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Abstract
We explore the mechanism of in-context learn-001
ing and propose a hypothesis using locate-and-002
project method. In shallow layers, the features003
of demonstrations are merged into their corre-004
sponding labels, and the features of the input005
text are aggregated into the last token. In deep006
layers, in-context heads make great contribu-007
tions. In each in-context head, the value-output008
matrix extracts the labels’ features. Query and009
key matrices compute the attention weights be-010
tween the input text and each demonstration.011
The larger the attention weight is, the more012
label information is transferred into the last to-013
ken for predicting the next word. Query and014
key matrices can be regarded as two towers015
for learning the similarity metric between the016
input text and each demonstration. Based on017
this hypothesis, we explain why imbalanced la-018
bels and demonstration order affect predictions.019
We conduct experiments on GPT2 large, Llama020
7B, 13B and 30B. The results can support our021
analysis. Overall, our study provides a new022
method and a reasonable hypothesis for under-023
standing the mechanism of in-context learning.024
Our code will be released on github.025

1 Introduction026

In-context learning (ICL) is an emergent abil-027

ity (Wei et al., 2022a) of large language models028

(Brown et al., 2020; Ouyang et al., 2022; Touvron029

et al., 2023). By using a few demonstration-label030

pairs as prompts, ICL can perform well without up-031

dating parameters on many tasks, such as machine032

translation (Sia and Duh, 2023), complexity reason-033

ing (Li et al., 2023a), compositional generalization034

(Zhou et al., 2022) and information extraction (He035

et al., 2023). However, the mechanism behind ICL036

is still a mystery (Zhao et al., 2023).037

In this paper, we explore the mechanism of ICL038

on classification tasks with semantically-unrelated039

labels. We find that the mechanism behind ICL is040

computing the similarity metrics between the in-041

put text and each demonstration, then choosing the042

corresponding labels based on the similarity scores. 043

Figure 1 shows the mechanism. In shallow layers, 044

the features of demonstrations are aggregated into 045

the corresponding labels (Wang et al., 2023). At 046

the same time, the features of the input text are 047

merged into the last token. In deep layers, features 048

of demonstrations and labels are contained in la- 049

bels’ layer inputs, and features of the input text are 050

in the last token’s layer input. 051
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Figure 1: Mechanism of ICL. (a) In shallow layers, the
features of demonstrations and the input text are merged
into corresponding labels and the last token respectively.
In deep layers’ in-context heads, (b) the value-output
matrix VO extracts the label information. (c) The query
matrix Q and (d) the key matrix K compute the (e) atten-
tion weights between input text and each demonstration.
(f) The attention weight decides how much label in-
formation is transferred into the last token. (g) Many
in-context heads contribute to the information flow from
labels to the last token, which predicts the next word.

In in-context heads, the value-output matrix ex- 052

tracts the labels’ features ("foo", "bar") from the 053

layer inputs on label positions. The query and key 054
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matrices compute the attention weights (which can055

be regarded as similarity scores) between the input056

text and all demonstrations. Each label value is057

multiplied by the corresponding attention weight,058

which controls the label information flow. If the059

attention weight is large, much information of the060

corresponding label is transferred into the last to-061

ken. In deep layers, many in-context heads con-062

tribute to the information flow from the labels to063

the last token, which finally predicts the next word.064

1.1 Evidence Supporting the Hypothesis065

We take an ICL sentence as an example, and pro-066

pose a locate-and-project method to analyze the067

parameters in important layers and heads (Section068

3). We find almost all the contributions are caused069

by deep attention layers (18-31 layers). In each070

layer, we calculate the contribution score of each071

head, and assume the most contributing heads are072

in-context heads (Section 3.1). In section 3.2, we073

analyze the queries, keys and values by projecting074

them in vocabulary space (Dar et al., 2022). We075

find the top words of label values are the labels076

themselves, and the label keys contain the infor-077

mation of corresponding demonstrations. The last078

token’s query contain the features of the input text.079

Moreover, we conduct experiments on word080

classification datasets and sentence classification081

datasets with semantically-unrelated labels on082

GPT2 large (Radford et al., 2019), Llama 7B, 13B083

and 30B (Touvron et al., 2023). When project-084

ing into vocabulary, the rankings of label words085

in in-context heads are much smaller than those086

in random heads (Section 4.3). And the attention087

weights on true labels are much higher than those088

on false labels in in-context heads (Section 4.4).089

These results can support our hypothesis.090

1.2 Explaining Phenomenons of ICL091

There are several phenomenons of ICL that can092

be explained by our hypothesis. First, the model093

tends to predict the majority label in the prompt094

(Zhao et al., 2021). This phenomenon matches our095

hypothesis. Query and key matrices compute the096

attention weights between the input text and each097

demonstration, so the sum of one label’s attention098

weights is larger when this label is related to more099

demonstrations. The experimental results in Sec-100

tion 5.1 can support this: when reducing the true101

label’s frequency, the sum of attention weights on102

true labels will decrease.103

Another phenomenon is that the demonstration 104

order affects prediction much (Lu et al., 2021). Our 105

assumption of this phenomenon is: the model is not 106

trained only for ICL, thus the labels do not only ag- 107

gregate the corresponding demonstration. A little 108

adjacent tokens’ features are merged into the labels. 109

Therefore, when the true demonstrations/labels are 110

near the input text, the last token extracts the fea- 111

tures of input text and some true demonstrations, 112

which can enhance the features. We conduct exper- 113

iments to verify this in Section 5.2. When putting 114

all the true demonstrations/labels near the input 115

text, the sum of attention weights on true labels 116

are larger than that when putting them far from the 117

input text. 118

Overall, we develop a locate-and-project method 119

for exploring the mechanism of ICL. We propose a 120

reasonable hypothesis interpreting how ICL works, 121

and this hypothesis can explain the phenomenons 122

of ICL. Our proposed method and hypothesis are 123

helpful for understanding ICL. 124

2 Background 125

2.1 ICL: Text Recognition and Text Learning 126

Language models perform ICL by prompting K 127

demonstration-label pairs (d1, l1, d2, l2, ..., dK , lK) 128

before the input text X , in order to predict output Y . 129

According to Pan et al. (2023), ICL can be disentan- 130

gled into task recognition (TR) and task learning 131

(TL). TR does not rely on the demonstration-label 132

mappings because the roles of demonstrations and 133

labels are helping the model know "what is the 134

task". In this situation, the model have similar 135

predictions when the mappings are wrong (Min 136

et al., 2022), because the predictions are based on 137

pre-trained priors. On the other hand, TL relies 138

on the demonstration-label mappings because the 139

semantic priors are removed. For example, in an 140

ICL sentiment classification task, if the labels are 141

"positive/negative", the task is TR. If the labels 142

are "foo/bar", the task is TL because the labels are 143

semantically-unrelated (Wei et al., 2023). 144

2.2 Label Words are Anchors 145

Wang et al. (2023) average all attention heads in 146

GPT2-XL and calculate the saliency scores to ex- 147

tract the information flow among layers. They find 148

the label words are anchors to merge the seman- 149

tic information of corresponding demonstrations in 150

shallow layers, and information is extracted from 151

label words to the final prediction in deep layers. 152
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Our study takes a step further on this work. We153

find the information flows from labels to the final154

prediction in deep layers are caused by in-context155

heads. Instead of saliency scores, we find the atten-156

tion weights in in-context heads are interpretable,157

which can be regarded as the similarity metric be-158

tween the input text and each demonstration. More-159

over, we analyze the queries, keys and values in160

vocabulary space and find human-interpretable con-161

cepts. Overall, Wang et al. (2023) find "the infor-162

mation flow exists", while our work aims to answer163

"how this information flow happens".164

2.3 Analyzing Parameters in Vocabulary165

Space166

Many studies have found that the parameters in167

transformers are interpretable in vocabulary space168

(Elhage et al., 2021; Geva et al., 2022; Dar et al.,169

2022). The core idea is to compute the probability170

distribution of each vector on the unembedding171

matrix E. The final distribution Df for predicting172

the next word is computed by the final vector f :173

Df = softmax(E f)174

Similarly, the distribution Dv of other vectors v175

can be computed in vocabulary space:176

Dv = softmax(E v)177

If a word w ranks top in Dv, it indicates v is related178

to w. v can be parameters in different modules,179

including feed-forward network (FFN) value/key180

and attention value-output/query-key modules.181

2.4 Induction Heads in Attention Layers182

Olsson et al. (2022) find that induction heads in183

attention layers are helpful for copying words from184

the input sequence (e.g. [A][B]...[A] -> [B]). Our185

work is inspired by this study. In-context heads186

have similar characteristics with induction heads187

on value-output modules, which both transform188

the 0th layer input embeddings into the values.189

The difference is that induction heads’ keys may190

only extract the previous token’s information, while191

in-context heads should extract features from the192

whole demonstration. The investigation of the193

connection between in-context heads and induc-194

tion heads is a topic deserving further exploration,195

which we defer to future research.196

3 Locate-and-Project Method197

In this section, we show how we propose the hy-198

pothesis by studying an ICL case "love : bar like199

: bar eight : foo two : foo one :" with the pre- 200

diction "foo". Our locate-and-project method is 201

helpful and efficient for understanding ICL mecha- 202

nisms. We conduct the experiments on GPT2 large, 203

which has 36 layers and 20 heads per layer. There 204

are too many layers and heads, so we propose a 205

method to locate the important ones. Moreover, we 206

project the queries, keys and values in these heads 207

in vocabulary space to understand the mechanism.

Figure 2: Log probability increase of each layer.

208

3.1 Locating Important Layers and Heads 209

Inspired by Yu and Ananiadou (2024), we locate 210

helpful layers by computing each attention layer 211

and FFN layer’s log probability increase for the 212

predicted word ("foo"). The results are shown in 213

Figure 2. Almost all the improvements are caused 214

by deep attention layers. Then we compute the log 215

probability increase of each head and analyze the 216

heads with large scores to see whether they have 217

regular patterns. 218

3.2 Projecting Queries, Keys and Values in 219

Vocabulary Space 220

After locating the important heads, we aim to ana- 221

lyze whether these heads have human-interpretable 222

concepts. According to Wang et al. (2023), the la- 223

bels and the last token play important roles in deep 224

layers. So we project the labels’ values/keys and 225

the last token’s query in vocabulary space follow- 226

ing Dar et al. (2022). For label values, we multiply 227

the value-output matrix and the layer inputs. For la- 228

bel keys, we look at their inputs before multiplying 229

the key matrix. For last token’s query, we compute 230

its reverse projection into the keys’ vector space 231

by multiplying QKT . In the example sentence, the 232

positions are 2, 5, 8, 11 (labels), and 13 (last token), 233

corresponding to "bar", "bar", "foo", "foo" and ":". 234
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position top words in vocabulary space

2-value BAR, Barron, Barrett, Band, Bray, Bars,
Baron, Bar, Bay, Boyd

5-value BAR, Barron, Barrett, Baron, Bar, Band,
Barbie, Barbar, Bard

8-value foo, Foo, FO, fo, Foley, Fresno, FDR, fas-
cists

11-value foo, Foo, fo, FO, fascists, FDR, Foley, Goo,
fascists

2-key kisses, goddess, love, charms, idol, stress,
nobles, happiness

5-key style, oriented, +++, like, indo, height,
Lover, xual, dont, foo

8-key foo, mc, blah, happ, avg, french, omega,
prod, english, google, height, neigh

11-key foo, mc, infinity, omega, three, two, repeat,
twelve, 666, Three, thirds, five, sixteen

13-query first, end, only, no, all, given, person, cer-
tain, call, same, short, long, 1, one, value

Table 1: Top words of labels and last token in layer 22,
head 0.

We take layer 22, head 0 as an example. The top235

vocabulary tokens of labels’ values/keys and the236

last token’s query are shown in Table 1. For clarity,237

we remove the stop words.238

The results are human-interpretable. Label val-239

ues’ top words have related concepts with the labels240

("bar" and "foo"). Label keys’ top words on posi-241

tion 2, 5, and 11 are related to their demonstrations242

("love", "like" and "two"). Last token query’s top243

words are related to the input text ("one").244

Based on these interpretable results, we hypoth-245

esize that the features of demonstrations are ex-246

tracted into the corresponding label keys, and the247

features of labels are extracted into the label values.248

The features of the input text are compressed in249

the last token’s query. Moreover, we hypothesize250

the information flow of the label information are251

controlled by the attention weights between last252

token query and label keys. Yu and Ananiadou253

(2024) prove that when a FFN subvalue has related254

concepts with the predicted token, its coefficient255

score can enlarge the improvement for prediction.256

In-context heads have similar situations: labels’257

values ("foo" and "bar") are helpful for next token258

prediction, so their attention weights decide how259

much label information is added into the last token260

for prediction. In fact, we find an attention layer261

output is a sum of subheadvalues, and each sub-262

headvalue is the product of an attention score and263

a vector. This characteristic of attention layers is264

similar to FFN layers. We discuss this in Appendix265

E.266

dataset input text true label acc

sentiment/number number foo 94%
sentiment/number number bar 100%
number/sentiment sentiment foo 92%
number/sentiment sentiment bar 87%
animal/country country foo 100%
animal/country country bar 100%
country/animal animal foo 100%
country/animal animal bar 100%

Table 2: Word classification accuracy of datasets.

Figure 3: Top 20 heads with largest average log proba-
bility increase on sentiment/number dataset.

4 Experiments 267

4.1 Task and Dataset 268

We first design an easy NLP task to explore the 269

mechanism of ICL, which is word classification. 270

In this section, the experiments are done on GPT2 271

large (Radford et al., 2019). We also conduct ex- 272

periments on real sentence classification datasets 273

on GPT2 large, Llama 7B, 13B and 30B (Touvron 274

et al., 2023), shown in Appendix A-D. We make 275

two datasets for classifying sentiments/numbers 276

Figure 4: Top 20 heads with largest average log proba-
bility increase on animal/country dataset.
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and countries/animals. Each dataset has 1,000 sen-277

tences. Similar to Wei et al. (2023), we use "foo"278

and "bar" as labels to remove the semantic priors.279

We choose two true demonstrations/labels and two280

false demonstrations/labels, and put the true demon-281

strations/labels near the input text. The sentences282

are similar to the example: "love : bar like: bar283

eight: foo two: foo one:".284

We exchange "bar" and "foo" as true labels on285

each dataset to explore whether GPT2 large really286

has the ability to classify the words. The results287

shown in Table 2 indicate that GPT2 large can288

classify the words by ICL. We choose "foo" as the289

true label in our experiments.290

4.2 Where does In-context Heads Locate291

For each sentence, we compute every head’s292

log probability increase and compute the average293

scores. Based on the results in Section 3, we as-294

sume the most contributing heads are in-context295

heads. We show the top 20 heads with largest log296

probability increase on sentiment/number and ani-297

mal/country datasets in Figure 3 and Figure 4. The298

important heads are in deep layers (18-31). The299

head indexes are similar on these datasets. Also,300

the important head indexes on sentence classifica-301

tion tasks are similar (Appendix A). This indicates302

different ICL tasks share the same in-context heads.303

Figure 5: MRR scores of label values in in-context
heads (19-11, 20-11, 29-17, 30-16) and random heads.

4.3 Ranking of Labels on In-Context Head304

Values305

Based on the insights in Section 3.2, the label val-306

ues ("foo" and "bar") in in-context heads should307

have top rankings when projecting into vocabu-308

lary space. We conduct experiments to verify this309

on sentiment/number dataset. For each in-context 310

head, we random sample a head in the same layer 311

for comparison. We project the label values into 312

vocabulary and compute the label words’ mean re- 313

ciprocal rank (MRR). For example, if the ranking 314

of "foo" is 100 on true label’s vocabulary projec- 315

tion, the MRR score is 0.01. If MRR is large, the 316

label token has small ranking in vocabulary space. 317

The scores of heads 18-7, 20-11, 29-17, and 30- 318

16 are shown in Figure 5. Other in-context heads 319

have similar trends with one of these heads. Com- 320

pared with random heads, label values have much 321

higher MRR scores in in-context heads. The small- 322

est average MRR score 0.0033 is in layer 19, head 323

11, which still corresponds to an average ranking 324

of 303. This meets our hypothesis of in-context 325

heads: the value-output matrix can extract the label 326

information ("foo"/"bar"). Another finding is the 327

value-output matrix does not control the label infor- 328

mation flow, because in in-context heads 29-17 and 329

30-16, MRR scores of "bar" is higher than "foo". 330

4.4 Attention Weights on True/False Labels 331

In this section, we aim to demonstrate the hypothe- 332

sis that attention weights control the label informa- 333

tion flow. For each sentence and each in-context 334

head, we compute the attention weights between 335

the last token’s query and true/false labels’ keys. 336

The attention weights are shown in Figure 6. 337

Figure 6: Attention weights between last token query
and true/false labels keys in in-context heads (19-11,
20-11, 29-17, 30-16).

In all in-context heads, the attention weights be- 338

tween last token query and true label keys are much 339
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larger than those between last token query and false340

label keys. This meets our hypothesis that attention341

weights control the label information flow. Since342

the log probability increase may be different in var-343

ious sentences, we random sample one sentence344

and calculate the attention weights of true labels345

and the label values’ log probability increases in346

top3 important in-context heads. The relationship347

is shown in Figure 7. It is not a linear relationship,348

but it has a increasing trend. Attention weights349

between 0.9 and 1.0 have larger log probability350

increase than those between 0.4 and 0.6.351

Figure 7: Relationship betwen attention weights and log
probability increase.

Let us conclude the mechanism of ICL based352

on the experimental results. In shallow layers, the353

demonstration features are merged into their cor-354

responding labels, and the input text features are355

aggregated into the last token (evidence: Section356

3.2). In every in-context head in deep layers, the357

value-output matrix extracts the label information358

(evidence: Section 3.2 and 4.3). At the same time,359

the key matrix and query matrix, which can be re-360

garded as two towers (Huang et al., 2013) for learn-361

ing the similarity metric, compute the attention362

weights between the input text and demonstrations.363

The attention weights control the label information364

flow (evidence: Section 4.4). There are many in-365

context heads controlling the label information flow366

from labels to the last token (evidence: Section 3.1367

and 4.2). Finally, the label with larger attention368

weights are predicted.369

5 Explaining Phenomenons of ICL370

There are several phenomenons of ICL that haven’t371

been explained. Zhao et al. (2021) illustrate that372

models tend to predict majority labels and the la-373

bels near the input text. Lu et al. (2021) also find374

that changing the demonstration order can affect 375

predictions a lot. In this section we explain these 376

phenomenons based on our hypothesis. 377

5.1 Why does Imbalanced Labels Affect 378

Prediction 379

According to our hypothesis, it is reasonable that 380

the model tends to predict majority labels, because 381

the label information flow is controlled by the at- 382

tention weights. When a label has high frequency, 383

the sum of attention weights will be larger, thus the 384

probability of this label is larger in final prediction. 385

We design a imbalanced sentiment/number dataset 386

to verify this. For each sentence, we remove the 387

last true demonstration and label. For example, 388

"love : bar like: bar eight: foo two: foo one:" is 389

changed to "love : bar like: bar eight: foo one:". 390

On each in-context head, we compute the sum 391

of attention weights on true/false labels on the im- 392

balanced dataset and compare them with the origin 393

balanced dataset. The results of head 19-11 and 20- 394

11 are shown in Figure 8. Other in-context heads 395

have similar trends. The sum of attention weights 396

on true labels decrease on the imbalanced dataset. 397

On the contrary, the attention weights on false la- 398

bels increase. The results meet our analysis. The 399

attention weights are computed by a softmax func- 400

tion, so when a true demonstration and its label 401

are removed, the sum of attention weights on false 402

labels will increase. 403

Figure 8: Sum of true/false label attention weights in
in-context heads (19-11, 20-11) on balanced and imbal-
anced datasets.

5.2 Why does Demonstration Order Affect 404

Prediction 405

The ICL performance is extremely sensitive to the 406

demonstration order. This phenomenon seems to 407

contradict our hypothesis. If the labels and the last 408

token only extract the corresponding demonstra- 409

tions and the input text, the demonstration order 410

should not affect the prediction. Our assumption 411

of this phenomenon is that the labels not only ex- 412

tract the corresponding demonstrations but also 413
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extract a little adjacent tokens, because the model414

is not only trained for ICL. Let us assume that the415

labels can extract 80% corresponding tokens and416

20% adjacent tokens. Consider the example sen-417

tence "love : bar like: bar eight: foo two: foo418

one:". In this situation the last token query con-419

tains 80% "one"+20% "two". If the demonstration420

order is changed into "eight: foo two: foo love :421

bar like: bar one:", the last token query contains422

80% "one"+20% "like". Consequently, the atten-423

tion weights and the predictions will be different.424

Figure 9: Sum of true/false label attention weights in
in-context heads (19-11, 20-11) on order and re-order
datasets.

To verify this assumption, we design a re-order425

dataset based on sentiment/number dataset. Like426

the previous example, for each sentence we put all427

the true demonstrations/labels at first, and put all428

the false demonstrations/labels near the input text.429

We compute the sum of attention weights on true430

labels and false labels. The results are shown in431

Figure 9. We also choose head 19-11 and 20-11432

as examples, and other heads have similar trends.433

The sum of attention weights on re-order dataset434

are much smaller than those on the origin dataset.435

Except analyzing the attention weights, there are436

also interpretable results supporting our assump-437

tion in Table 1. "lover" also exists in 5-key, and438

"height" (which may be related to "eight") is also439

contained in 5-key. Compared with 8-key, 11-key440

has more concepts about numbers. 11-key may441

extract information from "eight" and "one".442

We also show the true labels’ attention weights443

on the in-context heads from layer 18 to layer 29.444

These in-context heads rank top20 on both senti-445

ment/number dataset and animal/country dataset.446

We compare the attention weights on the origin447

sentiment/number dataset, the imbalanced dataset,448

and the re-order dataset. The results are shown in449

Figure 10 and Figure 11. Compared with balanced450

dataset, the average attention weight of imbalanced451

dataset only increases on head 21-19. In other in-452

context heads including 19-11, 20-11, 22-0, 24-13453

and 27-16, the attention weights decrease a lot. On454

re-order dataset, the attention weights on all in- 455

context heads drop, especially in 21-19 and 22-0. 456

These results support our hypothesis again: the at- 457

tention weights control the label information flow. 458

Figure 10: Attention weights of true labels on balanced
and imbalanced datasets.

Figure 11: Attention weights of true labels on order and
re-order datasets.

6 Discussion 459

6.1 What Affects ICL Ability 460

Under our hypothesis, there are four modules re- 461

lated to the ICL ability. 462

a) Information extraction ability of shallow 463

layers. Shallow layers can be regarded as feature 464

extraction modules. The ability of extracting corre- 465

sponding demonstrations and the input text decides 466

the quality of features. 467

b) Value projection ability of in-context heads’ 468

value-output matrices. From the results in Figure 469

5, several in-context heads (such as 19-11 and 30- 470

16) can only project "foo" or "bar". If the value 471
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projection ability is good enough, these in-context472

heads should project "foo" and "bar" together.473

c) Metric learning ability of in-context heads’474

query and key matrices. The query and key matri-475

ces might be the most important module, because476

they should learn computing different metrics using477

the same matrices. If different ICL tasks share the478

same in-context heads, the query and key matrices479

should learn these metrics jointly.480

d) Numbers and parameters of in-context481

heads. If we regard one in-context head as a two-482

tower model for metric learning, the parameters of483

the head are directly related to the learning ability.484

At the same time, different in-context heads can be485

regarded as voting or ensemble models, so the head486

number also controls the learning ability.487

6.2 Advantage of Locate-and-Project Method488

A popular method for locating important parame-489

ters and modules is causal mediation analysis (Vig490

et al., 2020), which is widely used in existing inter-491

pretability studies (Meng et al., 2022; Wang et al.,492

2022; Hanna et al., 2023; Geva et al., 2023). The493

core idea of these methods is to mask several pa-494

rameters/modules in the model and see how much495

the final prediction is affected. These methods are496

dynamic methods because they need to run the497

model many times masking different modules. Our498

method for locating important layers and heads is499

static. We only need to run the model once, so our500

locating method is more efficient.501

The method of projecting parameters into vo-502

cabulary space is utilized in many studies (Elhage503

et al., 2021; Geva et al., 2022). Dar et al. (2022)504

explore how to project the parameters in transform-505

ers into vocabulary space. They focus on analyzing506

the entire matrix, while we consider the values on507

the most contributing positions in important heads.508

In conclusion, our proposed locate-and-project509

method is efficient. On locating step, we can locate510

the important layers, heads and positions by only511

running the model once. On projecting step, instead512

of analyzing the whole matrix of the heads, we start513

from projecting the important positions. Therefore,514

our method could save time for case studies when515

exploring the mechanisms. Our method is inspired516

by Yu and Ananiadou (2024). The difference is517

that our method can locate the important heads,518

while they sum the heads together to compute the519

attention subvalues. We discuss this in Appendix520

E.521

7 Related Work 522

Many studies have explored the mystery of ICL. 523

Min et al. (2022) find that randomly replacing 524

the ground truth labels does not hurt performance 525

much. Wei et al. (2023) argue the reason of this 526

phenomenon is the model can rely on semantic pri- 527

ors. Therefore, they study semantically-unrelated 528

label ICL by transferring the labels into "foo" and 529

"bar" and find that the performance is related to the 530

demonstration-label mapping. Chan et al. (2022) 531

demonstrate that the ICL ability is obtained when 532

training data have enough rare classes. Liu et al. 533

(2021) argue that selecting the closest neighbors 534

as demonstrations can enhance ICL ability. Gonen 535

et al. (2022) propose choose low perplexity demon- 536

strations to increase the performance of ICL. Dong 537

et al. (2022) conclude these methods in a survey 538

for ICL. 539

Some studies try to explain ICL theoretically. 540

Xie et al. (2021) argue that ICL ability is gained 541

when the pretraining distribution is a mixture of 542

HMMs, and they explain ICL as implicit Bayesian 543

inference. Garg et al. (2022) prove that transform- 544

ers can learn linear functions by ICL. Akyürek et al. 545

(2022) find transformers can learn linear regression 546

functions and hypothesize that ICL can implement 547

standard learning algorithms implicitly. Li et al. 548

(2023b) explore the softmax regression and find 549

that attention-only transformers are similar with 550

gradient descent models. Von Oswald et al. (2023) 551

and Dai et al. (2022) regard ICL as meta-learning 552

and argue that ICL does gradient descent implicitly. 553

8 Conclusion 554

We propose a hypothesis about the mechanism of 555

ICL using our locate-and-project method. Shallow 556

layers merge demonstrations’ features into their la- 557

bels. Deep layers’ in-context heads extract the label 558

information by value-output matrices. Query and 559

key matrices compute the attention weights (which 560

can be regarded as similarity metrics) between the 561

input text and the demonstrations. The attention 562

weights control the label information flows to the 563

last token. Moreover, our hypothesis can explain 564

why ICL has majority label bias and recency bias. 565

We conduct experiments on word classification and 566

sentence classification datasets on GPT2 large and 567

Llama 13B, and the results can support our hypoth- 568

esis. Overall, the locate-and-project method and 569

the hypothesis about ICL mechanism are helpful 570

for future studies on ICL. 571

8



9 Limitation572

Our experiments are conducted on GPT2 large,573

Llama 7B, 13B, and 30B. More experiments should574

be done on larger open source language models.575

Our hypothesis can explain the ICL mechanism576

for classification tasks. More studies should be577

done on other ICL tasks, such as chain-of-thought578

reasoning (Wei et al., 2022b).579
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A In-context heads in Sentence788

Classification Datasets789

In this section, we conduct similar experiments790

with Section 4.2 on GPT2 large on sentence classifi-791

cation datasets, including Stanford Sentiment Tree-792

bank binary classification (SST-2) (Socher et al.,793

2013), Text REtrieval Conference question classi-794

fication (TREC) (Li and Roth, 2002), AG’s news795

topic classification (AGNews) (Zhang et al., 2015)796

and Hate Speech Detection (ETHOS) (Mollas et al.,797

2020). In each dataset, we random sample 1,000 in-798

put texts from the test set, and random sample two799

true demonstrations/labels and two false demon-800

strations/labels in the training set. We put the true801

demonstrations/labels near the input text. We do802

experiments on all the cases predicting the correct803

labels. The results are shown in Figure 12-15.804

Figure 12: Top 20 heads with largest average log proba-
bility increase on SST-2 dataset.

Figure 13: Top 20 heads with largest average log proba-
bility increase on TREC dataset.

The head indexes with top20 largest log probabil-805

ity increase are similar in these sentence classifica-806

tion datasets, although the largest head is different.807

Figure 14: Top 20 heads with largest average log proba-
bility increase on AGnews dataset.

Figure 15: Top 20 heads with largest average log proba-
bility increase on EHTOS dataset.

Almost all the heads are in deep layers. Also, there 808

is a large overlap between the head indexes in sen- 809

tence classification datasets and word classification 810

datasets. Consequently, the in-context heads are 811

important in different ICL tasks. 812

B Label Rankings and Attention Weights 813

in Sentence Classification Datasets 814

In this section, we conduct similar experiments 815

with Section 4.2 and 4.3 to see whether the in- 816

context heads in sentence classification tasks have 817

similar characteristic with word classification tasks. 818

We evaluate head 26-14, 28-10 and 29-17, because 819

these heads are important on all the datasets. We 820

compute the MRR scores of label values and the 821

attention weights between last token query and 822

label keys. The results are shown in Figure 16-21. 823

In all datasets, the labels in in-context heads have 824

larger MRR scores than random heads, and the 825

attention scores on true labels are much larger than 826

false labels. These results can support our analysis. 827
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Figure 16: MRR scores of label values in in-
context/random heads on 4 datasets (head 26-14).

Figure 17: MRR scores of label values in in-
context/random heads on 4 datasets (head 28-10).

Figure 18: MRR scores of label values in in-
context/random heads on 4 datasets (head 29-17).

=

Figure 19: Attention weights between last token query
and true/false label keys on 4 datasets (head 26-14).

Figure 20: Attention weights between last token query
and true/false label keys on 4 datasets (head 28-10).

Figure 21: Attention weights between last token query
and true/false label keys on 4 datasets (head 29-17).
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C Vocabulary Analysis on Sentence828

Classification ICL Case829

We analyze a sentence classification case sampled830

in AGNews dataset and the results on GPT2 large831

are shown in Table 3. We take head 23-13 as exam-832

ple. With the prediction "foo", the case is:833

Wall St. Bears Claw Back Into the Black834

(Reuters) Reuters - Short-sellers, Wall Street’s835

dwindling band of ultra-cynics, are seeing green836

again. : bar Stoking the Steamroller No other837

recording artist can channel American middle-838

class tastes quite like Chip Davis and his best-839

selling band. : bar Liverpool completes signings840

of Alonso, Garcia LIVERPOOL, England (AP) –841

Spanish pair Xabi Alonso from Real Sociedad and842

Luis Garcia from Barcelona signed five-year con-843

tracts with Liverpool on Friday. : foo U.S. Doping844

Watchdog to Question BALCO’s Conte - IAAF845

HELSINKI (Reuters) - U.S . anti-doping officials846

plan to question Victor Conte after the BALCO847

head claimed he saw sprinter Marion Jones taking848

banned drugs, world athletics body the IAAF said849

Saturday. : foo Liverpool Progresses to Champions850

League; Monaco, Inter Advance Four-time cham-851

pion Liverpool progressed to soccer Champions852

League 2-1 on aggregate, overcoming a 1-0 home853

defeat to AK Graz in the second leg of qualifying.854

:855

position top words in vocabulary space

bar-value BAR, bars, Bars, bart, Bar, bartender, bar,
Barber

bar-value bartender, Bars, bart, bars, Bar, Barber,
bar, BAR

foo-value foo, McKenzie, Foo, Barney, Walters, Jen-
ner, Murphy, lobster, Handler

foo-value Walters, foo, Barney, McKenzie, Harrington,
Murphy, Barber, Barron, Jenner

bar-key Bloomberg, Investor, billionaires, CNBC,
bankers, Companies, JPMorgan, obal,
economists, bullish, Barron, HSBC, Fried-
man, Consumer, business, sellers

bar-key Buy, Conn, Ok, Previous, Daily, NY, Yes,
Anon, US, Ibid, Profit, Staff, Journal, Van-
guard, Tribune, Well

foo-key Buy, iverpool, Ibid, YORK, UNITED, Oliv,
Charl, Location, Spanish, Miami, US, Liver-
pool, Pool, London, Greenwich, United

foo-key NYT, WATCH, Latest, Exclusive, Previous,
UNC, US, Watch, Possible, Ibid, Statement,
Reaction, UK, Reuters, United, Smoke

last-query ruary, Pipe, lihood, swick, Flavoring, iver-
pool, paddle, paraph, Lake, Repe, tong, bole,
etheless, Lakes

Table 3: Top words of labels and last token in layer 23,
head 13 on a sentence classification case.

In this case, the false demonstrations with label 856

"bar" are sampled from the "Business" class. The 857

true demonstrations with label "foo" and the input 858

text are sampled from the "Sports" class. On label 859

values, "bar" and "foo" have top rankings. On label 860

keys, the labels correspond to business demonstra- 861

tions extract the concepts about business, such as 862

"investor" and "profit". The top tokens of true la- 863

bels are related to places such as "Liverpool" and 864

"Spanish". It seems that the reason why the model 865

predicts "foo" is the word "Liverpool" exists in both 866

the input text and the first true demonstration. We 867

find "iverpool", "Lake" and "Lakes" in last token 868

query, which is related to "iverpool" and "Pool" in 869

the first true label key. 870

Inspired by Bills et al. (2023), we utilize Chat- 871

GPT to analyze the relationship between the top 872

words on label keys and the corresponding demon- 873

strations using the prompt "Try your best to ex- 874

plore the relationship between the sentence and 875

the words", and we observe good results. The 876

results of the first demonstration are as below: 877

The sentence "Wall St. Bears Claw Back Into 878

the Black (Reuters)" suggests a financial context, 879

indicating a positive turn for short-sellers in the 880

stock market. The phrase "Claw Back Into the 881

Black" implies a recovery or improvement in their 882

financial situation. The words provided seem 883

to be related to the financial and economic do- 884

main, with mentions of prominent entities such 885

as ’Bloomberg’, ’Investor’, ’CNBC’, ’JPMorgan’, 886

’HSBC’, ’Economist’, and ’Forbes’. These enti- 887

ties are likely players in the financial world, in- 888

cluding news agencies, banks, economists, and in- 889

vestment platforms. Additionally, words like ’bil- 890

lionaires’, ’CEOs’, ’bankers’, ’entrepreneurs’, and 891

’capitalists’ hint at the involvement of influential 892

and wealthy individuals in the financial landscape. 893

This implies the potential capability to leverage 894

our methods to interpret the predictions automat- 895

ically by analyzing what the label keys/last token 896

extract from the demonstrations/text input. 897

D Results on Llama 7B, 13B and 30B 898

We conduct experiments on Llama 7B, 13B and 899

30B on these sentence classification datasets. We 900

compute the label rankings and attention weights 901

on the head with the largest log probability increase 902

in each model. The results in Figures 22-27 are sim- 903

ilar with the results in GPT2 large. This indicates 904

these models have the same mechanism for ICL. 905
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Figure 22: MRR scores of label values in in-
context/random heads on 4 datasets (Llama 7B).

Figure 23: MRR scores of label values in in-
context/random heads on 4 datasets (Llama 13B).

Figure 24: MRR scores of label values in in-
context/random heads on 4 datasets (Llama 30B).

=

Figure 25: Attention weights between last token query
and true/false label keys on 4 datasets (Llama 7B).

Figure 26: Attention weights between last token query
and true/false label keys on 4 datasets (Llama 13B).

Figure 27: Attention weights between last token query
and true/false label keys on 4 datasets (Llama 30B).
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E Mechanism Analysis of Our Method906

The final embedding F for predicting the next word907

is a sum of the 0th layer input Lin0 (word em-908

bedding + position embedding), each layer’s atten-909

tion output ATTNi and each layer’s FFN output910

FFNi.911

F = Lin0 +
L−1∑
i=0

ATTNi +
L−1∑
i=0

FFNi912

where L is the layer number. Geva et al. (2020)913

prove that a FFN output is the sum of FFN subval-914

ues ffnk
i , and each FFN subvalue is the product915

of a coefficient score m and a vector fc2ki in the916

second FFN matrix.917

FFNi =

N−1∑
k=0

mk
i fc2

k
i918

where N is the number of neurons in FFN layers.919

Yu and Ananiadou (2024) prove that an attention920

output can also be regarded as the sum of attention921

subvalues on different positions. Each attention922

subvalue is the element-wise product of the multi-923

head attention weight vector and the value-output924

vector.925

ATTNi =
S−1∑
p=0

attnp
i926

where S is the length of the input sequence. Con-927

sequently, the final output is the sum of the 0th928

layer input, many attention subvalues and many929

FFN subvalues on different layers.930

F = Lin0 +
L−1∑
i=0

S−1∑
p=0

attnp
i +

L−1∑
i=0

N−1∑
k=0

mk
i fc2

k
i931

By analyzing the distribution change, Yu and932

Ananiadou (2024) prove that a subvalue is helpful933

for the final prediction word w if w ranks top when934

projecting the subvalue into vocabulary space. This935

is because the before-softmax values of the subval-936

ues are added in a sum function. Consider a FFN937

subvalue v in the last layer L. x is the minus of the938

final vector and the FFN subvalue:939

F = x+ v940

The probability of the predicted word w on F , x941

and v are computed by the softmax function:942

p(w|F ) =

exp(ew · (x+ v))

exp(e1 · (x+ v)) + ...+ exp(eB · (x+ v))

943

944

p(w|x) = exp(ew · x)
exp(e1 · x) + ...+ exp(eB · x)

945

946

p(w|v) = exp(ew · v)
exp(e1 · v) + ...+ exp(eB · v)

947

where ew is the wth row of the unembedding ma- 948

trix E, with B words in vocabulary. Term ew · x 949

as the bs-value (before-softmax value) of w on x, 950

then F can be regarded as bs-value vectors: 951

bs(x+ v) = [bsx+v
1 , bsx+v

2 , ..., bsx+v
w , ..., bsx+v

B ] 952

The probability of w can be computed by bs-values: 953

p(w|x+ v) =
exp(bsx+v

w )

exp(bsx+v
1 ) + ...+ exp(bsx+v

B )
954

And the bs-values of x+ v can be computed by a 955

direct sum of bs-values x and v: 956

bs(x+ v) = bs(x) + bs(v) 957

Consequently, the top tokens of the FFN subvalue 958

v in vocabulary space are related to the predictions 959

of F . If w ranks top in v in vocabulary space, v is 960

helpful for increasing the probability of w because 961

bsvw is large and bsx+v
w will increase much. 962

Take a vocabulary with three words ("foo", "bar" 963

and "unknown") as an example. bs(x) is [1, 2, 3], 964

the words’ probabilities in x are [0.09, 0.24, 0.67]. 965

If bs(v) is [5, 1, 2], "foo" is the top ranking token in 966

vocabulary space because its bs-value is the largest. 967

bs(F ) will be [6, 3, 5], and the probabilities will 968

change into [0.70, 0.04, 0.26]. In this case, v helps 969

increase the probability of "foo" from 0.09 to 0.70. 970

The coefficient score m in the FFN subvalue v is 971

helpful for enhancing the probability change. If m 972

changes from 1.0 to 2.0, bs(v) changes from [5, 1, 973

2] to [10, 2, 4], and then the probabilities of F will 974

be [0.981, 0.001, 0.018]. 975

This characteristic can be promoted into all sub- 976

values. If the final token w ranks top when project- 977

ing a subvalue into vocabulary space, this subvalue 978

is helpful for the final prediction of w. Further- 979

more, Yu and Ananiadou (2024) prove that using 980

log probability increase can help locate the most 981

important subvalues, because the curve of log prob- 982

ability increase has a linear monotonically increas- 983

ing shape. In other words, the sequence of subval- 984

ues do not affect the log probability increase score 985

much. Take the 0th attention subvalues as example. 986

log(w|Lin0 + attnn
0 )− log(w|Lin0) is similar to 987

log(w|Lin0 + attnm
0 + attnn

0 ) − log(w|Lin0 + 988

attnm
0 ). Therefore, the significance scores of all 989

subvalues can be compared together. 990
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A problem of Yu and Ananiadou (2024) is that991

they take the product of the multi-head vector and992

the value-output vector to compute the attention993

subvalues. They do not consider the roles of dif-994

ferent heads. In our work, we take a step further995

and find that the attention output is the sum of head996

vectors:997

ATTNi =

H−1∑
h=0

attnheadhi998

where H is the head number in each attention layer,999

and each head vector is the sum of different sub-1000

headvalues:1001

attnheadhi =
S−1∑
p=0

αhp
i · attnheadvhpi1002

where S is the length of the input sequence. αhp
i is1003

the attention score on the pth position in the hth1004

attention head in layer i, computed by the last to-1005

ken query and the pth token key in this head. The1006

attention output can also be regarded as the sum of1007

attention subheadvalues on different positions in1008

different heads. Each subheadvalue is computed by1009

an attention score and a vector. Similar to the roles1010

of FFN subvalues’ coefficient scores, an attention1011

score can enhance the probability change when the1012

final predicted token has top ranking when project-1013

ing its corresponding subheadvalue into vocabu-1014

lary space. Our experiments match this theory. In1015

in-context heads, "foo" and "bar" ranks top when1016

projecting label values into vocabulary space. The1017

corresponding attention scores on true labels are1018

large, which are helpful for increase the probability1019

of "foo" in final prediction. Similarly, we compute1020

the log probability increase I of each head vector1021

and subheadvalue to locate the important heads and1022

subheadvalues.1023

Ihi = log(w|Lini + attnheadhi )− log(w|Lini)1024

1025
Ihpi =

log(w|Lini + αhp
i attnheadvhpi )− log(w|Lini)

1026

Generally, the final embedding F can be re-1027

garded as the sum of many attention subheadvalues1028

and FFN subvalues:1029

F = Lin0+

L−1∑
i=0

H−1∑
h=0

S−1∑
p=0

αhp
i attnheadvhpi +

L−1∑
i=0

N−1∑
k=0

mk
i fc2

k
i

1030

where αhp
i is the attention score in attention layer 1031

i, head h, position p. mk
i is the coefficient score 1032

of the kth FFN neuron in FFN layer i. When an- 1033

alyzing a case, we first locate the most important 1034

attention subheadvalues and FFN subvalues by cal- 1035

culating their log probability increase. Then we 1036

analyze the coefficient scores of FFN subvalues 1037

by calculating the inner products between the FFN 1038

subkeys and previous subvalues. Similarly, we ana- 1039

lyze the queries and keys which compute the atten- 1040

tion scores. Using this method, we can figure out 1041

which FFN subvalues and attention subheadvalues 1042

are helpful for predicting the final word, and which 1043

parameters are helpful for increasing the coefficient 1044

scores and attention scores. Consequently, we can 1045

find why the model has the final predictions. 1046
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