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ABSTRACT

Deep reinforcement learning (RL) excels in various control tasks, yet the absence
of safety guarantees hampers its real-world applicability. In particular, explorations
during learning usually results in safety violations, while the RL agent learns from
those mistakes. On the other hand, safe control techniques ensure persistent safety
satisfaction but demand strong priors on system dynamics, which is usually hard to
obtain in practice. To address these problems, we present Safe Set Guided State-
wise Constrained Policy Optimization (S-3PO), a pioneering algorithm generating
state-wise safe optimal policies with zero training violations, i.e., learning without
mistakes. S-3PO first employs a safety-oriented monitor with black-box dynamics
to ensure safe exploration. It then enforces an "imaginary" cost for the RL agent to
converge to optimal behaviors within safety constraints. S-3PO outperforms exist-
ing methods in high-dimensional robotics tasks, managing state-wise constraints
with zero training violation. This innovation marks a significant stride towards
real-world safe RL deployment.

1 INTRODUCTION

Reinforcement Learning (RL) has showcased remarkable advancements in domains like control and
games. However, its focus on reward maximization sometimes neglects safety, potentially leading
to catastrophic outcomes (Gu et al., 2022). To rectify this, the concept of safe RL emerged, aiming
to ensure safety throughout or after training. Initial endeavors centered on Constrained Markov
Decision Processes, often emphasizing cumulative or chance constraints (Ray et al., 2019; Achiam
et al., 2017; Liu et al., 2021). While effective, these approaches lack instantaneous safety guarantees,
which is crucial for managing emergencies like collision avoidance in autonomous vehicles (Zhao
et al., 2023c; He et al., 2023a). Recent strides Zhao et al. (2023b) leveraged the Maximum Markov
Decision Process to ensure instantaneous safety by bounding violations while integrating trust
region techniques for policy enhancement, resulting in simultaneous improvement of worst-case
performance and adherence to cost constraints. However, these approaches still cannot ensure safety
during learning due to potentially unsafe explorative behaviors.

Meanwhile, safe control methods to continuously meet stringent safety requirements in predictable
environments are widely examined, with energy function-based methods being the most preva-
lent Khatib (1986); Ames et al. (2014); Liu & Tomizuka (2014); Gracia et al. (2013); Wei & Liu
(2019). These methods establish energy functions assigning lower energy to safe states and project
nominal control into energy dissipating control, hence persistently maintaining system safety. How-
ever, these approahces heavily rely on accessible white-box analytical models of system dynamics.
The Implicit Safe Set Algorithm (ISSA) Zhao et al. (2021; 2024) addresses this problem using
black-box optimization over black-box dynamics models. Nevertheless, the reliance on continuous
monitoring to ensure safety imposes significant computational overhead, and the RL policy itself does
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Figure 1: Overview of the principles of the S-3PO algorithm.
not inherently guarantee safe behavior. This combination presents a major obstacle to the successful
deployment of the algorithm in real-time, safety-critical applications.

In summary, a pressing need arises for a method leveraging both the zero-training-time-violation
ability of safe control and optimal convergence of safe RL. To bridge this gap, we introduce a novel
Safe Set Guided State-wise Constrained Policy Optimization (S-3PO) algorithm. S-3PO safeguards
the exploration of immature policies with a black-box safe control method and derives a novel
formulation where RL learns an optimal safe policy by constraining the state-wise “imaginary" safety
violations. An overview of the prescribed S-3PO principles is presented in Figure 1. Empirical
validation underscores S-3PO’s efficacy in training neural network policies encompassing thousands
of parameters for high-dimensional simulated robot locomotion tasks. Our contribution marks a
substantial advancement in the realm of practical safe RL algorithms, poised to find applications in a
multitude of real-world challenges.

2 PROBLEM FORMULATION

2.1 PRELIMINARIES

Dynamics We consider a robot system described by its state st ∈ S ⊂ Rns at time step t, with ns

denoting the dimension of the state space S , and its action input at ∈ A ⊂ Rna at time step t, where
na represents the dimension of the control space A. The system dynamics are defined as follows:

st+1 = f(st, at), (1)

where f : S ×A → S is a deterministic function that maps the current robot state and control to the
robot’s state in the next time step.

To maintain simplicity, our approach focuses on deterministic dynamics, although it is worth noting
that the proposed method can be readily extended to accommodate stochastic dynamics Zhao et al.
(2021); Noren et al. (2021). Additionally, we assume the access to the dynamics model f is only
in the training phase, and is restricted to an implicit black-box form, as exemplified by an implicit
digital twin simulator or a deep neural network model Zhao et al. (2021). We also assume there is no
model mismatch, while model mismatch can be addressed by robust safe control Wei et al. (2022)
and is left for future work. Post training, the knowledge of the dynamics model is concealed, aligning
with practical scenarios where digital twins of real-world environments are too costly to access during
model deployment.

Markov Decision Process In this research, our primary focus lies in ensuring safety for episodic
tasks, which falls within the purview of finite-horizon Markov Decision Processes (MDP). An MDP is
defined by a tuple (S,A, γ, R, P, µ). The reward function is denoted by R : S×A 7→ R, the discount
factor by 0 ≤ γ < 1, the initial state distribution by µ : S 7→ R, and the transition probability
function by P : S ×A× S 7→ R.

The transition probability P (s′|s, a) represents the likelihood of transitioning to state s′ when the
previous state was s, and the agent executed action a at state s. This paper assumes deterministic
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dynamics, implying that P (st+1|st, at) = 1 when st+1 = f(st, at). We denote the set of all
stationary policies as Π, and we further denote πθ as a policy parameterized by the parameter θ.

In the context of an MDP, our ultimate objective is to learn a policy π that maximizes a performance
measure J (π), computed via the discounted sum of rewards, as follows:

J (π) = Eτ∼π

[
H∑
t=0

γtR(st, at, st+1)

]
, (2)

where H ∈ N denotes the horizon, τ = [s0, a0, s1, · · · ], and τ ∼ π indicates that the distribution
over trajectories depends on π, i.e., s0 ∼ µ, at ∼ π(·|st), and st+1 ∼ P (·|st, at).

Safety Specification The safety specification requires that the system state remains within a closed
subset in the state space, denoted as the “safe set” SS . This safe set is defined by the zero-sublevel set
of a continuous and piecewise smooth function ϕ0 : Rns → R, where SS = {s | ϕ0(s) ≤ 0}. Users
directly specify both SS and ϕ0, which is easy to specify. For instance, for collision avoidance, ϕ0

can be specified as the negative closest distance between the robot and environmental obstacles.

2.2 PROBLEM

We are interested in the safety imperative of averting collisions for mobile robots navigating 2D
planes. We aim to persistently satisfy safety specifications at every time step while solving MDP,
following the intuition of State-wise Constrained Markov Decision Process (SCMDP) Zhao et al.
(2023c). Formally, the set of feasible stationary policies for SCMDP is defined as

Π̄C = {π ∈ Π
∣∣ ∀st ∼ τ, st ∈ SS}, (3)

where τ ∼ π. Then, the objective for SCMDP is to find a feasible stationary policy from Π̄C that
maximizes the performance measure. Formally,

max
θ
J (πθ), s.t. πθ ∈ Π̄C . (4)

State-wise Safe Policy with Zero Violation Training The primary focus of this paper centers on
solving (4), i.e., ensuring no safety violation during the training process, while achieving convergence
of the policy to the optimal solution of (4).

3 PRIOR WORKS

3.1 SAFE REINFORCEMENT LEARNING

Existing safe RL approaches either consider safety after convergence or safety during training Zhao
et al. (2023c). End-to-end approaches are usually used to ensure safety after convergence Liang et al.
(2018); Tessler et al. (2018); Bohez et al. (2019); Ma et al. (2021); He et al. (2023b). However, these
approaches cannot avoid unsafe explorations.

Safety in training is achieved by hierarchical approaches which uses a safeguard to filter out unsafe
explorative actions. The safeguard relies on the knowledge on the system dynamics, which can be
either learned dynamics Dalal et al. (2018); Thananjeyan et al. (2021); Zhao et al. (2022), white-
box dynamics Fisac et al. (2018); Shao et al. (2021), or black-box dynamics Zhao et al. (2021).
Nevertheless, these methods cannot guarantee convergence of the RL policy.

The proposed approach is the first to address safety both during training and after convergence, which
can potentially serve as a general framework to bridge these two types of approaches. In the following,
we choose the most advanced method in each category to form the proposed approach, so that it relies
on the least assumptions.

3.2 IMPLICIT SAFE SET ALGORITHM

Energy function-based methods Wei & Liu (2019) achieve safe control by designing an energy
function offline such that 1) the low energy states are safe and 2) there always exists a feasible
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control input to dissipate the energy. A typical design Liu & Tomizuka (2014) was proposed as ϕ =

ϕ∗
0+k1ϕ̇0+ · · ·+knϕ

(n)
0 . It is shown in Liu & Tomizuka (2014) that if the control input is unbounded

(A = Rna ), then there always exist a control input that satisfies the constraint ϕ̇ ≤ 0 when ϕ = 0; and
if the control input always satisfies that constraint, then the set S̄ := {s | ϕ(s) ≤ 0}∩{s | ϕ0(s) ≤ 0}
is forward invariant. In practice, the actual control signal is computed through a quadratic projection
of the nominal control ar to the control constraint

a =argmin
a∈A

∥a− ar∥2 s.t. ϕ̇ ≤ −η(ϕ), (5)

where η(ϕ) is designed to be a positive constant when ϕ ≥ 0 and −∞ when ϕ < 0 according
to SSA Liu & Tomizuka (2014). Here, we define the set of safe control as AS(s) := {a ∈ A |
ϕ̇ ≤ −η(ϕ)}. To match the notion of MDP, we should consider discrete-time safe control set
AD

S (s) := {a ∈ A | ϕ(f(s, a)) ≤ max{ϕ(s)− η, 0}}.
Based on these, the implicit safe set algorithm (ISSA) Zhao et al. (2021; 2024) was proposed
to construct the black-box dynamics based safeguard ensuring persistent satisfication of safety
specification. The black-box dynamics can be a digital twin or neural network. Under some mild
assumptions, it first synthesizes a safety index to make sure AS(s) is nonempty for all s (details of
the mild assumptions and safety index synthesis are summarized in Appendix A). Then it manages to
project the reference action generated from RL policy πθ into AS(s) during policy training. In detail,
the nominal control art needs to be projected to AD

S (st) by solving the following optimization:

min
at∈A

∥at − art∥2

s.t. ϕ(f(st, at)) ≤ max{ϕ(st)− η, 0}.
(6)

To solve (6), they first introduce a sample-efficient Adaptive Momentum Boundary Approximation
(AdamBA) algorithm. Then, ISSA directly uses it to find the safe control with minimum deviation
from the reference control along the boundaries of AD

S (s). If the process fails to return a solution,
grid sampling will be deployed to find a safe control; and AdamBA is deployed again to improve the
solution optimality with respect to (6). We summarize details of AdamBA and ISSA in Algorithm 2
and Algorithm 3, respectively.

3.3 STATE-WISE CONSTRAINED POLICY OPTIMIZATION

Safe RL algorithms under the framework of Constrained Markov Decision Process (CMDP) do not
consider state-wise constraints. To address this gap, State-wise Constrained Policy Optimization
(SCPO) was proposed Zhao et al. (2023b) to provide guarantees for state-wise constraint satisfaction
in expectation, which is under the framework of State-wise CMDP (SCMDP). To achieve this, SCPO
directly constrain the expected maximum state-wise cost along the trajectory. And they introduced
Maximum MDP (MMDP). In this setup, a running maximum cost value is associated with each state,
and a non-discounted finite MDP is utilized to track and accumulate non-negative increments in cost.
The format of MMDP will be introduced in Section 4.

4 SAFETY INDEX GUIDED STATE-WISE CONSTRAINED POLICY
OPTIMIZATION

The core idea of S-3PO is to enforce zero safety violation during training by projecting unsafe actions
to the safe set, and then constrain the "imaginary" safety violation (i.e., what if the projection is not
done) to ensure convergence of the policy to an optimal safe policy.

Zero Violation Exploration To ensure zero violation exploration, we safeguard nominal control
via solving (6) at every time step during policy training. In this paper, we adopt ISSA to solve (6).

For the 2D collision avoidance problem considered in this paper, we choose the same safety index
synthesis rule as [Section 4.1, (Zhao et al., 2021)], which is summarized in Appendix A. We show in
Section 6 that with the safety index synthesis rule, ISSA is guaranteed to find a feasible solution of
(6), making the system forward invariance in the set S̄.
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Learning Safety Measures Safely While eliminating safety violations during training is good, this
also brings inevitable challenges for the policy learning as it directly eliminates the unsafe experience,
making the policy unable to distinguish between safe and unsafe actions. To overcome this challenge,
the main intuition we have is that instead of directly experiencing unsafe states, i.e. s /∈ SS , policy
can learn to act safely from “imagination", i.e., how unsafe it will be if the safeguard had not been
triggered? The critical observation we rely upon is that:

Observation 1. Define ∆ϕt = ∆ϕ(st, at, st+1)
.
= ϕ(f(st, a

r
t )) − ϕ(f(st, at)), i.e. the degree of

required correction to safeguard art . Therefore, ∆ϕt can be treated as an imagination on how unsafe
the reference action would be, where ∆ϕt ≤ 0 means art ∈ AD

S (st).

Following Observation 1, Equation (4) can be translated to:

max
θ
J (πθ), s.t. πθ ∈ {π ∈ Π

∣∣ ∀∆ϕt ∼ τ,∆ϕt ≤ 0}. (7)

Remark 1. Policies satisfying (7) ensure there is no imaginary safety violation for any possible art ,
making πθ a safe policy as required by (4).

4.1 TRANSFROM STATE-WISE CONSTRAINT INTO MAXIMUM CONSTRAINT

For (7), each state-action transition pair corresponds to a constraint, which is intractable to solve.
Inspired by Zhao et al. (2023c), we constrain the expected maximum state-wise ∆ϕ along the
trajectory instead of individual state-action transition ∆ϕ.

Next, by treating ∆ϕt as an “imaginary” cost, we define a MMDP Zhao et al. (2023c) by introducing
(i) an up-to-now maximum state-wise cost M withinM⊂ R, and (ii) a "cost increment" function
D, where D : (S,M) × A × S 7→ [0,R+] maps the augmented state-action transition tuple to
non-negative cost increments. We define the augmented state ŝ = (s,M) ∈ (S,M)

.
= Ŝ , where Ŝ is

the augmented state space. Formally,

D
(
ŝt, at, ŝt+1

)
= max{∆ϕ(st, at, st+1)−M, 0}. (8)

By setting D
(
ŝ0, a0, ŝ1

)
= ∆ϕ(s0, a0, s1), we have M =

∑t−1
k=0 D

(
ŝk, ak, ŝk+1

)
for t ≥ 1. Hence,

we define expected maximum state-wise cost (or D-return) for π:

JD(π) = Eτ∼π

[
H∑
t=0

D
(
ŝt, at, ŝt+1

)]
. (9)

With (9), (7) can be rewritten as:

max
π
J (π), s.t.JD(π) ≤ 0, (10)

where J (π) = Eτ∼π

[∑H
t=0 γ

tR(ŝt, at, ŝt+1)
]

and R(ŝ, a, ŝ′)
.
= R(s, a, s′). With R(τ) being the

discounted return of a trajectory, we define the on-policy value function as V π(ŝ)
.
= Eτ∼π[R(τ)|ŝ0 =

ŝ], the on-policy action-value function as Qπ(ŝ, a)
.
= Eτ∼π[R(τ)|ŝ0 = ŝ, a0 = a], and the advantage

function as Aπ(ŝ, a)
.
= Qπ(ŝ, a)− V π(ŝ).

Lastly, we define on-policy value functions, action-value functions, and advantage functions for the
cost increments in analogy to V π, Qπ, and Aπ, with D replacing R, respectively. We denote those
by V π

D , Qπ
D and Aπ

D.

Remark 2. Equation (7) is difficult to solve since there are as many constraints as the size of
trajectory τ . With (10), we turn all constraints in (7) into only a single constraint on the maximal
∆ϕ along the trajectory, yielding a practically solvable problem.

4.2 S-3PO

To solve (10), we propose S-3PO inspired by recent trust region optimization methods Schulman et al.
(2015). S-3PO uses KL divergence distance to restrict the policy search in (10) within a trust region
around the most recent policy πk. Moreover, S-3PO uses surrogate functions for the objective and
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constraints, which can be easily estimated from sample trajectories by πk. Mathematically, S-3PO
updates policy via solving the following optimization:

πk+1 = argmax
π∈Πθ

E
ŝ∼dπk

a∼π

[Aπk(ŝ, a)] (11)

s.t. Eŝ∼d̄πk [DKL(π∥πk)[ŝ]] ≤ δ,

JD(πk) + E
ŝ∼d̄πk

a∼π

[
Aπk

D (ŝ, a)

]
+ 2(H + 1)ϵπD

√
1

2
δ ≤ 0.

where DKL(π
′∥π)[ŝ] is KL divergence between two policy (π′, π) at state ŝ, the set {π ∈

Πθ : Eŝ∼d̄πk [DKL(π∥πk)[ŝ]] ≤ δ} is called trust region, dπk
.
= (1 − γ)

∑H
t=0 γ

tP (ŝt = ŝ|πk),
d̄πk

.
=

∑H
t=0 P (ŝt = ŝ|πk) and ϵπD

.
= maxŝ|Ea∼π[A

πk

D (ŝ, a)]|.
Remark 3. Despite the complex forms, the objective and constraints in (11) can be interpreted in two
steps. First, maximizing the objective (expected reward advantage) within the trust region (marked by
the KL divergence constraint) theoretically guarantees the worst performance degradation. Second,
constraining the current cost advantage Aπk

D based on the previous value JD(πk) guarantees that
the worst-case “imagionary” cost is non-positive at all steps as in (7). In turn, the original safety
constraint (4) is satisifed.

We then show in Section 6 that S-3PO achieves (i) state-wise safety guarantee of satisfying (3), and
(ii) bounded worst case performance degradation for policy update, by establishing new bounds on
the difference in returns between two stochastic policies π and π′ for MMDPs.

5 PRACTICAL IMPLEMENTATION

In this section, we summarize implementation techniques that helps with S-3PO’s practical perfor-
mance. The pseudocode of S-3PO is give as algorithm 1.

Weighted loss for cost value targets A critical step in S-3PO requires fitting of the cost increment
value functions, denoted as V π

D(ŝt). By definition, V π
D(ŝt) is equal to the maximum cost increment

in any future state over the maximal state-wise cost so far. In other words, V π
D(ŝt) forms a non-

increasing stair shape along the trajectory. Here we visualize an example of V π
D(ŝt) in Figure 2.

To enhance the accuracy of fitting this stair shape function, a weighted loss strategy is adopted,
capitalizing on its monotonic property. Specifically, we define a weighted loss Lweight:

Lweight = L(ŷt − yt) ∗ (1 + w ∗ 1[(ŷt − yt−1) > 0])

Figure 2: V[Di]π(ŝ) target of five sampled
episodes.

where L denotes Mean Squared Error (MSE), ŷt is the pre-
diction, yt is the fitting target and w is the penalty weight.
To account for the initial step (t = 0), we set yt−1 to suf-
ficiently large, thereby disregarding the weighted term
associated with the first step. In essence, the rationale is
to penalize any prediction that violates the non-increasing
characteristics of the target sequence, thereby leading to
an improved fitting quality.

Line search scheduling Note that in (11), there are two
constraints: (a) the trust region and (b) the bound on ex-
pected advantages. In practice, due to approximation er-
rors, constraints in (11) might become infeasible. In that
case, we perform a recovery update that only enforces the
cost advantage Aπ

D to decrease starting from early training
steps (in first ksafe updates), and starts to enforce reward
improvements of Aπ towards the end of training. This is different from Zhao et al. (2023b), where
the reward improvements are enforced at all times. This is because SCPO only guarantees safety
(constraint satisfaction) after convergence, while S-3PO prioritizes constraining imaginary safety
violation. With our line search scheduling, S-3PO is able to first grasp a safe policy, and then improve
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the reward performance. In that way, S-3PO achieves zero safety violation both during training and
in testing with a worst-case performance degradation guarantee.

6 THEORETICAL RESULTS

In this section, We present three theorems, including (i) zero violation exploration (Theorem 1), (ii)
state-wise safety guarantee of S-3PO (Theorem 2), and (iii) worst case performance guarantee of
S-3PO (Theorem 3). The proofs of the three theorems are summarized in Appendix C, Appendix D
and Appendix E, respectively.

Theorem 1 (Zero Training Time Violation). If the system satisfies Assumption 1, and the safety index
design follows the rule described in (12), the implicit safe set algorithm ensures the system is forward
invariant in S̄ ⊂ SS .

Theorem 2 (Safety Guarantee of S-3PO). If πk, πk+1 are related by applying S-3PO and st ∈ S̄,
then st+1 = f(st, πk+1(st)) ∈ S̄ in expectation.

Theorem 3 (Worst-case Performance Degradation in S-3PO.). After ksafe updates, suppose πk, πk+1

are related by S-3PO update rules, with ϵπk+1
.
= maxŝ|Ea∼πk+1

[Aπk(ŝ, a)]|, then performance
return for πk+1 satisfies

J (πk+1)− J (πk) ≥ −
√
2δγϵπk+1

1− γ
.

Remark 4. Theorem 1 shows zero safety violation exploration by proving the system state will never
leave S̄ under the safeguard of ISSA. Theorem 2 shows that by satisfying the constraint of (11), the
new policy is guaranteed to generate safe action, i.e. a ∈ AD

S , in expectation. Intuitively, Theorem 3
shows that with enough training epochs, the reward performance of S-3PO will not deteriorate too
much after each update.

7 EXPERIMENTS

In our experiments, we aim to answer the following questions:

Q1: Does S-3PO achieve zero-violation during the training?
Q2: How does S-3PO without safeguard compare with other state-of-the-art safe RL methods?
Q3: Does S-3PO learn to act without safeguard?
Q4: How does weighted loss trick impact the performance of S-3PO?
Q5: Is “imaginary” cost necessary to achieve zero violation?
Q6: How does S-3PO scale to high dimensional robots?

7.1 EXPERIMENTS SETUP

To answer these questions, we conducted our experiments on the safe reinforcement learning bench-
mark GUARD Zhao et al. (2023a) which is based on Mujoco and Gym interface.

(a) Point (b) Swimmer (c) Ant (d) Hazard (e) Pillar

Figure 3: Robots and constraints for benchmark problems in our environment.

Environment Setting We design experimental environments with different task types, constraint
types, constraint numbers and constraint sizes. We name these environments as {Robot}_{Constraint
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(a) Point_1Hazard (b) Point_8Hazard (c) Point_1Pillar (d) Swimmer_1Hazard

Figure 4: Zero violation performance from four representative test suites in low dimensional systems (evaluated
with the safeguard).

Number}{Constraint Type}. All of environments are based on Goal where the robot must navigate
to a goal.

Our experiments revolve around four distinct robotic entities that can be categorized into two primary
types:

1. Wheel Robot: this category encompasses robots that use wheels for locomotion, maintaining
a continuous and seamless interaction with their surrounding environment. An example is
the Point in fig. 3a which is designated as A ⊆ R2.

2. Link Robot: this group includes robots composed of multiple connected links, which interact
intermittently with their surroundings through the extremities of these links. Furthermore, the
shape of these robots can undergo dynamic changes during these interactions. Specifically,
in our environment, we have 1) Swimmer shown in fig. 3b as a three-link robot (A ⊆ R2);
2) Ant shown in fig. 3c as a quadrupedal robot (A ⊆ R8).

Two different types of constraints are considered.

1. Hazard: Dangerous areas shown in fig. 3d. Hazards are trespassable circles on the ground.
The agent is penalized for entering them.

2. Pillar: Fixed obstacles shown in fig. 3e. The agent is penalized for hitting them.
More details about the experiments are discussed in Appendix F.1.

Comparison Group The methods in the comparison group include: (i) unconstrained RL algorithm
TRPO (Schulman et al., 2015) and TRPO-ISSA. (ii) end-to-end constrained safe RL algorithms
CPO (Achiam et al., 2017), TRPO-Lagrangian (Bohez et al., 2019), PCPO (Yang et al., 2020),
SCPO (Zhao et al., 2023b). (iii) We select TRPO as our baseline method since it is state-of-the-art
and already has safety-constrained derivatives that can be tested off-the-shelf. For all experiments,
the policy π, the value (V π, V π

D) are all encoded in feedforward neural networks using two hidden
layers of size (64,64) with tanh activations. The full list of parameters of all methods compared can
be found in Appendix F.2.

Evaluation Metrics For comparison, we evaluate algorithm performance based on (i) reward
performance, (ii) average episode cost and (iii) cost rate. More details are provided in Appendix F.3.
We set the limit of cost to 0 for all the safe RL algorithms since we aim to avoid any violation of the
constraints.

7.2 EVALUATING S-3PO AND COMPARISON ANALYSIS

Zero Violation During Training The training performance of four representative test suites are
summarized in Figure 4, where the S-3PO algorithm clearly outperforms other baseline methods
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(a) Point_1Hazard (b) Point_8Hazard (c) Point_1Pillar (d) Swimmer_1Hazard

Figure 5: Results from four representative test suites in low dimensional systems (evaluated without the
safeguard).

(a) Point_1Hazard (b) Point_8Hazard (c) Point_1Pillar (d) Swimmer_1Hazard

Figure 6: Triggering frequency of the safeguard from four representative test suites in low dimensional systems.

by achieving zero violations, consistent with the safety guarantee outlined in Theorem 1. For more
experiments, please check Appendix F. This superior performance is attributed to the safeguard
mechanism within the S-3PO framework, which effectively corrects unsafe actions at every step,
particularly during training. Furthermore, as demonstrated in Figure 5, the reward performance
continues to improve throughout the learning process, remaining comparable to state-of-the-art
baselines. This distinct capability of S-3PO ensures safe reinforcement learning with zero safety
violations, even in real-world scenarios, addressing Q1.

State-wise Safety Without Safety Monitor To assess the performance of the S-3PO policy without
the safeguard, evaluations are conducted at the end of each epoch. During these evaluations, the
S-3PO policy is tested over 10,000 steps without the safeguard. This allows us to determine whether
S-3PO effectively learns a state-wise safe policy through the guidance of the safe set-guided cost.
The comparative results are presented in Figure 5. When contrasted with other baseline safe RL
approaches, S-3PO demonstrates superior performance even without the safeguard, achieving (i) near-
zero average episode cost and (ii) significantly reduced cost rates, all while maintaining competitive
reward performance. These findings are consistent with Theorem 2 and Theorem 3, highlighting that
by minimizing imaginary safety violations, the policy rapidly learns to act safely, which addresses
Q2.

Learn to Act without Safeguard As highlighted in Observation 1, the key concept behind penaliz-
ing imaginary safety violations is to minimize the activation of the safeguard, thereby significantly
reducing its computational complexity and enabling real-time implementation. To illustrate this, we
visualize the average number of times the ISSA-based safeguard is triggered per step in Figure 6. For
comparison, TRPO-ISSA is included as a baseline, which relies continuously on the safeguard to
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maintain safe control. Figure 6 shows that S-3PO dramatically reduces the frequency of safeguard
activations, approaching zero, indicating that a state-wise safe policy has been effectively learned,
thus addressing Q3.

Ablation on Weighted Loss for Fitting Cost Increment Value Targets As pointed in Section 5,
fitting VDi

(ŝt) is a critical step towards solving S-3PO, which is challenging due to non-increasing
stair shape of the target sequence. To elucidate the necessity of weighted loss for solving this
challenge, we evaluate the cost rate of S-3PO under six distinct weight settings (0.0, 0.2, 0.4, 0.6, 0.8,
1.0) on Point_4Hazard test suite. The results shown in Figure 7a validates that a larger weight
(hence higher penalty on predictions that violate the characteristics of value targets) results in better
cost rate performance. This ablation study answers Q4.

(a) Comparison of cost rate
performance with 6 different
weights.

(b) Comparison between
“imaginary” cost and action
correction cost.

Figure 7: Comparison results of S-3PO

Necessity of “Imaginary” Cost To un-
derstand the importance of the "imaginary"
cost within the S-3PO framework, we com-
pare it to another cost based on the mag-
nitude of action correction Chen & Liu
(2021). This empirical analysis is con-
ducted using the Point_4Hazard test
suite. As shown in Figure 7b, the "imagi-
nary" cost yields superior cost rate perfor-
mance. This suggests that the "imaginary"
cost offers deeper insights into the com-
plex dynamics between the robot and its
environment, thereby addressing Q5.

Figure 8: Cost and cost rate performance of Ant_1Hazard.

Scale S-3PO to High-Dimensional Link
Robots To showcase S-3PO’s scalabil-
ity and performance with complex, high-
dimensional link robots, we conducted ad-
ditional tests on Ant_1Hazard featuring
8 dimensional control spaces. As shown
in Figure 8, S-3PO effectively drives the
cost to zero and rapidly reduces the cost
rate, showcasing its clear superiority in
high-dimensional safety policy learning
and highlighting its exceptional scalability
to more complex systems.

8 CONCLUSION AND FUTURE PROSPECTUS

In this study, we introduce Safe Set Guided State-wise Constrained Policy Optimization (S-3PO),
a novel algorithm pioneering state-wise safe optimal policies. This distinction is underlined by the
absence of training violations, signifying an error-free learning paradigm. S-3PO employs a safeguard
anchored in black-box dynamics to ensure secure exploration. Subsequently, it integrates a novel
“imaginary” safety cost to guide the RL agent towards optimal safe policies. S-3PO outperforms
existing methods in complex high-dimensional robotics tasks.

Nevertheless, a noteworthy limitation pertains to the potential costliness of acquiring a physical
engine-based simulator (black-box dynamics model). A forward-looking perspective entails replacing
the black-box dynamics model with a learned surrogate model, factoring in the nuances of errors in
learned dynamics. This strategic move holds the promise of obliterating the final barrier impeding
the seamless integration of safe RL training into real-world applications.
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A IMPLICIT SAFE SET ALGORITHM DETAILS

Figure 9: Notations.

A.1 CIRCUMSTANCES AND ASSUMPTIONS

In our treatment, both the robot and obstacles assume the form of point-mass circles, confined by
finite collision radii. The safety criterion adopts the form ϕ0 = maxi ϕ0i, with ϕ0i = dmin − di.
Here, di captures the separation between the robot’s center and the i-th obstacle, encompassing both
static and non-static entities. In this context, we introduce z and w to signify the relative acceleration
and relative angular velocity of the robot, respectively, within the obstacle’s frame, as depicted in
Figure 9. Importantly, the synthesis of the safety index for 2D collision evasion remains independent
of specific dynamic models, but under the following assumption:
Assumption 1 (2D Collision Avoidance). 1) The state space is bounded, and the relative acceleration
and angular velocity are bounded and both can achieve zeros, i.e., w ∈ [wmin, wmax] for wmin ≤
0 ≤ wmax and z ∈ [zmin, zmax] for zmin ≤ 0 ≤ zmax; 2) For all possible values of z and w, there
always exists a control a to realize such z and w; 3) The discrete-time system time step dt→ 0; 4)
At any given time, there can at most be one obstacle becoming safety critical, such that ϕ− η ≥ 0
(Sparse Obstacle Environment).

The bounds in the first assumption will be directly used to synthesize ϕ. The second assumption
enables us to turn the question on whether these exists a feasible control in AD

S to the question on
whether there exists z and w to decrease ϕ. The third assumption ensures that the discrete time
approximation error is small. The last assumption enables safety index design rule applicable with
multiple moving obstacles.

A.2 SAFETY INDEX SYNTHESIS

Following the rules in (Liu & Tomizuka, 2014), we parameterize the safety index as ϕ = maxi ϕi,
and ϕi = σ+dnmin−dni −kḋi, where all ϕi share the same set of tunable parameters σ, n, k, η ∈ R+.
Our goal is to choose these parameters such that AD

S (s) is always nonempty. By setting η = 0, the
parameterization rule of safety index design rule is defined as:

n(σ + dnmin + kvmax)
n−1
n

k
≤ −zmin

vmax
(12)

where vmax is the maximum relative velocity that the robot can achieve in the obstacle frame. Note
that the kinematic constraints vmax, zmin can be obtained by sampling the environment Zhao et al.
(2021).
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B ALGORITHMS

B.1 S-3PO ALGORITHM

Algorithm 1 S-3PO

Input: Initial policy π0 ∈ Πθ.
for k = 0, 1, 2, . . . do

for t = 0, 1, 2, . . . do
Sample nominal action art ∼ πk(st)
Compute and execute at = ISSA(st, a

r
t )

Log τ ← τ ∪ {(st, at, rt, st+1,∆ϕt)}
end for
g ← ∇θEŝ,a∼τ [A

π(ŝ, a)]|θ=θk
b← ∇θEŝ,a∼τ [A

π
D(ŝ, a)]|θ=θk

c← JD(πk) + 2(H + 1)ϵπD
√
δ/2

H ← ∇2
θEŝ∼τ [DKL(π∥πk)[ŝ]]

∣∣
θ=θk

θ∗k+1 = argmax
θ

g⊤(θ − θk) s.t.

1
2 (θ − θk)

⊤H(θ − θk) ≤ δ, c+ b⊤(θ − θk) ≤ 0
Get search direction ∆θ∗ ← θ∗k+1 − θk
for j = 0, 1, 2, . . . do ▷ Line search

θ′ ← θk + ξj∆θ∗

if Eŝ∼τ [DKL(πθ′∥πk)[ŝ]] ≤ δ and
Eŝ,a∼τ

[
A

πθ′
D (ŝ, a)−Aπk

D (ŝ, a)
]
≤ max(−c, 0) and

(k ≤ ksafe or Eŝ,a∼τ [A
πθ′ (ŝ, a)] ≥ Eŝ,a∼τ [A

πk(ŝ, a)]) then
θk+1 ← θ′ ▷ Update policy
break

end if
end for

end for

B.2 ADDITIONAL ALGORITHMS

The main body of AdamBA algorithm is summarized in Algorithm 2, and the main body of ISSA
algorithm is summarized in Algorithm 3. The inputs for AdamBA are the approximation error bound
(ϵ), learning rate (β), reference control (ar), gradient vector covariance (Σ), gradient vector number
(n), reference gradient vector (v⃗r), safety status of reference control (S), and the desired safety status
of control solution (Sgoal). The inputs for ISSA are the approximation error bound (ϵ), the learning
rate (β), gradient vector covariance (Σ), gradient vector number (n) and reference unsafe control
(ar).

14
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Algorithm 2 Adaptive Momentum Boundary Approximation

1: procedure ADAMBA(ϵ, β,Σ, n, ar, v⃗r, S, Sgoal)
2: Initialize:
3: if v⃗r is empty then
4: Generate n Gaussian distributed unit gradient vectors v⃗i ∼ N (0,Σ), i = 1, 2, . . . , n
5: else
6: Initialize one unit gradient vector v⃗1 = v⃗r

∥v⃗r∥
7: end if
8: Approximation:
9: for i = 1, 2, · · · , n do

10: Initialize the approximated boundary point Pi = ar, and stage = exponential outreach.
11: while stage = exponential outreach do
12: Set PS ← Pi and PNS ← Pi

13: Pi = Pi + v⃗iβ
14: if Pi is out of the control set then
15: break
16: end if
17: if Pi safety status ̸= S then
18: Set PNS ← Pi , stage← exponential decay
19: break
20: end if
21: β = 2β
22: end while
23: if stage = exponential decay then
24: Apply Bisection method to locate boundary point until ∥PNS − PS∥ < ϵ
25: Set Pi ← PS if Sgoal = S, Pi ← PNS otherwise
26: end if
27: end for
28: Return Approximated Boundary Set P
29: end procedure

15
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Algorithm 3 Implicit Safe Set Algorithm (ISSA)

1: procedure ISSA(ϵ, β,Σ, n, ar)
2: Phase 1: ▷ Phase 1
3: Use AdamBA(ϵ, β,Σ, n, ar, ∅,UNSAFE, SAFE) to sample a collection S of safe control on

the boundary of AD
S .

4: if S = ∅ then
5: Enter Phase 2
6: else
7: For each primitive action ai ∈ S, compute the deviation di = ∥ai − ar∥2
8: return argminai

di
9: end if

10:
11: Phase 2: ▷ Phase 2
12: Use grid sampling by iteratively increasing sampling resolution to find an anchor safe control

au, s.t. safety status of au is SAFE.
13: Use AdamBA(ϵ, ∥ar−au∥

4 ,Σ, 1, ar, au−ar

∥au−ar∥ ,UNSAFE, SAFE) to search for boundary point
a∗

14: if a∗ is not found then
15: Use AdamBA(ϵ, ∥ar−au∥

4 ,Σ, 1, au, ar−au

∥ar−au∥ , SAFE, SAFE) to search for boundary point
au∗

16: Return au∗

17: else
18: Return a∗

19: end if
20: end procedure
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C PROOF OF THEOREM 1

To prove the Theorem 1 we introduce two important corollaries to show that 1) the set of safe control
is always nonempty if we choose a safety index that satisfies the design rule in (12); and 2) the
proposed algorithm 3 is guaranteed to find a safe control if there exists one. With these two corollaries,
it is then straightforward to prove the Theorem 1.

C.1 FEASIBILITY OF THE SAFETY INDEX FOR CONTINUOUS-TIME SYSTEM

Corollary 1 (Non-emptiness of the set of safe control). If 1) the dynamic system satisfies the
conditions in Assumption 1; and 2) the safety index is designed according to the rule in Appendix A,
then the robot system in 2D plane has nonempty set of safe control at any state, i.e., AD

S (s) ̸= ∅,∀s.

Note that the set of safe control AD
S (s) := {a ∈ A | ϕ(f(s, a)) ≤ max{ϕ(s)− η, 0}} is non-empty

if and only if it is non-empty in the following two cases: ϕ(s) − η < 0 or ϕ(s) − η ≥ 0. In the
following discussion, we first show that the safety index design rule guarantees a non-empty set of
safe control if there’s only one obstacle when ϕ(s)− η ≥ 0 (Lemma 1). Then we show that the set of
safe control is non-empty if there’s only one obstacle when ϕ(s)− η < 0 (Lemma 2). Finally, we
leverage Lemma 1 and Lemma 2 to show AD

S (s) is non-empty if there’re multiple obstacles at any
state.

Lemma 1. If the dynamic system satisfies the conditions in Assumption 1 and there is only one
obstacle in the environment, then the safety index design rule in Appendix A ensures that AD

S (s) ̸= ∅
for x such that ϕ(s)− η ≥ 0.

Proof. For x such that ϕ(s)− η ≥ 0, the set of safe control becomes

AD
S (s) = {a ∈ A | ϕ(f(s, a)) ≤ ϕ(s)− η} (13)

According to the third condition in Assumption 1, we have dt → 0. Therefore, the discrete-time
approximation error approaches zero, i.e., ϕ(f(s, a)) = ϕ(s)+dt · ϕ̇(s, a)+∆, where ∆→ 0. Then
we can rewrite (13) as:

AD
S (s) = {a ∈ A | ϕ̇ ≤ −η/dt} (14)

According to the definition of ϕ, we have ϕ̇ = −ndn−1ḋ− kd̈. We ignored the subscript i since it is
assumed that there is only one obstacle. Therefore, the non-emptiness of AD

S (s) in (14) is equivalent
to the following condition

∀s s.t. ϕ(s) ≥ η,∃a, s.t. d̈ ≥ η/dt− ndn−1ḋ

k
. (15)

Note that in the 2D problem, d̈ = −z cos(α) + v sin (α)w and ḋ = −v cos(α). According to
Assumption 1, there is a surjection from a to (z, w) ∈ W := {(z, w) | zmin ≤ z ≤ zmax, wmin ≤
w ≤ wmax}. Moreover, according to the definition of safety index, ϕ for the 2D problem only
depends on α, v, and d. Hence condition ∀s s.t. ϕ(s) ≥ η can be translated to ∀(α, v, d) s.t. σ +
dnmin − dn − kv cos(α) ≥ η. Denote the later set as

Φ := {(α, v, d) | σ + dnmin − dn − kv cos(α) ≥ η, v ∈ [0, vmax], d ≥ 0, α ∈ [0, 2π)}. (16)

Consequently, condition (6) is equivalent to the following condition

∀(α, v, d) ∈ Φ,∃(z, w) ∈W, s.t. − z cos(α) + v sin(α)w ≥ η/dt+ ndn−1v cos(α)

k
. (17)

According to the safety index design rule, we have η = 0. Then we show (17) holds in different
cases.

Case 1: v = 0. In this case, we can simply choose z = 0, then the inequality in (17) holds.
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Case 2: v ̸= 0 and cos(α) ≤ 0. Note that velocity v is always non-negative. Hence v > 0. In this
case, we just need to choose z = w = 0, then the inequality in (17) holds, where the LHS becomes
zero and the RHS becomes ndn−1v cos(α)

k which is non-positive.

Case 3: v ̸= 0 and cos(α) > 0. Dividing v cos(α) on both sides of the inequality and rearranging
the inequality, (17) is equivalent to

∀(α, v, d) ∈ Φ,∃(z, w) ∈W, s.t. − z

v
+ tan(α)w − ndn−1

k
≥ 0, (18)

and (18) can be verified by showing:

min
(α,v,d)∈Φ

max
(z,w)∈W

(−z

v
+ tan(α)w − ndn−1

k
) ≥ 0. (19)

Now let us expand the LHS of (19):

min
(α,v,d)∈Φ

max
(z,w)∈W

(−z

v
+ tan(α)w − ndn−1

k
) (20)

= min
(α,v,d)∈Φ

(−zmin

v
+ [tan(α)]+wmax + [tan(α)]−wmin −

ndn−1

k
) (21)

= min
α∈[0,2π),v∈(0,vmax]

(−zmin

v
+ [tan(α)]+wmax + [tan(α)]−wmin −

n(σ + dnmin + kv cos(α))
n−1
n

k
)

(22)

=− zmin

vmax
− n(σ + dnmin + kvmax)

n−1
n

k
. (23)

The first equality eliminates the inner maximization where [tan(α)]+ := max{tan(α), 0} and
[tan(α)]− := min{tan(α), 0}. The second equality eliminates d according to the constraint in Φ.
The third equality is achieved when α = 0 and v = vmax. According to the safety index design rule
in Appendix A, (23) is greater than or equal to zero. Hence (19) holds, which then implies that the
inequality in (17) holds.

The three cases cover all possible situations. Hence (17) always hold and the claim in the lemma is
verified.

Lemma 2. If the dynamic system satisfies the contidions in Assumption 1 and there is only one
obstacle in the environment, then the safety index design rule in Appendix A ensures that AD

S (s) = A
for any s that ϕ(s)− η < 0.

Proof. For s such that ϕ(s)− η < 0, the set of safe control becomes

AD
S (s) = {a ∈ A | ϕ(f(s, a)) ≤ 0} (24)

According to the third assumption in Assumption 1, we have dt→ 0. Therefore, the discrete-time
approximation error approaches zero, i.e., ϕ(f(s, a)) = ϕ(s)+dt · ϕ̇(s, a)+∆, where ∆→ 0. Then
we can rewrite (24) as:

AD
S (s) = {a ∈ A | ϕ̇ ≤ −ϕ/dt} (25)

Note that η = 0 according to the safety index design rule, then ϕ(s)− η < 0 implies that ϕ(s) < 0.
Hence −ϕ/dt→∞ since dt→ 0. Then as long as ϕ̇ is bounded, AD

S (s) = A.

Now we show that ϕ̇ is bounded. According to the definition of safety index design rule, ϕ̇ =
−ndn−1ḋ − kd̈. We ignored the subscript i since it is assumed that there is only one obstacle.
According to Assumption 1, we have the state space is bounded, thus both d and ḋ are bounded, which
implies that ndn−1ḋ is bounded. Moreover, we have for all possible values of z and w, there always
exists a control a to realize such z and w according to Assumption 1, which indicates the mapping
from a to (z, w) is surjective. Since z and w are bounded and both can achieve zeros according to
Assumption 1, we have ∀a, the corresponding (z, w) are bounded. Since d̈ = −z cos(α)+v sin(α)w,
then d̈ is bounded. Hence AD

S (s) = A any s that ϕ(s)− η < 0 and the claim is true.
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Proof of Corollary 1.

Proof. If there is one obstacle, then lemma 1 and lemma 2 have proved that AD
S (s) ̸= ∅ for all s.

Now we need to consider the case where there are more than one obstacle but the environment is
sparse in the sense that at any time step, there is at most one obstacle which is safety critical, i.e.
ϕi ≥ 0. To show nonemptiness of AD

S (s), we consider the following two cases. In the following
discussion, we set η = 0 according to the safety index design rule.

Case 1: ϕ(s) = maxi ϕi(s) ≥ 0. Denote j := argmaxi ϕi(s). Since there is at most one obstacle
that is safety critical, then ϕj(s) ≥ 0 and ϕk(s) < 0 for all k ̸= j.

Denote AD
S j(s) := {a ∈ A | ϕj(f(s, a)) ≤ ϕj(s)}. Lemma 1 ensures that AD

S j(s) is nonempty.
Denote AD

S k(s) := {a ∈ A | ϕk(f(s, a)) ≤ 0} where k ̸= j. Since ϕk(s) < 0, lemma 2 ensures
that AD

S k(s) = A.

Note that the set of safe control can be written as:

AD
S (s) := {a ∈ A | max

i
ϕi(f(s, a)) ≤ max

i
ϕi(s)} (26a)

= {a ∈ A | max
i

ϕi(f(s, a)) ≤ ϕj(s)} (26b)

= ∩i{a ∈ A | ϕi(f(s, a)) ≤ ϕj(s)} (26c)

= AD
S j(s) ̸= ∅ (26d)

Note that the last equality is due to the fact that {a ∈ A | ϕi(f(s, a)) ≤ ϕj(s)} ⊇ {a ∈ A |
ϕi(f(s, a)) ≤ 0} = A ⊇ AD

S j(s) for i ̸= j.

Case 2: ϕ(s) = maxi ϕi(s) < 0. Therefore, we have ϕi(s) < 0 for all i. According to Lemma 2,
{a ∈ A | ϕi(f(s, a)) ≤ 0} = A. Hence the set of safe control satisfies the following relationship

AD
S (s) := {a ∈ A | max

i
ϕi(f(s, a)) ≤ 0} (27a)

= ∩i{a ∈ A | ϕi(f(s, a)) ≤ 0} (27b)
= A ≠ ∅ (27c)

In summary, AD
S (s) ̸= ∅,∀s and the claim holds.

C.2 FEASIBILITY OF ISSA

Corollary 2 (Feasibility of Algorithm 3). If the set of safe control is non-empty, Algorithm 3 can
always find a sub-optimal solution of (6) with a finite number of iterations.

Algorithm 3 executes two phases consecutively where the second phase will be executed if no solution
of (6) is returned in the first phase. Hence, Algorithm 3 can always find a sub-optimal solution of (6)
(safe control on the boundary of AD

S ) if the solution of (6) can always be found in phase 2.

Note that Phase 2 first finds an anchor safe control au, then use it with AdamBA (Algorithm 2) to
find the solution of (6). In the following discussion, we first show that the safety index design rule
guarantees au can be found with finite iterations (Lemma 3). Then we show that AdamBA will return
a solution if it enters the exponential decay phase (Lemma 4). Subsequently, we show that the evoked
AdamBA procedures in phase 2 will definitely enter exponential decay phase (Lemma 5). Finally, we
provide a upper bound of the computation iterations for Algorithm 3.
Lemma 3 (Existence). If the synthesized safety index can guarantee a non-empty set of safe control,
then we can find an anchor point in phase 2 of Algorithm 3 with finite iterations (line 11 in algorithm 3).

Proof. If the synthesized safety index guarantees a non-empty set of safe control AD
S , then there

exists a hypercube inside of AD
S , i.e. ∃Q ⊂ AD

S , where Q is a nu-dimensional hypercube with the
same side length of l > 0. Denote ζ[i] = maxj,k ∥aj[i] − ak[i]∥, where a[i] denotes the i-th dimension
of control a, and aj ∈ AD

S , ak ∈ AD
S .
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Figure 10: Illustration of the grid sampling to find an anchor control point.

By directly applying grid sampling in AD
s with sample interval l∗ at each control dimension, such

that 0 < l∗ < l, the maximum sampling iteration T a for finding an anchor point in phase 2 satisfies
the following condition:

T a <

nu∏
i=1

⌈
ζ[i]

l∗
⌉ , (28)

where T a is a finite number since l∗ > 0. Then we have proved that we can find an anchor point in
phase 2 of Algorithm 3 with finite iteration (i.e., finite sampling time). The grid sampling to find an
anchor control point is illustrated in Figure 10.

Lemma 4 (Convergence). If AdamBA enters the exponential decay phase, then it can always return
a boundary point approximation (with desired safety status) where the approximation error is upper
bounded by ϵ.

Proof. According to Algorithm 2, exponential decay phase applies Bisection method to locate the
boundary point Pb until ∥PNS − PS∥ < ϵ. Denote the returned approximated boundary point as
Preturn, according to line 25, Preturn is either PNS or PS , thus the approximation error satisfies:

∥Preturn − Pb∥ ≤ max{∥PNS − Pb∥, ∥PS − Pb∥} (29)
≤ ∥PNS − PS∥
< ϵ.

Lemma 5 (Feasibility). If we enter the phase 2 of Algorithm 3 with an anchor safe control being
sampled, we can always find a local optimal solution of (6).

Proof. According to line 13-15, after an anchor safe control is being sampled, phase 2 of Algorithm 3
will evoke at most two AdamBA processes. Hence, Lemma 5 can be proved by showing one of the
two AdamBA will return a local optimal solution for (6). Next we show Lemma 5 holds in two cases.

Case 1: line 13 of Algorithm 3 finds a solution.

In this case, the first AdamBA process finds a safe control au solution (the return of AdamBA is a set,
whereas the set here has at most one element). According to Algorithm 2, a solution will be returned
only if AdamBA enters exponential decay stage. Hence, according to Lemma 4, au is close to the
boundary of the set of safe control with approximation error upper bounded by ϵ.

Case 2: line 13 of Algorithm 3 fails to find a solution.

In this case, the second AdamBA process is evoked (line 15 of Algorithm 3). Since no solution is
returned from the first AdamBA process (13 of Algorithm 3), where we start from ar and exponentially
outreach along the direction v⃗a = au−ar

||au−ar|| , then all the searched control point along v⃗a is UNSAFE.

20



Published as a conference paper at ICLR 2025

Figure 11: Illustration of the case when it is unable to find u∗.

Specifically, we summarize the aforementioned scenario in Figure 11, the searched control points are
represented as red dots along v⃗a (red arrow direction). Note that the exponential outreach starts with
step size β = ∥au−ar∥

4 , indicating two points {a1s, a2s} are sampled between ar and au such that{
a1s = ar + ∥au−ar∥

4 v⃗a = 3ar

4 + au

4

a2s = ar + 3∥au−ar∥
4 v⃗a = ar

4 + 3au

4

(30)

where the safety statuses of both a1s and a2s are UNSAFE.

During the second AdamBA process (line 15 of Algorithm 3), we start from au and exponentially
outreach along the direction v⃗r = ar−au

||ar−au|| with initial step size β = ∥ar−au∥
4 . Hence, denote ā1s as

the first sample point along v⃗r, and ā1s satisfies

ā1s = au +
∥ar − au∥

4
v⃗r =

ar

4
+

3au

4
, (31)

which indicates ā1s = a2s, and the safety status of ā1s is UNSAFE. Since the safe status of au is
SAFE and a UNSAFE point can be sampled during the exponential outreach stage, the second
AdamBA process (line 15 of Algorithm 3) will enter exponential decay stage. Therefore, according
to Lemma 4, au∗ will always be returned and au∗ is close to the boundary of the set of safe control
with approximation error upper bounded by ϵ.

The two cases cover all possible situations. Hence, after an anchor safe control au is sampled, phase
2 of Algorithm 3 can always find a local optima of (6).

Proof of Corollary 2.

Proof. According to Lemma 3 and Lemma 5, Algorithm 3 is able to find local optimal solution of
(6). Next, we will prove Algorithm 3 can be finished within finite iterations.

According to Algorithm 3, ISSA include (i) one procedure to find anchor safe control aa, and (ii) at
most three AdamBA procedures. Firstly, based on Lemma 3, aa can be found within finite iterations.
Secondly, each AdamBA procedure can be finished within finite iterations due to:

• exponential outreach can be finished within finite iterations since the control space is
bounded.

• exponential decay can be finished within finite iterations since Bisection method will exit
within finite iterations.

Therefore, ISSA can be finished within finite iterations.
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C.3 PROOF OF THEOREM 1

Before we prove Theorem 1, we first define set SDS := {s|ϕ(s) ≤ 0}, and we start with a preliminary
result regarding SDS that is useful for proving the main theorem:

Lemma 6 (Forward Invariance of SDS ). If the control system satisfies Assumption 1, and the safety
index design follows the rule described Appendix A, the implicit safe set algorithm guarantees the
forward invariance to the set SDS .

Proof. If the control system satisfies the assumptions in Assumption 1, and the safety index design
follows the rule described Appendix A, then we can ensure the system has nonempty set of safe
control at any state by Corollary 1. By Corollary 2, the implicit safe set algorithm can always find
local optima solution of (6). The local optima solution always satisfies the constraint ϕ(f(st, at)) ≤
max{ϕ(st) − η, 0}, which indicates that 1) if ϕ(st0) ≤ 0, then ϕ(st) ≤ 0,∀t ≥ t0. Note that
ϕ(s) ≤ 0 demonstrates that s ∈ SDS .

Proof the Theorem 1

Proof. Leveraging Lemma 6, we then proceed to prove that the forward invariance to the set SDS
guarantees the forward invariance to the set S̄ ⊆ SS which S̄ = SS ∩ SDS . Depending on the
relationship between SDS and SS , there are two cases in the proof which we will discuss below.

Case 1: SDS = {s|ϕ(s) ≤ 0} is a subset of SS = {s|ϕ0(s) ≤ 0}.

In this case, S̄ = SDS . According to Lemma 6, If the control system satisfies the assumptions in
Assumption 1, and the safety index design follows the rule described Appendix A, the implicit safe
set algorithm guarantees the forward invariance to the set SDS and hence S̄.

Case 2: SDS = {s|ϕ(s) ≤ 0} is NOT a subset of SS = {s|ϕ0(s) ≤ 0}.
In this case, if st ∈ S̄, we have ϕ0(st) = maxi ϕ0i(st) ≤ 0, which indicates ∀i, ϕ0i ≤ 0.

Firstly, we consider the case where ϕ0i(st) < 0. Note that ϕ0i(st+1) = ϕ0i(st) + ϕ̇0i(st)dt +
ϕ̈0i(st)dt

2

2! + · · · , since the state space and control space are both bounded, and dt→ 0 according to
Assumption 1, we have ϕ0i(st+1)→ ϕ0i(st) ≤ 0.

Secondly, we consider the case where ϕ0i(st) = 0. Since st ∈ S̄, we have maxi ϕi(st) ≤ 0, which
indicates ∀i, σ + dnmin − dni − kḋi ≤ 0. Since ϕ0i(st) = 0, we also have di = dmin. Therefore, the
following condition holds:

σ − kḋi ≤ 0 (32)

ḋi ≥
σ

k

According to the safety index design rule, we have k, σ ∈ R+, which indicates ḋi > 0. Therefore,
we have ϕ0i(st+1) < 0.

Summarizing the above two cases, we have shown that if ϕ0i(st) ≤ 0 then ϕ0i(st+1) ≤ 0, which
indicates if ∀i, ϕ0i(st) ≤ 0 then ∀i, ϕ0i(st+1) ≤ 0. Note that ∀i, ϕ0i(st+1) ≤ 0 indicates that
ϕ0(st+1) = maxi ϕ0i(st+1) ≤ 0. Therefore, we have that if st ∈ S̄ then st+1 ∈ SS . Thus, we also
have st+1 ∈ S̄ by Lemma 6. By induction, we have if st0 ∈ S̄, st ∈ S̄,∀t > t0.

In summary, by discussing the two cases of whether SDS is the subset of SS , we have proven that if
the control system satisfies the assumptions in Assumption 1, and the safety index design follows the
rule described in Appendix A, the implicit safe set algorithm guarantees the forward invariance to
the set S̄ ⊆ SS . Thus, if the initial state is safe, then the following state will always stay in S̄ which
means ISSA can ensure the safety during training.
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D PROOF OF THEOREM 2

Mathematically, S-3PO requires the policy update at each iteration is bounded within a trust region,
and updates policy via solving following optimization:

πk+1 = argmax
π∈Πθ

E
ŝ∼dπk

a∼π

[Aπk(ŝ, a)] (33)

s.t. Eŝ∼d̄πk [DKL(π∥πk)[ŝ]] ≤ δ,

JD(πk) + E
ŝ∼d̄πk

a∼π

[
Aπk

D (ŝ, a)

]
+ 2(H + 1)ϵπD

√
1

2
δ ≤ 0

where DKL(π
′∥π)[ŝ] is KL divergence between two policy (π′, π) at state ŝ, the set {π ∈

Πθ : Eŝ∼d̄πk [DKL(π∥πk)[ŝ]] ≤ δ} is called trust region, dπk
.
= (1 − γ)

∑H
t=0 γ

tP (ŝt = ŝ|πk),
d̄πk

.
=

∑H
t=0 P (ŝt = ŝ|πk), and ϵπD

.
= maxŝ|Ea∼π[A

πk

D (ŝ, a)]|. In practice, if ISSA is triggered, we
take D(ŝt, at, ŝt+1) = max{(ϕ(f(ŝt, art )) − ϕ(f(ŝt, at))) −M, 0} = max{∆ϕt, 0}. Otherwise
we take D(ŝt, at, ŝt+1) = 0 directly.

D.1 PRELIMINARIES

ḋπ we used is defined as

ḋπ(ŝ) =

H∑
t=0

γtP (ŝt = ŝ|π). (34)

which has a little difference with dπ and is used to ensure the continuity of function we used for proof
later. Then it allows us to express the expected discounted total reward or cost compactly as:

Jg(π) = E
ŝ∼ḋπ

a∼π
ŝ′∼P

[g(ŝ, a, ŝ′)] , (35)

where by a ∼ π, we mean a ∼ π(·|ŝ), and by ŝ′ ∼ P ,we mean ŝ′ ∼ P (·|ŝ, a). g(ŝ, a, ŝ′) represents
the cost or reward function. We drop the explicit notation for the sake of reducing clutter, but it
should be clear from context that a and ŝ′ depend on ŝ.

Define P (ŝ′|ŝ, a) is the probability of transitioning to state ŝ′ given that the previous state was ŝ and
the agent took action a at state ŝ, and µ̂ : Ŝ 7→ [0, 1] is the initial augmented state distribution. Let
ptπ ∈ R|Ŝ| denote the vector with components ptπ(ŝ) = P (ŝt = ŝ|π), and let Pπ ∈ R|Ŝ|×|Ŝ| denote
the transition matrix with components Pπ(ŝ

′|ŝ) =
∫
P (ŝ′|ŝ, a)π(a|ŝ)da; then ptπ = Pπp

t−1
π = P t

πµ̂
and

ḋπ =

H∑
t=0

(γPπ)
tµ̂ (36)

= (I − (γPπ)
H+1)(I − γPπ)

−1µ̂

= (I − γPπ)
−1µ̂

Noticing that the finite MDP ends up at step H , thus (Pπ)
H+1 should be set to zero matrix.

This formulation helps us easily obtain the following lemma.

Lemma 7. For any function f : Ŝ 7→ R and any policy π,

E
ŝ∼µ̂

[f(ŝ)] + E
ŝ∼ḋπ

a∼π
ŝ′∼P

[γf(ŝ′)]− E
ŝ∼ḋπ

[f(ŝ)] = 0. (37)

Proof. Multiply both sides of (36) by (I − γPπ) and take the inner product with the vector f ∈
R|Ŝ|.
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Combining Lemma 7 with (35), we obtain the following, for any function f and any policy π:

Jg(π) = E
ŝ∼µ̂

[f(ŝ)] + E
ŝ∼ḋπ

a∼π
ŝ′∼P

[g(ŝ, a, ŝ′) + γf(ŝ′)− f(ŝ)] (38)

Lemma 8. For any function f 7→ R and any policies π′ and π, define

Lπ,f (π
′)

.
= E

ŝ∼ḋπ

a∼π
ŝ′∼P

[(
π′(a|ŝ)
π(a|ŝ)

− 1

)
(g(ŝ, a, ŝ′) + γf(ŝ′)− f(ŝ))

]
, (39)

and ϵπ′f
.
= maxŝ |Ea∼π′,ŝ′∼P [g(ŝ, a, ŝ

′) + γf(ŝ′)− f(ŝ)]|. Then the following bounds hold:

Jg(π′)− Jg(π) ≥ Lπ,f (π
′)− ϵπ

′

f

∥∥∥ḋπ′
− ḋπ

∥∥∥
1
, (40)

Jg(π′)− Jg(π) ≤ Lπ,f (π
′) + ϵπ

′

f

∥∥∥ḋπ′
− ḋπ

∥∥∥
1
, (41)

where DTV is the total variational divergence. Furthermore, the bounds are tight(when π′ = π, the
LHS and RHS are identically zero).

Proof. First, for notational convenience, let δf (ŝ, a, ŝ′)
.
= g(ŝ, a, ŝ′) + γf(ŝ′)− f(ŝ). By (38), we

obtain the identity

Jg(π′)− Jg(π) = E
ŝ∼ḋπ′

a∼π′

ŝ′∼P

[δf (ŝ, a, ŝ
′)]− E

ŝ∼ḋπ

a∼π
ŝ′∼P

[δf (ŝ, a, ŝ
′)] (42)

Now, we restrict our attention to the first term in (42). Let †δπ′

f ∈ R|Ŝ| denote the vector of
components, where †δπ′

f (ŝ) = Ea∼π′,ŝ′∼P [δf (ŝ, a, ŝ
′)|ŝ]. Observe that

E
ŝ∼ḋπ′

a∼π′

ŝ′∼P

[δf (ŝ, a, ŝ
′)] =

〈
ḋπ

′
, †δπ

′

f

〉

=
〈
ḋπ, †δπ

′

f

〉
+
〈
ḋπ

′
− ḋπ, †δπ

′

f

〉
With the Hölder’s inequality; for any p, q ∈ [1,∞] such that

1

p
+

1

q
= 1, we have〈

ḋπ, †δπ
′

f

〉
+
∥∥∥ḋπ′

− ḋπ
∥∥∥
p

∥∥∥†δπ′

f

∥∥∥
q
≥ E

ŝ∼ḋπ′

a∼π′

ŝ′∼P

[δf (ŝ, a, ŝ
′)] ≥

〈
ḋπ, †δπ

′

f

〉
−
∥∥∥dπ′

− ḋπ
∥∥∥
p

∥∥∥†δπ′

f

∥∥∥
q

(43)

We choose p = 1 and q = ∞; With
∥∥∥†δπ′

f

∥∥∥
∞

= ϵπ
′

f , and by the importance sampling identity, we
have 〈

ḋπ, †δπ
′

f

〉
= E

ŝ∼ḋπ

a∼π′

ŝ′∼P

[δf (ŝ, a, ŝ
′)] (44)

= E
ŝ∼ḋπ

a∼π
ŝ′∼P

[

(
π′(a|ŝ)
π(a|ŝ)

)
δf (ŝ, a, ŝ

′)]

After bringing (44),
∥∥∥†δπ′

f

∥∥∥
∞

into (43), then substract E
ŝ∼ḋπ

a∼π
ŝ′∼P

[δf (ŝ, a, ŝ
′)], the bounds are obtained.

The lower bound leads to (40), and the upper bound leads to (41).
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Lemma 9. The divergence between discounted future state visitation distributions, ||ḋπ′ − ḋπ||1, is
bounded by an average divergence of the policies π′ and π:

∥ḋπ
′
− ḋπ∥1 ≤ 2

H∑
t=0

γt+1 E
ŝ∼ḋπ

[DTV (π
′||π)[ŝ]] , (45)

where DTV (π
′||π)[ŝ] = 1

2

∑
a |π′(a|ŝ)− π(a|ŝ)|.

Proof. Firstly, we introduce an identity for the vector difference of the discounted future state
visitation distributions on two different policies, π′ and π. Define the matrices G .

= (I−γPπ)
−1, Ḡ

.
=

(I − γPπ′)−1, and ∆ = Pπ′ − Pπ . Then:

G−1 − Ḡ−1 = (I − γPπ)− (I − γPπ′) (46)
= γ∆,

left-multiplying by G and right-multiplying by Ḡ, we obtain

Ḡ−G = γḠ∆G. (47)

Thus, the following equality holds:

ḋπ
′
− ḋπ = (1− γ)

(
Ḡ−G

)
µ̂ (48)

= γ(1− γ)Ḡ∆Gµ̂

= γḠ∆ḋπ.

Using (48), we obtain

∥ḋπ
′
− ḋπ∥1 = γ∥Ḡ∆dπ∥1 (49)

≤ γ∥Ḡ∥1∥∆ḋπ∥1,

where ||Ḡ||1 is bounded by:

∥Ḡ∥1 = ∥(I − γPπ′)−1∥1 ≤
∞∑
t=0

γt∥P t
π′∥1 =

H∑
t=0

γt. (50)

Next, we bound ∥∆ḋπ1∥ as following:

∥∆ḋπ∥1 =
∑
ŝ′

∣∣∣∣∣∑
ŝ

∆(ŝ′|ŝ)ḋπ(ŝ)

∣∣∣∣∣ (51)

≤
∑
ŝ,ŝ′

|∆(ŝ′|ŝ)|ḋπ(ŝ)

=
∑
ŝ,ŝ′

∣∣∣∣∣∑
a

P (ŝ′|ŝ, a) (π′(a|ŝ)− π(a|ŝ))

∣∣∣∣∣ ḋπ(ŝ)
≤

∑
ŝ,a,ŝ′

P (ŝ′|ŝ, a)|π′(a|ŝ)− π(a|ŝ)|ḋπ(ŝ)

=
∑
ŝ,a

|π′(a|ŝ)− π(a|ŝ)|ḋπ(ŝ)

= 2 E
ŝ∼ḋπ

[DTV (π
′||π)[ŝ]].
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By taking (51) and (50) into (49), this lemma is proved.

The new policy improvement bound follows immediately.

Lemma 10. For any function f : Ŝ 7→ R and any policies π′ and π, define δf (ŝ, a, ŝ′)
.
= g(ŝ, a, ŝ′)+

γf(ŝ′)− f(ŝ),

ϵπ
′

f
.
= max

ŝ
|Ea∼π′,ŝ′∼P [δf (ŝ, a, ŝ

′)]|,

Lπ,f (π
′)

.
= E

ŝ∼ḋπ

a∼π
ŝ′∼P

[(
π′(a|ŝ)
π(a|ŝ)

− 1

)
δf (ŝ, a, ŝ

′)

]
, and

D±
π,f (π

′)
.
= Lπ,f (π

′)± 2(

H∑
t=0

γt+1)ϵπ
′

f E
ŝ∼ḋπ

[DTV (π
′||π)[ŝ]],

where DTV (π
′||π)[ŝ] = 1

2

∑
a |π′(a|ŝ)− π(a|ŝ)| is the total variational divergence between action

distributions at ŝ. The following bounds hold:

D+
π,f (π

′) ≥ Jg(π′)− Jg(π) ≥ D−
π,f (π

′).

Furthermore, the bounds are tight (when π′ = π, all three expressions are identically zero)

Proof. Begin with the bounds from lemma 8 and bound the divergence DTV (ḋ
π′ ||ḋπ) by lemma 9.

D.2 SAFETY INVARIANCE IN EXPECTATION BETWEEN S-3PO POLICIES

Corollary 3 (SCPO Update Constraint Satisfaction). Suppose JD(πk) ≤ 0 and πk, πk+1 are related
by (33), then D-return for πk+1 satisfies

∀i,JD(πk+1) ≤ 0.

Proof. The choice of f = V̂ π
D , g = D in lemma 10 leads to following inequality:

ĴD(π′)− ĴD(π) ≤ E
ŝ∼ḋπ

a∼π′

[
Âπ

D(ŝ, a) + 2(

H∑
t=0

γt+1)ϵπ
′

DDTV (π
′||π)[ŝ]

]
. (52)

where ĴD(π) = Eτ∼π

[∑H
t=0 γ

tD
(
ŝt, at, ŝt+1

)]
, need to distinguish from JD(π). And V̂ π

D , Âπ
D

are also the discounted version of V π
D and Aπ

D. Note that according to Lemma 10 one can only get
this the inequality holds when γ ∈ (0, 1).

Then we can defineF(γ) = E
ŝ∼ḋπ

a∼π′

[
Âπ

D(ŝ, a) + 2(
∑H

t=0 γ
t+1)ϵπ

′

DDTV (π
′||π)[ŝ]

]
−ĴD(π′)+ĴD(π)

with the following condition holds:

F(γ) ≥ 0,when γ ∈ (0, 1) (53)
F(γ)’s domain of definition isR
F(γ) is a polynomial function
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Because F(γ) is a polynomial function and coefficients are all limited, thus lim
γ→1−

F(γ) exists and

F(γ) is continuous at point (1,F(1)). So F(1) = lim
γ→1−

F(γ) ≥ 0, which equals to:

JD(π′)− JD(π) ≤ E
ŝ∼d̄π

a∼π′

[
Aπ

D(ŝ, a) + 2(H + 1)ϵπ
′

DDTV (π
′||π)[ŝ]

]
.

where d̄π =
∑H

t=0 P (ŝt = ŝ|π). Thus, following the inequality (33), the Corollary 3 is proofed.

D.3 PROOF OF THEOREM 2

If st ∈ S̄ ∈ SDS , then JD(πt) ≤ 0 and ϕ(st) ≤ 0. According to Corollary 3, we know that if policy
πt is updated by solving (33), then we have JD(πt+1) ≤ 0 which means:

E
τ∼πt+1

[ϕ(st+1)] = JD(πt+1) + ϕ(st) ≤ 0 (54)

Thus st+1 ∈ SDS in expectation. According to the proof of Appendix C.3, we know that st+1 ∈ S̄ ∈
SDS in expectation.

E PROOF OF THEOREM 3

E.1 KL DIVERGENCE RELATIONSHIP BETWEEN dπk AND d̄πk

Lemma 11. E
ŝ∼dπ

[DKL(π
′∥π)[ŝ]] < E

ŝ∼d̄π

[DKL(π
′∥π)[ŝ]]

Proof.

E
ŝ∼dπ

[DKL(π
′∥π)[ŝ]] =

∑
ŝ

(1− γ)

H∑
t=0

γtP (ŝt = ŝ|π)DKL(π
′∥π)[ŝ]

<
∑
ŝ

H∑
t=0

γtP (ŝt = ŝ|π)DKL(π
′∥π)[ŝ]

<
∑
ŝ

H∑
t=0

P (ŝt = ŝ|π)DKL(π
′∥π)[ŝ]

= E
ŝ∼d̄π

[DKL(π
′∥π)[ŝ]].

E.2 TRUST REGION UPDATE PERFORMANCE

Lemma 12. For any policies π′, π, with ϵπ
′ .
= maxŝ|Ea∼π′ [Aπ(ŝ, a)]|, and define dπ = (1 −

γ)
H∑
t=0

γtP (ŝt = ŝ|π) as the discounted augmented state distribution using π, then the following

bound holds:

J (π′)− J (π) > 1

1− γ
E

ŝ∼dπ

a∼π′

[
Aπ(ŝ, a)− 2γϵπ

′

1− γ
DTV (π

′∥π)[ŝ]
]

(55)

Proof. The choice of f = Vπ, g = R in lemma 10 leads to following inequality:
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For any policies π′, π, with ϵπ
′ .
= maxŝ|Ea∼π′ [Aπ(ŝ, a)]|, the following bound holds:

J (π′)− J (π) ≥ E
ŝ∼ḋπ

a∼π′

[
Aπ(ŝ, a)− 2(

H∑
t=0

γt+1)ϵπ
′
DTV (π

′||π)[ŝ]

]

>
1

1− γ
E

ŝ∼dπ

a∼π′

[
Aπ(ŝ, a)−

2γϵπ
′

1− γ
DTV (π

′||π)[ŝ]

]
At this point, the lemma 12 is proved.

E.3 PROOF OF THEOREM 3

Proof. If ISSA will constantly be triggered, the safeguard should be treated as a component of
the environment, which indicates the environment is non-stationary for policy π after safeguard is
disabled. According to Algorithm 1, we assume that ISSA will not be triggered after ksafe updates,
meaning the environment is stationary for policy π with or without safeguard. Therefore, we can
infer S-3PO worst performance degradation after ksafe updates following the trust region results of
finite-horizon MDPs. Utilizing Lemma 12 and the relationship between the total variation divergence
and the KL divergence, we have:

J (π′)− J (π) > 1

1− γ
E

ŝ∼dπ

a∼π′

[
Aπ(ŝ, a)− 2γϵπ

′

1− γ

√
1

2
Eŝ∼dπ [DKL(π′∥π)[ŝ]]

]
. (56)

In (33), the reward performance between two policies is associated with trust region, i.e.

πk+1 = argmax
π∈Πθ

E
ŝ∼dπk

a∼π

[Aπk(ŝ, a)] (57)

s.t. Eŝ∼d̄πk [DKL(π∥πk)[ŝ]] ≤ δ.

Due to Lemma 11, if two policies are related with Equation (57), they are related with the following
optimization:

πk+1 = argmax
π∈Πθ

E
ŝ∼dπk

a∼π

[Aπk(ŝ, a)] (58)

s.t. Eŝ∼dπk [DKL(π∥πk)[ŝ]] ≤ δ.

By (56) and (58), if πk, πk+1 are related by (33), then performance return for πk+1 satisfies

J (πk+1)− J (πk) > −
√
2δγϵπk+1

1− γ
.
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F EXPEIMENT DETAILS

F.1 ENVIRONMENT SETTINGS

Goal Task In the Goal task environments, the reward function is:

r(xt) = dgt−1 − dgt + 1[dgt < Rg] ,

where dgt is the distance from the robot to its closest goal and Rg is the size (radius) of the goal.
When a goal is achieved, the goal location is randomly reset to someplace new while keeping the rest
of the layout the same. The test suites of our experiments are summarized in Table 1.

Hazard Constraint In the Hazard constraint environments, the cost function is:

c(xt) = max(0, Rh − dht ) ,

where dht is the distance to the closest hazard and Rh is the size (radius) of the hazard.

Pillar Constraint In the Pillar constraint environments, the cost ct = 1 if the robot contacts with
the pillar otherwise ct = 0.

Additional high dimensional link robot To scale our method to high dimensional link robots. We
additionally adopt Walker shown in 12 as a bipedal robot (A ⊆ R10) in our experiments.

Figure 12: Walker

State Space The state space is composed of two parts. The internal state spaces describe the
state of the robots, which can be obtained from standard robot sensors (accelerometer, gyroscope,
magnetometer, velocimeter, joint position sensor, joint velocity sensor and touch sensor). The details
of the internal state spaces of the robots in our test suites are summarized in Table 2. The external
state spaces are describe the state of the environment observed by the robots, which can be obtained
from 2D lidar or 3D lidar (where each lidar sensor perceives objects of a single kind). The state
spaces of all the test suites are summarized in Table 3. Note that Vase and Gremlin are two other
constraints in Safety Gym Ray et al. (2019) and all the returns of vase lidar and gremlin lidar are zero
vectors (i.e., [0, 0, · · · , 0] ∈ R16) in our experiments since none of our test suites environments has
vases.

Table 1: The test suites environments of our experiments

Task Setting Low dimension High dimension
Point Swimmer Walker Ant

Hazard-1 ✓ ✓ ✓ ✓
Hazard-4 ✓
Hazard-8 ✓
Pillar-1 ✓
Pillar-4 ✓
Pillar-8 ✓

Control Space For all the experiments, the control space of all robots are continuous, and linearly
scaled to [-1, +1].

29



Published as a conference paper at ICLR 2025

Table 2: The internal state space components of different test suites environments.

Internal State Space Point Swimmer Walker Ant
Accelerometer (R3) ✓ ✓ ✓ ✓

Gyroscope (R3) ✓ ✓ ✓ ✓
Magnetometer (R3) ✓ ✓ ✓ ✓

Velocimeter (R3) ✓ ✓ ✓ ✓
Joint position sensor (Rn) n = 0 n = 2 n = 10 n = 8
Joint velocity sensor (Rn) n = 0 n = 2 n = 10 n = 8

Touch sensor (Rn) n = 0 n = 4 n = 2 n = 8

Table 3: The external state space components of different test suites environments.

External State Space Goal-Hazard Goal-Pillar
Goal Compass (R3) ✓ ✓

Goal Lidar (R16) ✓ ✓
3D Goal Lidar (R60) ✗ ✗
Hazard Lidar (R16) ✓ ✗

3D Hazard Lidar (R60) ✗ ✗
Pillar Lidar (R16) ✗ ✓
Vase Lidar (R16) ✓ ✓

Gremlin Lidar (R16) ✓ ✓

F.2 POLICY SETTINGS

The hyper-parameters used in our experiments are listed in Table 4 as default.

Our experiments use separate multi-layer perception with tanh activations for the policy network,
value network and cost network. Each network consists of two hidden layers of size (64,64). All of
the networks are trained using Adam optimizer with learning rate of 0.01.

We apply an on-policy framework in our experiments. During each epoch the agent interact B times
with the environment and then perform a policy update based on the experience collected from the
current epoch. The maximum length of the trajectory is set to 1000 and the total epoch number N
is set to 200 as default. In our experiments the Walker was trained for 250 epochs due to the high
dimension.

The policy update step is based on the scheme of TRPO, which performs up to 100 steps of back-
tracking with a coefficient of 0.8 for line searching.

For all experiments, we use a discount factor of γ = 0.99, an advantage discount factor λ = 0.95,
and a KL-divergence step size of δKL = 0.02.

For experiments which consider cost constraints we adopt a target cost δc = 0.0 to pursue a zero-
violation policy.

Other unique hyper-parameters for each algorithms are hand-tuned to attain reasonable performance.

Each model is trained on a server with a 48-core Intel(R) Xeon(R) Silver 4214 CPU @ 2.2.GHz,
Nvidia RTX A4000 GPU with 16GB memory, and Ubuntu 20.04.

F.3 METRICS COMPARISON

In Tables 5 to 7, we report all the 9 results of our test suites by three metrics:

• The average episode return Jr.
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• The average episodic sum of costs Mc.
• The average cost over the entirety of training ρc.

Both the evaluation performance and training performance are reported based on the above metrics.
Besides, we also report the ISSA triger times as ISSA performance of TRPO-ISSA and S-3PO. All
of the metrics were obtained from the final epoch after convergence. Each metric was averaged over
two random seed. The evaluation performance curves of all experiments are shown in Figures 13, 16
and 19, the training performance curves of all experiments are shown in Figures 14, 17 and 20 and
the ISSA performance curves of all experiments are shown in Figures 15, 18 and 21
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Table 5: Metrics of three Point_Hazard environments obtained from the final epoch.

(a) Point_1Hazard

Algorithm Evaluation Performance Training Performance ISSA Performance
J̄r M̄c ρ̄c J̄r M̄c ρ̄c

TRPO 2.5738 0.5078 0.0082 2.5738 0.5078 0.0082 -
TRPO-Lagrangian 2.6313 0.5977 0.0058 2.6313 0.5977 0.0058 -

CPO 2.4988 0.1713 0.0045 2.4988 0.1713 0.0045 -
PCPO 2.4928 0.3765 0.0054 2.4928 0.3765 0.0054 -
SCPO 2.5457 0.0326 0.0022 2.5457 0.0326 0.0022 -

TRPO-ISSA 2.5113 0.0000 0.0000 2.5981 0.0000 0.0000 0.2714
S-3PO 2.4157 0.0000 0.0000 2.2878 0.0000 0.0000 0.0285

(b) Point_4Hazard

Algorithm Evaluation Performance Training Performance ISSA Performance
J̄r M̄c ρ̄c J̄r M̄c ρ̄c

TRPO 2.6098 0.2619 0.0037 2.6098 0.2619 0.0037 -
TRPO-Lagrangian 2.5494 0.2108 0.0034 2.5494 0.2108 0.0034 -

CPO 2.5924 0.1654 0.0024 2.5924 0.1654 0.0024 -
PCPO 2.5575 0.1824 0.0025 2.5575 0.1824 0.0025 -
SCPO 2.5535 0.0523 0.0009 2.5535 0.0523 0.0009 -

TRPO-ISSA 2.5014 0.0712 0.0000 2.5977 0.0135 0.0000 0.1781
S-3PO 2.3868 0.0000 0.0000 2.3550 0.0000 0.0000 0.0117

(c) Point_8Hazard

Algorithm Evaluation Performance Training Performance ISSA Performance
J̄r M̄c ρ̄c J̄r M̄c ρ̄c

TRPO 2.5535 0.5208 0.0074 2.5535 0.5208 0.0074 -
TRPO-Lagrangian 2.5851 0.5119 0.0064 2.5851 0.5119 0.0064 -

CPO 2.6440 0.2944 0.0041 2.6440 0.2944 0.0041 -
PCPO 2.6249 0.3843 0.0052 2.6249 0.3843 0.0052 -
SCPO 2.5126 0.0703 0.0020 2.5126 0.0703 0.0020 -

TRPO-ISSA 2.5862 0.0865 0.0000 2.5800 0.0152 0.0000 0.3431
S-3PO 2.4207 0.1710 0.0000 2.3323 0.0000 0.0000 0.0337

Table 6: Metrics of three Pillar_Hazard environments obtained from the final epoch.

(a) Point_1Pillar

Algorithm Evaluation Performance Training Performance ISSA Performance
J̄r M̄c ρ̄c J̄r M̄c ρ̄c

TRPO 2.6065 0.2414 0.0032 2.6065 0.2414 0.0032 -
TRPO-Lagrangian 2.5772 0.1218 0.0020 2.5772 0.1218 0.0020 -

CPO 2.5464 0.2342 0.0028 2.5464 0.2342 0.0028 -
PCPO 2.5857 0.2088 0.0025 2.5857 0.2088 0.0025 -
SCPO 2.5928 0.0040 0.0003 2.5928 0.0040 0.0003 -

TRPO-ISSA 2.5985 0.0000 0.0000 2.5909 0.0020 0.0000 0.3169
S-3PO 2.5551 0.0000 0.0000 2.5241 0.0000 0.0000 0.0060

(b) Point_4Pillar

Algorithm Evaluation Performance Training Performance ISSA Performance
J̄r M̄c ρ̄c J̄r M̄c ρ̄c

TRPO 2.5671 0.4112 0.0063 2.5671 0.4112 0.0063 -
TRPO-Lagrangian 2.6040 0.2786 0.0050 2.6040 0.2786 0.0050 -

CPO 2.5720 0.5523 0.0062 2.5720 0.5523 0.0062 -
PCPO 2.5709 0.3240 0.0052 2.5709 0.3240 0.0052 -
SCPO 2.5367 0.0064 0.0005 2.5367 0.0064 0.0005 -

TRPO-ISSA 2.5739 0.1198 0.0001 2.5881 0.0427 0.0001 0.2039
S-3PO 2.2513 0.0114 0.0000 2.3459 0.0000 0.0000 0.0116

(c) Point_8Pillar

Algorithm Evaluation Performance Training Performance ISSA Performance
J̄r M̄c ρ̄c J̄r M̄c ρ̄c

TRPO 2.6140 3.1552 0.0201 2.6140 3.1552 0.0201 -
TRPO-Lagrangian 2.6164 0.6632 0.0129 2.6164 0.6632 0.0129 -

CPO 2.6440 0.5655 0.0166 2.6440 0.5655 0.0166 -
PCPO 2.5704 6.6251 0.0219 2.5704 6.6251 0.0219 -
SCPO 2.4162 0.2589 0.0024 2.4162 0.2589 0.0024 -

TRPO-ISSA 2.6203 0.6910 0.0009 2.5921 0.0709 0.0009 0.3517
S-3PO 2.0325 0.0147 0.0002 2.3371 0.0000 0.0002 0.0231
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Table 7: Metrics of three link robots environments obtained from the final epoch.

(a) Swimmer_1Hazard

Algorithm Evaluation Performance Training Performance ISSA Performance
J̄r M̄c ρ̄c J̄r M̄c ρ̄c

TRPO 2.7049 0.3840 0.0076 2.7049 0.3840 0.0076 -
TRPO-Lagrangian 2.6154 0.3739 0.0060 2.6154 0.3739 0.0060 -

CPO 2.5817 0.3052 0.0056 2.5817 0.3052 0.0056 -
PCPO 2.5418 0.6243 0.0055 2.5418 0.6243 0.0055 -
SCPO 2.6432 0.3919 0.0051 2.6432 0.3919 0.0051 -

TRPO-ISSA 2.5826 0.2595 0.0000 2.5955 0.0000 0.0000 0.1240
S-3PO 2.6032 0.0313 0.0000 2.6239 0.0001 0.0000 0.0378

(b) Ant_1Hazard

Algorithm Evaluation Performance Training Performance ISSA Performance
J̄r M̄c ρ̄c J̄r M̄c ρ̄c

TRPO 2.6390 0.3559 0.0074 2.6390 0.3559 0.0074 -
TRPO-Lagrangian 2.5866 0.2169 0.0044 2.5866 0.2169 0.0044 -

CPO 2.6175 0.2737 0.0072 2.6175 0.2737 0.0072 -
PCPO 2.6103 0.2289 0.0076 2.6103 0.2289 0.0076 -
SCPO 2.6341 0.2384 0.0065 2.6341 0.2384 0.0065 -

TRPO-ISSA 2.6509 0.3831 0.0032 2.6318 0.3516 0.0032 0.0279
S-3PO 2.2047 0.0000 0.0002 2.2031 0.0000 0.0002 0.0001

(c) Walker_1Hazard

Algorithm Evaluation Performance Training Performance ISSA Performance
J̄r M̄c ρ̄c J̄r M̄c ρ̄c

TRPO 2.5812 0.2395 0.0075 2.5812 0.2395 0.0075 -
TRPO-Lagrangian 2.6227 0.1666 0.0041 2.6227 0.1666 0.0041 -

CPO 2.6035 0.3068 0.0062 2.6035 0.3068 0.0062 -
PCPO 2.5775 0.2414 0.0059 2.5775 0.2414 0.0059 -
SCPO 2.6352 0.1423 0.0051 2.6352 0.1423 0.0051 -

TRPO-ISSA 2.6419 0.3544 0.0037 2.5787 0.2060 0.0037 0.0316
S-3PO 2.6117 0.3437 0.0025 2.6055 0.2665 0.0025 0.0319
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(a) Point_1Hazard (b) Point_4Hazard (c) Point_8Hazard

Figure 13: Evaluation performance of Point_Hazard
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(a) Point_1Hazard (b) Point_4Hazard (c) Point_8Hazard

Figure 14: Training performance of Point_Hazard

(a) Point_1Hazard (b) Point_4Hazard (c) Point_8Hazard

Figure 15: ISSA performance of Point_Hazard
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(a) Point_1Pillar (b) Point_4Pillar (c) Point_8Pillar

Figure 16: Evaluation performance of Point_Pillar

37



Published as a conference paper at ICLR 2025

(a) Point_1Pillar (b) Point_4Pillar (c) Point_8Pillar

Figure 17: Training performance of Point_Pillar

(a) Point_1Pillar (b) Point_4Pillar (c) Point_8Pillar

Figure 18: ISSA performance of Point_Pillar

38



Published as a conference paper at ICLR 2025

(a) Swimmer_1Hazard (b) Ant_1Hazard (c) Walker_1Hazard

Figure 19: Evaluation performance of link robots
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(a) Swimmer_1Hazard (b) Ant_1Hazard (c) Walker_1Hazard

Figure 20: Training performance of link robots

(a) Swimmer_1Hazard (b) Ant_1Hazard (c) Walker_1Hazard

Figure 21: ISSA performance of link robots
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