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Abstract

While multilingual neural machine translation001
has achieved great success, it suffers from the002
off-target issue, where the translation is in the003
wrong language. This problem is more pro-004
nounced on zero-shot translation tasks. In this005
work, we explore the major cause of the off-006
target problem and find that a closer lexical007
distance (i.e., KL-divergence) between two lan-008
guages’ vocabularies leads to a higher off-target009
rate. Motivated by the finding, we propose010
LAVS, a simple and effective algorithm to con-011
struct the multilingual vocabulary, that greatly012
alleviates the off-target problem of the trans-013
lation model by increasing the KL-divergence014
between languages. We conduct experiments015
on a multilingual machine translation bench-016
mark in 11 languages. Experiments show that017
the off-target rate for 81 translation tasks is018
reduced from 29% to 8%, while the overall019
BLEU score is improved by an average of 1.9020
points.1021

1 Introduction022

Multilingual NMT makes it possible to do the trans-023

lation among multiple languages using only one024

model, even for zero-shot directions (Johnson et al.,025

2017; Aharoni et al., 2019). It has been gaining026

increasing attention since it provides insights for027

multilinguality studies and greatly reduces the MT028

system’s deployment cost. Despite its success, the029

off-target phenomenon is a harsh and widespread030

problem in the existing multilingual models. For031

the zero-shot translation directions, MT system032

translates the source sentence to a wrong language,033

which severely degrades the system’s credibility.034

As shown in Figure 1, the off-target rate could be035

up to nearly 45% for high-resource languages and036

even up to 95% for low-resource languages.037

Researchers have been noticing and working on038

solving the problem from different perspectives039

1We will release the code for reproducibility.
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Figure 1: Off-target rate of some directions tested
on Flores-101 dataset. The off-target problem is
widespread with a maximum of 95.16% error translation
language for low-resource language (tr, gu) pairs and
44.86% for high-resource language (fr,de,cs,fi) pairs.

like data augmentation (Gu et al., 2019; Zhang 040

et al., 2020) and regularization (Yang et al., 2021). 041

While most of the existing work focus on address- 042

ing the problem by improving the data or the op- 043

timization, the importance of vocabulary, which 044

reflects the token distribution among languages, is 045

often neglected. 046

In this work, we perform a comprehensive anal- 047

ysis of the off-target problem, finding that the off- 048

target rate is positively related to the proximity of 049

the language pair. We quantify the proximity within 050

language pairs using KL-divergence between token 051

distribution. It turns out that translation direction 052

with lower KL divergence is related to a higher 053

off-target rate and the correlation coefficient could 054

be as high as -0.92. 055

A simple solution by separating the vocabulary 056

of different languages can greatly increase the KL 057

divergence between languages. Although it proves 058

to improve the zero-shot translation performance, 059

it also greatly increases the model size and costs 060

the cross-lingual transferability. 061

To address these problems, we propose 062

Language-Aware Vocabulary Sharing (LAVS), a 063

novel algorithm to construct the multilingual vo- 064

cabulary that increases the KL-divergence of token 065

distributions among languages while preserving 066
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cs fr de fi lv et ro hi tr gu
cs 43% 45% 21% 13% 11% 13% 12% 10% 33% 22%
fr 20% 30% 22% 18% 21% 12% 10% 15% 12% 18%
de 15% 38% 19% 13% 16% 14% 36% 28% 36% 23%
fi 14% 32% 28% 12% 9% 13% 44% 19% 64% 26%
lv 8% 34% 24% 7% 5% 10% 33% 19% 58% 22%
et 16% 32% 15% 8% 15% 23% 47% 23% 74% 28%
ro 2% 2% 3% 2% 0% 3% 10% 8% 50% 9%
hi 15% 13% 6% 13% 20% 14% 16% 54% 78% 25%
tr 2% 1% 0% 1% 0% 1% 18% 33% 70% 14%
gu 77% 60% 53% 84% 80% 74% 80% 92% 95% 77%

19% 28% 23% 19% 19% 17% 22% 35% 30% 53% 29%

Source
Ta
rg
et

AVG

AVG

OTR

Table 1: Zero-shot off-target rate of the baseline model.
While the average OTR of supervised directions is about
0%, the average OTR of 81 zero-shot directions in-
creases to 29%.

the cross-lingual transferability. It is simple and067

can be applied to any existing multilingual transla-068

tion model without introducing any extra data or069

parameters. Our empirical experiments prove that070

LAVS reduces the off-target rate from 29% to 8%071

and improves the BLEU score by 1.9 points on the072

average of 81 translation directions.073

2 Delving into the Off-Target Problem074

In this section, we start by briefly introducing our075

baseline multilingual NMT system and analyze the076

result of off-target phenomena. Then, we explore077

the causes of the off-target problem and reveal its078

relation to language vocabulary.079

2.1 Multilingual NMT System080

We adopt the Transformer-Big (Vaswani et al.,081

2017) model as the baseline model. For multilin-082

gual translation, we add a target language identifier083

<XX> at the beginning of input tokens to combine084

direction information. We train the model on an085

English-centric dataset WMT’10 (Callison-Burch086

et al., 2010). Zero-shot translation performance is087

evaluated on Flores-101 (Goyal et al., 2021) dataset.088

We use a public language detector2 to identify the089

sentence-level language and compute the off-target090

rate (OTR) which denotes the ratio of translation091

that deviates to wrong languages. Full information092

about training can be found in Section 4.1.093

2.2 Off-Target Statistics Safari094

Off-Target Rate Differs in Directions We first095

train the multilingual NMT model in 10 EN-X di-096

rections and 10 inverse directions from WMT’10097

simultaneously. Then we test the model on 81 X-Y098

2https://github.com/Mimino666/langdetect

An Off-Target Case
Direction: FR -> DE
Input: <DE> Un sondage effectué auprès de 1 400 personnes 
avant les élections fédérales de 2010 a révélé que le nombre 
d'opposants à la transformation de l'Australie en république 
avait augmenté de 8 % depuis 2008.
Output: A survey of 1400 people prior to the 2010 federal 
elections revealed that the number of opponents of Australia's 
transformation into a republic had increased by 8 % since 2008.
Gold: Von den 1.400 Personen, die vor den Bundeswahlen 
2010 befragt wurden, hat der Anteil derjenigen, die sich 
dagegen aussprechen, dass Australien zur Republik wird, seit 
2008 um 8 Prozent zugenommen.

Figure 2: A real Off-Target case observed in our multi-
lingual NMT system. In this case, the output is literally
English while the real target is German.

zero-shot directions using semantic parallel sen- 099

tences from the previous 10 languages provided by 100

Flores-101. We compute the off-target rate of all 101

directions and list the result in Table 1. 102

In addition to the individual score, we next split 103

the languages into High (cs, fr, de, fi, >5M), Mid 104

(lv, et, 1M-5M), and Low (ro, tr, hi, gu, <1M) re- 105

sources according to data abundance degree. Then 106

we compute the average OTR of High-to-High, 107

High-to-Low, Low-to-High, and Low-to-Low di- 108

rections and rank the result. The ranked result is: 109

Low-to-Low (50.28%) > High-to-High (27.16%) > 110

Low-to-High (23.18%) > High-to-Low (20.78%). 111

Based on the observation, we can see that language 112

with the lowest resource (gu) contributes to a large 113

portion of off-target cases. This is reasonable since 114

the model might not be familiar with the language 115

identifier <GU> and the same situation goes for 116

Low-to-Low translations. 117

The Hidden Reason for Off-Target However, 118

it is surprising to see that translations between 119

high-resource languages suffer from more severe 120

off-target than those directions involving one low- 121

resource language. There seem to be other factors 122

influencing the off-target phenomena. 123

In other words, if data imbalance is not the key 124

factor for off-targets between high-resource lan- 125

guages, what are the real reasons and possible solu- 126

tions? To answer these questions, we need to delve 127

deeper into the real off-target cases. 128

2.3 The Major Symptom of Off-Target 129

When the model encounters an off-target issue, a 130

natural question is which language the model most 131

possibly deviates to. We find that among different 132

directions, a majority(77%) of the off-target cases 133

are wrongly translated to English, which is the 134
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Figure 3: Encoder pooled output visualization using
TSNE for French-to-Many translations. The input
French sentences are the same for all directions. Note
that there are only French sentences in the encoder side.

centric language in the dataset. It raises our interest135

that why most off-target cases deviate to English.136

2.4 Failing in Encoding Discriminative Target137

Language Signal Leads to Off-Target138

Considering the encoder-decoder structure of the139

model, we have one hypothesis for a possible rea-140

son for off-target: The encoder fails to encode dis-141

criminative target language information to the hid-142

den representations before passing to the decoder.143

To test the hypothesis, we start by analyzing the144

output of the transformer’s encoder trained on the145

WMT’10 dataset.146

1) We choose French as the source language and147

conduct a French-to-Many translation (including148

all languages in WMT’10) on Flores-101.149

2) We collect all the pooled encoder output rep-150

resentations of the French-to-Many translation and151

project them to 2D space using TSNE. The visual-152

ization result is shown in Figure 3.153

The visualization result justifies our hypothesis.154

We can tell from the distribution that only represen-155

tations belonging to “fr-tr” and “fr-ro” directions156

have tight cluster structures with boundaries. The157

representations from high/mid-resource language158

pairs are completely in chaos and they are also159

mixed with fr-en representations. And those lan-160

guages generally have a higher off-target rate in161

French-to-Many Translation according to Table 1.162

The decoder cannot distinguish the target lan-163

guage signal from the encoder’s output when it re-164

ceives representations from the “chaos” area. More-165

over, during the training process, the decoder gen-166

erates English far more frequently than other lan-167

guages and it allocates a higher prior for English.168

The above two factors could cause that passing169

hidden representation similar to English one will170

possibly confuse the decoder to generate English 171

no matter what the given target language is. It could 172

explain the relatively high off-target rate in H-H 173

directions and why most cases deviate to English. 174

Now we have a key clue for the off-target is- 175

sue. The left question is what causes the degrada- 176

tion of target language signal in some directions 177

and whether we can make the representations of 178

different target languages more discriminative to 179

eliminate the off-target cases. 180

2.5 Language Proximity Correlates with 181

Zero-Shot Off-Target Rate 182

To explore how off-target occurs differently in dif- 183

ferent language pairs, we conduct experiments us- 184

ing a balanced subset of WMT’10 dataset where 185

we hope to preclude the influence of data size. We 186

randomly sampled 500k sentences from different 187

directions to form a balanced training set and re- 188

move the directions(hi, tr and gu) that do not have 189

enough sentences. 190

Language Proximity is an Important Character- 191

istic of Translation Direction Languages them- 192

selves have different relations. For example, Ger- 193

man and English are more close because they both 194

belong to Germanic language and we hope to find 195

the relation between inner-characteristic of a cer- 196

tain language pair and its off-target rate. 197

Token Distribution Similarity Reflects Lan- 198

guage Proximity Our motivation is quite intu- 199

itive that if two languages are rather close, the 200

probability distribution of different n-grams in the 201

two languages’ tokenized corpus should be nearly 202

identical. Considering a large number of different 203

n-grams in the corpus that burdens computing, we 204

only consider 1-grams to compute the distribution. 205

We call the result “Token Distribution.” 206

We use Kullback–Leibler divergence from To- 207

ken Distribution of Language B to Language A 208

to reflect the degree of difficulty3 if we hope to 209

encode sentence from B using A. 210

DKL(A∥B) =
∑
x∈V

A(x) log

(
A(x)

B(x)

)
(1) 211

3In information theory, a simple interpretation of the KL
divergence from B to A is the expected self-information incre-
ment from using A as a model when the actual distribution is B.
We need more extra information if A is less similar to B. This
amount of extra information is equivalent to our definition of
degree of difficulty.
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Figure 4: Scatter plot of off-target rate and KL-
divergence for different language pairs. We draw the
linear regression result with 95% confidence interval.

where V denotes the shared vocabulary, A(x) is212

the probability of token x in language A. To avoid213

zero probability during computing Token Distribu-214

tion, we add 1 to the frequency of all tokens in the215

vocabulary as a smoothing factor.216

Lower KL Divergence is related to Higher Off-217

Target Rate We compute the KL divergence be-218

tween language pairs with the training data. After219

training on the balanced dataset, a zero-shot trans-220

lation experiment is conducted on the Flores-101221

dataset. We collect the result of French-to-Many,222

German-to-Many, and Czech-to-Many for analysis.223

As shown in Figure 4, we can observe from the224

statistics that language proximity is highly related225

to the off-target rate. The Pearson correlation co-226

efficients between the off-target rate and the KL-227

Divergence from target to source of the three x-228

to-many translations4 are -0.75. -0.9. and -0.92.229

It indicates that language pair which has lower230

KL-Divergence from target to source has a higher231

chance to encounter off-target than those language232

pairs which has less similar languages.233

It further implies that language proximity is one234

hidden reason other than data balance for off-target,235

which means we cannot avoid off-target solely with236

data balancing methods.237

To better justify our finding, we involve a high-238

resource non-alphabet language Chinese to the239

training. We randomly extract 10M Chinese-240

English sentence pairs from WMT’19 dataset and241

add them to the WMT’10 training set. We train a242

new model on the combined dataset with the same243

configuration in section 2.1.244

Zero-shot translation is also conducted on Flores-245

101. It turns out that directions involving Chinese246

have the lowest average off-target rate(9%) com-247

4To ensure robustness, we resample the datasets for 5 times
and give the average results.

Figure 5: Encoder pooled output visualization using
TSNE for French-to-Many translation using separate
vocab. The result is comparable to Figure 3, which
shows result with shared vocab.

Method Size OTR BLEU

Vocab Sharing 308M 29% 10.2
Separate Vocab (Dec) 515M 5% 12.4
Separate Vocab (Enc,Dec) 722M 84% 2.1

Table 2: Average zero-shot result for models with dif-
ferent vocab. (Dec) means only the decoder uses the
separate vocab. (Enc,Dec) means both the encoder and
the decoder use the separate vocab.

pared to other high-resource languages(fr: 33% cs: 248

29% de: 28% fi: 31%). This result further proves 249

our findings that language proximity is an impor- 250

tant factor influencing off-target since Chinese al- 251

most has no vocab overlap with other languages. 252

2.6 Separating Vocab of Different Languages 253

is Effective yet Expensive 254

Based on the previous conclusion, we now have an 255

idea that maybe we can ease the off-target problem 256

by raising the KL divergence between languages. 257

However, the token distribution is fixed when the 258

tokenization process is done. In other words, the to- 259

kenization model and vocabulary directly influence 260

the token distribution. 261

When building the vocabulary, current multilin- 262

gual NMT studies tend to regard all languages as 263

one and learn a unified sub-word-based tokeniza- 264

tion model. We argue that this may lead to low 265

divergence of token distribution since many sub- 266

words are shared across languages. 267

There is an easy method to increase the KL diver- 268

gence without changing the tokenization. We can 269

separate the vocab of different languages as shown 270

in Figure 9 from Appendix. Under such condition, 271

no two languages share the same token. 272

As shown in Table 2, with separate decoder vo- 273

cab the average off-target rate in 81 directions is 274
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reduced from 29% to 5% and the BLEU score is275

raised from 10.2 to 12.4. We conduct the same276

probing experiment on encoder representation with277

the original WMT’10 dataset. As shown in Fig-278

ure 5, representations for different target are di-279

vided. The “chaos” area does not exist anymore.280

We think a possible explanation for the drop down281

in OTR is that, the model is more sensitive to the282

language identifier during decoding when each out-283

put language has individual tokens.284

We also train the model with separated en-285

coder&decoder vocab and finds it suffers from286

worse zero-shot performance compared to base-287

line. We think that without any vocabulary sharing288

among languages, the model will learn a “spurious289

correlation” between input language and output290

language and ignore the target language identifier291

during the English-centric training process.292

Though achieving great improvement in zero-293

shot translation’s performance, there is a problem294

that cannot be ignored with the current method.295

When the number of languages arises, keeping296

isolating all vocabulary will be really parameter-297

consuming. In fact, in our experiment, the number298

of parameters increases from 308M to 515M.299

3 Language-Aware Vocabulary Sharing300

Figure 6: Illustration of LAVS. Tokens with higher
shared frequency are split into language-specific ones.

We propose to deal with off-target in a parameter-301

efficient way. We start by introducing the methods,302

defining the optimization objective, and propose a303

greedy-selection algorithm to address the problem.304

3.1 Adding Language-Specific Tokens305

Based on previous observation, language pairs306

that have low vocabulary KL Divergence tend to307

encounter off-target during zero-shot translation.308

Thus our goal is to increase the vocabulary KL Di-309

vergence between languages. We can achieve it310

without changing the original tokenizer by splitting311

the shared tokens into language-specific ones.312

As shown in Figure 6, instead of splitting all313

shared tokens, we can choose specfic tokens to314

Algorithm 1 Language-Aware Vocabulary Sharing
Input: Shared vocabulary set V ′, language list L, language’s

token distributions P and the number of extra language-
specific tokens N .
Output: Vout is the output vocabulary set.
1: MaxFreqs = PriorQueue(length=N ) ▷ queue that ranks

the input elements E from high to low based on E[0].
2: for i in V ′ do
3: for m in L, n in L do
4: if m < n then
5: freq = min(PV ′

m (i),PV ′
n (i))

6: MaxFreqs.add([freq,m,n,i])
7: Vout = V ′

8: for T in MaxFreqs do
9: m,n, i = T[1], T[2], T[3]

10: Vout = Vout ∪ (V ′[i], L[m]) ∪ (V ′[i], L[n])

11: return Vout

split. After decoding, we could simply remove 315

all language-specific tags to restore the literal out- 316

put sentence. By adding language-specific tokens, 317

the number of shared tokens between different lan- 318

guages decreases and makes the token distribution 319

more different thus increasing the KL Divergence. 320

3.2 Optimization Goal 321

Given original vocab set V ′ and language list L, 322

we aim at creating new vocab V to maximize the 323

average KL divergence within each language pair 324

under the new vocabulary with the restriction of 325

adding N new language-specific tokens. Thus, our 326

objective becomes: 327

V ∗ =argmax
V

1

|L|2
∑
m∈L

∑
n∈L

DKL(P
V
m ||P V

n )

s.t. V ′ ⊆ V, |V | − |V ′| = N
(2) 328

where P V
m denotes the m-th language’s token dis- 329

tribution on vocabulary V , add-one smoothing is 330

applied to avoid zero probability. It is a combinato- 331

rial optimization problem. The searching space of 332

V has an astronomical size of CN
|V ′|·|L|. 333

3.3 Separating Tokens by Frequency 334

We start from only two languages J and Q and 335

compute KL-divergence’s change if we only split 336

one shared token to two language-specific tokens. 337

∆Di
KL = −J(i)log

J(i)

Q(i)
−Q(i)log

Q(i)

J(i)
+ λ

= [J(i)−Q(i)]log
Q(i)

J(i)
+ λ

(3) 338

where we will have two i-th tokens for the different 339

languages from the original vocabulary. λ is the 340
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I love sing @@ing

I_en love_en sing @@ing_en

Vocab Corpus LAVS Vocab

1st Tokenization

2nd Token
ization

English: I, love, @@ing, …
German: I, der, …
Shared: sing

Final Tokens

I love singing

LAVS
Compute

Input Sentence: I love singing.
Sentencepiece Tokenization: I love sing @@ing .
LAVS Tokenization: I_en love_en sing @@ing_en .
Training/Inference
LAVS Detokenization: I love sing @@ing .
Sentencepiece Detokenization : I love singing.

Figure 7: Illustration of tokenization and detokenization
process with Language-Aware Vocabulary Sharing.

smoothing factor that can be seen as a constant.341

According to equation 3, splitting token that has342

more similar occurrence probability in the two lan-343

guages will lead to higher increment in language’s344

KL-Divergence. Also considering the fact that the345

tokens with high frequency influence the training346

process much more than the near-zero ones, we347

should first split the tokens that appear in two or348

more languages with similar high frequency.349

3.4 Greedy Selection Algorithm that350

Maximizes Divergence Increment351

Based on the previous discussion, we propose the352

Language-Aware Vocabulary Sharing algorithm as353

listed in Algorithm 1 to add language-specific to-354

kens. First, we adopt a prior queue to keep the355

token candidates. Second, for each token in the356

shared vocabulary, we compute the shared token357

frequency in each language pair and add the (fre-358

quency, languageA, languageB, token) tuple to the359

queue. Last, since the queue ranks the elements by360

frequency, we create language-specific tokens for361

the top N tuples and return the new vocab.362

Figure 7 illustrates the whole tokenization pro-363

cess with LAVS. In practice, given an original364

shared vocab with M tokens, we can always first365

learn a vocab with M − N tokens and conduct366

LAVS to add N language-specific tokens to main-367

tain the vocab size M unchanged.368

4 Experiments369

4.1 Datasets370

Following Wang et al. (2020), we collect WMT’10371

datasets for training. The devtest split of Flores-372

101 is used to conduct evaluation. Full information373

of datasets is in Appendix C.374

4.2 Vocabulary Building 375

Vocab Sharing We adopt Sentencepiece (Kudo 376

and Richardson, 2018) as the tokenization model. 377

We randomly sample 10M examples from the train- 378

ing corpus with a temperature of 5(Arivazhagan 379

et al., 2019) on different directions and learn a 380

shared vocabulary of 64k tokens. 381

Separate Vocab Based on the sharing vocab of 382

the baseline model, we separate the vocab of each 383

language forming a 266k vocab. 384

LAVS We first learn a 54k vocabulary using the 385

same method as the baseline model’s and add 10k 386

language-specific tokens using LAVS. 387

4.3 Training Details of MNMT 388

Architecture We use the Transformer-big 389

model (Vaswani et al., 2017) implemented by 390

fairseq (Ott et al., 2019) with dmodel = 1024, 391

dhidden = 4096, nheads = 16, nlayers = 6. 392

We add a target language identifier <XX> at the 393

beginning of input tokens to indicate the translation 394

directions as suggested by Wu et al. (2021). 395

Optimization We train the models using 396

Adam (Kingma and Ba, 2015), with a total batch 397

size of 524,288 tokens for 100k steps in all 398

experiments on 8 Tesla V100 GPUs. The sampling 399

temperature, learning rate and warmup steps are 400

set to 5, 3e-4 and 4000. 401

Evaluation We report detokenized BLEU using 402

sacrebleu5. We also report the Off-Target rate with 403

language detector6 and conduct model-based eval- 404

uation using Bert-Score7 (Zhang* et al., 2020). 405

4.4 Results 406

LAVS improves zero-shot translation by a large 407

margin. Table 3 and 4 list the overall results on 408

both zero-shot and supervised directions. Accord- 409

ing to Table 3, we can see that LAVS improves 410

all the x-to-many and many-to-x directions with a 411

maximum average improvement of -61.6% OTR, 412

+3.7 BLEU and +0.036 Bert-Score compared to 413

the baseline vocab. It gains an average of -21% 414

OTR, +1.9 BLEU and +0.02 Bert-Score improve- 415

ment on 81 zero-shot directions. Compared with 416

the Separate Vocab (Dec) method which also leads 417

to significant improvement in x-y directions, LAVS 418

does not increase any model size. 419

5nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.1.0
6https://github.com/Mimino666/langdetect
7https://github.com/Tiiiger/bert_score
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Method Size
Zero-Shot Off-Target Rate BLEU Score

x-y H-H L-L H-L L-H x-y H-H L-L H-L L-H en-x x-en

Vocab Sharing 308M 29% 27% 50% 21% 23% 10.2 11.26 5.03 9.18 9.95 24.8 30.2
Separate Vocab (Dec) 515M 5% 4% 19% 1% 1% 12.4 14.69 6.54 10.10 12.22 24.6 30.5
LAVS (Enc, Dec) 308M 12% 3% 33% 13% 6% 12.5 15.90 6.26 9.91 12.14 24.8 30.3
LAVS (Dec) 308M 8% 13% 14% 3% 4% 12.1 13.33 7.81 9.80 12.01 24.9 30.3

Table 3: Overall performance comparison. x-y denotes all zero-shot directions. H and L denotes High/Low-
resources. All evaluation are done with Flores-101 dataset. (Dec) suggests vocab only changes in decoder and
(Enc, Dec) suggests changing in both encoder and decoder. LAVS outperforms baseline in zero-shot setting on both
BLEU and OTR by a large margin while maintaining the en-x and x-en performance.

Metric Method cs-x fr-x de-x fi-x lv-x et-x ro-x hi-x tr-x gu-x

OTR
Vocab Sharing 18.8% 28.3% 22.6% 19.5% 19.2% 17.1% 22.0% 35.2% 30.1% 52.8%
LAVS(Dec) 4.2% 14.4% 11.5% 6.2% 3.7% 4.7% 2.9% 9.7% 10.2% 6.1%
∆ ↓ -14.6% -13.9% -11.1% -13.3% -15.5% -12.4% -19.1% -25.5% -19.9% -46.7%

BLEU
Vocab Sharing 10.9 10.5 11.3 9.0 9.4 10.0 11.7 6.9 7.3 4.7
LAVS(Dec) 12.0 12.0 12.2 9.6 10.9 11.0 14.0 9.3 9.1 8.4
∆ ↑ +1.1 +1.5 +0.9 +0.6 +1.5 +1.0 +2.3 +2.4 +1.8 +3.7

BERT Score
Vocab Sharing 0.781 0.808 0.787 0.766 0.783 0.774 0.791 0.771 0.643 0.677
LAVS(Dec) 0.799 0.829 0.806 0.786 0.790 0.798 0.796 0.777 0.660 0.713
∆ ↑ 0.018 0.021 0.019 0.020 0.007 0.024 0.005 0.006 0.017 0.036

Metric Method x-cs x-fr x-de x-fi x-lv x-et x-ro x-hi x-tr x-gu

OTR
Vocab Sharing 22.4% 17.8% 23.9% 26.0% 21.9% 28.1% 8.9% 25.4% 14.0% 77.0%
LAVS(Dec) 8.7% 5.9% 6.6% 9.2% 8.4% 7.8% 3.0% 1.7% 7.0% 15.4%
∆ ↓ -13.7% -11.9% -17.3% -16.8% -13.5% -20.3% -5.9% -23.7% -7.0% -61.6%

BLEU
Vocab Sharing 11.0 17.9 13.2 8.3 12.2 9.9 14.0 8.3 8.8 3.3
LAVS(Dec) 12.5 20.1 15.7 9.4 13.3 11.7 14.2 9.9 9.0 6.7
∆ ↑ +1.5 +2.2 +2.5 +1.1 +1.1 +1.8 +0.2 +1.6 +0.2 +3.4

BERT Score
Vocab Sharing 0.772 0.776 0.781 0.749 0.757 0.759 0.771 0.743 0.750 0.723
LAVS(Dec) 0.791 0.799 0.796 0.770 0.777 0.774 0.797 0.756 0.768 0.726
∆↑ 0.019 0.023 0.015 0.021 0.020 0.015 0.026 0.013 0.018 0.003

Table 4: The zero-shot translation performance (Off-Target Rate, BLEU and BERT-Score) on average x-to-many
and many-to-x directions using LAVS (Dec) compared to baseline.

LAVS in encoder benefits more to the high-420

resource languages. LAVS (Enc,Dec) also splits421

the vocabulary in the encoder. Compared with422

LAVS (Dec), this leads to larger improvement in423

H-H directions while smaller improvement in direc-424

tions involving low-resource language according425

to Table 3. Vocabulary sharing in the encoder has426

more advantages for low-resource languages since427

those directions desperately need knowledge trans-428

fer from other directions, which would be blocked429

by adding language-specific tokens.430

Constrained decoding further improves the per-431

formance of LAVS. Given the vocabulary of dif-432

ferent languages, we propose another method to433

prevent off-target, which is through constrained de-434

coding (CD). During decoding, the decoder only435

considers tokens that belong to the target vocab in436

softmax. The target vocab could be computed us-437

ing the training corpus. CD is orthogonal to LAVS438

so they can be jointly applied. We implement CD439

for both original vocab sharing and LAVS.440

As shown in Table 5, it turns out that constrained441

Method
DE->CS FR->DE

OTR BLEU OTR BLEU

Vocab Sharing 45.1% 9.7 38.3% 12.7
w/ CD 30.9% 11.4 36.4% 12.8

LAVS (Dec) 18.9% 13.0 15.4% 17.2
w/ CD 11.1% 14.2 11.3% 17.8

Table 5: The results of constrained decoding (CD) com-
bined with LAVS. Constrained decoding could further
improve the performance of LAVS.

decoding can further improve the zero-shot perfor- 442

mance for both methods. It is worth noticing that, 443

in some direction like FR->DE, the benefit of CD 444

is rather small for the baseline model. We think the 445

reason is that the original vocab sharing generates 446

many shared tokens between languages, which will 447

weaken the influence of the constraint. Thus, with 448

more language-specific tokens, LAVS can work 449

better with constrained decoding. 450

4.5 Discussion 451

How does LAVS calibrate the translation direc- 452

tion? During zero-shot translation, the language 453

identifier token “<XX>” is the only element indi- 454
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Vocabulary Sharing

Language-Aware Vocabulary Sharing

Figure 8: Encoder’s hidden output for language identi-
fier token <XX>, visualized using TSNE.

cating the correct direction. Similar to the visual-455

ization in Section 2.4, as shown in Figure 8, we456

visualize the <XX> tokens’ hidden output(instead457

of the pooled result from all input tokens) during458

French-to-Many translation among high-resource459

languages and compare the results of the original460

Vocabulary Sharing and LAVS. It turns out that461

LAVS encodes more discriminative target language462

information into the <XX> token’s hidden output,463

while the original Vocabulary Sharing fails on that.464

In original Vocabulary Sharing the mapping be-465

tween the target language identifier <XX> and out-466

put token is Many-to-One since different language467

could share output tokens. While for LAVS, the468

mapping becomes One-to-One for a part of tokens,469

impulsing the encoder to learn more discriminative470

representations for the target language identifier471

and make the model more sensitive to the target472

language identifier during zero-shot translation. We473

also give it a case study as shown in Appendix B.474

How many Language-Specific tokens do we475

need? As shown in Table 6 from Appendix, we476

conduct an ablation study on how the number of477

language specific(LS) tokens influence the zero-478

shot performance. The result shows that the OTR479

keeps decreasing when the number of LS tokens in-480

creases. It suggests that more LS tokens can better481

relieve the off-target issue.482

Shared Tokens(M) LS Tokens(N) OTR

64k 0 29.4%
54k 0 33.1%
54k 10k 8.2%
54k 20k 7.4%
54k 50k 5.9%

Table 6: Ablation Study on the number of Language-
Specific tokens and the Off-Target Rate on Flores-101.
We report the average OTR on 81 zero-shot directions.

5 Related Work 483

Off-Target Problem in Multilingual NMT Sev- 484

eral methods are proposed to eliminate the off- 485

target problem. Gu et al. (2019) introduced de- 486

coder pretraining to prevent the model from captur- 487

ing spurious correlations. Zhang et al. (2020); Gu 488

et al. (2019) resorted back-translation technique to 489

generate data for non-English directions ,Wu et al. 490

(2021) explored how language tag settings influ- 491

ence zero-shot translation and Yang et al. (2021) 492

introduced extra optimization objective to address 493

the problem. However, the cause for off-target 494

still remains underexplored and the contribution of 495

LAVS is orthogonal to previous studies. 496

Vocabulary of NMT In the early stages, several 497

word-split methods like Byte-Pair Encoding (Sen- 498

nrich et al., 2016), Wordpiece (Wu et al., 2016) and 499

Sentencepiece (Kudo and Richardson, 2018), are 500

proposed to handle rare words using a limited vo- 501

cab size. In the background of multilingual NMT, 502

most current studies and models (Devlin et al., 503

2018; Conneau et al., 2019; Liu et al., 2020; Ma 504

et al., 2021) regard all languages as one and learn 505

a shared vocabulary for different languages. Re- 506

cently, Xu et al. (2021a) adopted optimal transport 507

to find the vocabulary with most marginal utility. 508

Chen et al. (2022) studied the relation between vo- 509

cabulary sharing and label smoothing. To the best 510

of our knowledge, we are the first to explore how 511

vocabulary affects off-target in multilingual NMT. 512

6 Conclusion 513

In this paper, we delve into the hidden reason for 514

the off-target problem in zero-shot multilingual 515

NMT and propose Language-Aware Vocabulary 516

Sharing (LAVS) which could significantly alleviate 517

the off-target problem without extra parameters. 518

Our experiments justify that LAVS creates a better 519

multilingual vocab than the original Vocabulary 520

Sharing method for multiple languages. 521
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7 Limitation522

LAVS is proposed to overcome the off-target prob-523

lem among languages that share alphabets because524

those languages tend to have more sharing tokens525

after the sub-word tokenization process. As for lan-526

guage pair that does not have shared tokens, LAVS527

might not have a direct influence on the zero-shot528

translation though it can also increase the over-529

all performance for those languages, which might530

need further exploration.531
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A Method for Completely Separating693

Vocab694

It is easy to turn a shared vocabulary into a separate695

vocabulary for different languages. As shown in696

Figure 9, we can split the shared token into lan-697

guage specific token if it appears in more than one698

language.699

Figure 9: Illustration of completely separating vocabu-
lary of different languages.

B Case Study700

We compare different model’s outputs as shown701

in Figure 10. The baseline output has off-target702

problem while LAVS output generates in the cor-703

rect language. From the direct token output of704

LAVS, we can see that many of which are language-705

specific tokens. Models with LAVS could learn the706

relation between the target language signal and cor-707

responding language-specific tokens, which further708

decreases the probability of off-target.709

Direction: DE-> FR
Input: <FR> Apia wurde in den 50ern des 18. 
Jahrunderts gegründet und ist seit 1959 die 
offizielle Hauptstadt von Samoa.
Output(baseline): Apia was founded in the 50s of 
the 18th century and is the official capital of 
Samoa since 1959. (Off-Target to English)
Gold: Apia a été fondée dans les années 1850 et 
est la capitale officielle des Samoa depuis 1959.

Output(LAVS-token): Apia_fr a_fr été fondée 
dans les_fr 50 ans_fr du_fr 18e siècle et_fr est_fr 
depuis 1959 la_fr capitale officielle de_fr Samoa.
Output(LAVS-literal): Apia a été fondée dans les 
50 ans du 18e siècle et est depuis 1959 la capitale 
officielle de Samoa.

Figure 10: Case study of DE->FR zero-shot translation.
The baseline model off-target to English. Tokens in blue
belong to language-specific tokens.

C Datasets 710

C.1 WMT’10 711

Following Wang et al. (2020); Yang et al. (2021); 712

Xu et al. (2021b), we collect data from freely- 713

accessible WMT contests to form a English-Centric 714

WMT10 dataset. 715

Direction Train Test Dev

Fr↔En 10.00M newstest15 newstest13
Cs↔En 10.00M newstest18 newstest16
De↔En 4.60M newstest18 newstest16
Fi↔En 4.80M newstest18 newstest16
Lv↔En 1.40M newstest17 newsdev17
Et↔En 0.70M newstest18 newsdev18
Ro↔En 0.50M newstest16 newsdev16
Hi↔En 0.26M newstest14 newsdev14
Tr↔En 0.18M newstest18 newstest16
Gu↔En 0.08M newstest19 newsdev19

Table 7: Description for WMT’10 Dataset.

C.2 Flores-101 716

Flores-101 (Goyal et al., 2021; Guzmán et al., 717

2019) is a Many-to-Many multilingual translation 718

benchmark dataset for 101 languages. It provides 719

parallel corpus for all languages, which makes 720

it suitable to test the zero-shot translation perfor- 721

mance of multilingual NMT model. We use the 722

devtest split of the dataset, and only test on the 723

languages that appear during supervised training. 724

Language Code Split Size

French Fr devtest 1012
Czech Cs devtest 1012

German De devtest 1012
Finnish Fi devtest 1012
Latvian Lv devtest 1012
Estonian Et devtest 1012

Romanian Ro devtest 1012
Hindi Hi devtest 1012

Turkish Tr devtest 1012
Gujarati Gu devtest 1012

Table 8: Description for Flores-101 Dataset.
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