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Abstract

Federated learning (FL) enables collaborative training of a
global model in the centralized server with data from mul-
tiple parties while preserving privacy. However, data het-
erogeneity can significantly degrade the performance of the
global model when each party uses datasets from different
sources to train a local model, thereby affecting personal-
ized local models. Among various cases of data hetero-
geneity, feature drift, feature space difference among par-
ties, is prevalent in real-life data but remains largely unex-
plored. Feature drift can distract feature extraction learn-
ing in clients and thus lead to poor feature extraction and
classification performance. To tackle the problem of fea-
ture drift in FL, we propose FedPall, an FL framework that
utilizes prototype-based adversarial learning to unify fea-
ture spaces and collaborative learning to reinforce class in-
formation within the features. Moreover, FedPall leverages
mixed features generated from global prototypes and local
features to enhance the global classifier with classification-
relevant information from a global perspective. Evalua-
tion results on three representative feature-drifted datasets
demonstrate FedPall’s consistently superior performance in
classification with feature-drifted data in the FL scenario.1

1. Introduction
Today, in computer vision, researchers often utilize large
amounts of data from various parties to improve the accu-
racy of algorithms. However, this raises concerns, such as
the potential for user privacy leakage caused by sharing pri-
vate data [12]. Federated learning (FL) [22] is proposed as a
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1The code is available at https://github.com/DistriAI/

FedPall.
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Figure 1. We show a schematic diagram of feature drift and use
different techniques to drive feature distribution to update in dif-
ferent directions.

privacy-preserving distributed learning paradigm to address
these challenges. In the FL paradigm, each party maintains
a local client model and collaborates with others to train a
global model on the server without sharing the original data,
effectively protecting user privacy.

Particularly, the FL paradigm faces challenges from data
heterogeneity [14]. Due to the limited local view of each
client, data distribution discrepancies arise across clients
(commonly referred to as the non-independent and identi-
cally distributed data issue, or non-independent and iden-
tically distributed(non-IID) data issue), which can increase
generalization error for local models and degrade the per-
formance of the globally aggregated model [10]. Although
recent work on non-IID data in FL primarily addresses is-
sues such as stability, client drift, and heterogeneous label
distributions among clients [11, 18, 31], feature drift(i.e.,
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variations in feature distributions across clients) is a preva-
lent yet underexplored challenge in FL. As shown in Fig. 1a,
feature drift refers to the phenomenon where samples of
the same class exhibit different feature distributions across
different clients due to variations in data collection meth-
ods, devices, and other factors. This leads to ambiguous
decision boundaries, severely impacting the classification
performance of federated learning models. However, tra-
ditional classification losses (e.g., cross-entropy loss (CE
loss), as shown in Fig. 1b) do not account for feature drift.
As a result, the collaborative effect among different clients
causes the feature space of the same-class samples to influ-
ence each other, leading to only slight or even no clearer
distinction between decision boundaries for various classes
within the same client. As illustrated in Fig. 1c, decentral-
ization is a common approach to addressing feature drift,
which involves ignoring inter-client differences to make the
feature space of same-class samples across different clients
more clustered. In feature drift scenarios, some state-of-
the-art algorithms do not explore the role of loss functions
but instead optimize local update algorithms to achieve de-
centralization. For example, FedBN [19] compresses the
feature space across clients by adding batch normalization
layers to local models. Some methods [1, 34] align feature
spaces by sharing partial data for synthetic data augmenta-
tion. Additionally, ADCOL sends raw features to the server
to update a amplifier and uses the Kullback-Leibler (KL)
loss function to achieve decentralization. However, these
methods have drawbacks: on the one hand, they may lead
to loss of class information, and on the other hand, they pose
potential risks of privacy leakage.

To tackle the above challenge, we propose FedPall, a
novel prototype-based adversarial and collaborative learn-
ing framework for FL with feature drift. FedPall applies
adversarial learning between clients and the server to unify
feature spaces, as well as collaborative learning across
clients to enhance global decision boundaries. Specifi-
cally, FedPall uses adversarial learning to train a feature
enhancer and uses KL divergence to align heterogeneous
feature spaces between clients, while using prototype con-
trastive loss to reinforce class information (see Fig. 1d). Fi-
nally, adversarially aligned features are securely mixed with
the global prototypes and uploaded to the server, where a
global-view classifier is trained to enhance overall perfor-
mance. Our contributions are summarized as follows:

• We propose a novel FL framework, FedPall, to address
the feature drift problem. FedPall introduces adversar-
ial learning between clients and the server, and collab-
orative learning among clients aiming to project feature
representations into a unified feature space and reinforce
the intrinsic class information. This approach effectively
mitigates the feature drift problem in FL settings.

• We develop a technical strategy that hierarchically in-

tegrates the global prototypes with local features to or-
chestrate client-server collaboration. The mixed proto-
type features are then used to train a global classifier,
which induces the classifier to distill discriminative pat-
terns through cross-client knowledge consolidation.

• Empirical evaluation on three typical feature-drifted
benchmarks demonstrates that our proposed method
achieves state-of-the-art classification accuracy.

2. Related Work
In federated learning (FL), each client’s limited local view
exacerbates the feature drift problem. Variations in data dis-
tributions can cause the same class label to have different
feature representations, leading to poor generalization of lo-
cal models. Existing solutions typically focus on two main
approaches: feature space alignment and contrastive proto-
type learning.

Some studies address feature drift through feature repre-
sentation alignment. FRAug [1] employs data augmentation
to generate synthetic embeddings that capture both global
and client-specific information. FedSea [26] aligns feature
distributions to transform raw features into an IID format,
mitigating feature drift. FedCiR [20] maximizes mutual in-
formation between representations and labels, while min-
imizing mutual information between client-specific repre-
sentations conditioned on labels. FedHEAL [2] builds a fair
aggregation target on the server side, indirectly aligning fea-
ture spaces. MOON [16] encourages local models to align
with the global feature distribution through constrained up-
dates. ADCOL [17], unlike traditional aggregation frame-
works, uses adversarial learning to enforce a unified repre-
sentation across clients, alleviating feature drift. However,
ADCOL’s weak collaboration does not address global class
boundaries, and its adversarial mechanism introduces po-
tential privacy risks. Our approach enhances global class
boundaries through stronger collaborative learning, while
preserving privacy via adversarial learning to mitigate inter-
client feature drift.

Some studies have explored prototype-driven federated
learning (FL) paradigms, where prototypes compact fea-
ture embeddings, reducing communication bandwidth and
preserving privacy [30]. Tan et al.[27, 28] proposed a su-
pervised contrastive loss function using both global and
local prototypes to minimize the distance between feature
representations and class prototypes, addressing data het-
erogeneity. However, using the average feature as a class
prototype may overlook intra-class variability. To address
this, MP-FedCL[25] employs clustering on the client side
to generate multiple prototypes per class, capturing intra-
class variation and mitigating feature drift. Building on
MP-FedCL, FedPLVM [29] improves local training with a
two-stage clustering process between clients and the server,
and incorporates an α-sparsity prototype loss to further op-



timize performance. By leveraging prototypes’ privacy-
preserving nature, this method addresses privacy concerns
while reinforcing class-specific information in feature rep-
resentations. In the FedPall framework, we enhance client-
server collaboration through global prototypes. The server
provides global category information to the client, helping
bring similar data closer and separate dissimilar data. Addi-
tionally, we use mixed features with global category infor-
mation to strengthen the global classifier.

3. Method
3.1. Problem Description
We define feature drift as follows: Given a dataset D with
features x and labels y, while the conditional distribu-
tion Pi(x|y) differs across clients, the marginal distribution
P (y) remains the same. This means that the same label
may have significantly different features across clients. For
example, due to variations in environment, geographic lo-
cation, and cultural differences, the structural features of
houses can vary widely.

With feature drift in FL, our goal is to optimize each
client’s personalized model loss while leveraging the po-
tential performance gains from collaborative learning across
clients [33]. In the FedPall framework, there are a total of
N clients, each client n has a private dataset Dn. Based on
this goal, we formulate the overall optimization objective of
the FedPall framework as follows:

min
θ1,θ2,...,θN∈Rd1

F (θ) :=
1

N

N∑
n=1

fn(θn), (1)

where fn represents the expected loss obtained from client
n using the global model parameters under the dataset Dn,
and θi represents the local model parameters of client i.

3.2. FedPall Framework
Existing approaches to addressing the feature drift problem
in FL typically focus on either collaborative learning or ad-
versarial learning in isolation. This can result in models that
either fail to adequately capture class-related information in
the feature representations or exhibit persistent discrepan-
cies in feature distributions across clients. To address these
limitations, we propose integrating both adversarial and col-
laborative learning to effectively mitigate feature drift in FL
settings. In this section, we present the FedPall framework
by elaborating on its adversarial and collaborative learn-
ing. The framework of the overall approach is shown in
Fig. 2a. It is structured into four key procedures: generat-
ing global prototypes, training local models, training global
model, and decentralizing global classifier.

We define certain model symbols here that will be used
in this section. The local model F (·) consists of two compo-
nents, a feature extractor G(·) (e.g., Resnet50 [7] for image

data) and a classifier H(·). We use a multilayer perceptron
(MLP) as our Amplifier, and except for the output layer, the
number of nodes in other layers is consistent with that of
the classifier.

3.2.1. Generating Global Prototypes
Several studies [23, 27] suggest that category-centered pro-
totypes are a privacy-friendly form of global knowledge.
We leverage collaboration between clients to aggregate and
generate global prototypes. Typically, each class prototype
is defined as the mean of the feature vectors belonging to
that class. The distinction between local and global proto-
types lies in the scope of their underlying data. This section
will describe the construction of both local and global pro-
totypes.

The local prototype for the k-th category on client n is
defined as:

ckn =
1

Nk
n

∑
(x,y)∈Dk

n

Gn(x), (2)

where Dk
n and Nk

n represent the data samples and the num-
ber of samples for the k-th category on client n, respec-
tively.

Gathering all the local prototypes together forms a local
prototype set, which can be defined as:

On = {c1n, c2n, ..., cKn } ∈ RK×d, (3)

where K represents the number of categories owned by
each client, and d denotes the output feature dimension.

Since we are only addressing the problem of feature drift,
all clients have the same number of categories. Upon re-
ceiving the local prototype set and local label proportions
N = {{Nk

n}Kk=1|n ∈ A} sent by client set A, the server
integrates the local prototypes from all clients to form the
global prototypes,

Gk =
∑
n

Nk
n∑

n N
k
n

ckn (4)

The global prototypes set can be represented as

G = [G1, . . . ,Gk, . . . ,GK ] (5)

Next, the server sends the global prototype set G to each
client to guide local model training. You can refer to Fig. 2b
for a better understanding of the generation of the global
prototype.

3.2.2. Training Local Models
The goal of this module is to train an effective feature en-
coder that maps the raw data from different clients into a
unified feature space, where the feature distributions are
aligned and the class-related information is enhanced.
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Figure 2. The FedPall framework and detailed phases

As mentioned earlier, due to feature drift, training a lo-
cal classifier alone is not sufficient for accurately classifying
data with feature drift. To address this, we apply adversar-
ial learning to train a feature encoder. Specifically, we use
a global amplifier, trained on the server, which amplifies
the heterogeneous information in the features from different
clients. At the client’s side, we apply the amplifier and use
Kullback-Leibler (KL) divergence to reduce the heteroge-
neous information in the features, thereby creating an adver-
sarial learning setup between the client and server. The ob-
jective is to improve the generalization ability of the feature
encoders across clients while minimizing the client-specific
heterogeneity in the feature representations. Let x(i) denote
the i-th dimension of vector x, the KL divergence is calcu-
lated as:

LKL =
∑

(x,y)∈Dn

DKL(An(G(x))||[ 1
N

]N )

=
∑

(x,y)∈Dn

N∑
i

An(G(x))(i)logNAn(G(x))(i).

(6)

where, x(i) denotes the i-th dimension of vector x, An(·)
represents the amplifier of the n-th client, DKL(P ||Q) rep-
resents the KL divergence of P and Q.

After adversarial learning, although the feature represen-
tations of different clients are mapped to similar feature dis-
tributions, the class-related information may be blurred. To
address this problem, we propose using contrastive learning

to reinforce the class-related information within the feature
encoder. To prevent information leakage, we enable col-
laboration between the global prototypes (server-side) and
local features (client-side). Specifically, we employ the In-
foNCE loss to minimize the distance between local features
and their corresponding global prototypes, while maximiz-
ing the distance between local features and global proto-
types of other classes. This approach strengthens the class-
related representation within the feature encoder. The for-
mula for the global-prototype contrastive loss is as follows:

LinfoNCE =
∑

(x,y)∈Dn

−log
exp(sim(G(x),Gy)/τ)∑

yα∈A(y) exp(sim(x,G(yα))/τ)
, (7)

where A(y) := {yα ∈ [1, |G|] : yα ̸= y} is the set of labels
distinct from y, τ is the temperature to adjust the tolerance
for feature difference, and sim(x, y) represents the cosine
similarity of x and y.

We combine adversarial learning and collaborative learn-
ing to address the feature drift problem in FL. By leveraging
the two loss functions defined above, along with the local
cross-entropy loss, we progressively train the local feature
encoder at each client. The overall loss function for each
client is as follows:

L = LCE(x,y)∼Dn
(F (x), y) + µLKL + δLinfoNCE , (8)

where µ denotes the weight of the LKL divergence and
LCE denotes the cross-entropy loss.



The local model F (·) is updated using Eq. (8). For a
comprehensive visualization of the global prototype gener-
ation process, consult Fig. 2c where the workflow is sys-
tematically delineated.

3.2.3. Training Global Model
Due to the client’s limited local view, training an accurate
classifier is challenging. To address this, encrypted mixed
features are uploaded to the server, enabling classifier train-
ing with a global perspective. Additionally, the server lever-
ages its global view to train an amplifier, which engages in
adversarial learning with the client to enhance model ro-
bustness. The detailed process is described below.

For each feature zkn of class k on client n, we obtain a
prototype mixed feature by performing a weighted fusion
with the corresponding global prototype:

rkn = α× zkn + (1− α)× Gk, (9)

where zkn ∈ Zk
n = {zi,kn }Si=1. α ∼ U(uf , ur) are the mix

parameters, with uf and ud representing two hyperparam-
eters of a uniform distribution. S represents the number of
samples of the k-th category in client n.

Building on this, we employ a Bernoulli mask to further
reduce the risk of privacy leakage,

Mask = {X1, X2, . . . , Xd},
Xi ∼ Bernoulli (β) , ∀i ∈ [1, d],

(10)

The final output of the prototype mixing mechanism is de-
rived by selecting the mixed feature elements based on the
noise mask:

r̃kn = Mask ⊙ rkn, (11)

where ⊙ is an element-wise and operator.
After generating the prototype mixed features, the client

will form the set DRL
(R, Y ) using the prototype mixed fea-

ture set Rn = {r̃1n, ..., r̃kn, ..., r̃Kn } ∈ RK×d and the corre-
sponding label set Y , which will be sent to the server.

The server updates the global amplifier A using the
mixed feature sets from each client along with the corre-
sponding client IDs. Specifically, we first construct the
dataset for training the amplifier, denoted as DRI

(R, I),
where I represents the client IDs. The amplifier is then up-
dated by minimizing the empirical risk:

E(R,I)∼DRI
ℓCE(R, I). (12)

At the same time, the server updates the global classifier
Cg using the mixed prototype features and the class labels
from the clients Y . This is done by minimizing the empiri-
cal risk:

E(R,Y )∼DRL
ℓCE(R, Y ). (13)

We show the training process of the global classifier
in Fig. 1c.

3.2.4. Decentralizing Global Classifier
Finally, we deploy the global classifier Cg to each client to
replace the original local classifiers Cc. The purpose of this
is to obtain a more generalized classifier that can alleviate
the feature drift problem. To allow the global classifier to
adapt to the personalized characteristics of local data, we
retrain it on the client’s local data, thereby enhancing the
classifier’s accuracy and improving its performance on in-
dividual client data distributions. And you can understand
the deployment method of the server-side global classifier
through Fig. 2e.

4. Discussion
Computational Cost Compared to the standard federated
learning model, our adversarial collaborative learning ap-
proach introduces an amplifier and a global classifier. How-
ever, the number of parameters for these two components is
much smaller than those of the other components. In our
design, both the amplifier and the classifier are designed
as three-layer MLPs. Compared to the feature extractor
(with a total of 23.5M parameters), the classifier (with a
total of 1.32M parameters) and the amplifier (with a total of
1.33M parameters) account for approximately 5.61% and
5.59%, respectively. Moreover, the client-side amplifier re-
mains frozen, functioning exclusively in the forward pass
for loss calculation while being disabled during backpropa-
gation cycles.

Communication Efficiency Unlike traditional federated
learning methods such as FedAvg, which transmit full lo-
cal model parameters, our approach uses prototype-mixed
features as the communication medium. Assuming consis-
tent tensor representations between model parameters and
prototype features, each client employs a ResNet-50-based
feature extractor that generates 2048-dimensional embed-
dings. During upload, clients transmit an average of 12,122
prototype-mixed features, compared to approximately 24.8
million model parameters in FedAvg. For downloading,
only the amplifier and global classifier parameters are trans-
mitted, reducing communication cost to about 10.6% of that
in FedAvg (see previous paragraph).

Limitation While our framework currently specializes in
image recognition tasks, its extension to NLP or time-series
analysis remains unexplored. Successful cross-domain
adaptation requires two key developments: (1) establishing
domain-specific feature representations and prototype defi-
nitions, and (2) redesigning loss functions according to task
semantics. For NLP applications, this implies reconfiguring
the standard classification paradigm into autoregressive pre-
diction frameworks. Architectural adaptations are equally
crucial - particularly the incorporation of RNN-based struc-



tures with inherent temporal modeling capabilities for se-
quential data processing.

5. Experiments
5.1. Experimental Setup
Datasets We conduct experiments on three publicly avail-
able feature drift datasets: Digits [32], Office-10 [6], and
PACS [15]. Specifically, (1) the Digits dataset consists of
five different domain sources: MNIST [13], SVHN [24],
USPS [9], SynthDigits [5], and MNIST-M [5]; (2) the
Office-10 dataset includes four distinct sources: Amazon,
Caltech, DSLR, and WebCam; (3) the PACS dataset con-
sists of four sources: Art Painting, Cartoon, Photo, and
Sketch. Datasets Office-10 and PACS are real-world im-
ages from natural scenes, which inherently exhibit feature
drift due to the diversity of their sources. Digits is a digit
recognition dataset. In line with [19, 28], we do not use the
entire Digits dataset for feature transformation experiments
but rather a subset of 10% of the data. For datasets Office-
10 and PACS, we used all of the datasets for the experiment.
Additionally, we split each dataset into training and testing
sets with an 8:2 ratio.

Baselines We compare FedPall with ten baselines, in-
cluding SingSet (where each client independently trains a
model). FedAvg [22] is the most classic federated learn-
ing algorithm, while FedProx [18], PerFedAvg [4], and
FedRep [3] are personalized federated learning methods.
FedBN [19], ADCOL [17], MOON [16], FedProto [27]
and FedHEAL [2] are personalized federated learning algo-
rithms for cross-domain learning, all of which address the
issue of non-IID features to some extent. In addition, we
explored the ability of RUCR [8] to solve the feature drift
problem.

Model and Hyper-parameter Setup All algorithms
adopt identical local model architectures for fair compari-
son. Each local model contains: (1) a ResNet-50 feature
extractor (excluding classifier layer), (2) a three-layer MLP
classifier with 512 hidden units, and (3) a three-layer MLP
amplifier with 2048 input/512 hidden units. Output dimen-
sions for classifier and amplifier are set according to dataset
categories and data sources, respectively. We maintain
client count equal to data sources (one source per client).
Local training uses 5 epochs for Digits, and 10 epochs for
Office-10 and PACS. Global training employs 100 epochs
throughout. Optimization uses SGD (lr=0.01). Except for
the digits dataset, for which the values of µ and δ are set
to 0.7 and 0.3 respectively, the values of µ and δ are set
to 0.1 for all other datasets. Common loss hyperparame-
ters remain fixed across algorithms. All experiments run on
NVIDIA RTX 4090 GPUs.

5.2. Experimental Analysis
We conduct the evaluation on three publicly available
feature-drifted datasets (Digits, Office-10, and PACS) and
compare the performance of the FedPall framework with
classical and state-of-the-art baselines. As shown in Ta-
ble 1, our proposed framework achieves state-of-the-art ac-
curacy on all three datasets.

We first discuss the experimental results based on each
individual dataset. On the Office-10 dataset, the overall
accuracy of the FedPall framework surpasses that of the
second-best method, ADCOL, by approximately 3 percent-
age points. On the Digits dataset, it is evident that Fed-
Pall outperforms all other models, achieving an accuracy
that is approximately 1.1 percentage points higher than
the second-best model, FedBN. The Digits dataset con-
tains images that are relatively easy to classify, and the de-
gree of feature drift is smaller compared to the Office-10
dataset. All baseline models achieve reasonably good accu-
racy on this dataset. Specifically, adversarial learning helps
mitigate the heterogeneous information in the MNIST-M
client. Similarly, our algorithm demonstrates strong per-
formance on the PACS dataset, achieving an overall ac-
curacy that is approximately 1.1 percentage points higher
than the second-highest result produced by FedBN. FedPall
achieves the highest or second-highest accuracy across all
sub-datasets.

We also discuss the performance of FedPall as compared
to other state-of-the-art baselines across all three datasets.
The average accuracy of FedPall consistently outperforms
that of ADCOL in all three datasets, achieving an increase
ranging from about 1.1 to 2.9 percentage points. In addi-
tion, even though FedBN can achieve accuracy comparable
to our method on datasets Digits and PACS, our method
outperforms it significantly by 31.5 percentage points on
datasets Office-10. As mentioned earlier, the Office-10
dataset comes from real-world data, where feature drift is
particularly prominent, and there is also a significant distri-
bution difference between the training and testing sets, lead-
ing to the suboptimal performance of the FedBN method on
this dataset. In contrast, the special design incorporating
both adversarial and collaborative learning in FedPall en-
ables it to adapt well to the Office-10 dataset.

5.3. Ablation Study
Effect of loss combination In this section, we analyze the
impact of KL loss and InfoNCE loss on the performance of
the local feature encoder. We conduct ablation studies with
three configurations: (1) removing both KL and InfoNCE
losses, (2) removing only KL loss, and (3) removing only
InfoNCE loss. As shown in Fig 3, the algorithm performs
best when all losses are retained, which validates the relia-
bility of the loss combination we designed.

Specifically, on the Office-10 dataset, our method out-



Table 1. The top-1 accuracy (%) of each algorithm on each sub-dataset of the Office-10, Digits, and PACS datasets is compared, along with
the average top-1 accuracy across all sub-datasets. The mean and standard deviation (std) from three random trials (using different random
seeds, with other experimental settings remaining the same) are reported. The highest accuracy for each dataset is highlighted in bold, and
the second-highest accuracy is underlined.

SingleSet FedAvg FedProx PerfedAvg FedRep FedBN MOON FedProto ADCOL RUCR FedHEAL ours(FedPall)
amazon 74.0(2.7) 56.9(2.5) 56.6(2.6) 57.1(2.2) 45.3(1.9) 40.8(15.8) 51.7(16.1) 69.4(2.1) 73.3(4.4) 52.1(8.5) 65.1(3.3) 72.9(1.4)
caltech 44.7(3.2) 46.5(4.6) 51.0(5.2) 50.8(1.6) 38.4(4.9) 33.9(6.5) 41.3(13.6) 39.4(6.3) 37.2(1.7) 44.3(1.0) 44.6(3.2) 44.7(8.7)

dslr 60.2(6.7) 30.1(4.9) 33.3(10.4) 31.2(4.9) 34.4(4.9) 38.7(3.2) 24.7(1.9) 65.6(4.9) 76.3(4.9) 30.1(6.7) 67.7(1.9) 77.4(3.2)
webcam 71.3(2.6) 37.9(6.2) 43.7(7.2) 47.1(7.8) 55.8(2.6) 30.5(6.1) 33.3(12.7) 71.3(4.3) 71.3(2.6) 37.4(5.0) 60.9(1.0) 74.7(1.0)

Office-10

avg 62.5(0.4) 42.9(1.2) 46.1(2.6) 46.6(2.9) 43.5(1.3) 36.0(6.5) 37.8(10.9) 61.4(1.7) 64.5(1.8) 41.0(0.6) 59.6(0.5) 67.5(2.7)
MNIST 95.5(0.2) 92.9(2.2) 91.8(3.0) 90.1(4.8) 86.5(6.1) 96.7(0.1) 93.4(1.1) 96.4(0.5) 96.3(0.4) 92.6(2.0) 93.6(0.6) 97.2(0.4)
SVHN 71.1(0.9) 77.4(0.2) 76.9(0.3) 75.6(0.4) 67.2(1.7) 79.4(0.3) 79.6(0.8) 72.5(0.3) 75.1(2.1) 77.9(0.3) 68.3(2.0) 78.0(0.4)
USPS 86.4(0.3) 89.3(0.9) 89.2(1.4) 88.7(0.7) 90.0(3.0) 90.1(0.5) 81.8(0.7) 87.0(0.8) 86.7(1.3) 88.9(2.4) 87.0(0.5) 87.3(1.3)

SynthDigits 95.2(0.1) 95.5(0.1) 95.4(0.1) 95.0(0.2) 94.2(0.8) 95.6(0.1) 96.6(0.2) 95.3(0.6) 96.4(0.3) 96.0(0.2) 89.3(1.6) 95.3(0.4)
MNIST-M 76.6(0.4) 73.8(1.5) 74.0(1.5) 73.2(0.8) 69.1(0.9) 76.3(0.4) 72.2(0.9) 78.3(1.2) 78.3(4.4) 72.7(0.4) 67.8(1.9) 85.9(1.4)

Digits

avg 84.9(0.1) 85.8(0.9) 85.5(1.1) 84.5(1.3) 81.4(2.5) 87.6(0.1) 84.7(0.6) 85.9(0.2) 86.6(1.3) 85.6(0.9) 81.2(1.3) 88.7(0.2)
art painting 33.6(0.8) 25.8(1.9) 24.3(4.1) 26.5(2.2) 26.9(3.3) 36.7(1.8) 30.6(2.0) 32.7(0.7) 34.9(1.2) 24.7(1.1) 31.2(1.2) 35.6(0.6)

cartoon 58.5(2.5) 45.4(2.3) 51.4(0.6) 48.3(1.2) 44.4(2.1) 55.6(2.0) 51.5(1.8) 57.3(1.5) 57.2(0.8) 47.5(3.3) 50.8(0.4) 59.7(2.3)
photo 63.0(1.9) 48.7(3.1) 49.6(2.0) 46.9(2.6) 41.9(2.8) 66.1(1.0) 53.0(3.3) 64.0(1.3) 62.1(2.0) 47.5(6.2) 61.1(2.0) 64.7(1.3)
sketch 79.7(0.1) 49.0(2.0) 40.7(1.5) 44.4(3.8) 40.5(1.3) 79.6(1.7) 55.1(1.4) 79.6(0.8) 80.1(1.0) 42.2(2.4) 73.8(0.1) 82.2(0.7)

PACS

avg 58.7(1.2) 42.2(1.6) 41.5(1.8) 41.5(1.9) 38.4(1.1) 59.5(1.4) 47.6(0.9) 58.4(0.3) 58.6(0.6) 40.5(2.0) 54.2(0.5) 60.6(0.4)
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Figure 3. We evaluate the top-1 accuracy averaged over all clients
using different loss function combinations on different datasets.

performs the model trained with only CE loss by nearly
4 percentage points. Notably, combining CE loss with In-
foNCE loss yields worse results than using CE loss alone,
suggesting that in the presence of severe feature drift, re-
inforcing category information through InfoNCE may am-
plify the drift. While the CE + KL loss combination
performs better than CE loss alone on Office-10, it un-
derperforms on the PACS dataset—even falling below CE
loss—indicating reduced robustness. This suggests that CE
+ KL may compromise category information, leading to in-
stability across heterogeneous datasets.

To assess the impact of KL and InfoNCE losses on fea-
ture distributions, we visualize class-wise features across
clients in the Office-10 dataset using t-SNE projections of
randomly sampled data points (Fig 4). The CE-only model
poorly mitigates feature drift, with Client 1 showing un-
clear decision boundaries. Adding InfoNCE improves intra-
client class separation but fails to resolve inter-client drift,
leading to ambiguous global boundaries. The CE+KL com-
bination reduces cross-client distances for the same class,
yielding clearer global boundaries; however, it compresses

Client1 Class1 Client2 Class1 Client2 Class2Client1 Class2

Only CE

CE & KL

CE & InfoNCE

Ours

-2 -6 -20 2 -4 0 24

40

Figure 4. We plotted the feature distribution of different categories
under different clients, corresponding to the four loss combination
strategies of Fig. 3

intra-class spacing in Client 1, causing overlapping clus-
ters and outliers that hinder local classification. In contrast,
our unified loss balances these effects: KL aligns same-
class features across clients, while CE and InfoNCE pro-
mote intra-client separation. This coordination produces
compact, well-separated clusters, improving classification
and validating our method’s effectiveness.

In summary, our method outperforms other loss com-
binations in the simple handwritten digit recognition task
and achieves superior results on real-world datasets, demon-
strating strong robustness and generalization.

Hyperparameter sensitivity analysis. We conducted a
hyperparameter sensitivity analysis on the Office-10 dataset
by varying the loss weights µ and δ over {0.1, 0.2, 0.5,
1.0}. To visualize their impact, we generated an interpo-
lated heatmap of average accuracy. As shown in Fig 5, ac-
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Figure 5. The top-1 accuracy (%) of different µ and δ under Office-
10 dataset

curacy remains high and stable when µ is within [0.1, 0.4],
with δ having minimal influence in this range. Notably, the
highest accuracy of 69.12% occurs at µ = δ = 0.2, fol-
lowed by 68.62% at µ = 1.0, δ = 0.2.

The results show that our algorithm is not sensitive to
the parameter changes of the loss function within a certain
range and can maintain high performance.
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Figure 6. Comparison of accuracy with and without training the
global classifier on the three datasets.

Comparison of different classifier replacement meth-
ods We evaluate the effectiveness of the global classi-
fier through an ablation study by removing it. As shown
in Fig 6, although the simplicity of the Digits dataset re-
sults in slightly lower accuracy for the global classifier
on some sub-datasets (panel 6a), it still outperforms the
baseline without a global classifier across multiple sub-
datasets. Notably, our method achieves 3.6 percentage

points higher accuracy on MNIST-M. The benefits are more
pronounced on datasets with substantial feature drift: on
Office-10 (panel 6b), the global classifier surpasses the
baseline on nearly all sub-datasets, achieving 49.3% on Cal-
tech—a 15.6 percentage points improvement. On PACS
(panel 6c), it consistently outperforms the baseline across
all sub-datasets, with gains of up to 3 percentage points.

These results confirm the necessity of FedPall’s global
classifier, which captures cross-client category informa-
tion to enhance client-server collaboration and improve the
framework’s generalization against feature drift.

Privacy Leakage Risk We evaluate the privacy risk of
prototype mixture features using the Data Efficient Mu-
tual Information Neural Estimator (DEMINE) [21]. On the
Office-10 training set, the mutual information (MI) scores
for: (1) standard Gaussian noise, (2) prototype mixture
only, (3) Bernoulli masking only, and (4) our method (pro-
totype mixture + Bernoulli masking) are 2.96, 3.06, 3.04,
and 2.10, respectively (lower is better). The corresponding
average accuracies are 66.4%, 64.5%, 63.7%, and 67.6%,
compared to 65.8% in the noise-free case. Our approach not
only offers stronger privacy protection but also improves
accuracy, attributed to the consistent update direction be-
tween the global prototype and feature encoder. Addition-
ally, since encryption is applied post-training with linear
time complexity, the computational overhead remains neg-
ligible.

6. Conclusion

In this study, we focus on the feature drift problem in FL.
The feature drift problem causes the same class samples
on different clients to have distinct feature distributions,
making it difficult for traditional model aggregation meth-
ods to handle such data heterogeneity. To tackle this prob-
lem, we design a prototype-based adversarial collaborative
framework to unify feature spaces and enhance classifi-
cation boundaries. The global classifier is retrained with
mixed features to further grasp classification-relevant infor-
mation from a global perspective. Our method has em-
pirically achieved state-of-the-art performance in popular
feature-drifted datasets with multiple data sources.
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