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Abstract

We explore the mechanism of in-context learn-
ing and propose a hypothesis using locate-and-
project method. In shallow layers, the features
of demonstrations are merged into their corre-
sponding labels, and the features of the input
text are aggregated into the last token. In deep
layers, in-context heads make great contribu-
tions. In each in-context head, the value-output
matrix extracts the labels’ features. Query and
key matrices compute the attention weights be-
tween the input text and each demonstration.
The larger the attention weight is, the more
label information is transferred into the last to-
ken for predicting the next word. Query and
key matrices can be regarded as two towers
for learning the similarity metric between the
input text and each demonstration. Based on
this hypothesis, we explain why imbalanced la-
bels and demonstration order affect predictions.
We conduct experiments on GPT?2 large, Llama
7B, 13B and 30B. The results can support our
analysis. Overall, our study provides a new
method and a reasonable hypothesis for under-
standing the mechanism of in-context learning.
Our code will be released on github.

1 Introduction

In-context learning (ICL) is an emergent abil-
ity (Wei et al., 2022a) of large language models
(Brown et al., 2020; Ouyang et al., 2022; Touvron
et al., 2023). By using a few demonstration-label
pairs as prompts, ICL can perform well without up-
dating parameters on many tasks, such as machine
translation (Sia and Duh, 2023), complexity reason-
ing (Li et al., 2023a), compositional generalization
(Zhou et al., 2022) and information extraction (He
et al., 2023). However, the mechanism behind ICL
is still a mystery (Zhao et al., 2023).

In this paper, we explore the mechanism of ICL
on classification tasks with semantically-unrelated
labels. We find that the mechanism behind ICL is
computing the similarity metrics between the in-
put text and each demonstration, then choosing the

corresponding labels based on the similarity scores.
Figure 1 shows the mechanism. In shallow layers,
the features of demonstrations are aggregated into
the corresponding labels (Wang et al., 2023). At
the same time, the features of the input text are
merged into the last token. In deep layers, features
of demonstrations and labels are contained in la-
bels’ layer inputs, and features of the input text are
in the last token’s layer input.
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Figure 1: Mechanism of ICL. (a) In shallow layers, the
features of demonstrations and the input text are merged
into corresponding labels and the last token respectively.
In deep layers’ in-context heads, (b) the value-output
matrix VO extracts the label information. (c) The query
matrix Q and (d) the key matrix K compute the (e) atten-
tion weights between input text and each demonstration.
(f) The attention weight decides how much label in-
formation is transferred into the last token. (g) Many
in-context heads contribute to the information flow from
labels to the last token, which predicts the next word.

In in-context heads, the value-output matrix ex-
tracts the labels’ features ("foo", "bar") from the
layer inputs on label positions. The query and key



matrices compute the attention weights (which can
be regarded as similarity scores) between the input
text and all demonstrations. Each label value is
multiplied by the corresponding attention weight,
which controls the label information flow. If the
attention weight is large, much information of the
corresponding label is transferred into the last to-
ken. In deep layers, many in-context heads con-
tribute to the information flow from the labels to
the last token, which finally predicts the next word.

1.1 Evidence Supporting the Hypothesis

We take an ICL sentence as an example, and pro-
pose a locate-and-project method to analyze the
parameters in important layers and heads (Section
3). We find almost all the contributions are caused
by deep attention layers (18-31 layers). In each
layer, we calculate the contribution score of each
head, and assume the most contributing heads are
in-context heads (Section 3.1). In section 3.2, we
analyze the queries, keys and values by projecting
them in vocabulary space (Dar et al., 2022). We
find the top words of label values are the labels
themselves, and the label keys contain the infor-
mation of corresponding demonstrations. The last
token’s query contain the features of the input text.

Moreover, we conduct experiments on word
classification datasets and sentence classification
datasets with semantically-unrelated labels on
GPT2 large (Radford et al., 2019), Llama 7B, 13B
and 30B (Touvron et al., 2023). When project-
ing into vocabulary, the rankings of label words
in in-context heads are much smaller than those
in random heads (Section 4.3). And the attention
weights on true labels are much higher than those
on false labels in in-context heads (Section 4.4).
These results can support our hypothesis.

1.2 Explaining Phenomenons of ICL

There are several phenomenons of ICL that can
be explained by our hypothesis. First, the model
tends to predict the majority label in the prompt
(Zhao et al., 2021). This phenomenon matches our
hypothesis. Query and key matrices compute the
attention weights between the input text and each
demonstration, so the sum of one label’s attention
weights is larger when this label is related to more
demonstrations. The experimental results in Sec-
tion 5.1 can support this: when reducing the true
label’s frequency, the sum of attention weights on
true labels will decrease.

Another phenomenon is that the demonstration
order affects prediction much (Lu et al., 2021). Our
assumption of this phenomenon is: the model is not
trained only for ICL, thus the labels do not only ag-
gregate the corresponding demonstration. A little
adjacent tokens’ features are merged into the labels.
Therefore, when the true demonstrations/labels are
near the input text, the last token extracts the fea-
tures of input text and some true demonstrations,
which can enhance the features. We conduct exper-
iments to verify this in Section 5.2. When putting
all the true demonstrations/labels near the input
text, the sum of attention weights on true labels
are larger than that when putting them far from the
input text.

Overall, we develop a locate-and-project method
for exploring the mechanism of ICL. We propose a
reasonable hypothesis interpreting how ICL works,
and this hypothesis can explain the phenomenons
of ICL. Our proposed method and hypothesis are
helpful for understanding ICL.

2 Background

2.1 ICL: Text Recognition and Text Learning

Language models perform ICL by prompting K
demonstration-label pairs (dy, {1, d2,lo, ..., dx, LK)
before the input text X, in order to predict output Y.
According to Pan et al. (2023), ICL can be disentan-
gled into task recognition (TR) and task learning
(TL). TR does not rely on the demonstration-label
mappings because the roles of demonstrations and
labels are helping the model know "what is the
task". In this situation, the model have similar
predictions when the mappings are wrong (Min
et al., 2022), because the predictions are based on
pre-trained priors. On the other hand, TL relies
on the demonstration-label mappings because the
semantic priors are removed. For example, in an
ICL sentiment classification task, if the labels are
"positive/negative"”, the task is TR. If the labels
are "foo/bar", the task is TL because the labels are
semantically-unrelated (Wei et al., 2023).

2.2 Label Words are Anchors

Wang et al. (2023) average all attention heads in
GPT2-XL and calculate the saliency scores to ex-
tract the information flow among layers. They find
the label words are anchors to merge the seman-
tic information of corresponding demonstrations in
shallow layers, and information is extracted from
label words to the final prediction in deep layers.



Our study takes a step further on this work. We
find the information flows from labels to the final
prediction in deep layers are caused by in-context
heads. Instead of saliency scores, we find the atten-
tion weights in in-context heads are interpretable,
which can be regarded as the similarity metric be-
tween the input text and each demonstration. More-
over, we analyze the queries, keys and values in
vocabulary space and find human-interpretable con-
cepts. Overall, Wang et al. (2023) find "the infor-
mation flow exists", while our work aims to answer
"how this information flow happens".

2.3 Analyzing Parameters in Vocabulary
Space

Many studies have found that the parameters in
transformers are interpretable in vocabulary space
(Elhage et al., 2021; Geva et al., 2022; Dar et al.,
2022). The core idea is to compute the probability
distribution of each vector on the unembedding
matrix £. The final distribution D for predicting
the next word is computed by the final vector f:

Dy = softmax(E f)

Similarly, the distribution D, of other vectors v
can be computed in vocabulary space:

D, = softmax(Ev)

If a word w ranks top in D,,, it indicates v is related
to w. v can be parameters in different modules,
including feed-forward network (FFN) value/key
and attention value-output/query-key modules.

2.4 Induction Heads in Attention Layers

Olsson et al. (2022) find that induction heads in
attention layers are helpful for copying words from
the input sequence (e.g. [A][B]...[A] -> [B]). Our
work is inspired by this study. In-context heads
have similar characteristics with induction heads
on value-output modules, which both transform
the Oth layer input embeddings into the values.
The difference is that induction heads’ keys may
only extract the previous token’s information, while
in-context heads should extract features from the
whole demonstration. The investigation of the
connection between in-context heads and induc-
tion heads is a topic deserving further exploration,
which we defer to future research.

3 Locate-and-Project Method

In this section, we show how we propose the hy-
pothesis by studying an ICL case "love : bar like

: bar eight : foo two : foo one :'" with the pre-
diction "foo''. Our locate-and-project method is
helpful and efficient for understanding ICL mecha-
nisms. We conduct the experiments on GPT?2 large,
which has 36 layers and 20 heads per layer. There
are too many layers and heads, so we propose a
method to locate the important ones. Moreover, we
project the queries, keys and values in these heads
in vocabulary space to understand the mechanism.
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Figure 2: Log probability increase of each layer.

3.1 Locating Important Layers and Heads

Inspired by Yu and Ananiadou (2024), we locate
helpful layers by computing each attention layer
and FFN layer’s log probability increase for the
predicted word ("foo"). The results are shown in
Figure 2. Almost all the improvements are caused
by deep attention layers. Then we compute the log
probability increase of each head and analyze the
heads with large scores to see whether they have
regular patterns.

3.2 Projecting Queries, Keys and Values in
Vocabulary Space

After locating the important heads, we aim to ana-
lyze whether these heads have human-interpretable
concepts. According to Wang et al. (2023), the la-
bels and the last token play important roles in deep
layers. So we project the labels’ values/keys and
the last token’s query in vocabulary space follow-
ing Dar et al. (2022). For label values, we multiply
the value-output matrix and the layer inputs. For la-
bel keys, we look at their inputs before multiplying
the key matrix. For last token’s query, we compute
its reverse projection into the keys’ vector space
by multiplying QK. In the example sentence, the
positions are 2, 5, 8, 11 (labels), and 13 (last token),
corresponding to "bar", "bar", "foo", "foo" and ":".



position  top words in vocabulary space dataset input text  true label acc
2-value BAR, Barron, Barrett, Band, Bray, Bars, sentiment/number ~ number foo 94%
Baron, Bar, Bay, Boyd sentiment/number number bar 100%
5-value BAR, Barron, Barrett, Baron, Bar, Band, number/sentiment  sentiment foo 92%
Barbie, Barbar, Bard number/sentiment  sentiment bar 87%
8-value foo, Foo, FO, fo, Foley, Fresno, FDR, fas- animal/country country foo 100%
cists animal/country country bar 100%
11-value  foo, Foo, fo, FO, fascists, FDR, Foley, Goo, country/animal animal foo 100%
fascists country/animal animal bar 100%
2-key kisses, goddess, love, charms, idol, stress,
nobles, happiness . : :
5-key style, oriented, +++, like, indo. height, Table 2: Word classification accuracy of datasets.
Lover, xual, dont, foo
8-key foo, mc, blah, happ, avg, french, omega,
prod, english, google, height, neigh
11-key foo, mc, infinity, omega, three, two, repeat,
twelve, 666, Three, thirds, five, sixteen
13-query first, end, only, no, all, given, person, cer-

tain, call, same, short, long, 1, one, value

Table 1: Top words of labels and last token in layer 22,
head 0.

We take layer 22, head 0 as an example. The top
vocabulary tokens of labels’ values/keys and the
last token’s query are shown in Table 1. For clarity,
we remove the stop words.

The results are human-interpretable. Label val-
ues’ top words have related concepts with the labels
("bar" and "foo"). Label keys’ top words on posi-
tion 2, 5, and 11 are related to their demonstrations
("love", "like" and "two"). Last token query’s top
words are related to the input text ("one").

Based on these interpretable results, we hypoth-
esize that the features of demonstrations are ex-
tracted into the corresponding label keys, and the
features of labels are extracted into the label values.
The features of the input text are compressed in
the last token’s query. Moreover, we hypothesize
the information flow of the label information are
controlled by the attention weights between last
token query and label keys. Yu and Ananiadou
(2024) prove that when a FFN subvalue has related
concepts with the predicted token, its coefficient
score can enlarge the improvement for prediction.
In-context heads have similar situations: labels’
values ("foo" and "bar") are helpful for next token
prediction, so their attention weights decide how
much label information is added into the last token
for prediction. In fact, we find an attention layer
output is a sum of subheadvalues, and each sub-
headvalue is the product of an attention score and
a vector. This characteristic of attention layers is
similar to FFN layers. We discuss this in Appendix
E.

Figure 3: Top 20 heads with largest average log proba-
bility increase on sentiment/number dataset.

4 Experiments

4.1 Task and Dataset

We first design an easy NLP task to explore the
mechanism of ICL, which is word classification.
In this section, the experiments are done on GPT2
large (Radford et al., 2019). We also conduct ex-
periments on real sentence classification datasets
on GPT2 large, Llama 7B, 13B and 30B (Touvron
et al., 2023), shown in Appendix A-D. We make
two datasets for classifying sentiments/numbers

Figure 4: Top 20 heads with largest average log proba-
bility increase on animal/country dataset.



and countries/animals. Each dataset has 1,000 sen-
tences. Similar to Wei et al. (2023), we use "foo"
and "bar" as labels to remove the semantic priors.
We choose two true demonstrations/labels and two
false demonstrations/labels, and put the true demon-
strations/labels near the input text. The sentences
are similar to the example: ''love : bar like: bar
eight: foo two: foo one:".

We exchange "bar" and "foo" as true labels on
each dataset to explore whether GPT2 large really
has the ability to classify the words. The results
shown in Table 2 indicate that GPT2 large can
classify the words by ICL. We choose "foo" as the
true label in our experiments.

4.2 Where does In-context Heads Locate

For each sentence, we compute every head’s
log probability increase and compute the average
scores. Based on the results in Section 3, we as-
sume the most contributing heads are in-context
heads. We show the top 20 heads with largest log
probability increase on sentiment/number and ani-
mal/country datasets in Figure 3 and Figure 4. The
important heads are in deep layers (18-31). The
head indexes are similar on these datasets. Also,
the important head indexes on sentence classifica-
tion tasks are similar (Appendix A). This indicates
different ICL tasks share the same in-context heads.

Figure 5: MRR scores of label values in in-context
heads (19-11, 20-11, 29-17, 30-16) and random heads.

4.3 Ranking of Labels on In-Context Head
Values

Based on the insights in Section 3.2, the label val-
ues ("foo" and "bar") in in-context heads should
have top rankings when projecting into vocabu-
lary space. We conduct experiments to verify this

on sentiment/number dataset. For each in-context
head, we random sample a head in the same layer
for comparison. We project the label values into
vocabulary and compute the label words’ mean re-
ciprocal rank (MRR). For example, if the ranking
of "foo" is 100 on true label’s vocabulary projec-
tion, the MRR score is 0.01. If MRR is large, the
label token has small ranking in vocabulary space.
The scores of heads 18-7, 20-11, 29-17, and 30-
16 are shown in Figure 5. Other in-context heads
have similar trends with one of these heads. Com-
pared with random heads, label values have much
higher MRR scores in in-context heads. The small-
est average MRR score 0.0033 is in layer 19, head
11, which still corresponds to an average ranking
of 303. This meets our hypothesis of in-context
heads: the value-output matrix can extract the label
information ("foo"/"bar"). Another finding is the
value-output matrix does not control the label infor-
mation flow, because in in-context heads 29-17 and
30-16, MRR scores of "bar" is higher than "foo".

4.4 Attention Weights on True/False Labels

In this section, we aim to demonstrate the hypothe-
sis that attention weights control the label informa-
tion flow. For each sentence and each in-context
head, we compute the attention weights between
the last token’s query and true/false labels’ keys.
The attention weights are shown in Figure 6.

0351 o3bsy 0.5p45

0.1pao
005 uorg& b r

false label
head 20_11 truejfalse label

true label false label true label

head 19_11 true/false label

104 0.9687
0.6p67

01 uoraa
0.0162

true label false label
head 29_17 true/false label

true label false label

head 30_16 true/false label

Figure 6: Attention weights between last token query
and true/false labels keys in in-context heads (19-11,
20-11, 29-17, 30-16).

In all in-context heads, the attention weights be-
tween last token query and true label keys are much



larger than those between last token query and false
label keys. This meets our hypothesis that attention
weights control the label information flow. Since
the log probability increase may be different in var-
ious sentences, we random sample one sentence
and calculate the attention weights of true labels
and the label values’ log probability increases in
top3 important in-context heads. The relationship
is shown in Figure 7. It is not a linear relationship,
but it has a increasing trend. Attention weights
between 0.9 and 1.0 have larger log probability
increase than those between 0.4 and 0.6.

Figure 7: Relationship betwen attention weights and log
probability increase.

Let us conclude the mechanism of ICL based
on the experimental results. In shallow layers, the
demonstration features are merged into their cor-
responding labels, and the input text features are
aggregated into the last token (evidence: Section
3.2). In every in-context head in deep layers, the
value-output matrix extracts the label information
(evidence: Section 3.2 and 4.3). At the same time,
the key matrix and query matrix, which can be re-
garded as two towers (Huang et al., 2013) for learn-
ing the similarity metric, compute the attention
weights between the input text and demonstrations.
The attention weights control the label information
flow (evidence: Section 4.4). There are many in-
context heads controlling the label information flow
from labels to the last token (evidence: Section 3.1
and 4.2). Finally, the label with larger attention
weights are predicted.

5 Explaining Phenomenons of ICL

There are several phenomenons of ICL that haven’t
been explained. Zhao et al. (2021) illustrate that
models tend to predict majority labels and the la-
bels near the input text. Lu et al. (2021) also find

that changing the demonstration order can affect
predictions a lot. In this section we explain these
phenomenons based on our hypothesis.

5.1 Why does Imbalanced Labels Affect
Prediction

According to our hypothesis, it is reasonable that
the model tends to predict majority labels, because
the label information flow is controlled by the at-
tention weights. When a label has high frequency,
the sum of attention weights will be larger, thus the
probability of this label is larger in final prediction.
We design a imbalanced sentiment/number dataset
to verify this. For each sentence, we remove the
last true demonstration and label. For example,
"love : bar like: bar eight: foo two: foo one:" is
changed to "'love : bar like: bar eight: foo one:''.

On each in-context head, we compute the sum
of attention weights on true/false labels on the im-
balanced dataset and compare them with the origin
balanced dataset. The results of head 19-11 and 20-
11 are shown in Figure 8. Other in-context heads
have similar trends. The sum of attention weights
on true labels decrease on the imbalanced dataset.
On the contrary, the attention weights on false la-
bels increase. The results meet our analysis. The
attention weights are computed by a softmax func-
tion, so when a true demonstration and its label
are removed, the sum of attention weights on false
labels will increase.

false label true label
laver 19, head 11 laver 20. head 11

Figure 8: Sum of true/false label attention weights in
in-context heads (19-11, 20-11) on balanced and imbal-
anced datasets.

5.2 Why does Demonstration Order Affect
Prediction

The ICL performance is extremely sensitive to the
demonstration order. This phenomenon seems to
contradict our hypothesis. If the labels and the last
token only extract the corresponding demonstra-
tions and the input text, the demonstration order
should not affect the prediction. Our assumption
of this phenomenon is that the labels not only ex-
tract the corresponding demonstrations but also



extract a little adjacent tokens, because the model
is not only trained for ICL. Let us assume that the
labels can extract 80% corresponding tokens and
20% adjacent tokens. Consider the example sen-
tence "'love : bar like: bar eight: foo two: foo
one:". In this situation the last token query con-
tains 80% "one"+20% "two". If the demonstration
order is changed into ''eight: foo two: foo love :
bar like: bar one:", the last token query contains
80% "one"+20% "like". Consequently, the atten-
tion weights and the predictions will be different.

xxxxxxxxx

Figure 9: Sum of true/false label attention weights in
in-context heads (19-11, 20-11) on order and re-order
datasets.

To verify this assumption, we design a re-order
dataset based on sentiment/number dataset. Like
the previous example, for each sentence we put all
the true demonstrations/labels at first, and put all
the false demonstrations/labels near the input text.
We compute the sum of attention weights on true
labels and false labels. The results are shown in
Figure 9. We also choose head 19-11 and 20-11
as examples, and other heads have similar trends.
The sum of attention weights on re-order dataset
are much smaller than those on the origin dataset.

Except analyzing the attention weights, there are
also interpretable results supporting our assump-
tion in Table 1. "lover" also exists in 5-key, and
"height" (which may be related to "eight") is also
contained in 5-key. Compared with 8-key, 11-key
has more concepts about numbers. 11-key may
extract information from "eight" and "one".

We also show the true labels’ attention weights
on the in-context heads from layer 18 to layer 29.
These in-context heads rank top20 on both senti-
ment/number dataset and animal/country dataset.
We compare the attention weights on the origin
sentiment/number dataset, the imbalanced dataset,
and the re-order dataset. The results are shown in
Figure 10 and Figure 11. Compared with balanced
dataset, the average attention weight of imbalanced
dataset only increases on head 21-19. In other in-
context heads including 19-11, 20-11, 22-0, 24-13
and 27-16, the attention weights decrease a lot. On

re-order dataset, the attention weights on all in-
context heads drop, especially in 21-19 and 22-0.
These results support our hypothesis again: the at-
tention weights control the label information flow.
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Figure 10: Attention weights of true labels on balanced
and imbalanced datasets.
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Figure 11: Attention weights of true labels on order and
re-order datasets.

6 Discussion

6.1 What Affects ICL Ability

Under our hypothesis, there are four modules re-
lated to the ICL ability.

a) Information extraction ability of shallow
layers. Shallow layers can be regarded as feature
extraction modules. The ability of extracting corre-
sponding demonstrations and the input text decides
the quality of features.

b) Value projection ability of in-context heads’
value-output matrices. From the results in Figure
5, several in-context heads (such as 19-11 and 30-
16) can only project "foo" or "bar". If the value



projection ability is good enough, these in-context
heads should project "foo" and "bar" together.

¢) Metric learning ability of in-context heads’
query and key matrices. The query and key matri-
ces might be the most important module, because
they should learn computing different metrics using
the same matrices. If different ICL tasks share the
same in-context heads, the query and key matrices
should learn these metrics jointly.

d) Numbers and parameters of in-context
heads. If we regard one in-context head as a two-
tower model for metric learning, the parameters of
the head are directly related to the learning ability.
At the same time, different in-context heads can be
regarded as voting or ensemble models, so the head
number also controls the learning ability.

6.2 Advantage of Locate-and-Project Method

A popular method for locating important parame-
ters and modules is causal mediation analysis (Vig
et al., 2020), which is widely used in existing inter-
pretability studies (Meng et al., 2022; Wang et al.,
2022; Hanna et al., 2023; Geva et al., 2023). The
core idea of these methods is to mask several pa-
rameters/modules in the model and see how much
the final prediction is affected. These methods are
dynamic methods because they need to run the
model many times masking different modules. Our
method for locating important layers and heads is
static. We only need to run the model once, so our
locating method is more efficient.

The method of projecting parameters into vo-
cabulary space is utilized in many studies (Elhage
et al., 2021; Geva et al., 2022). Dar et al. (2022)
explore how to project the parameters in transform-
ers into vocabulary space. They focus on analyzing
the entire matrix, while we consider the values on
the most contributing positions in important heads.

In conclusion, our proposed locate-and-project
method is efficient. On locating step, we can locate
the important layers, heads and positions by only
running the model once. On projecting step, instead
of analyzing the whole matrix of the heads, we start
from projecting the important positions. Therefore,
our method could save time for case studies when
exploring the mechanisms. Our method is inspired
by Yu and Ananiadou (2024). The difference is
that our method can locate the important heads,
while they sum the heads together to compute the
attention subvalues. We discuss this in Appendix
E.

7 Related Work

Many studies have explored the mystery of ICL.
Min et al. (2022) find that randomly replacing
the ground truth labels does not hurt performance
much. Wei et al. (2023) argue the reason of this
phenomenon is the model can rely on semantic pri-
ors. Therefore, they study semantically-unrelated
label ICL by transferring the labels into "foo" and
"bar" and find that the performance is related to the
demonstration-label mapping. Chan et al. (2022)
demonstrate that the ICL ability is obtained when
training data have enough rare classes. Liu et al.
(2021) argue that selecting the closest neighbors
as demonstrations can enhance ICL ability. Gonen
et al. (2022) propose choose low perplexity demon-
strations to increase the performance of ICL. Dong
et al. (2022) conclude these methods in a survey
for ICL.

Some studies try to explain ICL theoretically.
Xie et al. (2021) argue that ICL ability is gained
when the pretraining distribution is a mixture of
HMMs, and they explain ICL as implicit Bayesian
inference. Garg et al. (2022) prove that transform-
ers can learn linear functions by ICL. Akyiirek et al.
(2022) find transformers can learn linear regression
functions and hypothesize that ICL can implement
standard learning algorithms implicitly. Li et al.
(2023b) explore the softmax regression and find
that attention-only transformers are similar with
gradient descent models. Von Oswald et al. (2023)
and Dai et al. (2022) regard ICL as meta-learning
and argue that ICL does gradient descent implicitly.

8 Conclusion

We propose a hypothesis about the mechanism of
ICL using our locate-and-project method. Shallow
layers merge demonstrations’ features into their la-
bels. Deep layers’ in-context heads extract the label
information by value-output matrices. Query and
key matrices compute the attention weights (which
can be regarded as similarity metrics) between the
input text and the demonstrations. The attention
weights control the label information flows to the
last token. Moreover, our hypothesis can explain
why ICL has majority label bias and recency bias.
We conduct experiments on word classification and
sentence classification datasets on GPT2 large and
Llama 13B, and the results can support our hypoth-
esis. Overall, the locate-and-project method and
the hypothesis about ICL mechanism are helpful
for future studies on ICL.



9 Limitation

Our experiments are conducted on GPT2 large,
Llama 7B, 13B, and 30B. More experiments should
be done on larger open source language models.
Our hypothesis can explain the ICL mechanism
for classification tasks. More studies should be
done on other ICL tasks, such as chain-of-thought
reasoning (Wei et al., 2022b).
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A In-context heads in Sentence
Classification Datasets

In this section, we conduct similar experiments
with Section 4.2 on GPT2 large on sentence classifi-
cation datasets, including Stanford Sentiment Tree-
bank binary classification (SST-2) (Socher et al.,
2013), Text REtrieval Conference question classi-
fication (TREC) (Li and Roth, 2002), AG’s news
topic classification (AGNews) (Zhang et al., 2015)
and Hate Speech Detection (ETHOS) (Mollas et al.,
2020). In each dataset, we random sample 1,000 in-
put texts from the test set, and random sample two
true demonstrations/labels and two false demon-
strations/labels in the training set. We put the true
demonstrations/labels near the input text. We do
experiments on all the cases predicting the correct
labels. The results are shown in Figure 12-15.

Figure 12: Top 20 heads with largest average log proba-
bility increase on SST-2 dataset.

263 2716 2

3 2706 2717 2810 2812 2910 207 301 3016 319 212 218
head index.

layer head index

1911 2102 230 2313 240 2510 2613 2614

Figure 13: Top 20 heads with largest average log proba-
bility increase on TREC dataset.

The head indexes with top20 largest log probabil-
ity increase are similar in these sentence classifica-
tion datasets, although the largest head is different.
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Figure 14: Top 20 heads with largest average log proba-
bility increase on AGnews dataset.

17 301 %16 08 212

Figure 15: Top 20 heads with largest average log proba-
bility increase on EHTOS dataset.

Almost all the heads are in deep layers. Also, there
is a large overlap between the head indexes in sen-
tence classification datasets and word classification
datasets. Consequently, the in-context heads are
important in different ICL tasks.

B Label Rankings and Attention Weights
in Sentence Classification Datasets

In this section, we conduct similar experiments
with Section 4.2 and 4.3 to see whether the in-
context heads in sentence classification tasks have
similar characteristic with word classification tasks.
We evaluate head 26-14, 28-10 and 29-17, because
these heads are important on all the datasets. We
compute the MRR scores of label values and the
attention weights between last token query and
label keys. The results are shown in Figure 16-21.
In all datasets, the labels in in-context heads have
larger MRR scores than random heads, and the
attention scores on true labels are much larger than
false labels. These results can support our analysis.
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C Vocabulary Analysis on Sentence
Classification ICL Case

We analyze a sentence classification case sampled
in AGNews dataset and the results on GPT2 large
are shown in Table 3. We take head 23-13 as exam-
ple. With the prediction "foo", the case is:

. bar

: bar Liverpool completes signings
of Alonso, Garcia LIVERPOOL, England (AP) —
Spanish pair Xabi Alonso from Real Sociedad and
Luis Garcia from Barcelona signed five-year con-
tracts with Liverpool on Friday. : U.S. Doping
Watchdog to Question BALCO’s Conte - IAAF
HELSINKI (Reuters) - U.S . anti-doping officials
plan to question Victor Conte after the BALCO
head claimed he saw sprinter Marion Jones taking
banned drugs, world athletics body the IAAF said
Saturday. : foo Liverpool Progresses to Champions
League; Monaco, Inter Advance Four-time cham-
pion Liverpool progressed to soccer Champions
League 2-1 on aggregate, overcoming a 1-0 home
defeat to AK Graz in the second leg of qualifying.

position top words in vocabulary space

bar-value  BAR, bars, Bars, bart, Bar, bartender, bar,
Barber

bar-value bartender, Bars, bart, bars, Bar, Barber,
bar, BAR

-value foo, McKenzie, Foo, Barney, Walters, Jen-
ner, Murphy, lobster, Handler

foo-value  Walters, foo, Barney, McKenzie, Harrington,
Murphy, Barber, Barron, Jenner

bar-key Bloomberg,

, obal,
, bullish, Barron,

bar-key , Conn, Ok, Previous, Daily, NY, Yes,
Anon, US, Ibid, , Staff, Journal, Van-
guard, Tribune,

-key Buy, iverpool, Ibid, YORK, UNITED, Oliv,
Charl, Location, Spanish, Miami, US, Liver-
pool, Pool, London, Greenwich, United

foo-key NYT, WATCH, Latest, Exclusive, Previous,
UNC, US, Watch, Possible, Ibid, Statement,
Reaction, UK, Reuters, United, Smoke

last-query  ruary, Pipe, lihood, swick, Flavoring, iver-

pool, paddle, paraph, Lake, Repe, tong, bole,
etheless, Lakes

Table 3: Top words of labels and last token in layer 23,
head 13 on a sentence classification case.

13

In this case, the false demonstrations with label
"bar" are sampled from the "Business" class. The
true demonstrations with label "foo" and the input
text are sampled from the "Sports" class. On label
values, "bar" and "foo" have top rankings. On label
keys, the labels correspond to business demonstra-
tions extract the concepts about business, such as
"investor" and "profit". The top tokens of true la-
bels are related to places such as "Liverpool"” and
"Spanish". It seems that the reason why the model
predicts "foo" is the word "Liverpool" exists in both
the input text and the first true demonstration. We
find "iverpool", "Lake" and "Lakes" in last token
query, which is related to "iverpool" and "Pool" in
the first true label key.

Inspired by Bills et al. (2023), we utilize Chat-
GPT to analyze the relationship between the top
words on label keys and the corresponding demon-
strations using the prompt ""Try your best to ex-
plore the relationship between the sentence and
the words'', and we observe good results. The
results of the first demonstration are as below:

The sentence "Wall St. Bears Claw Back Into
the Black (Reuters)" suggests a financial context,
indicating a positive turn for short-sellers in the
stock market. The phrase "Claw Back Into the
Black" implies a recovery or improvement in their
financial situation. The words provided seem
to be related to the financial and economic do-
main, with mentions of prominent entities such
as 'Bloomberg’, ’Investor’, 'CNBC’, "JPMorgan’,
"HSBC’, ’Economist’, and 'Forbes’. These enti-
ties are likely players in the financial world, in-
cluding news agencies, banks, economists, and in-
vestment platforms. Additionally, words like ’'bil-
lionaires’, 'CEOs’, ’bankers’, ’entrepreneurs’, and
‘capitalists’ hint at the involvement of influential
and wealthy individuals in the financial landscape.

This implies the potential capability to leverage
our methods to interpret the predictions automat-
ically by analyzing what the label keys/last token
extract from the demonstrations/text input.

D Results on Llama 7B, 13B and 30B

We conduct experiments on Llama 7B, 13B and
30B on these sentence classification datasets. We
compute the label rankings and attention weights
on the head with the largest log probability increase
in each model. The results in Figures 22-27 are sim-
ilar with the results in GPT?2 large. This indicates
these models have the same mechanism for ICL.
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E Mechanism Analysis of Our Method

The final embedding F' for predicting the next word
is a sum of the Oth layer input Ling (word em-
bedding + position embedding), each layer’s atten-
tion output ATT'N; and each layer’s FFN output
FFN;.

L—1 L—1
F =Ling+» ATTN;+Y» FFN;
1=0 =0

where L is the layer number. Geva et al. (2020)
prove that a FEN output is the sum of FFN subval-
ues ff nf, and each FFN subvalue is the product
of a coefficient score m and a vector fc2¥ in the
second FFN matrix.

N-1

FFN; =Y mjfc2}
k=0

where N is the number of neurons in FFN layers.
Yu and Ananiadou (2024) prove that an attention
output can also be regarded as the sum of attention
subvalues on different positions. Each attention
subvalue is the element-wise product of the multi-
head attention weight vector and the value-output

vector.
S—1

ATTN; = attn?
p=0
where S is the length of the input sequence. Con-
sequently, the final output is the sum of the 0th
layer input, many attention subvalues and many
FFN subvalues on different layers.

L—-1S5-1 L—1N-1
F=Ling+» Y attn! +Y > mf fc2k
i=0 p=0 i=0 k=0

By analyzing the distribution change, Yu and
Ananiadou (2024) prove that a subvalue is helpful
for the final prediction word w if w ranks top when
projecting the subvalue into vocabulary space. This
is because the before-softmax values of the subval-
ues are added in a sum function. Consider a FFN
subvalue v in the last layer L. x is the minus of the
final vector and the FFN subvalue:

F=x+v

The probability of the predicted word w on F, x
and v are computed by the softmax function:
p(w|F) =
exp(ey - (z+v))
exp(er - (x +v)) + ... + explep - (x +v))
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B exp(ey - x)
p(wlz) = exp(er - x) + ... + explep - )
p(wlv) = exp(ew - v)

exp(er - v) + ... + exp(ep - v)
where ey, is the wth row of the unembedding ma-
trix £/, with B words in vocabulary. Term e,, -
as the bs-value (before-softmax value) of w on z,
then F' can be regarded as bs-value vectors:

bs(x +v) = [bsTH, bs3 T, . bsttY L bshY]
The probability of w can be computed by bs-values:
eap(bsi)
exp(bsi ) + ... + exp(bsh™)

And the bs-values of z + v can be computed by a
direct sum of bs-values x and v:

plwle +v) =

bs(z + v) = bs(z) + bs(v)

Consequently, the top tokens of the FFN subvalue
v in vocabulary space are related to the predictions
of F'. If w ranks top in v in vocabulary space, v is
helpful for increasing the probability of w because
bs? is large and bs® " will increase much.

Take a vocabulary with three words ("foo", "bar"
and "unknown") as an example. bs(z) is [1, 2, 3],
the words’ probabilities in x are [0.09, 0.24, 0.67].
If bs(v) is [5, 1, 2], "foo" is the top ranking token in
vocabulary space because its bs-value is the largest.
bs(F) will be [6, 3, 5], and the probabilities will
change into [0.70, 0.04, 0.26]. In this case, v helps
increase the probability of "foo" from 0.09 to 0.70.
The coefficient score m in the FFN subvalue v is
helpful for enhancing the probability change. If m
changes from 1.0 to 2.0, bs(v) changes from [5, 1,
2] to [10, 2, 4], and then the probabilities of F' will
be [0.981, 0.001, 0.018].

This characteristic can be promoted into all sub-
values. If the final token w ranks top when project-
ing a subvalue into vocabulary space, this subvalue
is helpful for the final prediction of w. Further-
more, Yu and Ananiadou (2024) prove that using
log probability increase can help locate the most
important subvalues, because the curve of log prob-
ability increase has a linear monotonically increas-
ing shape. In other words, the sequence of subval-
ues do not affect the log probability increase score
much. Take the Oth attention subvalues as example.
log(w|Ling + attng) — log(w|Ling) is similar to
log(w|Ling + attng® + attng) — log(w|Ling +
attny’). Therefore, the significance scores of all
subvalues can be compared together.



A problem of Yu and Ananiadou (2024) is that
they take the product of the multi-head vector and
the value-output vector to compute the attention
subvalues. They do not consider the roles of dif-
ferent heads. In our work, we take a step further
and find that the attention output is the sum of head
vectors:

H-1
ATTN; = 2 attnhead!
h=0

where H is the head number in each attention layer,
and each head vector is the sum of different sub-
headvalues:

S-1
attnhead? = Z a?p . attnheadv? P
p=0

where S is the length of the input sequence. a?p is
the attention score on the pth position in the hth
attention head in layer ¢, computed by the last to-
ken query and the pth token key in this head. The
attention output can also be regarded as the sum of
attention subheadvalues on different positions in
different heads. Each subheadvalue is computed by
an attention score and a vector. Similar to the roles
of FFN subvalues’ coefficient scores, an attention
score can enhance the probability change when the
final predicted token has top ranking when project-
ing its corresponding subheadvalue into vocabu-
lary space. Our experiments match this theory. In
in-context heads, "foo" and "bar" ranks top when
projecting label values into vocabulary space. The
corresponding attention scores on true labels are
large, which are helpful for increase the probability
of "foo" in final prediction. Similarly, we compute
the log probability increase I of each head vector
and subheadvalue to locate the important heads and
subheadvalues.

I = log(w|Lin; + attnhead?) — log(w|Lin;)

hp __
1" =

log(w|Lin; + a!Pattnheadv!™) — log(w|Liny)
Generally, the final embedding F' can be re-

garded as the sum of many attention subheadvalues
and FFN subvalues:

F = Ling+

L—1H-15-1 L-1N—-1

Z Z Z aPattnheadv!™ + Z Z mP fe2k
=0 h=0 p=0 =0 k=0
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where a?p is the attention score in attention layer
i, head h, position p. m¥ is the coefficient score
of the kth FFN neuron in FFN layer <. When an-
alyzing a case, we first locate the most important
attention subheadvalues and FFN subvalues by cal-
culating their log probability increase. Then we
analyze the coefficient scores of FFN subvalues
by calculating the inner products between the FFN
subkeys and previous subvalues. Similarly, we ana-
lyze the queries and keys which compute the atten-
tion scores. Using this method, we can figure out
which FFN subvalues and attention subheadvalues
are helpful for predicting the final word, and which
parameters are helpful for increasing the coefficient
scores and attention scores. Consequently, we can
find why the model has the final predictions.



