant pair and the corresponding chunk, which is added to the reference context for task
decomposition in the subsequent iteration. Once the atomic selector determines that no further information is required and no atomic pair
is selected, the original question and reference context are passed to the generator to produce the final answer.

trieval, with the retrieved results subsequently facilitating
the reasoning process. In chain-shaped decomposition, a
single sub-question is generated, and its answer availability
is not guaranteed, potentially leading to answer failure. In
contrast, tree-shaped decomposition requires exploring mul-
tiple reasoning paths, necessitating sophisticated evidence
verification and fusion for final response generation. Our
approach explore the reasoning path by interactively select
the sub-question from a set of query proposals based on
the relevance of atomic retrieval. This allows for flexible
decomposition by leveraging updated context and selecting
query proposals with available knowledge.

3. Methodology
3.1. Preliminary

In a RAG system, the textual corpus is divided into a collec-
tion of document chunks, denoted as D = {d1, d2, . . . , dn},
where di represents the i-th document chunk. The original
question is denoted as q, and its corresponding ground truth
answer is represented by a. The retrieval phase involves
evaluating the similarity between the question q and each
document chunk di, after which the top-k most relevant
chunks are selected as retrieval results, forming the basis for
subsequent generation.

R : topk
di∈D

Sim(q, di)→ Dq (1)

Here, the retrieverR selects the top-k most relevant chunks
Dq based on the similarity function Sim(·). Finally, the
original question and retrieved chunks are fed into the
large language model to generate the answer, denoted as
â = LLM(q,Dq). In the advanced RAG systems, query

rewriting is employed to bridge the semantic gap between
the question and the chunks to be retrieved. The rewritten
query is represented as q̂ = fre(q). The workflow of the
advanced RAG system is further improved as follows,

â = LLM(q,Dq̂), where Dq̂ = R(q̂,D) (2)

This enhancement allows the system to better align queries
with relevant document chunks, enhancing retrieval accu-
racy and answer generation. However, addressing complex
multihop questions remains challenging. These questions
often require reasoning across multiple chunks and inte-
grating information through several retrieval and generation
steps-a process that a single pass may not fully capture.

3.2. Framework

To address complex multihop questions, we introduce
an enhanced RAG system with Knowledge-Aware dual
Rewriting and Reasoning, termed as KAR3. This system
employs an iterative retrieval-reasoning-generation mech-
anism that facilitates gradual collection of relevant infor-
mation and progressive reasoning over incremental context.
An overview of the proposed workflow is depicted in Fig-
ure 3. In our framework, raw data chunks are broken down
into atomic tags using a knowledge atomizer to construct an
atomic knowledge base for the subsequent retrieval. Ques-
tions are similarly atomized by a query proposer to generate
atomic query proposals, which are utilized to retrieve the
relevant atomic tags from the knowledge base. Both chunks
and questions are rewritten to bridge the semantic gap and
improve the alignment of knowledge. An atomic retriever
then selects the top-k atomic pairs for each atomic query
proposal. Based on these retrieved atomic pairs, an atomic
selector, as a reasoner, identifies the most useful atomic pair
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for problem-solving and adds the corresponding raw chunk
to the context. This context is then aggregated with the
original question for the task decomposition in next itera-
tion. The iteration process may terminate earlier if it fails
to retrieve suitable atomic tags, either due to the genera-
tion of low-quality query proposals or the lack of relevant
atomic tag candidates. At this point, the original question
and context are passed to the generator to produce the final
answer.

3.3. Knowledge Atomizing

Chunked text often contains multifaceted information, and
typically, only a subset is needed to address a specific task.
Traditional information retrieval methods, which consoli-
date all information within a single chunk may not facilitate
the efficient retrieval of the precise information required.
Recent research have explored the extraction of triple knowl-
edge units from chunked text and constructing knowledge
graphs to facilitate efficient information retrieval (Edge et al.,
2024; Panda et al., 2024). However, the construction of these
knowledge graphs is costly, and the inherent knowledge may
not always be fully explored. To better present the knowl-
edge embedded in documents, we propose atomizing the
original documents for knowledge extraction, a process we
refer as Knowledge Atomizing. This approach leverage the
context understanding and content generation capabilities of
LLMs to automatically tag atomic knowledge pieces within
each document chunk.

The presentation of the atomic knowledge can be vari-
ous. Instead of utilizing declarative sentences or subject-
relationship-object tuples, we propose using questions as
knowledge indexes to further bridge the gap between stored
knowledge and queries. In knowledge atomizing process,
we input the document chunk to an LLM as context, ask it
to generate relevant questions that can be answered by the
given chunk as many as possible. These generated atomic
tags are stored together with the given chunks. The knowl-
edge atomizer applies atomizing operation on each chunk.

fa(dk) = {qk1, qk2, · · · , qkm} (3)

The atomic tags are generated by atomizer for every chunk,
forming an atomic knowledge base, denoted as KB =
{fa(dk), dk}. An example of knowledge atomizing is il-
lustrated in Figure 4(a), where the atomic tags encapsulate
various aspects of the knowledge contained within the chunk.
Since each chunk is tagged with multiple atomic tags, an
atomic query can be used to locate relevant atomic tags,
which then leads to the associated reference chunks.

3.4. Knowledge-Aware Task Decomposition

Addressing complex multihop questions often requires in-
tegrating multiple pieces of knowledge, which implicitly

Algorithm 1 Task Solving with Knowledge-Aware Decom-
position

1: Initialize context C0 ← ϕϕϕ
2: for t = 1, 2, . . . , N do
3: Generate atomic query proposals q̂t ← fp(q, Ct−1)
4: Retrieve top-k atomic pairs for each atomic query

proposal from knowledge base

P q̂t KB←−− Ratom(q̂t, fa(D))

5: Select the most useful atomic tag or None when
additional information is unnecessary

qksls ← LLM(q, Ct−1, P
q̂t

)

6: if qksls is None then
7: Ct ← Ct−1

8: break
9: else

10: Fetch the relevant chunk ct corresponding to qksls

11: Update context Ct ← Ct−1 ∪ ct

12: end if
13: end for
14: Generate answer â← LLM(q, Ct)

demands the ability to break down the original question into
several sequential or parallel atomic tags for retrieval. We re-
fer to this operation as Task Decomposition. By combining
the extracted atomic knowledge with the original chunks,
we construct an atomic knowledge base. Each time a task is
decomposed, the atomic knowledge base provides insights
into the available knowledge, enabling knowledge-aware
task decomposition. We design the Knowledge-Aware Task
Decomposition workflow, and the complete algorithm for
solving task is detailed in Algorithm 1, and an example is
illustrated in Figure 4(b).

Initially, the reference context C0 is initialized as an empty
set. In the first iteration, task decomposition relies solely on
the original question to generate atomic query proposals. As
iterations progress, the accumulated context at t-th iteration
denoted as Ct−1, consists of chunks retrieved from previous
iterations. During the t-th iteration, the query proposer gen-
erates atomic query proposals based on the original question
and the accumulated context.

fp(q, Ct−1) = {q̂t1, q̂t2, · · · , q̂tn} (4)

The query proposer fp(·) can be implemented as either an
LLM or a learnable component. we leverage an LLM to gen-
erate query proposals that are potentially beneficial for task
completion, represented as q̂t={q̂ti}. During this process,
the selected reference chunks Ct−1 are provided as con-
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Figure 4. Illustrative examples of KAR3-RAG cases: (a) Example of knowledge atomizing, (b) RAG case with knowledge-aware task
decomposition. As iterations progress, the reference context is enriched by accumulating relevant chunks via atomic retrieval and selection.
With the expansion of context, the number of atomic query proposals generated decreases until no further proposals are produced.
Subsequently, the iteration process terminates, and the combined question and context are harnessed to produce the final response.

text to avoid generating proposals linked to already known
knowledge. Consequently, the query proposals evolve with
each iteration, adapting to the updated context and aiming to
explore additional knowledge beyond chunks in the context.
For each atomic query proposal, we retrieve its top-k rele-
vant atomic tag candidates along with their source chunks
from the knowledge base. The atomic retrieval process is:

Ratom : topk
qkl∈fa(D)

Sim(q̂ti , qkl)
KB−−→ P q̂ti (5)

where the atomic retriever, denoted as Ratom, produces a
set of retrieved atomic pairs for each atomic query proposal,
represented as P q̂ti = {(q̂ti , qkili , dki

)}. All the retrieved
atomic pairs from each atomic query proposal are aggre-
gated to generate an overall set P q̂t

. We employ cosine

similarity of the corresponding embeddings to retrieve the
top-k atomic tags, provided their similarity to a proposed
atomic tag meets or exceeds a specified threshold δ. With
the original question, the accumulated context, and the list of
retrieved atomic pairs, the atomic selector employ an LLM
to select the most useful atomic pair for problem-solving.

LLM(q, Ct−1, P
q̂t

) = (q̂ts, qksls , dks
) (6)

The atomic selector, denoted as Satom, further retrieve the
relevant raw chunk of the atomic pair selected as the new
context added in the t-th iteration, denoted as ct. This
chunk corresponds to dks in equation 6. The chunk retrieval
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process can be represented by the following formula,

ct = Satom(Ratom(fp(q, Ct−1), fa(D)))) (7)

This retrieved chunk is aggregated into the reference con-
text for the next round of decomposition, expressed as
Ct = ct ∪ Ct−1. Knowledge-aware decomposition can it-
erate up to N times, where N is a hyperparameter set to
control computational cost. The iteration process may con-
clude earlier if it fails to retrieve suitable atomic tags, either
due to the generation of low-quality query proposals or the
absence of relevant atomic tag candidates. Alternatively,
the process can be halted if the LLM deems the accumu-
lated knowledge adequate for task completion. This early
termination mechanism allows the process to conclude be-
fore completing all iterations, reducing computational costs
without compromising accuracy. Finally, the accumulated
context Ct is utilized to generate answer â for the given
question q in line 1.

It is worth mentioning that knowledge-aware decomposition
can be a learnable component. For each specialized knowl-
edge base, we can utilize the data collected in each decompo-
sition iteration—specifically (q, a, â, {q̂ts, ct, q̂t, P q̂t

, Ct}).
This trained proposer can then directly suggest atomic
queries qt during inference, which means lines 1 to 1 in
Algorithm 1 can be replaced by a single call to this learned
proposer, thereby reducing both inference time and com-
putational cost. We leave the exploration of training an
efficient query proposer as future work.

4. Evaluation and Metrics
Since KAR3 is proposed to handle the challenges in special-
ized domains, we have conducted experiments on both a
Chinese legal benchmark named LawBench and the Open
Australian Legal QA benchmark. The experimental results
demonstrated that KAR3 have obtained significantly im-
provement than baseline methods across all these bench-
marks, and the accuracy on generation tasks can reach up
to 90.12% and 98.59% in LawBench and Australian Legal
QA respectively. The detailed introduction to these legal
benchmarks and the experimental results can be found in
Appendix A.8.

To better compare the proposed approach with baseline
methods, we focus on the widely-recognized open-domain
benchmarks in this section. Section 4.1 and 4.2 outline the
experimental setup and the primary experimental results
respectively. Ablation studies are discussed in Section 4.3.
Additionally, cost analysis and case studies are included in
Appendix A.5 and A.6 due to content constraints.

4.1. Experimental Setup

Methods To thoroughly evaluate the performance of our
proposed knowledge-aware decomposition approach, we
have selected a variety of baseline methods that represent
different strategies for task-solving with LLMs. We in-
clude Zero-Shot CoT (Kojima et al., 2022) to assess the
inherent reasoning capabilities and built-in knowledge of
the underlying LLM without any additional context. Naive
RAG (Lewis et al., 2020), which introduces external knowl-
edge through retrieval, serves as a benchmark for evaluating
the incremental benefits of augmented knowledge. The
Self-Ask framework (Press et al., 2023) is employed to
investigate the impact of an iterative question decompo-
sition and answering strategy on task performance. The
IRCoT (Trivedi et al., 2023), which iteratively generates
the rationale to process the multihop questions, along with
the Iter-RetGen (Shao et al., 2023), which iteratively uses
the recent response as a retrieval query to improve the re-
sponse quality, and the ProbTree (Cao et al., 2023), which
explicitly decompose the complex QA into a search tree,
are also conducted for performance comparison. Detailed
descriptions of methods are provided in Appendix A.4.

In our experiments, we employ GPT-4 (1106-Preview) and
Llama-3.1-70B-Instruct across the methods outlined previ-
ously. For the experiments presented in Section 4.2, the
iteration number N is set to 5 for Self-Ask with Retrieval,
IRCoT, Iter-RetGen and KAR3. Additionally, the atomic
retriever is initialized with k = 4 and δ = 0.5. A compre-
hensive list of hyper-parameters for the retrieval and LLM
can be found in Appendix A.3. For brevity, Llama-3.1-70B-
Instruct is abbreviated as Llama 3 in the following content.

Metrics To ensure consistency with established bench-
marks, we adopt F1 as a conventional metric in our ex-
perimental evaluation. To more accurately assess the the
alignment of responses with the intended answers—beyond
mere lexical matching—we introduce a novel evaluation
metric employing GPT-4. In this process, GPT-4 acts as an
evaluator, assessing the correctness of a response in relation
to the question and the correct answer labels. We refer to
this metric as Accuracy (Acc). Upon manual inspection of
a sample set, the judgments rendered by GPT-4 demonstrate
complete agreement with human evaluators, affirming the
reliability of this metric. Furthermore, a full evaluation re-
sults with Exact Match (EM), Recall and Precision can be
found in Appendix A.4.

Datasets To better compare with baseline methods, our
evaluation focuses on three widely-recognized multihop
datasets: HotpotQA (Yang et al., 2018), 2WikiMulti-
HopQA (Ho et al., 2020), and MuSiQue (Trivedi et al.,
2022). A brief introduction to these datasets can be found
in Appendix A.1. For each dataset, we randomly sample
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Table 1. Performance comparison on multihop QA datasets with
GPT-4. Best in bold, second-best underlined.

Method
HotpotQA 2Wiki MuSiQue

F1 Acc F1 Acc F1 Acc
Zero-Shot CoT 43.94 53.60 41.40 43.87 22.90 23.47
Naive RAG 72.67 82.60 59.74 62.80 43.31 44.40
Self-Ask w/ R. 71.40 80.00 69.06 75.00 46.76 51.40
IRCoT 67.30 81.00 63.83 70.40 47.57 49.20
Iter-RetGen 75.27 86.60 67.21 73.60 52.48 55.60
ProbTree 62.41 73.40 69.42 80.00 43.26 52.86
KAR3 (Ours) 76.48 88.00 75.00 82.20 57.86 62.60

Table 2. Performance comparison on multihop QA datasets with
Llama 3. Best in bold, second-best underlined.

Method
HotpotQA 2Wiki MuSiQue

F1 Acc F1 Acc F1 Acc
Zero-Shot CoT 40.10 54.80 38.54 43.20 15.69 19.80
Naive RAG 70.78 84.20 56.58 62.20 32.53 36.40
Self-Ask w/ R. 70.25 83.00 66.25 74.00 38.19 44.20
IRCoT 74.59 88.00 69.49 77.60 43.12 49.60
Iter-RetGen 72.23 85.20 59.21 65.00 37.16 40.40
KAR3 (Ours) 75.27 88.20 72.79 81.00 50.68 59.70

500 QA data from the dev set, disregarding the question
type and the number of hops to ensure randomness. We
compile the context paragraphs from all sampled QA data
into a single knowledge base for each benchmark, creat-
ing a more complex retrieval scenario. This design choice
aims to rigorously assess the task decomposition and rele-
vant context retrieval capabilities of our model. For brevity,
2WikiMultiHopQA is abbreviated as 2Wiki.

4.2. Main Results

As demonstrated in Table 1 and Table 21, our approach
achieves superior performance across all datasets with both
GPT-4 and Llama 3. Specifically, with GPT-4, we observe
increases of approximately +1.4(1.6%), +2.2(2.8%), and
+7.0(12.6%) in accuracy over the second-best results for
HotpotQA, 2Wiki, and MuSiQue. Similarly, with Llama
3, we achieve increases of +0.2(0.2%), +3.4(4.4%), and
+10.1(20.4%) for three datasets, respectively. These en-
hancements are statistically significant, underscoring the
robustness of KAR3 in handling complex QA tasks.

Our proposed approach, KAR3, emphasizes knowledge-
aware task decomposition and differs from the spontaneous
decomposition mechanism reliant on given demonstrations,
as employed by Self-Ask. It performs decomposition with
an awareness of available knowledge and effectively uses
atomic tags as an intermediate medium to bridge the se-

1Since we encountered problem obtaining the logprobs from
the Llama 3 endpoint, we leave the experiment of ProbTree with
Llama 3 as future work.

mantic gap. The “proposal first, then select” framework,
detailed in Algorithm 1, enables a dynamic decomposition
path search, provides an opportunity to validate the intent
of the question and rectify potential errors in the historical
rationale generation process. A practical application of this
point can be seen in Case(a) of Appendix A.6. Consequently,
the experimental results demonstrate that KAR3 consistently
outperforms other methods with different models, validating
not only its effectiveness but only its robustness and adapt-
ability for different models in complex reasoning scenarios.

4.3. Ablation Study

The selection of N . We first conducted experiments with
the iteration upper bound N set to 1, 2, . . . 10, and the results
are presented in Figure 5. Detailed performance metrics are
available in Table 8 of Appendix A.4. Across all three
datasets, there is a consistent uptrend in both Supporting
Fact Recall and Answer Accuracy. This pattern underscores
the approach’s capability to incrementally enhance its out-
puts through additional iterations, particularly when more
detailed and contextually relevant information is required to
address problem.

Additionally, upon examining the relationship between the
number of iterations and the observed growth in supporting
fact recall, we note that for HotPotQA and 2Wiki datasets,
the recall curves exhibit a pronounced increase up to the
fourth iteration. Conversely, the recall for the MuSiQue
dataset continues to rise sharply beyond this point, even
though the maximum number of hops per question is capped
at four, as mentioned in Appendix A.1. This discrepancy
implies that while KAR3 is adept at retrieving relevant and
useful information within a limited number of iterations, it
still has certain limitation: KAR3 relies on the reasoning
capability of the used LLM, and further iterations may be re-
quired to fully capture the necessary information, especially
as the complexity of the questions increases.

Although Algorithm 1 does incorporate early-stopping
mechanisms, a higher N invariably leads to increased com-
putational demands. Therefore, we choose N = 5 - a value
slightly above the maximum number of hops - for the exper-
iments in Section 4.2 to achieve a delicate balance between
computational resources and the expected enhancement in
performance.

Figure 5. Supporting fact recall (in blue) and answer accuracy (in
orange) over iterations.
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Table 3. Ablation study of the components in KAR3.

Variable Component Modification
HotpotQA 2Wiki MuSiQue

F1 Acc F1 Acc F1 Acc

Knowledge Atomizer Atomizing to questions → Atomizing to plain texts 73.05 84.50 64.18 69.80 50.72 55.20
Query Proposer Proposing multiple queries → Proposing a single query 75.06 85.60 70.19 76.40 49.67 52.20
Atomic Retriever Retrieving (atomic tag, chunk) pairs → Retrieving chunks 76.31 86.60 67.14 72.40 49.05 53.00
Atomic Selector Selecting chunks by atomic tags → Selecting chunks directly 72.80 83.20 61.65 65.80 49.31 53.40

KAR3 (Ours) 76.48 88.00 75.00 82.20 57.86 62.60

The contribution of the approach components. KAR3 is
comprised of four key components: a knowledge atomizer,
a query proposer, an atomic retriever, and an atomic selector.
We conduct ablation studies to ascertain the individual and
collective contributions of these components.

by introducing several method variants with modification
to these components one by one: (1) For the knowledge at-
omizer, we change the atomic tag presentation from atomic
questions to plain text sentences to explore the influence
of atomic knowledge representation; (2) For the query pro-
poser, we limit it to generate only one query to evaluate
the advantage of the originally designed multiple proposals
mechanism; (3) For the atomic retriever, we modified the
components to let it retrieve chunks rather than (atomic tag,
chunk) pairs; (4) For the atomic selector, instead of filtering
chunks by atomic tags, we implemented a variant to select
chunks directly. Since there is no atomic tag existing in
this setting, the context selection is later determined by the
chunk directly.

As evidenced by the results in Table 3, the individual contri-
butions of the components were evaluated. We observed that
replacing the knowledge atomizer, query proposer, atomic
retriever and atomic selector with their substitutes will lead
to accuracy reductions up to 15.1%, 16.6%, 15.3% and
16.2%, respectively, over three datasets. These ablation
studies imply that each designed component is crucial for
achieving optimal retrieval performance and coherent rea-
soning traces.

Limitation Discussion. Beyond the need for additional
iterations to extract crucial information for complex ques-
tions, our experiments with GPT-3.5 - detailed in Table 9 in
Appendix A.4 - indicate a limitation in relying on LLMs’
reasoning capabilities. With GPT-3.5, the performance of
KAR3 does not significantly surpass that of methods like
IRCoT and Self-Ask w/ Retrieval and occasionally falls
short compared to Self-Ask w/ Retrieval. This highlights
that KAR3’s success hinges on its advanced reasoning skills
and its ability to robustly follow complex instructions.

While the experimental results using the open-source model
Llama 3 demonstrate a notable performance improvement

over the baseline methods, our approach requires higher
token consumption compared to some of the methods evalu-
ated, as detailed in Table 10 in Appendix A.5. Specifically,
on MuSiQue, it uses fewer tokens than ProbTree and IR-
CoT, but more than Iter-RetGen and Self-Ask with retrieval.
This increased token usage could lead to higher costs when
implemented with proprietary models like GPT-4.

5. Conclusion
We present an advanced RAG system, enhanced with
knowledge-aware dual rewriting and reasoning capabilities,
designed to improve knowledge extraction and rationale
formulation within specialized datasets. The comprehen-
sive results of extensive experiments underscore the efficacy
of our approach, particularly in scenarios involving bench-
marks with multihop questions. For future work, we aim
to refine the system’s proficiency through the integration of
in-context learning (Wei et al., 2022), by adaptively select-
ing demonstrations for the query proposer. This will further
enhance its ability to perform knowledge-aware question
rewriting. Additionally, we are interested in developing a
knowledge-aware atomizer capable of incorporating feed-
back from sample questions, thereby improving its under-
standing of the most beneficial types of atomic knowledge.

Impact Statement
Our approach utilizes existing large language models to
avoid additional training and minimize the introduction of
new biases, generating responses from pre-processed knowl-
edge base to ensure reliability. The process records each
step of question decomposition, creating a transparent and
interpretable reasoning chain, and can be privately deployed
to enhance data security in sensitive environments. This
approach advances the use of Retrieval-Augmented Gener-
ation (RAG) technology in fields like legal research, medi-
cal diagnostics, and technical support, improving decision-
making quality and efficiency. The enhanced clarity, pre-
cision, and logical coherence of information could lead to
better healthcare outcomes, more accurate legal judgments,
and improved technical assistance, contributing significantly
to societal well-being and progress.
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A. Appendix
Appendix A.1 provides detailed introduction to the three open-domain benchmarks, Appendix A.3 enumerates the hyperpa-
rameters utilzied in our experiments, and Appendix A.4 presents the comprehensive experimental results.

For a more thorough understanding of our methodology, a cost analysis is available in Appendix A.5. Additionally, an
introduction and discussion of an alternative atomic tag presentation is also shown in this subsection.

Appendix A.6 explores three real case studies. The prompts employed across the four components in our approach are
outlined in Appendix A.7, accompanied by a discussion on the influence of decomposition demonstration. Finally, the
evaluation conducted on two legal benchmarks are detailed in Appendix A.8.

A.1. Introduction to Open-Domain Benchmarks

We provide a brief overview of the multihop QA datasets used in our experiments, noting that our method does not leverage
the question type information nor the number of hops information during the solving process, as our approach is designed
to be agnostic to such classifications. Table 4 outlines the distribution of question types within our sampled sets, offering
insight into the variety of reasoning challenges presented in our evaluation, though this does not directly impact our method.

HotpotQA The HotpotQA dataset is a well-known multihop QA benchmark primarily consisting of 2-hop questions, each
associated with 10 Wikipedia paragraphs. Among these, some paragraphs contain supporting facts essential to answering
the question, while the rest serve as distractors. The dataset also includes a question type field, which delineates the logical
reasoning required—comparison questions involve contrasting two entities, and bridge questions require inferring the bridge
entity, or inferring the property of an entity through an intermediary entity, or locating the answer entity (Yang et al., 2018).
Although our method operates independently of these types, their description here is to exemplify the nature of questions
within the dataset and to contextualize the expected performance variance across different benchmarks.

2WikiMultiHopQA Inspired by HotpotQA, 2WikiMultiHopQA expands the diversity of question types. It retains the
comparison type from HotpotQA and introduces inference and compositional questions that evolve from the bridge type
by focusing on entity attribute deduction and entity location, respectively. Additionally, the bridge comparison type is a
novel category that requires a synthesis of bridge and comparison reasoning. This dataset typically presents 2-hop to 4-hop
questions, each accompanied by 10 Wikipedia paragraphs containing supporting facts and distractors. While these types
inform the dataset’s structure, they are not utilized by our method, which treats all questions uniformly regardless of their
categorization. For the sake of brevity, 2WikiMultiHopQA is abbreviated to 2Wiki in this paper.

MuSiQue Addressing the issue that many multihop questions can be solved via shortcuts—arriving at correct answers
without proper reasoning—MuSiQue implements stringent filters and additional mechanisms specifically designed to
encourage connected reasoning, as reported by Trivedi et al. (Trivedi et al., 2022). Unlike the other datasets, MuSiQue does
not categorize questions by type, but it does provide explicit information on the number of hops required for each question,
ranging from 2 to 4 hops. Each question is associated with 20 context paragraphs, which introduce a mix of relevant and
irrelevant information, further complicating the task of discerning the correct reasoning path. This explicit hop information,
while not used by our method, underscores the complexity of the dataset and the robustness required by models to handle
such challenges effectively.

Table 4. Distribution of question types across three distinct multihop QA datasets.

Type Count Ratio
comparison 107 21.4%

bridge 393 78.6%

(a) HotPotQA

Type Count Ratio
comparison 132 26.4%
inference 64 12.8%

compositional 196 39.2%
bridge comparison 108 21.6%

(b) 2WikiMultiHopQA

#Hops Count Ratio
2 263 52.6%
3 169 33.8%
4 68 13.6%

(c) MuSiQue
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A.2. Introduction to Evaluation Methods

In addition to the methods outlined in Table 1, we also conduct experiments with an iteratively search and decomposition
method named SearChain (Xu et al., 2024) and a Knowledge Graph-based method named GraphRAG (Edge et al., 2024).
The GraphRAG was inferred in both local and global modes. The methods evaluated in this study are listed as follows:

• Zero-Shot CoT: Questions are addressed using solely the Chain-Of-Thought (CoT) technique, which prompts the
LLMs to articulate its reasoning process step-by-step without the aid of example demonstrations or supplemental
context. This method assesses the LLMs’ intrinsic knowledge and reasoning capabilities in a zero-shot setting.

• Naive RAG: This approach employs dense retrieval from a flat knowledge base to procure relevant information for
each question. The knowledge base consists of pre-embedded chunks are matched to the original question based on
semantic similarity. The retrieval process is direct, without any intermediate task decomposition.

• Self-Ask w/ Retrieval: This method employs a task decomposition strategy wherein the LLMs is prompted to iteratively
generate and answer follow-up questions, thereby breaking down complex problems into more manageable sub-tasks.
General demonstrations illustrating the logic and methodology of task decomposition are provided for all benchmarks
to guide the LLMs’ reasoning process. Different to the original setting (Press et al., 2023), where the framework
relies solely on LLM’s own knowledge to answer each follow-up question, in this setting, we introduces an additional
retrieval component. Relevant chunks are retrieved with the follow-up question as the query from a flat knowledge
base to provide a reference context. What’s more, we also limit the decomposition process to raise up to N follow-up
questions to align with other methods.

• IRCoT: This approach iteratively prompts LLMs to generate one more sentence of rationale with retrieved passages,
and retrieves new passages with the newly generated reason. The original setting limit the process with a maximum
token number (Trivedi et al., 2023). In our experiments, we limit the total number of iterations to the constant N we
used for our methods.

• Iter-RetGen: This method iteratively answers questions with retrieved passages, and uses the newly generated rationale
and answer for the next-round retrieval. In this setting, we also limit the total number of iterations to the same N .

• SearChain: This approach focuses on the interaction between LLM and Information Retrieval (IR). SearChain starts
from a LLM-generated reasoning chain named Chain-of-Query (CoQ) where each node consists of an IR-oriented
query-answer pair. It then iteratively verifies the answer of each node of CoQ by IR and re-generate the CoQ for
node that is not consistent with the retrieved information. The re-generation mechanism let SearChain forms a
novel reasoning path based on a tree, which enables LLM to dynamically modify the direction of reasoning. Since
the official code loads pre-trained models from local without uploading those models online, we find models with
most-similar name from HuggingFace to adapt it. Besides, the experimental results shown in Table 6 are conducted
with BAAI/bge-m3 instead of the ColBERT retriever due to environmental issues.

• ProbTree: This approach is an explict tree search method. ProbTree starts from a LLM-translated query tree for the
given question, in which each non-root node denotes a sub-question of its parent node. Then, probabilistic reasoning is
conducted over the tree, by solving questions from leaf to root considering the confidence of both question decomposing
and answering.

• GraphRAG Local: The knowledge base is pre-processed to construct a knowledge graph in accordance with the public
guidance. The evaluation is inferred in local mode.

• GraphRAG Global: The knowledge base is pre-processed to construct a knowledge graph in accordance with the
public guidance. The evaluation is inferred in global mode.

• KAR3 (Ours): The proposed knowledge-aware decomposition method iteratively decomposes complex questions into
sub-questions and retrieves relevant knowledge up to a maximum of N iterations. This process limits the context for
the final answer to the five most useful knowledge chunks.

To better illustrate the distinctions among the evaluation methods discussed, we have systematically detailed their character-
istics in Table 5. This table classifies each method according to its approach to question decomposition, chunk retrieval, and
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Table 5. Method Comparison.

Method
Decomposition

Retrieval
Generation Context

demonstration path context sub-answer final answer
Zero-Shot CoT N/A N/A N/A N/A
Naive RAG N/A question → chunk N/A chunks
Self-Ask w/ R. few-shot chain qa pairs sub-question → chunk chunks qa pairs
IRCoT few-shot (implicit) rationale, chunks rationale sentence → chunk N/A rationale, chunks
Iter-RetGen zero-shot (implicit) chunks whole rationale → chunk N/A chunks
SearChain few-shot chain ∅; qa pairs, chunks sub-question → chunk ∅; chunks qa pairs
ProbTree few-shot tree ∅ sub-question → chunk chunks qa pairs
KAR3 (Ours) zero-shot dynamic selected chunks sub-question → atomic question → chunk N/A selected chunks

the context used in answer generation. Specifically, it delineates whether each method operates under zero-shot or few-shot
conditions, the nature of its decomposition process (e.g., explicit or implicit decomposition; chain-shaped, tree-shaped, or
dynamically generated paths), and the context utilized during decomposition. The retrieval column clarifies the mechanisms
each method employs to gather information, while the columns dedicated to the generation context—both for sub-answer
and final answer generation—highlight the specific contexts each method leverages when generating answers.

As Table 5 demonstrates, the decomposition module in KAR3 employs a zero-shot, knowledge-aware approach, maintaining
accumulated selected chunks in context for iterative decomposition. Additionally, we discuss the potential benefits of
incorporating demonstration in Appendix A.7, suggesting that this feature could further enhance performance. This
possibility is earmarked for future exploration. Notably, our approach dynamically formulates a decomposition path during
iterations, allowing for adjustments based on new insights from the contextually provided knowledge. In the retrieval phase,
it uses atomic tags to bridge the semantic gap between the query and the information within the chunks. Importantly, during
the generation phase, our method retains the selected chunks, ensuring that the generation remains knowledge-aware and
mitigates the risk of error accumulation often seen in methods that rely solely on follow-up questions and answers for
context.

A.3. Hyper-Parameters

During the knowledge extraction phase, we utilize a temperature setting of 0.7 specifically for the Knowledge Atomizing
process, promoting a balance between diversity and determinism in the generated atomic knowledge. Conversely, for all
question-answering (QA) steps in each method, we implement a temperature of 0, ensuring consistent responses from the
model.

Regarding the retrieval component, we engage the text-embedding-ada-002 (version 2) as our embedding model for both
the general knowledge bases and the atomic knowledge bases. For the general knowledge bases used in Naive RAG and
Iter-RetGen, the retriever is configured to fetch up to 16 knowledge chunks, applying a retrieval score threshold of 0.2. For
the general knowledge bases used in Self-Ask w/ Retrieval and IRCoT, where the retrieval chunks are used for a single
follow-up question answering or the generation of single continuous rationale sentence, the reference chunks for whole
rationale or final question answering are accumulated. The system retrieves 4 relevant chunks per request, maintaining the
same score threshold of 0.2. In the case of atomic knowledge bases, the retriever is set to retrieve 4 relevant atomic tags for
each atomic query but with a higher threshold 0.5 due to the shorter content length.

A.4. Detailed Experimental Results

Evaluation Metrics As for the evaluation metrics, three more metrics are employed in Appendix. Exact Match (EM),
which assesses whether the response is identical to a predefined correct answer is applied as the community usually did.
Furthermore, we encounter situations where a method achieves high accuracy (Acc) scores yet registers low F1 scores. To
elucidate the underlying factors of such discrepancies, we also report on the Recall and Precision of the generated responses.
Recall measures the proportion of relevant tokens from the answer labels that are captured in the response, while precision
evaluates the relevance of the tokens in the generated answer with respect to the correct labels.
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Table 6. Detailed performance comparison on multihop QA datasets. Best in bold, second-best underlined.

Table 6. (a) HotPotQA
Method EM F1 Acc Precision Recall
Zero-Shot CoT 32.60 43.94 53.60 46.56 43.97
Naive RAG 56.80 72.67 82.60 74.52 74.86
Self-Ask w/ Retrieval 57.00 71.40 80.00 73.25 73.95
IRCoT 51.40 67.30 81.00 69.32 72.15
Iter-RetGen 59.60 75.27 86.60 77.18 77.62
SearChain 28.60 40.48 74.40 40.77 66.63
ProbTree 47.00 62.41 73.40 64.83 64.95
GraphRAG Local 0.00 10.66 89.00 5.90 83.07
GraphRAG Global 0.00 7.42 64.80 4.08 63.16
KAR3 (Ours) 61.40 76.48 88.00 78.53 78.96

Table 6. (b) 2WikiMultiHopQA
Method EM F1 Acc Precision Recall
Zero-Shot CoT 35.67 41.40 43.87 41.43 43.11
Naive RAG 51.20 59.74 62.80 59.06 62.30
Self-Ask w/ Retrieval 60.60 69.06 75.00 67.88 73.15
IRCoT 55.00 63.83 70.40 62.47 68.86
Iter-RetGen 57.80 67.21 73.60 66.10 71.09
SearChain 7.00 15.67 68.40 11.91 66.74
ProbTree 57.00 69.42 80.00 67.61 76.89
GraphRAG Local 0.00 11.83 71.20 6.74 75.17
GraphRAG Global 0.00 7.35 45.00 4.09 55.43
KAR3 (Ours) 65.80 75.00 82.20 73.63 79.08

Table 6. (c) MuSiQue
Method EM F1 Acc Precision Recall
Zero-Shot CoT 12.93 22.90 23.47 24.40 24.10
Naive RAG 32.00 43.31 44.40 44.42 47.29
Self-Ask w/ Retrieval 38.20 46.76 51.40 46.75 51.00
IRCoT 36.00 47.57 49.20 48.70 50.30
Iter-RetGen 40.20 52.48 55.60 53.51 56.45
SearChain 24.40 33.26 45.80 33.00 46.37
ProbTree 28.57 43.26 52.86 42.27 54.70
GraphRAG Local 0.60 9.62 49.80 5.73 55.82
GraphRAG Global 0.00 5.16 44.60 2.82 52.19
KAR3 (Ours) 47.40 57.86 62.60 58.52 61.37

Detailed Main Results The detailed experimental results on multihop datasets HotpotQA, 2Wiki and MuSiQue are
presented in Table 6. Besides the metrics shown in Table 1, the EM, Precision and Recall are provided here.

Discussion of Graph-Based Method Notably, knowledge graph-based method, GraphRAG Local, excels in HotpotQA—a
dataset predominantly comprised of 2-hop questions. However, in the other two datasets, which contain questions involving
more hops, GraphRAG Local is merely on par with IRCoT. This highlights the challenge that knowledge graph-based
methods face in addressing complex multihop questions. Regarding GraphRAG, originally designed for the query-focused
summarization (QFS) task as outlined by (Edge et al., 2024), we observe its suboptimal performance in both local and
global modes compared to our method. GraphRAG exhibits a curious trend: it achieves higher accuracy and recall scores
while performing lower on EM, F1, and Precision metrics. A closer analysis of GraphRAG’s outputs reveals a tendency to
echo the query and include meta-information about the answer within its graph structure. Despite attempts to refine its QA
prompt, this behavior persists. An illustrative example is presented in Table 7, which shows GraphRAG Local’s response to
a question from HotpotQA.
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Table 7. An Example of GraphRAG Local output on a HotpotQA question. The table showcases the tendency to repeat the question and
include meta-information in its response.

Question Which country is home to Alsa Mall and Spencer Plaza?
Answer Labels India
Answer of GraphRAG Alsa Mall and Spencer Plaza are both located in Chennai, India [Data: In-

dia and Chennai Community (2391); Entities (4901, 4904); Relationships
(9479, 1687, 5215, 5217)].

Detailed Evaluation Results of N Selection Table 8 lists the granular performance metrics according to those we shown
in Figure 5 for the ablation study on the iteration upper bound N . Different to the Recall we reported in Table 6, which
indicates the recall tokens of the answer labels, the Recall* here represents the recall of the supporting facts provided by
these datasets.

Table 8. Ablation study on hyper-parameter N . Recall* indicates the recall of supporting facts.

N
HotpotQA 2Wiki MuSiQue

Recall* F1 Acc Recall* F1 Acc Recall* F1 Acc
1 42.96 59.46 70.20 40.41 41.08 43.00 31.20 32.55 32.80
2 82.04 74.27 84.80 78.83 70.22 77.20 56.43 48.46 50.00
3 90.16 76.90 87.20 87.71 72.84 79.40 64.82 53.50 57.20
4 92.46 76.49 87.80 92.86 74.68 81.80 69.87 55.73 59.40
5 92.83 76.48 88.00 94.06 75.00 82.20 73.08 57.86 62.60
6 93.35 77.67 89.00 94.76 75.12 81.80 74.88 57.03 61.20
7 93.68 77.32 88.80 94.91 75.44 82.40 76.07 56.66 61.40
8 93.78 76.88 88.40 95.06 75.16 82.00 76.72 57.65 62.40
9 93.78 76.99 88.60 95.11 74.89 81.80 76.90 57.17 61.40
10 93.78 77.52 89.00 95.16 75.09 82.00 77.20 57.69 62.40

Evaluation Results with Less Advanced LLM As introduced in the limitation discussion section, we have carried out a
series of experiments utilizing GPT-3.5. The outcomes of these experiments are delineated in Table 9. For these specific
trials, we substituted GPT-4 (1106-Preview) with GPT-3.5 (1106-Preview) as the language model, while maintaining all
other experimental settings identical to those employed in the experiments summarized in Table 1.

Table 9. Performance comparison of implementations with GPT-3.5. Best in bold, second-best underlined.

Method
HotpotQA 2Wiki MuSiQue
F1 Acc F1 Acc F1 Acc

Self-Ask w/ Retrieval 49.52 61.40 53.83 60.00 31.05 35.20
IRCoT 56.39 68.40 40.31 46.00 33.93 34.40
Iter-RetGen 48.63 66.80 44.32 55.20 25.77 37.80
KAR3

(Ours) 46.37 68.80 41.95 58.20 26.80 39.60

A.5. Cost Analysis and Discussion

In this section, we conduct a comprehensive cost analysis to evaluate our model’s API consumption. We first evaluate and
compare the inference cost to other baseline methods, later we further decompose the cost into components, and finally a
cost summarization of the one-time data preprocessing step will be provided.

Inference Cost Comparison As Table 10 demonstrated, from the perspective of token consumption per QA, our method
utilizes fewer tokens than both ProbTree and IRCoT, and is comparable to Iter-RetGen. However, our approach significantly
outperforms these baselines on both F1 and Accuracy by a considerable margin. This demonstrates the efficiency of our
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approach in balancing cost and performance. It is important to highlight that our method focuses on exploring potential
reasoning chains, necessitating a thoughtful analysis during question decomposition with context at each iteration. As a
result, completion token usage constitutes approximately one-quarter of the total consumption, distinguishing our approach
from other baselines.

Table 10. Token consumption (average/QA) and performance comparison on MuSiQue.

Method
Token Consumption (⇓) Performance (⇑)

Prompt Completion Total F1 Acc
Zero-Shot CoT 85 105 191 22.90 23.47
Naive RAG 1765 103 1869 43.31 44.40
Self-Ask w/ Retrieval 5894 619 6514 46.76 51.40
IRCoT 9703 86 9789 47.57 49.20
Iter-RetGen 8140 473 8614 52.48 55.60
ProbTree 25225 650 25875 43.26 52.86
KAR3 (Ours) 6525 2295 8820 57.86 62.60

Token Consumption of Different Components In the experimental results presented so far, the same LLM is used for the
decomposer, selector, and generator components. The prompts designed for these components are detailed in Appendix A.7.
It is worth noting that these components can be configured to use different language models, we leave it as future works. The
detailed token consumption of difference components on MuSiQue are illustrated in Table 11. The decomposition-selection
loop iterates up to 5 rounds, leading to the multiple calls for decomposer and selector for each QA. Consequently, the
decomposer and selector constitute the majority of the total consumption.

Table 11. Token consumption (average/QA) on MuSiQue.
Component Prompt Completion Total
Query Proposer 2691 768 3459
Atomic Selector 3278 1429 4707
Answer Generator 556 98 654
KAR3 (Ours) 6525 2295 8820

Token Consumption of Chunk Atomization The chunk atomization, as a one-time preprocessing step, for which the
LLM API consumption scales linearly with the number of data chunks and constitutes an overhead that varies slightly across
different benchmarks. As described in Section 4.1, all chunks are derived from the context paragraphs, and the number
of LLM calls, which is equivalent to the chunk count, is listed in the last column of Table 12, together with the token
consumption, for your reference. The input token size (i.e., Prompt in the table) is primarily determined by the chunk size,
while the output token size (i.e., Completion in the table) depends on the size of generated atomic tags.

Table 12. Token consumption (average/chunk) and chunk count statistics.
Dataset Prompt Completion Total Calls

HotpotQA 209 129 338 4950
2Wiki 199 122 321 3410

MuSiQue 197 123 320 7120

An Alternative Presentation of Atomic Tag We recognize the significance of scalability when applying our method to
extensive datasets. To enhance cost-effectiveness while maintaining scalability, we integrate the use of open-source language
models like Llama 3, which significantly reduces preprocessing costs. Additionally, we explore alternative atomic tag
presentation to further optimize resource usage. One promising approach is atomizing data into plain-text sentences, treating
each sentence as an atomic tag. This method simplifies the preprocessing steps by utilizing the *spacy* library to segment the
original data chunks into sentences, thereby avoiding the need for language model invocations. Our evaluations, as detailed
in Table 13, show that this approach, while reducing performance to 55.2% on the MuSiQue dataset, still outperforms most
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baseline methods. This demonstrates its potential effectiveness in scenarios where lower-cost preprocessing is a priority,
offering a viable alternative that balances cost and performance efficiently.

Table 13. Performance of alternative atomic tags on MuSiQue.
LLM Atomic Tags F1 Acc

Llama 3
plain text sentence 45.88 54.20
atomic question (Ours) 50.68 59.70

GPT-4
plain text 50.72 55.20
atomic question (Ours) 57.86 62.60

A.6. Real Case Studies

This section presents there real case studies from our evaluation benchmark to illustrate the underlying principles of our
proposed decomposition pipeline, as detailed in Algorithm 1. Through these real-world examples, we aim to highlight the
benefits of our systematic approach. These cases will shed light on how each step of the pipeline contributes to improved
performance and the insights gained from their implementation.

Figure 6. Case (a): Given the lesser-known film “What Women Love” as opposed to the more popular “What Women Want,” single-path
methods like Self-Ask on the left are predisposed to generating follow-up questions about the latter, leading to an incorrect final answer.
Conversely, KAR3 can effectively discern the intended meaning of the original question by positing several atomic queries and postpone
the task understanding to atomic selection phase with relevant atomic tags provided, and subsequently arriving at an accurate conclusion.

19



From Complex to Atomic: Enhancing Augmented Generation

KAR3 outperforms single-path methods by effiectively discerning the intended meaning of the original questions.
Our task decomposition strategy involves generating multiple atomic queries rather than producing a single deterministic
follow-up question, as demonstrated in the Self-Ask approach. Contemporary decomposition methods typically employ a
generative model to formulate a singular follow-up question. However, this approach carries an intrinsic risk of generating
erroneous questions, potentially leading to an incorrect decomposition pathway and, ultimately, an erroneous answer.
Consider the Case (a) depicted in Figure 6, where the original question pertains to a film titled “What Women Love.” Due to
the existence of a more prominent film, “What Women Want,” the employed language model tends to ‘correct’ the original
question. Consequently, methods like Self-Ask (as shown on the left side of Figure 6) generate only one follow-up question
related to this erroneously assumed object. In the illustrated instance, although the target chunk has been retrieved due to the
similarity in embeddings, a ‘false’ intermediate answer is produced for the ‘false’ follow-up question, culminating in an
incorrect final response. In contrast, our methodology posits atomic queries concerning both “What Women Love” and
“What Women Want,” thereby seeking to clarify the true intent of the initial question. With both films existing and relevant
atomic tags being retrieved, our approach subsequently gains the advantage of verifying the question’s intent and selecting
the correct and most pertinent chunk during the atomic selection phase.

Figure 7. Case (b): By proposing multiple atomic queries, KAR3 effectively retrieves the relevant knowledge chunk, whereas the single
deterministic follow-up question approach employed by Self-Ask fails to align with the knowledge base’s schema, resulting in a retrieval
failure.

KAR3 outperforms baseline methods through better knowledge schema alignment by atomic tags as bridge. The
discrepancy between the formulation of the corpus and the query, is another critical factor advocating for a multi-query
approach over a singular deterministic one. The presentation gap can impede the retrieval process even when the generated
follow-up question is semantically accurate. For instance, as illustrated in Case (b) in Figure 7, a single-path method such
as Self-Ask on the left side might directly inquire ‘Who is the mother of Oskar Roehler?’ However, the knowledge base
articulates familial relationships using a different schema, ‘A is the son of B and C’ in this case, thus the retrieval process
falters despite the correctness of the question. Even when we applied the hierarchical retrieval to Self-Ask, the Self-Ask
with Hierarchical Retrieval did not succeed in bridging this gap. In contrast, our approach, which generates multiple atomic
queries, encompasses a broader range of phrasings that correspond to the diverse representations in the knowledge base. In
the depicted case, while the atomic query specifically asking for Oskar Roehler’s mother encounters the same retrieval issue,
an alternative query seeking information about his parents successfully retrieves the target chunk. This exemplifies how
our method’s flexibility in query generation enhances the likelihood of aligning with the knowledge base’s structure and
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obtaining accurate information.

Our methodology emphasizes the retrieval of atomic tags rather than directly retrieving chunks. This design choice is
exemplified in Case (b) depicted in Figure 7. The knowledge chunk in the corpus is structured using the pattern ‘A ... as the
son of B and C’, which poses challenges for direct retrieval by queries such as ‘Who is the mother of ...’. In our specialized
knowledge base, such direct queries tend to retrieve chunks conforming to the patterns ‘A is the mother of B’ or ‘A is the
father of B’. By utilizing atomic tags as intermediaries for retrieval, our approach effectively narrows the gap between a
single query and the multiple sentence structures found in the knowledge base. It facilitates bridging the expression pattern
differences exemplified by ’the mother of’ versus ’the son of’ in this scenario.

KAR3 outperforms methods that rely on intermediate answers by maintaining concise and highly relevant context.
In contrast to methods like Self-Ask, which only retains intermediate answers for subsequent processing, our method
preserves the entire chunk as contextual information. During the atomic selection phase, we present a list of atomic tags
as candidate summaries of the relevant content from the original chunk. This strategy significantly reduces token usage
and simplifies the process of selecting the pertinent information. Case (c) in Figure 8 demonstrates the dual benefits of our
approach: first, by selecting from a curated list of atomic tags, we streamline the identification of relevant information;
second, by retaining the entire selected chunk rather than just the intermediate answer, we ensure a rich context is maintained
for accurate and comprehensive subsequent processing. While the Self-Ask method on the left retrieves the target chunk, it
fails to correctly identify the pertinent ‘Ernie Watts’ due to the excessive contextual information. Since retrieved chunks
in Self-Ask are discarded after generating an intermediate answer, the method potentially follows an incorrect pathway,
leading to an inaccurate conclusion. In contrast, our approach can efficiently filter and select the appropriate atomic tag from
a concise list. Although the atomic tag in this round pertains to the role of Ernie Watts, there is no need to inquire further
about his birthplace, as this information is encapsulated within the selected chunk, which remains available for context in
subsequent rounds.

Figure 8. Case (c): KAR3 has the advantage of leveraging a concise list of atomic tags for targeted selection and retaining full chunks
for rich contextual support. Conversely, Self-Ask’s approach, although successful in retrieving relevant chunks, is compromised by its
dependency on intermediate answers for context, which ultimately results in the generation of incorrect final answers.
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A.7. Prompt Design

Our approach employs four distinct prompts: (1) Atomic question tagging prompt: the one used to pre-processing the
source paragraphs that linking each paragraphs with several atomic questions as atomic tags; (2) Atomic query proposer
prompt: the one used when generating multiple atomic query proposals, referring to line 1 in Algorithm 1; (3) Atomic tag
selection prompt: the one used when selecting the most useful atomic tag from the given question list, referring to line 1 in
Algorithm 1; (4) Question answering prompt: the one applied upon exiting the decomposition loop to generate the final
answer to the given question, as described in line 1 of Algorithm 1.

Atomic Question Tagging Prompt
# Task
Your task is to extract as many questions as possible that are relevant and can
be answered by the given content. Please try to be diverse and avoid extracting
duplicated or similar questions. Make sure your question contain necessary entity
names and avoid to use pronouns like it, he, she, they, the company, the person etc.

# Output Format
Output your answers line by line, with each question on a new line, without itemized
symbols or numbers.

# Content
{content}

# Output

Atomic Query Proposer Prompt
# Task
Your task is to analyse the providing context then raise atomic sub-questions for the
knowledge that can help you answer the question better. Think in different ways and
raise as many diverse questions as possible.

# Output Format
Please output in following JSON format:
{{

"thinking": <your thinking for this task, including analysis to the question and
the given context>,

"sub questions": <a list of sub-questions indicating what you need>
}}

# Context
The context we already have:
{chosen content}

# Question
{content}

# Your Output
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Atomic Tag Selection Prompt
# Task
Your task is to analyse the providing context then decide which sub-questions may
be useful to be answered before you can answer the given question. Select a most
relevant sub-question from the given question list, avoid selecting sub-question that
can already be answered with the given context or with your own knowledge.

# Output Format
Please output in following JSON format:
{{

"thinking": <your thinking for this selection task>,
"question idx": <a sub-question index, an integer from 1 to {num atom questions}>

}}

# Context
The context we already have:
{chosen content}

# Sub-Questions You Can Choose From
{atom question list str}

# Question
{content}

# Your Output

Question Answering Prompt
# Task
Your task is to answer a question referring to a given context, if any. For answering
the Question at the end, you need to first read the articles, reports, or context
provided, then give your final answer.

# Output format
Your output should strictly follow the format below. Make sure your output parsable by
json in Python.
{{

"answer": <Your Answer, format it as a string.>,
"rationale": <rationale behind your choice>

}}

# Context, if any
{context if any}

# Question
{content}{yes or no limit}

Let’s think step by step.

Demonstration Discussion In our current experiments, all prompts are zero-shot, meaning no demonstrations are provided
to illustrate the expected reasoning logic. To explore whether demonstrations could enhance performance, we designed
an ablation study. We adapted the Self-Ask w/ Retrieval and IRCoT methodologies previously employed, modifying the
prompts and task descriptions to create zero-shot, demonstration-free variants of these methods. These were denoted as
Zero-Shot Self-Ask w/ Retrieval and Zero-Shot IRCoT. The results of the experiment are presented in Table 14. The
experimental results reveal that the Zero-Shot Self-Ask w/ Retrieval method experiences a marginal decline in accuracy
for the 2Wiki and MuSiQue datasets, potentially due to the inherent randomness in generation. However, the inclusion
of demonstrations significantly improves all F1 scores and enhances the overall performance of the IRCoT method. This
suggests that demonstrations could be particularly beneficial for methods that rely on a step-by-step decomposition approach.
Consequently, integrating demonstrations is identified as a promising direction for future work within the KAR3 framework.

23



From Complex to Atomic: Enhancing Augmented Generation

Table 14. Performance comparison: Zero-Shot vs. Few-Shot.

Method
HotpotQA 2Wiki MuSiQue
F1 Acc F1 Acc F1 Acc

Zero-Shot Self-Ask w/ Retrieval 55.76 76.20 54.98 76.20 40.97 50.40
Self-Ask w/ Retrieval 71.40 80.00 69.06 75.00 46.76 51.40
Zero-Shot IRCoT 58.22 75.80 49.69 60.20 37.17 43.00
IRCoT 67.30 81.00 63.83 70.40 47.57 49.20

A.8. Evaluation on Legal Benchmarks

In this subsection, we present the performance of our approach on two legal benchmarks: LawBench (Fei et al., 2023) and
Open Australian Legal QA (Butler, 2023). Before doing so, we provide a brief description of each benchmark.

LawBench LawBench is a comprehensive legal benchmark for Chinese laws. It comprises 20 meticulously designed
tasks aimed at accurately assessing the legal capabilities of LLMs. Unlike some existing benchmarks that rely solely on
multiple-choice questions, LawBench includes a variety of task types that are closely related to real-world applications.
These tasks encompass legal entity recognition, reading comprehension, crime amount calculation, and legal consulting,
among others. Since not all tasks are RAG-oriented (e.g., reading comprehension), we have selected 6 specific tasks, which
are detailed in Table 15. The number of questions of each task is 500.

Table 15. Overview of LawBench tasks
Task No. Task Type Metric

1-1 Statute Recitation Generation F1
1-2 Legal Knowledge Q&A Single Choice EM
3-1 Statute Prediction (Fact-based) Multiple Choices EM
3-2 Statute Prediction (Scenario-based) Generation F1
3-6 Case Analysis Single Choice EM
3-8 Consultation Generation F1

We also provide example questions of these tasks for the readers reference (translated using GPT-4).

1-1: Answer the following question by directly providing the content of the article:What
↪→ is the content of Article 76 of the Securities Law?

1-2: According to the ’Securities Law’, which of the following statements about stock
↪→ exchanges is incorrect? A: Without the permission of the stock exchange, no entity
↪→ or individual may publish real-time securities trading information; B: The stock
↪→ exchange may restrict trading on securities accounts that exhibit major abnormal
↪→ trading conditions as needed, and report to the securities regulatory authority
↪→ under the State Council for record; C: The accumulated property of a member-based
↪→ stock exchange belongs to the members, and their rights are jointly enjoyed by the
↪→ members; during its existence, the accumulated property may not be distributed to
↪→ the members; D: The stock exchange formulates listing rules, trading rules, member
↪→ management rules, and other relevant rules in accordance with securities laws and
↪→ administrative regulations, and reports to the securities regulatory authority under
↪→ the State Council for record.

3-1: Based on the following facts and charges, provide the relevant articles of the
↪→ Criminal Law. Facts: The Yushu City, Jilin Province, accused that on November 15,
↪→ 2015, the defendant He signed a car rental agreement with Guo, the owner of a taxi
↪→ with license plate number xxx. The agreement stipulated a monthly rent of RMB
↪→ 3,900.00, payable monthly. On January 19, 2016, without the knowledge of Guo, the
↪→ defendant He concealed the truth and falsely claimed to be the owner of the taxi.
↪→ He signed a car rental agreement with the victim Ma, with a monthly rent of RMB
↪→ 3,800.00 and a rental period of one year, collecting a total of RMB 50,600.00 from
↪→ Ma for one year’s rent and vehicle deposit. On February 26, 2016, the taxi was
↪→ retrieved by its owner Guo from the victim Ma. The victim Ma repeatedly asked the
↪→ defendant He to return the rent and deposit, but the defendant He refused to return
↪→ them. The prosecution provided evidence including the defendant’s confession, the
↪→ victim’s statement, witness testimonies, and documentary evidence, and believed
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Table 16. Evaluation Results on Legal Benchmarks (Metric is F1 / EM as indicated in Table 15)
Task Zero-Shot CoT GraphRAG Local Ours (N=5)

LawBench

1-1 21.31 23.27 78.58
1-2 54.24 62.60 70.60
3-1 53.32 74.60 83.16
3-2 27.51 25.98 46.05
3-6 51.16 47.64 61.91
3-8 17.44 18.43 23.58

Open Australian Legal QA 25.10 34.35 63.34

Table 17. Evaluation Results on Legal Benchmarks (Metric is Acc)
Task Zero-Shot CoT GraphRAG Local Ours (N=5)

LawBench

1-1 1.23 16.60 90.12
1-2 54.00 63.40 70.60
3-1 49.90 75.40 88.82
3-2 15.83 27.60 67.54
3-6 51.12 57.00 62.73
3-8 49.70 58.80 61.72

Open Australian Legal QA 16.48 88.27 98.59

↪→ that the defendant He, with the purpose of illegal possession, defrauded others of
↪→ their property by fabricating facts and concealing the truth during the signing and
↪→ performance of the contract. The amount was relatively large, and his actions
↪→ violated the provisions of Article xx of the Criminal Law of the People’s Republic
↪→ of China, and he should be held criminally responsible for xx. Charge: Contract
↪→ Fraud.

3-2: Please provide the legal basis according to the specific scenario and question, only
↪→ the content of the specific legal provision is needed, each scenario involves only
↪→ one legal provision. Scenario: A cargo ship arrives at the port of discharge, but
↪→ the consignee fails to arrive in time to collect the goods. Under which legal
↪→ provision can the captain unload the goods at another appropriate place?

3-6: One year after the bar opened, the business environment changed drastically, and all
↪→ partners held a meeting to discuss countermeasures. According to the ’Partnership
↪→ Enterprise Law,’ the following voting matters are considered valid votes: A: Zhang
↪→ believes that the name ’Tongcheng’ is not attractive and proposes to change it to ’
↪→ Tongsheng Bar.’ Wang and Zhao agree, but Li opposes; B: In view of the sluggish
↪→ business, Wang proposes to suspend operations for one month for renovation and
↪→ reorganization. Zhang and Zhao agree, but Li opposes; C: Due to the urgent needs of
↪→ the bar, Zhao proposes to sell a batch of coffee machines to the bar. Zhang and
↪→ Wang agree, but Li opposes; D: Given the four partners’ lack of experience in bar
↪→ management, Li proposes to appoint his friend Wang as the managing partner. Zhang
↪→ and Wang agree, but Zhao opposes.

3-8: Resident A rented out the house to B. With A’s consent, B renovated the rented house
↪→ and sublet it to C. C unilaterally altered the load-bearing structure of the house.
↪→ Why can A request B to bear liability for breach of contract?

Open Australian Legal QA The benchmark consists of 2,124 questions and answers synthesized by GPT-4 from the
Australian legal corpus. All questions are of the generation type. One example is: “What is the landlord’s general obligation
under section 63 of the Act in the case of Anderson v Armitage [2014] NSWCATCD 157 in New South Wales?”

Evaluation results are listed in Table 16, where we only compare to “GraphRAG Local”, as it generally performs better than
“GraphRAG Global” on these tasks.

For the aforementioned reasons, we also use GPT-4 to evaluate all experimental results, reporting the accuracy (Acc) in
Table 17. When comparing the results in Table 16 and Table 17, we observe that the order of the results is preserved, even
though some metrics change significantly. In the following section, we aim to identify the reasons behind these changes,
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which may provide valuable insights for designing better metrics to evaluate RAG frameworks in the future.

1. The accuracy of our approach increases significantly for generation tasks (1-1, 3-2, Open Australian Legal QA). For
these tasks, our answers are often semantically equivalent but syntactically different from the golden answers. This
explains the improved metric performance, as GPT-4 can compare the semantic content of the answers. This also
applies to the “GraphRAG Local” results for the “Open Australian Legal QA” task.

2. The accuracy of “GraphRAG Local” decreases for generation tasks 1-1 and 3-2. These tasks involve statute recitation
and prediction, requiring the retrieval of specific articles. Upon detailed examination, We find that “GraphRAG Local”
often fails to retrieve the correct articles or references the wrong ones, but it tends to repeat the legal information.
Therefore, token-level recall can be improved by simply rephrasing legal names and common prefixes, such as
“According to XX law, XX articles...”.

3. Both our approach and “GraphRAG Local” show significant accuracy improvements on task 3-8. Besides the reason
mentioned in the first point, the quality of the golden answers may also contribute to this difference. The questions
and golden answers in task 3-8 are sourced from a consulting website, resulting in varying quality. For example, one
question asks “Do the children from the original marriage have an obligation to support the father?” However, the
provided golden answer includes an irrelevant article, “Article 1067,” which pertains to parents’ obligations to support
minor children.

Question: In the case where both parents are divorced and have formed their own
↪→ families with new children, and according to the court’s judgment, the father is
↪→ required to pay monthly child support to the mother until the child is 18 years
↪→ old. Do the children from the original marriage have an obligation to support
↪→ the father?

Reference Answer: In our country, biological children have an obligation to support
↪→ their parents who are divorced. The relationship between children and parents
↪→ does not dissolve because of the divorce of the children or parents. Supporting
↪→ parents is a legal obligation of the children. If the children do not support
↪→ the elderly, the parents can directly file a lawsuit in the People’s Court
↪→ requesting the court to order the daughter to pay support. Legal basis: Article
↪→ 1067 of the Civil Code of the People’s Republic of China states that if parents
↪→ do not fulfill their obligation to support, minor children or adult children who
↪→ cannot live independently have the right to request support from their parents.
↪→ If adult children do not fulfill their obligation to support, parents who are
↪→ incapacitated or have difficulties in living have the right to request support
↪→ from adult children. Article 1084 states that the relationship between parents
↪→ and children does not dissolve because of the parents’ divorce. After the
↪→ divorce, whether the children are directly raised by the father or the mother,
↪→ they are still the children of both parents. Lawyer’s explanation: After the
↪→ parents are divorced, adult children still have the obligation to support both
↪→ parents. The obligation of adult children to support their parents does not
↪→ change because of changes in the parents’ relationship. If adult children do not
↪→ fulfill their obligation to support, parents who are incapacitated or have
↪→ difficulties in living have the right to request support from adult children.

Our Answer: Yes, there is an obligation to support. Legal basis: According to Article
↪→ 1069 of the Civil Code of the People’s Republic of China, it is stipulated that:
↪→ ’The obligation of children to support their parents does not terminate because
↪→ of changes in the parents’ marital relationship.’ Therefore, even if the
↪→ parents are divorced and remarried with new children, the original children
↪→ still have an obligation to support their parents.

4. The accuracy of all methods on choice tasks 1-2, 3-1, and 3-6 almost coincides with the F1 score, as expected. An
exception is task 3-1, where the difference is mainly due to GPT-4’s capacity to understand Chinese, particularly in
distinguishing numbers in Arabic and Chinese. In Chinese law, all numbers are written in Chinese, while in the golden
answers, all numbers are given in Arabic.
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