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ABSTRACT

Antibodies are successful biotherapeutics used for the treatment of various dis-
eases. Throughout their therapeutic development, antibody candidates require op-
timization for drug developability, while retaining their functionality. This task
remains a significant challenge as it is constrained by low-throughput experimen-
tal measurements. Retrieval Augmented Generation (RAG) was developed in nat-
ural language processing to generate more accurate text responses combining a
retriever, a generator and a knowledge database. Here, we present a novel adap-
tation of this framework for the developability optimization of antibodies. Using
solubility as a proof-of-concept, we demonstrate that this framework generates
optimized antibody sequences with improved solubility scores, when evaluated in
silico. This RAG framework allows precise control over the optimization process
with the aim of preserving functionality of the antibody candidate. Moreover, the
modular design enables adaptability across diverse optimization campaigns us-
ing a generalizable knowledge database, which has the potential to substantially
reduce experimental efforts required for antibody developability optimization.

1 INTRODUCTION

Developing a safe and effective antibody therapeutic not only requires optimization for functional-
ity, but also other properties, such as immunogenicity, manufacturability, solubility, and stability,
collectively referred to as developability (Jain et al., 2017). Most developability properties are mea-
sured through low-throughput assays, which has led to substantial efforts being directed towards
developing computational tools to assess developability based on amino acid (aa) sequence or pro-
tein structure (Raybould et al., 2019; Wolf Pérez et al., 2019; Khetan et al., 2022; Waight et al.,
2023). However, these tools are limited when developability parameters are not directly linked to
the biophysical properties of amino acids and accurate antibody structures are unavailable. Protein
language models (PLMs) leveraged for protein engineering have emerged as promising tools to ad-
dress these challenges. PLMs, trained on extensive protein sequence datasets, can learn biologically
meaningful representations and have been applied to a variety of tasks including structure predic-
tion, functional annotation and mutant design (Bepler & Berger, 2021; Brandes et al., 2022; Lin
et al., 2023), but also to improve antibody affinity (Hie et al., 2023; Shanker et al., 2024; Jiang et al.,
2024; Singh et al., 2025). Nevertheless, in a zero-shot setting PLMs are limited when discrepancies
between evolutionary fitness and desired functional outcomes exist. Therefore, they may not be able
to generalize and optimize diverse tasks without additional fine-tuning (Hie et al., 2023; Shanker
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et al., 2024; Ding & Steinhardt, 2024). Alternative approaches have addressed the complex anti-
body optimization problem by combining generative modeling and Bayesian optimization (Stanton
et al., 2022; Zeng et al., 2024; Amin et al., 2024). These methods optimize antibody properties
in the latent space of a generative model that is trained on a large database of antibody sequences.
Hence, these approaches rely on compute-intensive models that lack transparency in their generative
process.

In this work, we present a novel framework based on RAG (Lewis et al., 2020) for the optimization
of antibody solubility as quantified by the CamSol measure (Sormanni et al., 2015), which is a devel-
opability parameter critical in drug development. Recent studies have investigated the utility of RAG
in the context of protein structure and function prediction and to enhance protein generation with
diffusion models (Ma et al., 2023; Li et al., 2024; Huang et al., 2024; Shaw et al., 2024). However,
to our knowledge, this is the first study that uses RAG for in silico antibody optimization. Originally
developed in natural language processing, the RAG architecture was developed to enhance the cor-
rectness and relevance of generated text responses. It typically consists of three main components:
(1) a retriever, often based on vector similarity (e.g., using embeddings from language models), (2)
an external knowledge database and (3) a generator, which incorporates the retrieved information
into its output response. Based on an input query, relevant documents are retrieved from the knowl-
edge database and are used as additional context for the generator to produce a more informed and
contextually accurate response. Developability optimization is a constrained optimization problem,
as retaining the functionality of the antibody lead candidate, such as antigen-binding, is critical
throughout the optimization process. To this aim, we repurposed RAG and developed a modular and
adaptable approach that allows control over the optimization process aimed at balancing retention
of functionality and optimization (Figure 1).

Figure 1: Visualization of a RAG framework for the generation of optimized antibody amino acid
sequences.

2 RESULTS

2.1 OVERVIEW OF THE RAG FRAMEWORK FOR ANTIBODY OPTIMIZATION

RAG for antibody optimization consists of three key components: 1) a retriever that fetches func-
tionally similar sequences from 2) a curated knowledge database, and 3) a generator that produces
optimized sequences (Figure 1). The retriever module is based on a PLM, Evolutionary scale model
(ESM)-2 (Lin et al., 2023), specifically its last hidden layer representation which is a continuous em-
bedding of the aa sequence capturing evolutionary and biologically meaningful information. For a
given seed sequence, the retriever identifies n=3 sequences from a knowledge database that minimize
the Euclidean distance in the ESM-2 embedding space. The knowledge database contains exemplars
of antibody sequences represented as ESM-2 embeddings with desirable, optimal target solubility.
Minimizing this distance is aimed at maximizing the probability of functional similarity between the
seed and retrieved sequences, which are then passed to the generator. The generator is based on the
principal component analysis (PCA) algorithm and linearly projects the seed and retrieved sequences
into a lower-dimensional latent space of principal components (PCs) and computes a weighted aver-
age of the PCs of the seed and retrieved sequences. The hyperparameter α , also referred to as seed
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ratio, weighs the contribution of the seed versus the retrieved sequences. This hyperparameter is
aimed at controlling the balance between optimization and retention of functionality, enabling sys-
tematic extrapolation and optimization. The optimized PCs are then mapped back to sequence space
via the PCA inverse, producing a new candidate sequence. This framework, employing the ESM-
2-based retriever, is referred to as ESM-RAG. Given the computational requirements of generating
PLM representations, simpler retriever modules were benchmarked against the ESM-2 retriever.
Since the generator is based on PCA, we assessed a retriever module that fetches sequences based
on similarity in the PCA embedding space (PCA-RAG). Moreover, a random retriever (RANDOM-
RAG) was investigated to test the advantage of retrieving similar sequences rather than random
sampling from the optimization set.

In order to test RAG, an exemplary antibody optimization scenario inspired by an in vivo (mouse im-
munization) antibody discovery campaign was designed. Following the identification of functional,
antigen-specific lead candidates, developability parameters have to be optimized. Hence, a single-
cell antibody repertoire dataset generated by Erlach et al. (2024) was used and the antigen-specific
sequences of the variable heavy chains (VH) identified in this study represent the lead candidates for
this optimization study (Supplementary Table 1). Solubility was selected as a proof-of-concept pa-
rameter quantified by the CamSol score as it can be directly computed from the aa sequence and has
been extensively experimentally validated (Sormanni et al., 2015; Wolf Pérez et al., 2019). While
it’s acknowledged that optimizing a developability metric which can be computed computationally
reduces the relevance of this scenario, it allowed for a systematic and comprehensive evaluation of
the optimization framework without experimental validation. For evaluation, the sequence dataset
was partitioned into three subsets, a training, optimization and test set based on ranked, calculated
solubility scores (Supplementary Figure A.1). The training and optimization set were used to fit the
PCA-based generator. The optimization set served as the knowledge database for sequence retrieval
and the test set contained sequences with the highest CamSol solubility scores and was held out to
evaluate the generator’s ability to produce optimized, functional sequences. The optimization per-
formance was evaluated as the improvement in solubility score, which was defined as the difference
in CamSol score of the generated sequence and the seed sequence, providing a direct quantifiable
metric for optimization. In addition, sequence generation was evaluated, quantified as the percent-
age of generated sequences that are identical to 1) the seed sequence or 2) retrieved sequences, 3)
sequences in the training and optimization set, or 4) the test set. Details about the evaluation of
the sequence generation of the RAG frameworks can be found in Appendix A.2. For one optimiza-
tion step, a seed sequence was randomly sampled from the training dataset with solubility scores
< -0.1 to simulate a scenario of a lead candidate with low solubility (Supplementary Figure A.1).
Subsequently, three sequences based on similarity of ESM-2 embeddings from the optimization set
were retrieved to generate an optimized sequence based on the retrieved sequences and the seed
sequences.

2.2 EVALUATION OF OPTIMIZATION IN SOLUBILITY

To quantify optimization CamSol solubility scores were computed for the optimized sequences gen-
erated across 50 optimization rounds with the three RAG frameworks, ESM-RAG, PCA-RAG, and
RANDOM-RAG. Additionally, each framework was tested under varying seed ratios (α). Any gen-
erated sequence that was identical to the seed or any of the retrieved sequences was excluded from
this evaluation. The solubility score improvement was defined as the difference between the op-
timized and seed sequence solubility scores. While all RAG frameworks demonstrated significant
improvements in solubility scores, ESM-RAG achieved the greatest improvement (Supplementary
Table 2, Figure 2A). Although overall differences among all frameworks were minor, these results
indicate that retrieval based on similarity of ESM-2 representations is beneficial while PCA-RAG
performed slightly worse than RANDOM-RAG. Overall, these results demonstrate the capability of
RAG in solubility optimization. The seed ratio (α) had the largest impact on the improvement of
solubility demonstrating the critical influence of this hyperparameter across all frameworks (Supple-
mentary Figure A.5). With seed ratios α < 0.5, nearly every optimized sequence exhibited improved
solubility compared to its seed (Figure 2B, Supplementary Figure A.4A, B). These findings highlight
that the seed ratio can provide precise control over this process and enables systematic optimization.
Notably, the optimization framework was capable of generating optimized sequences with solubility
scores up to 1.0 (Figure 2B). These scores even exceed the maximum solubility scores in the opti-
mization set of 0.55 CamSol score (Supplementary Figure A.1) demonstrating the potential of this
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framework to extrapolate beyond the optimization set, even though no data in this range of solubility
scores was observed by any of the RAG frameworks.

Figure 2: Evaluation of solubility optimization of antibody sequences. (A) Box plot comparing
the solubility score improvements quantified as the difference between the solubility scores of the
optimized and the seed sequences across 50 sampled seeds when using RAG with the optimization
set as knowledge database. The solubility scores were grouped by retrievers. (B) Box plots of
paired solubility scores of the seed and optimized sequences summarized across retrievers (ESM-
RAG, PCA-RAG, RANDOM-RAG). (C) Evaluation of solubility scores optimized with OAS-RAG
using a generalizable knowledge database. Box plots of paired solubility scores of the seed and
optimized sequences are grouped by seed ratio, α, < 0.5 and ≤0.5. If the generated sequences were
identical to the seed sequence, they were excluded for this visualization.

2.3 OPTIMIZATION UTILIZING A GENERALIZABLE KNOWLEDGE DATABASE

By employing the proposed RAG optimization framework with a reusable and target-independent
knowledge database that supports optimization for multiple development campaigns, this approach
has the potential to reduce the overall experimental efforts for antibody developability optimiza-
tion. Knowledge databases could be derived from public databases, therapeutic antibody datasets,
or internally generated datasets. By covering a sufficiently large sequence space we envision this
generalizable knowledge database to enable its re-usability for diverse antibody development cam-
paigns across different targets. To evaluate RAG in such a context, we aimed to construct a general-
izable database by randomly sampling 10,000 sequences from the Observed Antibody Space (OAS)
database (Olsen et al., 2022) and computing their CamSol solubility scores (Sormanni et al., 2015).
Based on ranked solubility scores the top 25%, 2500 sequences, with the highest solubility scores
were used as the generalizable knowledge database. Seed sequences from the training dataset with
low solubility (<0.1 CamSol score) were sampled and optimized using RAG with the ESM-2 re-
triever as described above, but using this generalizable database (OAS-RAG). Again, the evaluation
focused on both improvements in solubility score and sequence generation. When using OAS-RAG
to generate optimized sequences, a high proportion of the generated sequences was identical to the
seed sequence, particularly at seed ratios (α) > 0.5 and at α = 0.9 all sequences were identical to
the seed (Supplementary Figure A.6A). Nevertheless, at seed ratio = 0.5, OAS-RAG was able to
generate two sequences that are identical to sequences in the training set, indicating its capability
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to produce functional antigen-binding sequences. At lower α values, most of the generated se-
quences were novel and none of the generated sequences were identical to the retrieved sequences.
These results are in contrast to those of the other RAG frameworks using the optimization set as
knowledge database, which produced fewer seed-identical sequences, but a higher proportion of
retrieved sequences. When assessing the solubility score improvements, sequences identical to the
seed were excluded. Sequences generated with OAS-RAG exhibited significantly higher solubility
scores than the seed sequences, though the overall improvements were lower compared to the other
RAG framework evaluations (ESM-RAG, PCA-RAG, RANDOM-RAG) (Supplementary Table 2.
Moreover, OAS-RAG demonstrated greater sensitivity to the seed ratio, with improvements in sol-
ubility scores decreasing sharply at α ≥ 0.5, while the other RAG frameworks showed declines at
α ≥ 0.6 (Supplementary Figure A.6B and A.3B). Paired solubility scores of seed and optimized se-
quences at seed ratios < 0.5 reveal that OAS-RAG still achieved substantial solubility improvements
and even extrapolated to solubility scores as high as 0.6, exceeding solubility scores in the in the
training and optimization set (Supplementary Figure A.1A, Figure 2C). However, at seed ratios ≥
0.5 improvements were minor and it becomes clear that fewer optimized sequences were generated
that are not identical to the seed. These findings again highlight the impact of the hyperparameter
α balancing seed sequence (retention of functionality) and the retrieved sequence (optimization) in
the generation of new antibody sequences.

3 DISCUSSION

In this study we present a novel computational framework for antibody developability optimization
based on RAG (Lewis et al., 2020). The focus was specifically on solubility quantified by the Cam-
Sol score (Sormanni et al., 2015) which offers an efficient measure for the computational evaluation
of this optimization algorithm as it can be solely computed from aa sequences. While this setup
provides a simple, yet illustrative example of the framework’s utility, detailed experimental valida-
tion of our findings and benchmarks against alternative approaches such as Bayesian optimization
(Stanton et al., 2022; Zeng et al., 2024; Amin et al., 2024) are essential. The RAG framework we
tested is based on a PLM-based retriever and a PCA-based generator and demonstrates significant
improvements in solubility score of the generated antibody sequences (Figure 2, Supplementary
Table 2). While using a linear PCA-based generator suggests that it may simply interpolate be-
tween sequences and their solubility scores, the RAG optimization framework could successfully
generate sequences with solubility scores exceeding those in the optimization set. Moreover, opti-
mized solubility scores reached values comparable to scores from sequences in the test set, to which
none of the RAG modules had access to. These findings challenge this assumption of simplistic
interpolation and highlight the framework’s capability to extrapolate to some extent, which is par-
ticularly amenable for the generation of optimized antibody candidates. While the simplicity of this
framework yields transparency and interpretability, it may also limit its capacity particularly with
developability metrics that are more complex and require antibody structure context. The optimiza-
tion of metrics such as stability, poly-specificity or immunogenicity may be more challenging and
RAG in this setup might not capture enough complexity of the relationship between aa sequence
and developability property. More detailed (experimental) evaluations are required to investigate
how this framework performs across a broader range of developability parameters. The modular
design of the framework facilitates replacement of individual components with more sophisticated
models which would allow more complex sequence generation. For instance, utilizing a retriever
based on explicit or implicit structural similarity could improve the framework’s capacity to retrieve
functionally similar antibody variants. Moreover, the PCA-based generator could be substituted
with more advanced generative architectures, such as (variational) autoencoders, PLMs or diffusion
models (Friedensohn et al., 2020; Shuai et al., 2023). Joint training or fine-tuning of deep learning-
based retriever and generator components could further enhance sequence generation, optimization
performance and adaptability.

A generalizable knowledge database that can be reused for multiple optimization campaigns offers
the potential to significantly reduce overall experimental efforts. However, the feasibility of gener-
ating and curating such a database and determining its required size and diversity need further inves-
tigation to ensure broad applicability across different antibody targets. Our findings demonstrated
effective solubility optimization when using a generalizable knowledge database that was sampled
from the OAS database. However, without experimental validation we cannot confirm whether the
generated sequences retained antigen-binding, which is crucial for real-world applicability. Sim-
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ilarly, the ideal seed ratio (α) requires careful investigation for balancing the trade-off between
functionality and developability optimization. Experimental validation of generated sequences will
be essential to select the optimal α value that ensures that generated antibodies maintain functional
relevance while reaching desired target developability.

In conclusion, our study introduces a novel approach for optimizing a developability parameter of
therapeutic antibody candidates based on RAG. Despite its success for in silico solubility optimiza-
tion, RAG’s utility in real-world antibody development will depend on further refinement, testing,
and adaptation to more complex metrics and tasks. However, this modular framework provides a
promising foundation for incorporating more advanced models underscoring its potential for more
effective and efficient antibody optimization strategies.
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A APPENDIX

A.1 METHOD DETAILS

A.1.1 DATASET

To evaluate the optimization RAG framework, the variable regions of the heavy chain (VH) of an an-
tibody sequence dataset from mice immunized with OVA generated by Erlach et al. (2024) was used
(VH dataset). The dataset was processed and aligned as described (Erlach et al., 2024). The Cam-
Sol solubility scores of the 573 OVA-specific VH aa sequences were calculated on the web server
https://www-cohsoftware.ch.cam.ac.uk//index.php and based on the ranked sol-
ubility scores the data was split in a training, optimization and test set. The test set consists of 10%
of the sequences with the highest solubility scores and was used for evaluation of the framework
and completely held out from any of the fitting or optimization. The optimization set represents the
database that is used for optimization of solubility. 25% of the remaining sequence again with the
largest solubility scores were assigned to the optimization set. The remaining sequences were the
test set from which the seed sequences were sampled with CamSol solubility scores < -0.1.

A.1.2 RETRIEVER MODULE

The retriever module should fetch related antibody sequences from the knowledge database, which
consists of antibody examples with good solubility scores, which we refer to as optimization set.
Three retriever modules were tested, ESM-2-based, PCA-based retrievers are based on Euclidean
distance in the ESM-2 embedding space and PCA space. The random retrieval was used to bench-
mark the similarity based retrievers. To enable comparison of VH sequences of different length,
the VH sequences were aligned to the same length with the ANARCI numbering system (Dunbar
& Deane, 2016). Sequence gaps were represented as ’-’ which led to a total of 573 sequences of
aligned length 139.

ESM-2 Retriever
To generate residue-based ESM-2 embeddings, the aligned sequences were passed through the ESM-
2 model. ESM-2 (esm2 t33 650M UR50D) is a variant of the ESM model with 33 layers and
650 million parameters (Rives et al., 2021), which was trained on the UR50/D 2021 04 dataset, as
detailed in the ESM GitHub documentation: https://github.com/facebookresearch/
esm?tab=readme-ov-file#available. The resulting last hidden layer representation was
a vector of sequence length + 2 that includes the classification and end of sequence token added
by ESM-2, which results in an embedding of dimension 141 x 1280 per sequence. The ESM-2
retriever fetches three sequences with the lowest Euclidean distance to the seed sequence’s ESM-2
embedding.

PCA Retriever
The PCA retriever utilizes PCA for the generation ot the sequence embeddings. A PCA with 250
components is fitted with the one-hot encoded sequences of the training and optimization set. The
sequences were transformed to a PC vector of 1x250. The number of PCs was evaluated based on
the percentage of sequences that were recovered correctly based on a subsample of 300 sequences
of the VH dataset, as well as explained variance of the PCs (Supplementary Figure A.2). Hence, the
number of PCs was set to 250 as all 300 sequences were recovered correctly.

Similarly to the ESM-2 retriever, three sequences with the lowest Euclidean distance based on the
PCA embeddings are retrieved.

Random Retriever
The random retriever serves as a baseline and randomly samples three sequences from the knowledge
database.
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A.1.3 GENERATOR MODULE

The linear generator module employs PCA with the number of components set to 250 and is fitted
on a one-hot encoding of the sequences in the training and optimization set, without access to the
test set. The generator combines the PCA embedding of the seed and the average embedding of
the retrieved sequences to generate a new PCA embedding. The hyperparameter α balances the
contribution of seed sequences in the new PCA embedding. Higher alpha values emphasize retaining
original functionality, while lower values favor optimization, weighing the retrieved sequences more.

PCopt = αPCseed + (1− α)
1

N

N∑
i=1

PCretrieved,i (1)

, where N is a the number of retrieved sequences, which was defined to be 3 and PCseed, PCopt

and PCretrieved are the PC embeddings.

The scikit-learn PCA function was used to create a continuous embedding, and PCA inverse was
applied to invert the PCA embedding to a one-hot encoded sequence.

A.1.4 CREATING GENERALIZABLE KNOWLEDGE DATABASE FOR OPTIMIZATION

The generalizable knowledge database we created for solubility optimization was based on a ran-
domly sampled subset of 10,000 unpaired VH sequences of species ’mouse C57BL/6’, which is
the same mouse strain from which the training, optimization and test set was derived. The CamSol
solubility score was calculated for all the 10,000 sequences and 2500 sequences with the highest
solubility score were utilized as generalizable knowledge database. The sequences were aligned and
processed as described above.

A.2 EVALUATION OF SEQUENCE GENERATION

To evaluate the sequence generation capabilities of the optimization framework, we analyzed the
sequences that were generated from 50 randomly sampled seed sequences (Supplementary Figure
A.3A). In addition, the influence of the hyperparameter α, which determines the balance between
the PCs of the seed sequence and the retrieved sequences was evaluated. The RAG frameworks
(ESM-RAG, PCA-RAG, RANSOM-RAG) were evaluated across a range of α values (0.1–0.9) by
examining the composition of the newly generated sequences. For each of the 50 optimization runs, a
seed sequence with low solubility (-0.1 CamSol score) was sampled, three sequences were retrieved,
and an optimized sequence was generated. All frameworks showed the tendency to reproduce the
seed sequence with higher values of the seed ratio α. At lower α values (<0.5), differences between
the retriever frameworks were observed. All RAG frameworks could reproduce a small number of
sequences from the training set, proving its capability to produce functional, antigen-specific se-
quences. However, given the small size of the dataset (<600 sequences), evaluating this framework
solely on its ability to reproduce sequences within the dataset is limited. Retriever frameworks based
on similarity more frequently generated sequences that are identical to the retrieved sequences, with
the highest number of such sequences observed from ESM-RAG. This likely occurs because the
PCs of the seed and retrieved sequences are aligned more closely, resulting in an optimized PC that
is not sufficiently dissimilar to the retrieved PCs, leading to the reproduction of one of the retrieved
sequences. While this behavior may not be advantageous in the current setup, it is likely less pro-
nounced when using a generalizable database containing sequences from diverse repertoires that are
overall more diverse in their antibody sequence.
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A.3 SUPPLEMENTARY TABLES

Table 1: Number of sequences from used to evaluate RAG antibody optimization

Dataset Number of sequences %
Training set 386 65
Optimization set 130 25
Test set 57 10

Table 2: Summary of optimization evaluation

Framework Average improvement Standard deviation Significance level
ESM-RAG 0.422 0.363 ***
PCA-RAG 0.410 0.358 ***
RANDOM-RAG 0.415 0.368 ***
OAS-RAG (ESM-3 retreiver) 0.381 0.266 ***

A.4 SUPPLEMENTARY FIGURES

Figure A.1: Histogram of the distribution of sequences ranked by solubility values split in training,
test, and optimization sets. For each optimization step a sequence with low solubility (solubility
score < 0.1, dashed line in black) was randomly sampled from the training dataset and represented
the seed sequence for optimization.
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Figure A.2: Principle components evaluation. (A) Bar plot of number of PCs and the percentage
of correctly inverted sequences, which were 300 sequences randomly sampled from the training set
of the VH dataset. (B) Bar plot of number of PCs and the sum of explained variance with 300
sequences randomly sampled from the training set.

Figure A.3: Evaluation of sequence generation using different retriever modules. Bar plots of the
composition of sequences generated for 50 sampled seed sequences with (A) ESM-RAG, (B) PCA-
RAG and (C) random retriever. The colors indicate whether the generated sequences are identical
to the seed sequence (blue), to a sequence in the training or optimization set (green), to a sequence
in the held out test set (purple), identical to one of the retrieved (orange) sequences or completely
novel (red).
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Figure A.4: Evaluation of optimized solubility scores with varying seed ratios. (A) Bar plot of
the percentages of sequences for which an improvement in solubility was observed, grouped by
seed ratio, α. The data was summarized across the different retrievers. (B) Box plots comparing
the solubility score improvements quantified as the difference between the solubility scores of the
optimized and the seed sequences across 50 sampled seeds. The solubility scores were grouped by
seed ratios, α. If the generated sequences were identical to the seed sequence, they were excluded
for these visualizations.
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Figure A.5: Box plots of solubility score improvements as difference between score of the optimized
and seed sequence. Improvements were averaged for the different retrievers and seed ratios (hyper-
parameter, α). (A) Box plots are grouped by seed ratio and (B) by retriever for improved visibility
of comparisons.
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Figure A.6: Evaluation of solubility optimization and sequence generation using the generalizable
knowledge database. (A) Bar plots of 50 seed optimizations with the ESM-2 retriever leveraging the
generalizable knowledge database sampled from the OAS. The colors indicate whether the generated
sequences are identical to the seed sequence (blue), to a sequence in the training or optimization set
(green), to a sequence in the held out test set (purple), identical to one of the retrieved (orange)
sequences or completely novel (red). (B) Box plot comparing the solubility score improvements
quantified as the difference between the solubility scores of the optimized and the seed sequences
across 50 sampled seeds. The solubility scores were grouped by seed ratios, α. Generated sequences
that were identical to the seed sequence were excluded for this visualization.
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