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ABSTRACT

Security is becoming increasingly critical in deep learning applications. Recent
researches demonstrate that NN models are vulnerable to adversarial attacks, which
can mislead them with only small input perturbations. Moreover, adversaries
who know the architecture of victim models can conduct more effective attacks.
Unfortunately, the architectural knowledge can usually be stolen by the adversaries
by exploiting the system-level hints through many side channels, which is referred
to as the neural architecture extraction attack. Conventional countermeasures for
neural architecture extraction can introduce large overhead, and different hardware
platforms have diverse types of side-channel leakages such that many expert efforts
are needed in developing hardware-specific countermeasures. In this paper, we
propose DeepGuiser, an automatic, hardware-agnostic, and retrain-free neural
architecture disguising method, to disguise the neural architectures to reduce the
harm of neural architecture extraction attacks. In a nutshell, given a trained model,
DeepGuiser outputs a deploy model that is functionally equivalent with the trained
model but with a different (i.e., disguising) architecture. DeepGuiser can minimize
the harm of the follow-up adversarial transfer attacks to the deploy model, even
if the disguising architecture is completely stolen by the architecture extraction
attack. Experiments demonstrate that DeepGuiser can effectively disguise diverse
architectures and impede the adversarial transferability by 13.87% ∼ 32.59%,
while only introducing 10% ∼ 40% extra inference latency.

1 INTRODUCTION

Deep neural networks (NNs) have made great success in the field of artificial intelligence (AI) (LeCun
et al., 2015). With NN becoming increasingly complex, a number of NN-specific chips (Jouppi et al.,
2017; Liao et al., 2021; Markidis et al., 2018) and intensive innovations (Chen et al., 2020; Qiu et al.,
2016; Chen et al., 2014) have been proposed to boost the efficiency of NN computing. Despite the
significant progress in hardware performance, security should also be regarded as a higher-priority
feature. Especially in safety-critical applications, e.g. autonomous driving, surveillance, and so forth,
security vulnerabilities can be exploited by adversaries and lead to uncontrollable consequences.

Confidentiality is an essential guarantee for systemic security. The critical confidential information
contained in well-trained NN models mainly includes their neural architectures and weight parame-
ters. While the encryption of weight parameters has been well discussed for protecting the weight
confidentiality (Orlandi et al., 2007; Cai et al., 2019; Zuo et al., 2021), the protection of neural
architectures is still in lack. Recent researches have alerted that many emerging or even off-the-shelf
AI chips are vulnerable to neural architecture extraction attacks (Batina et al., 2018; Hua et al., 2018;
Yan et al., 2020; Hu et al., 2020; Wei et al., 2018; Wang et al., 2022). For example, DeepSniffer (Hu
et al., 2020) exploits the system-level hints (e.g. memory access activity, cache miss rate, etc.) of NN
processing on GPU platform and proposes a learning-based approach to automatically identify the
layer sequences. It also quantitatively shows that the neural architecture extraction can significantly
boost the success rate of adversarial transfer attacks by constructing a surrogate model with almost
the same neural architecture as the victim model (Demontis et al., 2019; Hu et al., 2020).
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Figure 1: (Left) 1: The adversary can snoop the system to extract the architecture of the deployed
model. 2&3: The architecture information can be utilized to train a surrogate with high transferability
and then craft effective adversarial examples to attack the trained model. (Right) DeepGuiser disguises
the trained model to a functionally equivalent deploy model with a disguising architecture. Then, this
deploy model is deployed onto the chip. Even if the adversary extracts the disguising architecture
through snooping and trains the surrogate model, the adversarial examples crafted using the surrogate
have low transferability to the original trained model and also the actual deployed model.

The high risk rendered by neural architecture extraction attacks necessitates the protection of neural
architectures. On one hand, from the view of intellectual property protection, neural architectures
are usually manually designed by experts (He et al., 2016; Simonyan & Zisserman, 2014; Sandler
et al., 2018) or automatically designed by neural architecture search (NAS) (Cai et al., 2018; Liu
et al., 2018b; Tan et al., 2019), both of which consume significant labor and resources. On the other
hand, from the view of adversarial robustness, if the architecture of the deploy model is leaked,
the adversaries can train a surrogate model with the same architecture and use it to craft much
more effective adversarial examples to attack the deploy model by exploiting the high transferability
between the surrogate and deploy model (Hu et al., 2020).

It is hard to design a universal protection scheme against neural architecture extraction attacks for
different kinds of AI chips at the system or hardware level, as various design options affect the
hardware characteristics. Diverse run-time side-channel information can be exploited to extract the
neural architectures on different hardware platforms, e.g. power (Wei et al., 2018), cache activity (Yan
et al., 2020), memory access (Hua et al., 2018), etc. And blocking all these side-channel leakages by
designing hardware-specific countermeasures might consume huge system costs and expert efforts.

In this work, we propose an “architecture disguising” solution at the algorithm level, DeepGuiser,
which protects the architecture information by disguising it before deployment and alleviates the
security risk rendered from the architecture extraction and the follow-up adversarial transfer attacks.
Fig.1 (Left) illustrates the attack scenario we are concerned about, and Fig.1 (Right) demonstrates
how DeepGuiser plays its role. And as there exist diverse models to be deployed and the disguising
space (introduced in Sec. 4.1) is extremely large, manually finding a good disguising architecture
for every possible model is extremely costly and even impossible. Therefore, we design DeepGuiser
to automatically and efficiently yield a good disguising architecture for a given trained model. We
summarize our contributions as follows:

• DeepGuiser is an automatic, hardware-agnostic, and retrain-free neural architecture
disguising framework. As shown in Fig. 1 (Right), given a trained model, the disguising
policy in DeepGuiser takes the original architecture as the input, and outputs a disguising
architecture. Then, with functionality-preserving weight transforms, DeepGuiser yields a
“deploy model” that is functionally equivalent with the trained model but with the disguising
architecture. This deploy model is deployed, and even if its architecture is stolen, the harm
of the follow-up adversarial transfer attacks to the deploy model can be largely reduced.
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• We use reinforcement learning (RL) to train the disguising policy to output disguising
architectures with low adversarial transferability to the original architecture. During the
training process, we use a predictor for bridging the evaluation gap of the adversarial
transferability between weight-sharing super-net and standalone training.

• For training the predictor, we build a dataset TransAdvBench, which collects and evaluates
the adversarial transferability of over 8000 pairs of neural architectures. TransAdvBench
can also help us study the connection between the architecture characteristics and adversarial
transferability, and we list some of the knowledge in the Appendix A.2.

• Experimental results show that with DeepGuiser, the adversarial transferability of the
surrogate model with the disguising architecture to the deploy model decreases by 13.87%
∼ 32.59%, while only introducing 10% ∼ 40% extra latency for the deploy model on GPU.

2 RELATED WORK

2.1 NEURAL ARCHITECTURE EXTRACTION ATTACKS

Many studies have proposed attack methods for extracting the neural architecture of deployed models
on a variety of hardware platforms (Batina et al., 2018; Hua et al., 2018; Yan et al., 2020; Hu et al.,
2020; Wei et al., 2018). For example, Hua et al. (2018) reveals the network architectures by utilizing
the observed memory access pattern during the NN inference. DeepSniffer (Hu et al., 2020) proposes
a learning-based operator recognition method by utilizing long short term memory (LSTM) network.
Its basic idea is to learn the correlation between the system hints and the layer types. There are
other side-channel information that can also be utilized to recognize the operations and topology,
e.g. counting the GEMM calls via cache side-channel (Yan et al., 2020), observing the patterns
and timing of operations (Batina et al., 2018), cache miss rate (Hu et al., 2020), etc. For example,
scalar computation (e.g. ReLU) has higher cache miss rate compared to tensor computation (e.g.
convolution) as the data reuse rate is much lower. These attack methods pose severe security risks for
AI systems.

2.2 DEFENSIVE APPROACHES

There are two main streams of methods for defending against neural architecture attacks. One is to
block the side channel leakage such that any adversary cannot obtain corresponding information.
For example, memory access pattern and trajectory are important hints for helping the adversary
reconstruct the network topology. The most promising solution, oblivious random-access machine
(ORAM) protocol (Goldreich & Ostrovsky, 1996), can prevent the attacker from obtaining the actual
access behavior. However, it is practically infeasible to apply ORAM owing to the unacceptable
communication blowup. The most efficient implementation, Path ORAM (Stefanov et al., 2018), still
has an overhead of O(log(N)) blowup. Since data moving has already taken a significant proportion
of time in NN computing, a great efficiency degradation will occur in bandwidth-limited chips.

Another stream of work is to obfuscate the neural architecture. However, the current methods are
explicitly designed for defending against specific attack methodologies or with a high obfuscation
cost. For example, NeurObfuscator (Li et al., 2021) is an obfuscation framework specifically targeting
at increasing layer prediction error rate of the adversaries, without considering the ultimate criterion.
ObfuNAS (Zhou et al., 2022) targets on hiding the accuracy performance, while requiring a searching
process for every victim architecture.

2.3 NEURAL ARCHITECTURE SEARCH AND TRANSFORMATION

Neural architecture search (NAS) methods (Cai et al., 2018; Tan et al., 2019; Liu et al., 2018b)
are widely studied to automatically design advanced architecture with superior performance in
substitution of the hand-crafted design process. Essentially, NAS provides a convenient way for
designers to explore a large architecture search space. Evaluation is one of the key components
of NAS. To achieve fast and accurate estimation on the substantial architectures, predictor and
architecture encoding methods are intensively discussed, e.g. GCN (Kipf & Welling, 2017; Guo
et al., 2019), MLP (Liu et al., 2018a), GATES (Ning et al., 2020), etc. These schemes encode an
architecture into a continuous embedding, which is used in the follow-up performance estimation.
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Figure 2: (a) The inclusion matrix of diverse operations in our implementation. The vertical axis
represents original type and the horizontal axis represents the transformed type. In the table, “1”
means corresponding disguising is valid and “0” means invalid; (b) an example of candidate neural
architecture; (c) Disguised neural architecture from (b) based on the rules in (a). For example,
transforming an 1x1 convolution kernel to 3x3 only needs to pad a surrounding zeros, then the two
architectures are functionally equivalent while computationally different.

Neural architecture transformer (NAT) (Guo et al., 2019) aims to transform an architecture into a
pruned one. It employs RL to train a policy that takes the original architecture as the input, and decides
how to change each operation to get an architecture with fewer FLOPS and higher performance.

3 THREAT MODEL

The threat model considered is neural architecture extraction through hardware side-channel attacks,
e.g., controlling the off-chip memory or snooping the communication bus. The adversary will obtain
some hints that can help infer the deployed neural architectures through them. In edge computing
scenarios, with AI becoming ubiquitous and mobile, more and more edge devices are powered with
intelligence. An adversary can easily obtain physical access to the device by acquisition or theft. In a
cloud computing scenario, an honest but curious cloud service provider may also seek the knowledge
of NN models running on the cloud. They may fail to get the weight parameters due to encryption
technologies (e.g., homomorphic encryption (Orlandi et al., 2007)), while it is much easier to reveal
the model architectures because rich side-channel information can be observed.

We consider a strong threat model that the attackers can exactly extract the neural architecture of
deployed models on some device while having no ability to obtain the weight parameters as the
weight encryption techniques are relatively mature and strong. Then by training a surrogate model
with the same neural architecture as the victim deploy model, the attackers can achieve a much higher
adversarial attack success rate (Hu et al., 2020; Demontis et al., 2019). Under this scenario (illustrated
in Fig.1 (Left)), the goal of neural architecture disguising is to find a disguised architecture that has
lowest possible adversarial transferability to the actual deploy model.

4 METHOD

4.1 PROBLEM DEFINITION

Given an architecture A, the objective of neural architecture disguising is to substitute a subset of its
operations (layers) or add some operations (layers) to change its topology. Denoting A as a directed
acyclic graph (DAG), it can be represented as A = (V,E), where V is a set of nodes that represent the
feature maps, and E is a set of edges that represent the operations. For each operation eij , it computes
on the feature map vi and produces feature map vj . Assuming eij = Ok, an operation disguising is
to change Ok to Om, satisfying that Om ∈ I(Ok). Here we define “∈” as the inclusion relationship,
and I(Ok) as the valid transformation set of operation Ok. Then, any operation transformation can
only occur within its transformation set.
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Figure 3: Adversarial transferability evaluation. Left: one-shot evaluation within super-net versus the
ground-truth attack success rate; Right: evaluation with designed predictor versus the ground-truth
transfer adversarial accuracy. The Spearman ranking correlation reflects the ranking quality of
corresponding estimation.

Disguising Space. A principle of neural architecture disguising is maintaining equivalent functionality
with the original model because functional correctness must be guaranteed. We can derive the
disguising space according to this requirement, and design the corresponding functionality-preserving
weight transforms for each operation disguising. For example, as shown in Fig.2(b-c), a 1x1
convolution can be disguised to a 3x3 convolution by padding its surrounding values as zero, then
the 3x3 convolution can perform equivalent function as 1x1 convolution. Fig.2(a) concludes the
disguising matrix of different operators. The matrix is applicable on any hardware because these
rules are independent of the specific hardware implementation.

Problem Formalization. Given an architecture A, the goal is to find an architecture B disguised
from A to impede the adversarial transferability from B to A. Denoting AE = (e1, e2, ..., en) as the
operation set of the architecture A and BE = (e1d, e2d, ..., end, e(n+1)d, ..., e(n+m)d) as operation
set of the architecture B, the following constraint should be satisfied:

ei ∈
{
I(eid), 1 ≤ i ≤ n

I(null), n < i ≤ n+m
(1)

The objective is to minimize the loss of A on adversarial examples which are generated based on B.
Considering an adversarial example x′

B(x), it is usually formulated as:

x′
B(x) = argmaxzLfB(z, y), s.t.||z − x||p ≤ ϵ, (2)

where fB(·) denotes the forward function of entire model B, x denotes the clean input, y denotes the
label, z denotes the adversarial example, L denotes the loss function (often as utilized in training),
and ϵ denotes the adversarial perturbation strength. || ∗ ||p denotes the lp norm, usually including l1,
l2, and l∞, etc. Then the optimization problem for finding architecture B can be formalized as:

argminB
∑

(x,y)∈χ

E(x,y)LfA(x
′
B(x), y), s.t.B ∈ I(A), (3)

where χ represents the dataset, and I(·) represents the disguising space of some architectures. To
measure the expectation, we use the boosted adversarial accuracy of A under the transfer attack of B
as the reward, denoted as R(B|A). That is,

R(B|A) = AdvAccB→A −AdvAccA→A. (4)

Unfortunately, the optimization problem is challenging to solve because of the problems from two
aspects, i.e. evaluation and exploration.

Evaluation Problem. The evaluation of the reward is challenging. A standard evaluation requires a
training-generation-test process, i.e. training a model with the disguised architecture B, generating
adversarial examples from model B, and testing the adversarial accuracy of A by using the adversarial
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examples to attack A. Despite the process can give accurate transferability evaluation, all the
steps (especially training) are time-consuming. The weight-sharing mechanism (Pham et al., 2018;
Ning et al., 2021) is widely used in the NAS literature to accelerate the evaluation of architecture
performances, i.e., to evaluate any architecture, the model directly uses the corresponding weights
from a weight-sharing super-net. In this way, the above process can be simplified to a generation-test
process by training a single super-net before the evaluation. However, we empirically find that the
adversarial transferability evaluated by the super-net has a non-negligible gap with the ground-truth
evaluations, as is shown in Fig.3(left). To address this problem, we propose a transferability predictor
to fast and accurately estimate the adversarial performance, as will be introduced in Sec.4.2

Exploration Problem. Exploring the large disguising space also poses a challenge. Even with
strict transformation constraints, the disguising spaces for most architectures is still extremely large.
For example, a ResNet cell architecture shown in Fig.1 has approximately (66 × 2 × 2)2 > 1011

possible disguised architectures within the DARTS (Liu et al., 2018b) search space. Denoting p(·|A)
as the probability distribution of sampling architecture B from the disguising space of A, given the
original architecture A, we aim to find the disguising architecture distribution p(·|A) that maximizes
EB∼p(·|A)[R(B|A)]. An intuitive idea is to learn a policy π(·|A) that takes A as the input and outputs
the disguising architecture distribution for it. We model the disguising architecture distribution using
the joint distribution of multiple operation disguising decisions. To learn this disguising policy, we
employ policy gradient with our specific reward design R, as will be described in Sec.4.3.

The overall framework of DeepGuiser is shown in Fig.4(a). In the following, we will introduce the
two main parts of DeepGuiser.

4.2 PREDICTOR: RESOLVING THE EVALUATION PROBLEM

To simultaneously achieve a fast and accurate evaluation on the adversarial transferability of any
two architectures, we design a predictor to directly predict the adversarial accuracy given a victim
architecture A and a surrogate architecture B, i.e. the expectation E(x,y)LfA(x

′
B(x), y).

Predictor Construction. The predictor consists of an architecture encoding block for transforming
a discrete architecture into a continuous embedding space, and a regression head for predicting
the adversarial accuracy from the architecture embedding. Specifically, we adopt a graph-based
architecture encoder GATES (Ning et al., 2020) to convert an arbitrary architecture A to an embedding
vector. Then, the embedding will be fed into an MLP-based regressor for regressing the adversarial
accuracy, as shown in Fig.4(c).

Loss Function. The output of the predictor is a regression value which indicates the adversarial
accuracy of architecture A over the adversarial examples generated by B, we adopt the mean square
error (MSE) loss to train the predictor.

L(θp,A,B, t) = (r(g(A), g(B)|θp)− t)2, (5)

where r(·) denotes the regressor over two input architecture embedding, g(·) denotes the architecture
encoder GATES, θp denotes the parameters of the predictor, t denotes the ground-truth adversarial
accuracy of A under the attack from B. Fig.3 (Right) shows the performance of the trained predictor.
Compared to the super-net-based evaluation, the predictions are faster and more accurate.

4.3 POLICY LEARNING: RESOLVING THE EXPLORATION PROBLEM

We denote the disguiser function as fd. Specifically, the disguiser parameters θd will be trained with
the estimation of adversarial transferability given by the predictor.

Disguiser construction. Similar to the predictor, the disguiser also consists of an architecture
encoding module that encodes an arbitrary architecture A to an embedding, and an MLP module that
produces the policy π(·|A). The computation of the disguiser can be represented as:

π(·|A; θd) = Softmax(fd(g(A)|θd)), (6)

Policy Gradient. We apply policy gradient to learn the disguising policy. As the goal is to maximize
the final reward R(B|A), the objective function can be formulated as:

maxπ(·|A) EA∼p(·)[EB∼π(·|A;θd)[R(B|A)]], (7)
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Figure 4: The framework and structure of DeepGuiser. (a) Overall flow of learning DeepGuiser; (b)
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where p(·) is the probability distribution for sampling some architecture A. In addition, we add two
terms into the commonly-used loss function. Firstly, the operation disguising always introduces larger
computational FLOPs and latency. Therefore, we add a penalty term on the reward corresponding
to the transformed operation count, denoted as c(·|A). Secondly, we introduce a similar entropy
regularization term H(π(·|A; θd)) to encourage exploration. In summary, the objective function can
be formulated as:

Lpolicy(θd) = EA∼p(·)[EB∼π(·|A;θd)[R(B|A) · c(B|A)] + λH(π(·|A; θd))],

=
∑
A

p(A)[
∑
B

π(B|A; θd)(R(B|A) · c(B|A)) + λH(π(·|A; θd))].
(8)

Specifically, in our implementation, the involved functions are formulated as follows respectively:

R(B|A) = r(g(A), g(B))− r(g(A), g(A)), c(B|A) =
1

2nd−n + 1
, (9)

where nd is the number of disguised operations in the cell architecture (i.e. nd = #Diff(A,B)), n is
a hyper-parameter that controls the penalty intensity. H(·) denotes the entropy of the distribution.

Inference. To infer a disguising for an architecture A, we directly obtain the disguised architecture B
by B = fd(A; θd). Specifically, we obtain a probability distribution for each operation in the cell
architecture, and the transformation with the maximum probability will be selected for disguising.

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENT SETTINGS

Benchmark. We evaluate the effectiveness of DeepGuiser on a variety of neural architectures,
including popular hand-crafted architectures (ResNet (He et al., 2016), VGG (Simonyan & Zisserman,
2014), and MobileNet-v2 (Sandler et al., 2018)) and randomly-picked architectures. We conduct
experiments on three classification datasets, including CIFAR-10 (Krizhevsky et al., 2009), CIFAR-
100 (Krizhevsky et al., 2009), and Tiny-ImageNet (Le & Yang, 2015) to demonstrate the generalization
of adversarial transferability of specific architecture disguising. We choose projected gradient descent
(PGD) (Madry et al., 2017) with 10 steps under the perturbation strength ϵ = 0.031 (8/255) to
generate adversarial examples and evaluate the adversarial accuracy. We also try C&W (Carlini
& Wagner, 2017), AutoAttack (Croce & Hein, 2020), and DI-FGSM (Xie et al., 2019) adversarial
example generation methods to evaluate the generalization on diverse attacks. For evaluating the
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Table 1: Results of neural architecture disguising by different methods on CIFAR-10. Accadv means
the adversarial accuracy of the original model under black-box transfer attack from the disguised
models. The Random-Arch and Random disguising report the average values of 20 randomly sampled
architectures. The latency is tested on an NVIDIA GeForce RTX 3090 by averaging 1000 times of
forward inference. “↑” represents higher better and “↓” represents lower better.

Model Method #Params (M) ↓ #FLOPS (M) ↓ Latency (ms) ↓ Accclean(%) ↓ Accadv(%) ↑

ResNet20

/ 0.605 91.4 14.35 91.49 13.75
Random 1.55 232.0 21.71 93.03 26.31

DeepGuiser-OS 1.11 155.0 32.52 91.23 39.92
DeepGuiser 1.22 182.4 20.46 89.06 46.34

VGG16

/ 0.605 91.4 13.29 88.82 24.89
Random 1.52 227.7 21.93 92.62 26.83

DeepGuiser-OS 1.08 152.6 29.55 92.33 31.26
DeepGuiser 1.18 176.2 16.54 84.95 46.17

MobileNetV2

/ 0.257 46.2 15.08 88.39 15.31
Random 1.16 180.6 23.18 92.97 30.05

DeepGuiser-OS 0.801 119.1 30.33 92.35 41.80
DeepGuiser 0.305 54.7 19.02 87.74 29.18

Random-Arch

/ 0.812 122.3 15.9 90.19 33.23
Random 1.98 276.1 22.7 92.43 44.96

DeepGuiser-OS 1.36 196.5 27.7 91.70 51.38
DeepGuiser 1.49 216.3 23.3 91.49 47.58

computational cost, we provide statistics of parameter size, FLOPS, and running latency of those
architectures. The “DeepGuiser-OS” method represents the disguiser trained upon the one-shot
evaluation given by weight-sharing super-net.

Search Space. We take DARTS search space (Liu et al., 2018b) as an example to evalaute the
effectiveness of our method. Specifically, the cells are classified into normal cell and reduction cell.
Both the cells contain 2 input node and 4 intermediate nodes. Every node can be the end of at most
two edges. A total of 9 operation types are involved, as listed in Fig.2(a). For every conducted
architecture, the base channel is set as 20 and the number of cells is set as 8.

Structure. The length of embedding vector produced by GATES is set as 128. Then the regressor
MLP structure is 256x64x1 (as will concatenate the embedding of two architectures for prediction).
The disguiser MLP structure is 128x256x512x144, where 144 equals (8 (operations in normal cell) +
8 (operations in reduction cell)) × 9 (possible disguising options).

Training Details. The training of DeepGuiser contains two parts. For the training of predictor, we
utilize the constructed dataset TransAdvBench built upon the DARTS search space, including 8,082
pairs of neural architectures as train data and 484 pairs as test data (see Appendix A.1 for more
details). We train the predictor by setting the learning rate as 0.001, batch size as 64, epochs as 30,
and weight decay as 0.0005. For the training of disguiser, we set the learning rate as 3e-4, iteration
number as 104, entropy coefficient λ as 0.003, penalty controller n as 10.

5.2 THE RESULTS OF IMPEDING ADVERSARIAL TRANSFERABILITY

Table 1 concludes the key metrics for evaluating the effectiveness and efficiency of neural architecture
disguising. As can be seen, DeepGuiser can find a better policy for disguising diverse architectures
to defend against architecture extraction attacks. Compared to constructing a surrogate model with
the same architecture as the victim model, when an adversary can only obtain the disguised fake
architecture, the attack success rate will significantly drop, e.g. 33.55% higher adversarial accuracy
will be maintained for ResNet20 when it is attacked by the disguised ResNet20. We also evaluate the
cost for disguising those architectures. Inevitably, disguising will introduce extra computation and
parameters. The experiments show that DeepGuiser outperforms the other methods at even a lower
latency cost. Moreover, we surprisingly find that the clean accuracy of disguised architectures by
DeepGuiser also significantly drops, further reducing the profits of the adversaries from the attacks,
i.e. the attacker obtains much worse architectures while the actual architectures are hidden.
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Table 2: Results of neural architecture disguising under different attack methods. All numbers are the
adversarial accuracy of the original model under black-box transfer attack from the disguised models.

Model Method AutoAttack C&W DI-FGSM Average

ResNet20

/ 4.2 20.21 1.1 8.5
Random 15.49 23.77 9.45 16.24

DeepGuiser-OS 17.46 24.8 10.28 17.51
DeepGuiser 15.3 30.58 11.16 19.01

VGG16

/ 8.2 22.98 3.29 11.49
Random 11.73 25.03 8.73 15.16

DeepGuiser-OS 24.08 27.94 16.98 23
DeepGuiser 22.83 31.52 15.07 23.14

MobileNetV2

/ 5.5 22.39 2.13 10.01
Random 14.96 24.25 12.02 17.08

DeepGuiser-OS 23.18 24.17 18.48 21.94
DeepGuiser 8.68 27.8 7.92 14.8

Table 3: Results of neural architecture disguising by different methods on CIFAR-100 and Tiny-
ImageNet. Accadv means the adversarial accuracy of the original model under black-box transfer
attack from the disguised models. “↑” represents higher better and “↓” represents lower better.

Model Method CIFAR-100 Tiny-ImageNet
Latency (ms) ↓ Accclean (%) ↓ Accadv (%) ↑ Latency (ms) ↓ Accclean (%) ↓ Accadv (%) ↑

ResNet20
/ 12.41 68.09 12.54 12.73 44.92 14.46

DeepGuiser-OS 27.12 68.54 42.84 26.20 53.28 23.38
DeepGuiser 18.01 63.86 40.70 18.66 47.62 23.72

VGG16
/ 13.25 62.39 24.77 13.96 40.76 21.65

DeepGuiser-OS 24.63 68.36 36.92 24.44 54.52 23.53
DeepGuiser 23.23 53.07 39.87 15.96 41.23 25.25

MobileNetV2
/ 15.54 61.88 28.31 15.97 41.26 7.58

DeepGuiser-OS 25.21 69.74 36.71 26.41 53.92 24.64
DeepGuiser 17.55 60.42 37.01 17.51 44.29 16.33

5.3 GENERALIZATION ON DIFFERENT ATTACK METHODS

In this experiment, we evaluate the generalization of adversarial transferability under different attack
methods. Table 2 concludes the results. As can be seen, the adversarial transferability from surrogate
models to victim models can still be impeded (though not as significant as under PGD attack)
with different adversarial example generation methods. This eliminates the need to build a dataset
corresponding to each attack method and perform repeated training for all types of attacks.

5.4 GENERALIZATION OF THE DISGUISING POLICY TO OTHER DATASETS

We explore whether the disguising policy trained on CIFAR-10 can be utilized on other datasets.
We test the adversarial transferability of the disguising architecture to the original architecture on
CIFAR-100 and Tiny-ImageNet. As shown in Table 3, the disguised architectures still demonstrate
consistent results as in the experiments on CIFAR-10. The results suggest that the transferability
between architectures is largely determined by their architecture characteristics and general on
different datasets. That is to say, DeepGuiser can be trained on a proxy dataset like CIFAR-10 and
generalized to other datasets, eliminating the need to collect TransAdvBench for every new dataset.

6 CONCLUSION

In this work, we propose DeepGuiser to automatically disguise neural architectures for impeding the
adversarial transfer attacks after neural architecture extraction. DeepGuiser employs a predictor that
predicts the adversarial transferability between architectures to learn a disguising policy to transform
the architecture operations. DeepGuiser converts the trained model to a functionally-equivalent
“deploy model” with a disguising architecture in a hardware-agnostic and post-training way, which
can be applied no matter what hardware platform is used and incorporates no retraining or fine-
tuning of the trained model. Experimental results show that DeepGuiser can effectively impede the
effectiveness of adversarial transfer attacks following the architecture extraction attack.
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A APPENDIX

A.1 TRANSADVBENCH

As illustrated in the main manuscript, TransAdvBench is built for benchmarking the adversarial
transferability between neural architectures. Here we present the details on the collection, annotation,
statistics, and quality of the dataset.

Data Source. To make the samples more representative and generalized, we collect diverse neural
architectures from the DARTS search space. Every architecture will be built upon a specific normal
cell architecture and a specific reduction cell architecture. Both the cells contain 2 input node and 4
intermediate nodes. Every node can be the end of at most two edges. A total of 9 operation types are
involved. The base channel number is set as 20 and every architecture will cascade eight cells.

Data Construction. Every data point will contain two architectures, one for victim neural architecture
(denoted as A), and the other for surrogate neural architecture (denoted as B) to generate adversarial
examples for transfer attack. The annotations for every architecture pair include: clean accuracy of
A, clean accuracy of B, adversarial accuracy of A under the transfer attack from B.

Data Collection. To collect a data point, we fully train the two neural architectures independently.
We split the full train set of CIFAR-10, which has 50,000 images in total, then take 80% of the data
for training and 20% of the data for validation, to ensure the strict isolation of train data and validation
data. Every model will be fully trained on the train subset and tested on the validation subset. We
choose projected gradient descent (PGD) with 10 steps under the perturbation strength ϵ = 0.031
(8/255) to generate adversarial examples and evaluate the adversarial accuracy. Every single model is
trained with a batch-size of 64, a cosine learning rate scheduling with maximum 0.05 and minimum
0.01, and a total of 50 epochs.

Statistics. Here we provide some statistics of the dataset. Overall, TransAdvBench contains 8,082
data points for training and 484 data points for testing. The 8,082 train data come from 5,473
different neural architectures and the 484 data point come from 605 different neural architectures.
Among the training dataset, we pick 1,117 different architectures to be the victim architectures,
and every architecture will have four surrogate architectures to produce the data points. That is,
1, 117× 4 = 4, 468 data points are produced. Then we shuffle all architectures and randomly select
another 3,614 victim-surrogate pairs to produce the left data points. As the main purpose of this
work is to identify the transferability between an original architecture and its disguised architectures,
we construct the test dataset by sampling 121 victim architectures. For each victim architecture,
4 other surrogate architectures will be sampled based on the disguising rules.In total, there will
be 121 × 4 = 484 data points in test set. Note that we strictly ensure the isolation of the neural
architectures in train set and test set.

Fig.5(Left) shows the statistical distribution of the clean accuracy of sampled neural architectures.
Most of the data distribute on the range of 0.9 to 0.97. Fig.5(Right) shows the statistical distribution of
the adversarial accuracy of the data points. It can be figured out that the adversarial accuracy spreads
over a wide range, while the distribution is non-uniform and has long tails, thus might cause biasing
to the predictor training. Nevertheless, the training data points can provide sufficient generalization
on diverse architectures, and can be used for guiding the training of predictor.

To our best knowledge, this is the first data bench for evaluating the adversarial transferability among
diverse neural architectures. Since the collection of each data point is expensive (requires a training-
generation-test process), the scale of the dataset is still limited currently , and we only take PGD-10
with perturbation strength 0.031 for evaluating the adversarial accuracy. We are working on building
a larger dataset with more reasonable sampling method and richer annotations.

A.2 INSIGHTS FROM TRANSADVBENCH

We provide several insights about the connection between adversarial transferability and neural
architectures. To be specific, we attempted to answer two questions: What are the features of a
easy-to-disguise neural architecture? What kinds of operation transformations can effectively reduce
the adversarial transferability between neural architectures? Since TransAdvBench gives accurate
transferability evaluation between thousands of neural architectures, we can get relatively credible
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Figure 5: Statistics of TransAdvBench. Left: the distribution of clean accuracy of the sampled neural
architectures. Right: the distribution of the adversarial accuracy of the 8,566 (8,082 train data plus
484 test data) pairs of neural architectures.

Figure 6: Average adversarial accuracy increase of each operation transformation. The numbers
in the figure are the average adversarial accuracy increase on each operation transformation. For
example, assume in 10 victim and surrogate architectures at least one skip connection is transformed
to convolution kernels with size 5x5, the total adversarial accuracy increase of the 10 pairs are 20%.
The the skip_connect/conv_3x3 in the table should be 20% / 10 = 2%. Left: Average adversarial
accuracy increase of normal cells; Right: Average adversarial accuracy increase of reduction cells.
The bottom row indicates the average reward transformed from all operations to a specific operation.
For example, assume in 10 surrogate architectures there exist at least one sep_conv_3x3 transformed
from other operations. The total adversarial accuracy increase of the 10 pairs is 20%, then all
operations/sep_conv_3x3 in the table should be 2%

insights from analyzing TransAdvBench. We show the statistics on average adversarial accuracy
increase in Fig.6 and the statistics on the portion of operations in victim architectures in Fig.7. The
statistics involves 1760 victim and surrogate architectures in TransAdvBench in which operation
transformations strictly meet the disguising rules. From the statistics we get the following insights.

Insight 1: Disguising normal cells leads to higher average adversarial accuracy increase than
disguising reduction cells. From Fig.6 we notice that the biggest average adversarial accuracy increase
by transforming operation in normal cell is 4.32% while in reduction cell 3.01%. Additionally, the
operation transformations with top 5 average adversarial accuracy increase are all in normal cells. One
possible reason for this phenomenon is that in the disguising space of our work, a neural architecture
is completed by repeatedly assembling the normal cell architecture and the reduction cell architecture
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Figure 7: Average share of each operations in victim architectures. We sort the 1760 victim and
surrogate architectures by their adversarial accuracy increase from high to low. The x-axis indicates
the number of architectures (counting from highest) are used to compute the average share. The
y-axis indicates the average share of an operation in victim architectures. For example, (50, 0.21)
on the avg_pool_3x3 line means that 21% of operations in victim architectures whose surrogate
architectures yield the highest 50 adversarial accuracy increase are avg_pool_3x3. Left: Average
share of normal cells; Right: Average share of reduction cells.

in sequence. Normal cell architecture is repeated more times than reduction cells in the complete
neural architecture thus is more crucial in operation transformation.

Insight 2: A strong correlation exists between number of average pooling operations in a victim
architecture and adversarial accuracy increase.The victim architectures in TransAdvBench are ran-
domly sampled so the number of each operations in TransAdvBench are generally equal. Interestingly
enough, as is shown in Fig.7 by the avg_pool_3x3 line,along with the decrease of number of victim
architectures (counting from highest) ,the share of avg_pool_3x3 in victim architectures continuously
grows. In victim architectures with top 50 adversarial accuracy increase 21% normal cell operations
are avg_pool_3x3. In contrast only 12% normal cell operations in the entire 1760 victim and surrogate
architectures are avg_pool_3x3.

Insight 3: Transforming an operation to sep_conv_3x3 yields the biggest adversarial accuracy
increase. The operation transformations in TransAdvBench are completely random. From the bottom
row of Fig.6 we can see that transforming an operation to sep_conv_3x3 yields 3.86% adversarial
accuracy increase in normal cell and 2.57% adversarial accuracy increase in reduction cell, both
exceed other operations.

A.3 TRAINING CURVES

Fig.8 shows the curves of predictor training based on MSE loss presented as Equation 5 in the
main manuscript. For making the loss more significant, we multiply a scaling factor 100 for the
loss values. As can be seen, the predictor converges fast, with a rapid loss value dropping and a
significant increasing on the Kendall’s Tau of the predictions. Moreover, the trained predictor can
generalize to test set, achieving superior prediction on both adversarial accuracy and the ranking
quality. The experimental results show that adversarial accuracy of some architecture A under
the adversarial transfer attack from another architecture B is predictable, suggesting that there are
internal characteristics in neural architectures that affecting the adversarial transferability. Therefore,
capturing the characteristics is feasible such that we can learn an automatic disguiser to discover the
least transferable architecture to any victim architecture.
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Figure 8: The training curves of predictor. Left: MSE loss curves of training and testing; Right: the
Kendall’s Tau of training and testing.
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Figure 9: The training curves of predictor based on GCN encoder. Left: MSE loss curves of training
and testing; Right: the Kendall’s Tau of training and testing.

A.4 ABLATION STUDY ON THE ARCHITECTURE ENCODING SCHEMES

We further compare the performance of different architecture encoding schemes, including GATES
method and GCN method (utilized by NAT). As shown in Fig.9, when applying GCN for generating
the architecture embedding, the predictor tends to overfit to the train dataset, with a much higher
MSE loss and a much lower Kendall’s Tau on test dataset compared to GATES-based encoding.
The results demonstrate the superiority of GATES as the architecture encoder as it provides better
modeling of the neural architectures and can help the predictor to obtain better ranking quality and
lower prediction error.

A.5 DISGUISING PROBABILITY STATISTICS

We show the statistics on the probability of operation transformations in Fig.10. Several insights can
be figured out. First, DeepGuiser tends to disguise the convolutional layers with expanded kernels,
e.g. conv3x3 has a high probability of 87% to be disguised as conv5x5, and conv1x1 has a probability
of 77% to be disguised to conv3x3 or conv5x5. Second, changing the network topology is expected
to achieve higher reward, as skip connection has a higher probability of 92% to be disguised to other
operations and null also has a probability of 66% to be changed. Overall, the probability distributions
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Figure 10: Probability of operation transformations. 1000 different architectures are sampled to count
the probability. Left: probability of normal cells; Right: probability of reduction cells. The zeros
numbers means that the disguising is not allowed due to computational rules.

of most operations are relatively balanced, guaranteeing the diversity of neural architecture disguising.
If the disguising patterns are fixed, it will reduce the concealment of neural architecture disguising if
the adversaries master the disguising pattern.

A.6 VISUALIZATION

We post the graph views of several neural architecture disguising samples in Fig.11,12,13. It is quite
difficult for the attackers to guess the disguised operations from observation, thereby preventing the
disguising from being easily cracked by the adversaries.
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Figure 11: Graph view of sampled neural architectures (I).
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Figure 12: Graph view of sampled neural architectures (II).
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Figure 13: Graph view of sampled neural architectures (III).
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