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Abstract

While multilingual neural machine translation
has achieved great success, it suffers from the
off-target issue, where the translation is in the
wrong language. This problem is more pro-
nounced on zero-shot translation tasks. In this
work, we explore the major cause of the off-
target problem and find that a closer lexical
distance (i.e., KL-divergence) between two lan-
guages’ vocabularies leads to a higher off-target
rate. Motivated by the finding, we propose
LAVS, a simple and effective algorithm to con-
struct the multilingual vocabulary, that greatly
alleviates the off-target problem of the trans-
lation model by increasing the KL-divergence
between languages. We conduct experiments
on a multilingual machine translation bench-
mark in 11 languages. Experiments show that
the off-target rate for 81 translation tasks is
reduced from 29% to 8%, while the overall
BLEU score is improved by an average of 1.9
points.!

1 Introduction

Multilingual NMT makes it possible to do the trans-
lation among multiple languages using only one
model, even for zero-shot directions (Johnson et al.,
2017; Aharoni et al., 2019). It has been gaining
increasing attention since it provides insights for
multilinguality studies and greatly reduces the MT
system’s deployment cost. Despite its success, the
off-target phenomenon is a harsh and widespread
problem in the existing multilingual models. For
the zero-shot translation directions, MT system
translates the source sentence to a wrong language,
which severely degrades the system’s credibility.
As shown in Figure 1, the off-target rate could be
up to nearly 45% for high-resource languages and
even up to 95% for low-resource languages.
Researchers have been noticing and working on
solving the problem from different perspectives
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Figure 1: Off-target rate of some directions tested
on Flores-101 dataset. The off-target problem is
widespread with a maximum of 95.16% error translation
language for low-resource language (tr, gu) pairs and
44.86% for high-resource language (fr,de,cs,fi) pairs.

like data augmentation (Gu et al., 2019; Zhang
et al., 2020) and regularization (Yang et al., 2021).
While most of the existing work focus on address-
ing the problem by improving the data or the op-
timization, the importance of vocabulary, which
reflects the token distribution among languages, is
often neglected.

In this work, we perform a comprehensive anal-
ysis of the off-target problem, finding that the off-
target rate is positively related to the proximity of
the language pair. We quantify the proximity within
language pairs using KL-divergence between token
distribution. It turns out that translation direction
with lower KL divergence is related to a higher
off-target rate and the correlation coefficient could
be as high as -0.92.

A simple solution by separating the vocabulary
of different languages can greatly increase the KL
divergence between languages. Although it proves
to improve the zero-shot translation performance,
it also greatly increases the model size and costs
the cross-lingual transferability.

To address these problems, we propose
Language-Aware Vocabulary Sharing (LAVS), a
novel algorithm to construct the multilingual vo-
cabulary that increases the KL-divergence of token
distributions among languages while preserving
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Table 1: Zero-shot off-target rate of the baseline model.
While the average OTR of supervised directions is about
0%, the average OTR of 81 zero-shot directions in-
creases to 29%.

the cross-lingual transferability. It is simple and
can be applied to any existing multilingual transla-
tion model without introducing any extra data or
parameters. Our empirical experiments prove that
LAVS reduces the off-target rate from 29% to 8%
and improves the BLEU score by 1.9 points on the
average of 81 translation directions.

2 Delving into the Off-Target Problem

In this section, we start by briefly introducing our
baseline multilingual NMT system and analyze the
result of off-target phenomena. Then, we explore
the causes of the off-target problem and reveal its
relation to language vocabulary.

2.1 Multilingual NMT System

We adopt the Transformer-Big (Vaswani et al.,
2017) model as the baseline model. For multilin-
gual translation, we add a target language identifier
<XX> at the beginning of input tokens to combine
direction information. We train the model on an
English-centric dataset WMT’ 10 (Callison-Burch
et al., 2010). Zero-shot translation performance is
evaluated on Flores-101 (Goyal et al., 2021) dataset.
We use a public language detector? to identify the
sentence-level language and compute the off-target
rate (OTR) which denotes the ratio of translation
that deviates to wrong languages. Full information
about training can be found in Section 4.1.

2.2 Off-Target Statistics Safari

Off-Target Rate Differs in Directions We first
train the multilingual NMT model in 10 EN-X di-
rections and 10 inverse directions from WMT’ 10
simultaneously. Then we test the model on 81 X-Y

Zhttps://github.com/Mimino666/langdetect

An Off-Target Case

Direction: FR -> DE

Input: <DE> Un sondage effectué auprés de 1 400 personnes
avant les ¢élections fédérales de 2010 a révélé que le nombre
d'opposants a la transformation de 1'Australie en république
avait augmenté de 8 % depuis 2008.

Output: A survey of 1400 people prior to the 2010 federal
elections revealed that the number of opponents of Australia's
transformation into a republic had increased by 8 % since 2008.
Gold: Von den 1.400 Personen, die vor den Bundeswahlen
2010 befragt wurden, hat der Anteil derjenigen, die sich
dagegen aussprechen, dass Australien zur Republik wird, seit
2008 um 8 Prozent zugenommen.

Figure 2: A real Off-Target case observed in our multi-
lingual NMT system. In this case, the output is literally
English while the real target is German.

zero-shot directions using semantic parallel sen-
tences from the previous 10 languages provided by
Flores-101. We compute the off-target rate of all
directions and list the result in Table 1.

In addition to the individual score, we next split
the languages into High (cs, fr, de, fi, >5M), Mid
(lv, et, IM-5M), and Low (ro, tr, hi, gu, <1M) re-
sources according to data abundance degree. Then
we compute the average OTR of High-to-High,
High-to-Low, Low-to-High, and Low-to-Low di-
rections and rank the result. The ranked result is:
Low-to-Low (50.28%) > High-to-High (27.16%) >
Low-to-High (23.18%) > High-to-Low (20.78%).
Based on the observation, we can see that language
with the lowest resource (gu) contributes to a large
portion of off-target cases. This is reasonable since
the model might not be familiar with the language
identifier <GU> and the same situation goes for
Low-to-Low translations.

The Hidden Reason for Off-Target However,
it is surprising to see that translations between
high-resource languages suffer from more severe
off-target than those directions involving one low-
resource language. There seem to be other factors
influencing the off-target phenomena.

In other words, if data imbalance is not the key
factor for off-targets between high-resource lan-
guages, what are the real reasons and possible solu-
tions? To answer these questions, we need to delve
deeper into the real off-target cases.

2.3 The Major Symptom of Off-Target

When the model encounters an off-target issue, a
natural question is which language the model most
possibly deviates to. We find that among different
directions, a majority(77%) of the off-target cases
are wrongly translated to English, which is the
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Figure 3: Encoder pooled output visualization using
TSNE for French-to-Many translations. The input
French sentences are the same for all directions. Note
that there are only French sentences in the encoder side.

centric language in the dataset. It raises our interest
that why most off-target cases deviate to English.

2.4 Failing in Encoding Discriminative Target
Language Signal Leads to Off-Target

Considering the encoder-decoder structure of the
model, we have one hypothesis for a possible rea-
son for off-target: The encoder fails to encode dis-
criminative target language information to the hid-
den representations before passing to the decoder.

To test the hypothesis, we start by analyzing the
output of the transformer’s encoder trained on the
WMT’10 dataset.

1) We choose French as the source language and
conduct a French-to-Many translation (including
all languages in WMT’10) on Flores-101.

2) We collect all the pooled encoder output rep-
resentations of the French-to-Many translation and
project them to 2D space using TSNE. The visual-
ization result is shown in Figure 3.

The visualization result justifies our hypothesis.
We can tell from the distribution that only represen-
tations belonging to “fr-tr”” and “fr-ro” directions
have tight cluster structures with boundaries. The
representations from high/mid-resource language
pairs are completely in chaos and they are also
mixed with fr-en representations. And those lan-
guages generally have a higher off-target rate in
French-to-Many Translation according to Table 1.

The decoder cannot distinguish the target lan-
guage signal from the encoder’s output when it re-
ceives representations from the “chaos” area. More-
over, during the training process, the decoder gen-
erates English far more frequently than other lan-
guages and it allocates a higher prior for English.

The above two factors could cause that passing
hidden representation similar to English one will

possibly confuse the decoder to generate English
no matter what the given target language is. It could
explain the relatively high off-target rate in H-H
directions and why most cases deviate to English.

Now we have a key clue for the off-target is-
sue. The left question is what causes the degrada-
tion of target language signal in some directions
and whether we can make the representations of
different target languages more discriminative to
eliminate the off-target cases.

2.5 Language Proximity Correlates with
Zero-Shot Off-Target Rate

To explore how off-target occurs differently in dif-
ferent language pairs, we conduct experiments us-
ing a balanced subset of WMT’10 dataset where
we hope to preclude the influence of data size. We
randomly sampled 500k sentences from different
directions to form a balanced training set and re-
move the directions(hi, tr and gu) that do not have
enough sentences.

Language Proximity is an Important Character-
istic of Translation Direction Languages them-
selves have different relations. For example, Ger-
man and English are more close because they both
belong to Germanic language and we hope to find
the relation between inner-characteristic of a cer-
tain language pair and its off-target rate.

Token Distribution Similarity Reflects Lan-
guage Proximity Our motivation is quite intu-
itive that if two languages are rather close, the
probability distribution of different n-grams in the
two languages’ tokenized corpus should be nearly
identical. Considering a large number of different
n-grams in the corpus that burdens computing, we
only consider 1-grams to compute the distribution.
We call the result “Token Distribution.”

We use Kullback-Leibler divergence from To-
ken Distribution of Language B to Language A
to reflect the degree of difficulty? if we hope to
encode sentence from B using A.

= X )10 A(x)
DKL(AHB)_;E;A( )1 g<B(x)> (1)

3In information theory, a simple interpretation of the KL
divergence from B to A is the expected self-information incre-
ment from using A as a model when the actual distribution is B.
We need more extra information if A is less similar to B. This
amount of extra information is equivalent to our definition of
degree of difficulty.
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Figure 4: Scatter plot of off-target rate and KL-
divergence for different language pairs. We draw the
linear regression result with 95% confidence interval.

where V denotes the shared vocabulary, A(x) is
the probability of token x in language A. To avoid
zero probability during computing Token Distribu-
tion, we add 1 to the frequency of all tokens in the
vocabulary as a smoothing factor.

Lower KL Divergence is related to Higher Off-
Target Rate We compute the KL divergence be-
tween language pairs with the training data. After
training on the balanced dataset, a zero-shot trans-
lation experiment is conducted on the Flores-101
dataset. We collect the result of French-to-Many,
German-to-Many, and Czech-to-Many for analysis.

As shown in Figure 4, we can observe from the
statistics that language proximity is highly related
to the off-target rate. The Pearson correlation co-
efficients between the off-target rate and the KL-
Divergence from target to source of the three x-
to-many translations* are -0.75. -0.9. and -0.92.
It indicates that language pair which has lower
KL-Divergence from target to source has a higher
chance to encounter off-target than those language
pairs which has less similar languages.

It further implies that language proximity is one
hidden reason other than data balance for off-target,
which means we cannot avoid off-target solely with
data balancing methods.

To better justify our finding, we involve a high-
resource non-alphabet language Chinese to the
training. We randomly extract 10M Chinese-
English sentence pairs from WMT’ 19 dataset and
add them to the WMT’ 10 training set. We train a
new model on the combined dataset with the same
configuration in section 2.1.

Zero-shot translation is also conducted on Flores-
101. It turns out that directions involving Chinese
have the lowest average off-target rate(9%) com-

*To ensure robustness, we resample the datasets for 5 times
and give the average results.
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Figure 5: Encoder pooled output visualization using
TSNE for French-to-Many translation using separate
vocab. The result is comparable to Figure 3, which
shows result with shared vocab.

Method Size OTR BLEU

308M  29%  10.2
515 M 5% 12.4
722M 84% 2.1

Vocab Sharing
Separate Vocab (Dec)
Separate Vocab (Enc,Dec)

Table 2: Average zero-shot result for models with dif-
ferent vocab. (Dec) means only the decoder uses the
separate vocab. (Enc,Dec) means both the encoder and
the decoder use the separate vocab.

pared to other high-resource languages(fr: 33% cs:
29% de: 28% fi: 31%). This result further proves
our findings that language proximity is an impor-
tant factor influencing off-target since Chinese al-
most has no vocab overlap with other languages.

2.6 Separating Vocab of Different Languages
is Effective yet Expensive

Based on the previous conclusion, we now have an
idea that maybe we can ease the off-target problem
by raising the KL divergence between languages.
Howeyver, the token distribution is fixed when the
tokenization process is done. In other words, the to-
kenization model and vocabulary directly influence
the token distribution.

When building the vocabulary, current multilin-
gual NMT studies tend to regard all languages as
one and learn a unified sub-word-based tokeniza-
tion model. We argue that this may lead to low
divergence of token distribution since many sub-
words are shared across languages.

There is an easy method to increase the KL diver-
gence without changing the tokenization. We can
separate the vocab of different languages as shown
in Figure 9 from Appendix. Under such condition,
no two languages share the same token.

As shown in Table 2, with separate decoder vo-
cab the average off-target rate in 81 directions is



reduced from 29% to 5% and the BLEU score is
raised from 10.2 to 12.4. We conduct the same
probing experiment on encoder representation with
the original WMT’10 dataset. As shown in Fig-
ure 5, representations for different target are di-
vided. The “chaos” area does not exist anymore.
We think a possible explanation for the drop down
in OTR is that, the model is more sensitive to the
language identifier during decoding when each out-
put language has individual tokens.

We also train the model with separated en-
coder&decoder vocab and finds it suffers from
worse zero-shot performance compared to base-
line. We think that without any vocabulary sharing
among languages, the model will learn a “spurious
correlation” between input language and output
language and ignore the target language identifier
during the English-centric training process.

Though achieving great improvement in zero-
shot translation’s performance, there is a problem
that cannot be ignored with the current method.
When the number of languages arises, keeping
isolating all vocabulary will be really parameter-
consuming. In fact, in our experiment, the number
of parameters increases from 308M to 515M.

3 Language-Aware Vocabulary Sharing
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Figure 6: Illustration of LAVS. Tokens with higher
shared frequency are split into language-specific ones.

We propose to deal with off-target in a parameter-
efficient way. We start by introducing the methods,
defining the optimization objective, and propose a
greedy-selection algorithm to address the problem.

3.1 Adding Language-Specific Tokens

Based on previous observation, language pairs
that have low vocabulary KL Divergence tend to
encounter off-target during zero-shot translation.
Thus our goal is to increase the vocabulary KL Di-
vergence between languages. We can achieve it
without changing the original tokenizer by splitting
the shared tokens into language-specific ones.

As shown in Figure 6, instead of splitting all
shared tokens, we can choose specfic tokens to

Algorithm 1 Language-Aware Vocabulary Sharing

Input: Shared vocabulary set V’, language list L, language’s
token distributions P and the number of extra language-
specific tokens N.

Output: V. is the output vocabulary set.

1: MaxFreqs = PriorQueue(length=N) > queue that ranks

the input elements E from high to low based on E[0].

2: foriin V' do

3 for min L, n in L do

4: ifm <nthen ,

5: freq = min(PyY, (3),PY ())

6: MaxFreqs.add([freq,m,n,i])

7: Vour =V’

8: for T in MaxFreqs do

9: m,n,i=T[1], T[2], T[3]

10: Vout = Vour U (V'[i], L[m]) U (V'[i], L[n])
11: return V¢

split. After decoding, we could simply remove
all language-specific tags to restore the literal out-
put sentence. By adding language-specific tokens,
the number of shared tokens between different lan-
guages decreases and makes the token distribution
more different thus increasing the KL Divergence.

3.2 Optimization Goal

Given original vocab set V’ and language list L,
we aim at creating new vocab V' to maximize the
average KL divergence within each language pair
under the new vocabulary with the restriction of
adding N new language-specific tokens. Thus, our
objective becomes:

1

V* =argmax g > ) Dn(PIIRY)
14 meL neL
st. VICV, |V|-|V|=N

2
where P,‘,fb denotes the m-th language’s token dis-
tribution on vocabulary V', add-one smoothing is
applied to avoid zero probability. It is a combinato-
rial optimization problem. The searching space of
V has an astronomical size of C|]\V/'\-| L

3.3 Separating Tokens by Frequency

We start from only two languages J and () and
compute KL-divergence’s change if we only split
one shared token to two language-specific tokens.

AD%, = —J(i)logé(é)) — Q(i)logqjg)) + A
— [JG) - Q(ilog 2 4

(i)
3)
where we will have two ¢-th tokens for the different
languages from the original vocabulary. A is the
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Input Sentence: I love singing.

Sentencepiece Tokenization: I love sing @ @ing .
LAVS Tokenization: I_en love_en sing @@ing_en .
Training/Inference

LAVS Detokenization: I love sing @@ing .
Sentencepiece Detokenization : I love singing.

Figure 7: Illustration of tokenization and detokenization
process with Language-Aware Vocabulary Sharing.

smoothing factor that can be seen as a constant.
According to equation 3, splitting token that has
more similar occurrence probability in the two lan-
guages will lead to higher increment in language’s
KL-Divergence. Also considering the fact that the
tokens with high frequency influence the training
process much more than the near-zero ones, we
should first split the tokens that appear in two or
more languages with similar high frequency.

3.4 Greedy Selection Algorithm that
Maximizes Divergence Increment

Based on the previous discussion, we propose the
Language-Aware Vocabulary Sharing algorithm as
listed in Algorithm 1 to add language-specific to-
kens. First, we adopt a prior queue to keep the
token candidates. Second, for each token in the
shared vocabulary, we compute the shared token
frequency in each language pair and add the (fre-
quency, languageA, languageB, token) tuple to the
queue. Last, since the queue ranks the elements by
frequency, we create language-specific tokens for
the top N tuples and return the new vocab.

Figure 7 illustrates the whole tokenization pro-
cess with LAVS. In practice, given an original
shared vocab with M tokens, we can always first
learn a vocab with M — N tokens and conduct
LAVS to add N language-specific tokens to main-
tain the vocab size M unchanged.

4 Experiments

4.1 Datasets

Following Wang et al. (2020), we collect WMT’ 10
datasets for training. The devtest split of Flores-
101 is used to conduct evaluation. Full information
of datasets is in Appendix C.

4.2 Vocabulary Building

Vocab Sharing We adopt Sentencepiece (Kudo
and Richardson, 2018) as the tokenization model.
We randomly sample 10M examples from the train-
ing corpus with a temperature of 5(Arivazhagan
et al., 2019) on different directions and learn a
shared vocabulary of 64k tokens.

Separate Vocab Based on the sharing vocab of
the baseline model, we separate the vocab of each
language forming a 266k vocab.

LAVS We first learn a 54k vocabulary using the
same method as the baseline model’s and add 10k
language-specific tokens using LAVS.

4.3 Training Details of MNMT

Architecture We use the Transformer-big
model (Vaswani et al., 2017) implemented by
fairseq (Ott et al., 2019) with d,0qe; = 1024,
dhidden = 4096, npeads = 16, Niayers = 6.
We add a target language identifier <XX> at the
beginning of input tokens to indicate the translation
directions as suggested by Wu et al. (2021).

Optimization We train the models using
Adam (Kingma and Ba, 2015), with a total batch
size of 524,288 tokens for 100k steps in all
experiments on 8 Tesla V100 GPUs. The sampling
temperature, learning rate and warmup steps are
set to 5, 3e-4 and 4000.

Evaluation We report detokenized BLEU using
sacrebleu”. We also report the Off-Target rate with
language detector® and conduct model-based eval-
uation using Bert-Score’ (Zhang* et al., 2020).

4.4 Results

LAVS improves zero-shot translation by a large
margin. Table 3 and 4 list the overall results on
both zero-shot and supervised directions. Accord-
ing to Table 3, we can see that LAVS improves
all the x-to-many and many-to-x directions with a
maximum average improvement of -61.6% OTR,
+3.7 BLEU and +0.036 Bert-Score compared to
the baseline vocab. It gains an average of -21%
OTR, +1.9 BLEU and +0.02 Bert-Score improve-
ment on 81 zero-shot directions. Compared with
the Separate Vocab (Dec) method which also leads
to significant improvement in x-y directions, LAVS
does not increase any model size.

Snrefs: 1lcase:mixedleff:noltok: 1 3alsmooth:explversion:2.1.0

®https://github.com/Mimino666/langdetect
"https://github.com/Tiiiger/bert_score



. Zero-Shot Off-Target Rate BLEU Score
Method Size
xy HH LL HL LH xy HH LL HL LH enx x-en
Vocab Sharing 308M  29% 27% 50% 21% 23% 102 1126 5.03 9.18 9.95 248 302
Separate Vocab (Dec) 515M 5% 4% 19% 1% 1% 124 1469 654 10.10 12.22 246 305
LAVS (Enc, Dec) 308M  12% 3% 33% 13% 6% 125 1590 626 991 12.14 248 303
LAVS (Dec) 308M 8% 13% 14% 3% 4% 12.1 1333 7.81 9.80 1201 249 303

Table 3: Overall performance comparison. x-y denotes all zero-shot directions. H and L denotes High/Low-
resources. All evaluation are done with Flores-101 dataset. (Dec) suggests vocab only changes in decoder and
(Enc, Dec) suggests changing in both encoder and decoder. LAVS outperforms baseline in zero-shot setting on both
BLEU and OTR by a large margin while maintaining the en-x and x-en performance.

Metric Method cs-X fr-x de-x fi-x Iv-x et-x ro-x hi-x tr-x gu-x
Vocab Sharing  18.8%  28.3% 22.6% 19.5% 192% 17.1% 22.0% 352% 30.1% 52.8%
OTR LAVS(Dec) 42% 144% 11.5% 6.2% 3.7% 4.7% 2.9% 9.7% 102% 6.1%
Al -14.6% -139% -111% -133% -155% -124% -19.1% -25.5% -199% -46.7%
Vocab Sharing ~ 10.9 10.5 11.3 9.0 9.4 10.0 11.7 6.9 73 4.7
BLEU LAVS(Dec) 12.0 12.0 12.2 9.6 10.9 11.0 14.0 9.3 9.1 8.4
At +1.1 +1.5 +0.9 +0.6 +1.5 +1.0 +2.3 +2.4 +1.8 +3.7
Vocab Sharing  0.781 0.808 0.787  0.766  0.783 0.774  0.791 0.771 0.643 0.677
BERT Score  LAVS(Dec) 0799 0829 0806 0.786 0.790 0.798 0.796 0.777  0.660  0.713
AT 0.018  0.021 0.019  0.020 0.007  0.024  0.005 0.006  0.017  0.036
Metric Method X-CS x-fr x-de x-fi x-lv x-et X-T0 x-hi X-tr X-gu
Vocab Sharing  22.4% 17.8% 239% 260% 219% 281% 89% 254% 14.0% 77.0%
OTR LAVS(Dec) 8.7% 5.9% 6.6% 9.2% 8.4% 7.8% 3.0% 1.7% 70% 15.4%
Al -137% -119% -173% -168% -13.5% -203% -59% -23.7% -71.0% -61.6%
Vocab Sharing  11.0 17.9 13.2 8.3 122 9.9 14.0 8.3 8.8 33
BLEU LAVS(Dec) 12.5 20.1 15.7 9.4 13.3 11.7 14.2 9.9 9.0 6.7
At +1.5 +2.2 +2.5 +1.1 +1.1 +1.8 +0.2 +1.6 +0.2 +3.4
Vocab Sharing  0.772  0.776  0.781 0749  0.757  0.759  0.771 0.743 0.750  0.723
BERT Score  LAVS(Dec) 0791 0799 0796 0770  0.777 0.774  0.797 0.756  0.768  0.726
AT 0.019  0.023 0.015 0.021 0.020  0.015 0.026  0.013 0.018  0.003

Table 4: The zero-shot translation performance (Off-Target Rate, BLEU and BERT-Score) on average x-to-many
and many-to-x directions using LAVS (Dec) compared to baseline.

LAVS in encoder benefits more to the high-
resource languages. LAVS (Enc,Dec) also splits
the vocabulary in the encoder. Compared with
LAVS (Dec), this leads to larger improvement in
H-H directions while smaller improvement in direc-
tions involving low-resource language according
to Table 3. Vocabulary sharing in the encoder has
more advantages for low-resource languages since
those directions desperately need knowledge trans-
fer from other directions, which would be blocked
by adding language-specific tokens.

Constrained decoding further improves the per-
formance of LAVS. Given the vocabulary of dif-
ferent languages, we propose another method to
prevent off-target, which is through constrained de-
coding (CD). During decoding, the decoder only
considers tokens that belong to the target vocab in
softmax. The target vocab could be computed us-
ing the training corpus. CD is orthogonal to LAVS
so they can be jointly applied. We implement CD
for both original vocab sharing and LAVS.

As shown in Table 5, it turns out that constrained

Method DE->CS FR->DE
OTR BLEU OTR BLEU
Vocab Sharing  45.1% 9.7 383% 127
w/ CD 30.9% 114 364% 128
LAVS (Dec) 189% 13.0 154% 172
w/ CD 11.1% 142 11.3% 178

Table 5: The results of constrained decoding (CD) com-
bined with LAVS. Constrained decoding could further
improve the performance of LAVS.

decoding can further improve the zero-shot perfor-
mance for both methods. It is worth noticing that,
in some direction like FR->DE, the benefit of CD
is rather small for the baseline model. We think the
reason is that the original vocab sharing generates
many shared tokens between languages, which will
weaken the influence of the constraint. Thus, with
more language-specific tokens, LAVS can work
better with constrained decoding.

4.5 Discussion

How does LAVS calibrate the translation direc-
tion? During zero-shot translation, the language
identifier token “<XX>" is the only element indi-
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Figure 8: Encoder’s hidden output for language identi-
fier token <XX>, visualized using TSNE.

cating the correct direction. Similar to the visual-
ization in Section 2.4, as shown in Figure 8, we
visualize the <XX> tokens’ hidden output(instead
of the pooled result from all input tokens) during
French-to-Many translation among high-resource
languages and compare the results of the original
Vocabulary Sharing and LAVS. It turns out that
LAVS encodes more discriminative target language
information into the <XX> token’s hidden output,
while the original Vocabulary Sharing fails on that.
In original Vocabulary Sharing the mapping be-
tween the target language identifier <XX> and out-
put token is Many-to-One since different language
could share output tokens. While for LAVS, the
mapping becomes One-to-One for a part of tokens,
impulsing the encoder to learn more discriminative
representations for the target language identifier
and make the model more sensitive to the target
language identifier during zero-shot translation. We
also give it a case study as shown in Appendix B.

How many Language-Specific tokens do we
need? As shown in Table 6 from Appendix, we
conduct an ablation study on how the number of
language specific(LS) tokens influence the zero-
shot performance. The result shows that the OTR
keeps decreasing when the number of LS tokens in-
creases. It suggests that more LS tokens can better
relieve the off-target issue.

Shared Tokens(M) LS Tokens(N) OTR

64k 0 29.4%
54k 0 33.1%
54k 10k 8.2%
54k 20k 7.4%
54k 50k 5.9%

Table 6: Ablation Study on the number of Language-
Specific tokens and the Off-Target Rate on Flores-101.
We report the average OTR on 81 zero-shot directions.

5 Related Work

Off-Target Problem in Multilingual NMT Sev-
eral methods are proposed to eliminate the off-
target problem. Gu et al. (2019) introduced de-
coder pretraining to prevent the model from captur-
ing spurious correlations. Zhang et al. (2020); Gu
et al. (2019) resorted back-translation technique to
generate data for non-English directions ,Wu et al.
(2021) explored how language tag settings influ-
ence zero-shot translation and Yang et al. (2021)
introduced extra optimization objective to address
the problem. However, the cause for off-target
still remains underexplored and the contribution of
LAVS is orthogonal to previous studies.

Vocabulary of NMT In the early stages, several
word-split methods like Byte-Pair Encoding (Sen-
nrich et al., 2016), Wordpiece (Wu et al., 2016) and
Sentencepiece (Kudo and Richardson, 2018), are
proposed to handle rare words using a limited vo-
cab size. In the background of multilingual NMT,
most current studies and models (Devlin et al.,
2018; Conneau et al., 2019; Liu et al., 2020; Ma
et al., 2021) regard all languages as one and learn
a shared vocabulary for different languages. Re-
cently, Xu et al. (2021a) adopted optimal transport
to find the vocabulary with most marginal utility.
Chen et al. (2022) studied the relation between vo-
cabulary sharing and label smoothing. To the best
of our knowledge, we are the first to explore how
vocabulary affects off-target in multilingual NMT.

6 Conclusion

In this paper, we delve into the hidden reason for
the off-target problem in zero-shot multilingual
NMT and propose Language-Aware Vocabulary
Sharing (LAVS) which could significantly alleviate
the off-target problem without extra parameters.
Our experiments justify that LAVS creates a better
multilingual vocab than the original Vocabulary
Sharing method for multiple languages.



7 Limitation

LAVS is proposed to overcome the off-target prob-
lem among languages that share alphabets because
those languages tend to have more sharing tokens
after the sub-word tokenization process. As for lan-
guage pair that does not have shared tokens, LAVS
might not have a direct influence on the zero-shot
translation though it can also increase the over-
all performance for those languages, which might
need further exploration.
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A Method for Completely Separating
Vocab

It is easy to turn a shared vocabulary into a separate
vocabulary for different languages. As shown in
Figure 9, we can split the shared token into lan-
guage specific token if it appears in more than one
language.

next
council

fiir
sein

fiir next

und'

sein die | council | sch@@ @@
sch@e@\ . .. @@ und_de und_en
die_de die_en

German English German English

Figure 9: Illustration of completely separating vocabu-
lary of different languages.

B Case Study

We compare different model’s outputs as shown
in Figure 10. The baseline output has off-target
problem while LAVS output generates in the cor-
rect language. From the direct token output of
LAVS, we can see that many of which are language-
specific tokens. Models with LAVS could learn the
relation between the target language signal and cor-
responding language-specific tokens, which further
decreases the probability of off-target.

Direction: DE-> FR

Input: <FR> Apia wurde in den 50ern des 18.
Jahrunderts gegriindet und ist seit 1959 die
offizielle Hauptstadt von Samoa.
Output(baseline): Apia was founded in the 50s of
the 18th century and is the official capital of
Samoa since 1959. (Off-Target to English)

Gold: Apia a été fondée dans les années 1850 et
est la capitale officielle des Samoa depuis 1959.

Output(LAVS-token): Apia_fr a_fr été fondée
dans les_fr 50 ans_fr du_fr 18e siécle et fr est_fr
depuis 1959 la_fr capitale officielle de_fr Samoa.
Output(LAVS-literal): Apia a été fondée dans les
50 ans du 18e siecle et est depuis 1959 la capitale
officielle de Samoa.

Figure 10: Case study of DE->FR zero-shot translation.
The baseline model off-target to English. Tokens in blue
belong to language-specific tokens.
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C Datasets

Cl1l WMT’10

Following Wang et al. (2020); Yang et al. (2021);
Xu et al. (2021b), we collect data from freely-
accessible WMT contests to form a English-Centric

WMT10 dataset.

Direction  Train Test Dev
Fr<En  10.00M newstest]l5 newstestl3
Cs<+En  10.00M newstestl8 newstestl6
De<»En  4.60M newstestl8 newstestl6
Fi<+En 4.80M  newstestl8 newstestl6
Lv<En 1.40M  newstestl7 newsdevl7
Et<En 0.70M  newstestl8 newsdevl8
Ro<En  0.50M newstestl6 newsdev16
Hi<En 0.26M  newstestl4 newsdevl4
Tr<+En 0.18M  newstestl8 newstestl6
Gu~En  0.08M newstestl9 newsdevl9

Table 7: Description for WMT’ 10 Dataset.

C.2 Flores-101

Flores-101 (Goyal et al., 2021; Guzmaén et al.,
2019) is a Many-to-Many multilingual translation
benchmark dataset for 101 languages. It provides
parallel corpus for all languages, which makes
it suitable to test the zero-shot translation perfor-
mance of multilingual NMT model. We use the
devtest split of the dataset, and only test on the
languages that appear during supervised training.

Language Code  Split  Size
French Fr devtest 1012
Czech Cs  devtest 1012
German De  devtest 1012
Finnish Fi devtest 1012
Latvian Lv  devtest 1012
Estonian Et  devtest 1012
Romanian Ro  devtest 1012
Hindi Hi  devtest 1012
Turkish Tr devtest 1012
Gujarati Gu devtest 1012

Table 8: Description for Flores-101 Dataset.



