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Abstract
We propose a novel diffusion map particle system
(DMPS) for generative modeling, based on dif-
fusion maps and Laplacian-adjusted Wasserstein
gradient descent (LAWGD). Diffusion maps are
used to approximate the generator of the Langevin
diffusion process from samples, and hence to
learn the underlying data-generating manifold.
On the other hand, LAWGD enables efficient sam-
pling from the target distribution given a suitable
choice of kernel, which we construct here via
a spectral approximation of the generator, com-
puted with diffusion maps. Our method requires
no offline training and minimal tuning, and can
outperform other approaches on data sets of mod-
erate dimension.

1. Introduction
Generative modeling is a central task in fields such as com-
puter vision (Cai et al., 2020; Ho et al., 2021) and natu-
ral language processing (Yogatama et al., 2017; Miao &
Blunsom, 2016), and applications ranging from medical
image analysis (Yi et al., 2019) to protein design (Wu et al.,
2021). Despite their successes, popular generative mod-
els such as variational auto-encoders (VAE) (Kingma &
Welling, 2013; Rezende et al., 2014), generative adversar-
ial networks (GANs) (Goodfellow et al., 2014), and score-
based generative models (SGM) (Song & Ermon, 2019;
Song et al., 2020), typically need careful hyperparameter
tuning (Ruthotto & Haber, 2021; Song & Ermon, 2020) and
may involve long convergence times, e.g., for Langevin-
type sampling (Franzese et al., 2022). The performance of
such methods also depends on the choice of architecture
and parameters of deep neural networks (Salimans et al.,
2016; Khandelwal & Krishnan, 2019), which, all too often,
require expert knowledge and tuning.

In this paper, we propose a new non-parametric kernel-based
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approach to generative modeling, based on diffusion maps
and interacting particle systems.

Diffusion maps (Coifman et al., 2005; Coifman & Lafon,
2006; Nadler et al., 2005; 2006), along with many other
graph-based methods (Belkin & Niyogi, 2003; Tenenbaum
et al., 2011; Roweis & Saul, 2000), have mainly been used
as a tool for nonlinear dimension reduction. The kernel ma-
trix, constructed using pairwise distances between samples
with proper normalization, approximates the generator of a
Langevin diffusion process. This approximation becomes
exact as the number of samples goes to infinity and the
kernel bandwidth goes to zero. Construction of the kernel
matrix using smooth kernels (e.g., Gaussians) enables one
to compute the inverse of the eigenvalues and the gradients
of the eigenfunctions analytically. Separately, the notion of
gradient flow (Santambrogio, 2016; Ambrosio et al., 2005;
Daneri & Savaré, 2010) underlies a very active field of re-
search and offers a unifying perspective on sampling and
optimization (Jordan et al., 1998; Wibisono, 2018). The
unadjusted Langevin algorithm (ULA) is a canonical exam-
ple, and follows from the time discretization of a Langevin
SDE. But many other particle systems, particularly inter-
acting particle systems, approximate gradient flows: ex-
amples include Stein variational gradient descent (SVGD)
(Liu, 2017; Liu & Wang, 2016), affine-invariant interact-
ing Langevin dynamics (Garbuno-Iñigo et al., 2019), and
Laplacian-adjusted Wasserstein gradient descent (LAWGD)
(Chewi et al., 2020).

Our approach combines these two ideas by using diffusion
maps to directly approximate (the gradient of the inverse of)
the generator of the Langevin diffusion process from sam-
ples, and in turn using this approximation within LAWGD
to produce more samples efficiently. Compared to other
generative modeling methods, our approach has several ad-
vantages. First, the use of diffusion maps facilitates accurate
sampling from distributions supported on manifolds, par-
ticularly when the dimension of the manifold is lower than
that of the ambient space. Second, we demonstrate accu-
rate sampling from distributions with (a priori unknown)
bounded support. Both of these features are in contrast with
methods driven only by approximations of the local score:
we conjecture that such methods are less able to detect the
overall geometry of the target distribution, whereas our ap-
proach harnesses graph-based methods that are widely used
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for nonlinear dimension reduction to approximate the gen-
erator as a whole. Finally, our method is quite simple and
computationally efficient comparing to training a neural net-
work (e.g., as in score-based generative modeling (Song &
Ermon, 2019) or normalizing flows (Caterini et al., 2021;
Ho et al., 2019)): the only parameter that needs to be tuned
is the kernel bandwidth, and no offline training is required.

2. Diffusion map and kernel construction
We use π to denote the underlying target distribution, i.e.,
the distribution we would like to sample from, and let V
denote the potential, where π ∝ exp(−V ). Let P2(D) be
the collection of probability measures on a compact mani-
fold D that have finite second moments. All distributions
are assumed to have densities with respect to Lebesgue
measure, and we will abuse notation by using the same
symbol to denote a measure and its density. The kernel
K(·, ·) : D ×D → R is assumed to be differentiable with
respect to both arguments, and we use ∇1K(·, ·), ∇2K(·, ·)
to denote the (Euclidean) gradient of the kernel with respect
to its first and second arguments, respectively. We assume
sufficient regularity to exchange the order of integration and
differentiation (Leibniz integral rule) throughout.

Appendix A provides a brief review of Wasserstein gradi-
ent flow and recalls the LAWGD algorithm of Chewi et al.
(2020). To adapt LAWGD to the generative modeling set-
ting, we must approximate the inverse of the generator of
the Langevin diffusion process, L −1, for π; doing so will
let us implement the update step (11) of LAWGD.

2.1. Diffusion map approximation of the generator

Diffusion maps (Coifman et al., 2005; Coifman & Lafon,
2006; Nadler et al., 2005; 2006) provide a natural framework
for approximating L using kernels. Consider the Gaussian

kernel Kϵ(x, y) = e−
∥x−y∥2

2ϵ under some normalization

Mϵ(x, y) :=
Kϵ(x, y)√∫

Kϵ(x, y)dπ(x)
√∫

Kϵ(x, y)dπ(y)
.

We construct the following two quantities,

P f
ϵ (x, y) :=

Mϵ(x, y)∫
Mϵ(x, y)dπ(x)

,

P b
ϵ (x, y) :=

Mϵ(x, y)∫
Mϵ(x, y)dπ(y)

,

by normalizing with respect to the first or second argument.
Here f and b stand for ‘forward’ and ‘backward,’ respec-
tively. Their actions on a function g are defined as

T f,b
ϵ g(·) =

∫
P f,b
ϵ (·, y)g(y)dπ(y).

We also define the associated operators

Lf,b
ϵ :=

T f,b
ϵ − Id

ϵ
.

As studied in Nadler et al. (2006), both the forward and
backward operators converge to the generator,

lim
ϵ→0

Lf
ϵ = lim

ϵ→0
Lb
ϵ = L . (1)

Combining the previous results, we have

lim
ϵ→0

∫
P f,b
ϵ (·, y)g(y)dπ(y)− g(·)

ϵ
= L g(·). (2)

Note that this approximation holds only when data lie on
a compact manifold (Nadler et al., 2006; Hein et al., 2005;
Singer, 2006). In practice, however, this assumption can
be relaxed. In addition, although Lf,b

ϵ converges to a sym-
metric operator in the continuum limit, neither Lf

ϵ nor Lb
ϵ

is symmetric. However, they satisfy P f
ϵ (x, y) = P b

ϵ (y, x)
and Lf

ϵ = (Lb
ϵ)

∗. Therefore, one way to get a symmetric
operator is to take the average of the two

Lϵ =
1

2
(Lf

ϵ + Lb
ϵ).

Lϵ inherits all the properties of the forward and the back-
ward kernel, hence converging to L in the limit. We now
consider a finite sample approximation of the operator L .
Given samples {zi}Ni=1 ∼ π, the above construction can
be approximated by samples, namely by replacing the inte-
gral by its empirical average. Details of the finite-sample
construction are in Appendix C. We add another subscript
N , i.e., Mϵ,N , P f,b

ϵ,N , T f,b
ϵ,N and Lf,b

ϵ,N , to signify N -sample
approximations of the objects above.

2.2. Spectral approximation of ∇L −1f(x)

We now exploit the spectral properties of the kernel. Re-
call from above that L = limϵ→0

Tϵ−Id
ϵ , where Tϵg(·) =∫

Pϵ(·, y)g(y)π(y). Also, Pϵ =
1
2 (P

f
ϵ +P b

ϵ ) is a symmetric
positive definite kernel. Then Mercer’s theorem states that

Pϵ(x, y) =

∞∑
i=1

λiϕi(x)ϕi(y). (3)

Therefore, we can write

L f(x) = lim
ϵ→0

∫
KL ,ϵ(x, y)f(y)dπ(y),

where KL ,ϵ(x, y) =
∑∞

i=1
λi−1

ϵ ϕi(x)ϕi(y). Hence,

KL −1,ϵ(x, y) = K−1
L ,ϵ(x, y) =

∞∑
i=1

ϵ

λi − 1
ϕi(x)ϕi(y),
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and we obtain

∇1KL −1,ϵ(x, y) =

∞∑
i=1

ϵ

λi − 1
∇ϕi(x)ϕi(y),

and

∇L−1
ϵ f(x) =

∫
∇1KL −1,ϵ(x, y)f(y)dπ(y).

Under regularity assumptions (see Appendix E),
limϵ→0 ∇Lϵf(x) = ∇L f(x) and limϵ→0 ∇L−1

ϵ f(x) =
∇L −1f(x).

3. The generative model
We can now write the discrete-time update step of LAWGD
(11) using an ϵ-kernel approximation

xi
t+1 = xi

t −
h

M

M∑
j=1

∇1KL −1,ϵ(x
i
t, x

j
t ), i = 1, . . . ,M

This update describes the dynamics of M interacting parti-
cles. Note that the kernel KL −1,ϵ is constructed only at the
locations of the training samples {zi}Ni=1 ∼ π. To obtain
an implementable algorithm, we need to be able to compute
∇1KL −1,ϵ(·, ·) for arbitrary points x∗, y∗. One way is to
interpolate the eigenfunctions ϕ and their gradients ∇ϕ at
x∗ and y∗. However, this is restricted by the number of
training samples for learning the kernel, as well as the in-
terpolation method. To overcome this problem, we propose
yet another natural way of computing ∇1KL −1,ϵ(·, ·) by
taking advantage of the eigendecomposition of the kernel,
avoiding interpolation of eigenfunctions.

3.1. Computing ∇1KL −1(x, y) for arbitrary points x, y

Set σi = λi−1
ϵ , and recall from (3) that Pϵ(x, y) =∑∞

i=1 λiϕi(x)ϕi(y). Consider the following eigendecom-
position of the kernel:

∇1KL −1,ϵ(x
∗, y∗)

=

∫
Z

∫
W

 ∞∑
k=1

σ−1
k ∇ϕk(x

∗)ϕk(y
∗)


×

 ∞∑
j=1

λ−1
j σ−1

j λ−1
j ϕj(w)ϕj(z)


×

 ∞∑
i=1

λiϕi(z)ϕi(y
∗)

 dπ(w) dπ(z)

=

∫
Z

∫
W

∇1Pϵ(x
∗, w)

 ∞∑
j=1

λ−1
j σ−1

j λ−1
j ϕj(w)ϕj(z)


× Pϵ(z, y

∗)dπ(w) dπ(z). (4)

Algorithm 1 DMPS

Input: Training samples {zi}Ni=1 ∼ π and initial parti-
cles {xi

0}Mi=1, tolerance tol, bandwidth ϵ, step size h
Output: {xi

T }Mi=1

Construct Pϵ,N using {zi}Ni=1 as in (12).
Compute the eigenpairs {λi, ϕi} such that Pϵ,N (x, y) =∑N

i=1 λiϕi(x)ϕi(y), i.e., performing singular value de-
composition on the kernel matrix Pϵ,N .
while tol not met do

for i = 1, . . . ,M do
xi
t+1 = xi

t − h
M

∑M
j=1 ∇1KL −1,ϵ,N (xi

t, x
j
t ) as in

(5).
end for

end while

where we have used the orthogonality of the eigenfunctions.

As noted previously, we use {zi}Ni=1 to represent the training
samples and use {xi

t}Mi=1 to represent the generated samples
at time t. Focusing on a single time step, we drop the
dependence on t. Then the empirical approximation of (4)
is as follows:

∇1KL −1,ϵ,N (xi, xk)

=

N∑
j1=1

N∑
j2=1

∇1Pϵ,N (xi, zj1)

×

 N∑
j3=1

ϕj3(z
j1)λ−1

j3
σ−1
j3

λ−1
j3

ϕj3(z
j2)

Pϵ,N (zj2 , xk).

(5)

In a matrix representation, the three matrices (from left
to right) above are of size M × N , N × N , and N ×
M . The ingredients for computing the expression above
are Pϵ,N (·, ·),∇1Pϵ,N (·, ·), λi, σi, ϕi. Since Pϵ,N is con-
structed using Gaussian kernels, its derivative with respect
to the first argument ∇1Pϵ,N (·, ·) can be computed in closed
form (see Appendix C.1).

Algorithm 1 summarizes our proposed scheme, called a
diffusion map particle system (DMPS). We offer several
comments. The classical analysis of diffusion maps requires
the underlying distribution to have bounded support, but we
find that this algorithm works well even when the support
of π is (in principle) unbounded. We suggest to initialize
the samples {xi

0}Mi=1 inside the support of π. Even though
initializing samples outside the support would work because
of the finite bandwidth ϵ, starting the samples inside the
support generally makes the algorithm more stable. We
typically choose the bandwidth as ϵ = med2/(2 logN),
following the heuristics proposed in Liu (2017), where med
is the median of the pairwise distances between training
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samples. A convergence analysis of Algorithm 1 is given in
Appendix D.

4. Numerical experiments
We present five numerical examples (three in the main pa-
per, two in the appendices) exploring the performance of
the DMPS algorithm on connected and disconnected do-
mains and on manifolds. To benchmark the performance of
DMPS, we compare it with: (i) SVGD and (ii) ULA, where
the score ∇V required by both algorithms is replaced by its
empirical approximation using the diffusion map, as well as
with (iii) the score-based generative model (SGM) of Song
& Ermon (2019). We implement SGM using a lightweight
notebook from Pidstrigach (2022b;a). To make (i) and (ii)
more precise: recall that the a diffusion map can be used
as a tool for approximating the Langevin generator from
samples. That is, L f = ∇2f − ⟨∇V,∇f⟩. Then note that
by letting f be the identity, i.e., f(x) = x, we have that
L f = ∇ log π. Therefore, we can use samples to approxi-
mate the gradient of the potential. For DMPS and SVGD,
we run the algorithm until a prescribed tolerance is met;
we run ULA and SGM for a fixed number of iterations. To
evaluate the quality of samples generated with each method
on synthetic dataset, we compute the regularized optimal
transport (OT) distance between the generated samples and
a large number of “reference samples” from the target dis-
tribution. Details on the evaluation of this error metric are
in Appendix F.1. We then present a real world example in
the field of high energy physics and show that the generated
samples resemble those from the target distribution.

4.1. The arc: one-dimensional manifold embedded in a
three-dimensional space

We consider an example where the data lie on a manifold,
in this case an arc of radius 1 embedded in R3. Training
data are drawn uniformly from the arc and perturbed in the
radial direction only, with U(0, 10−2) noise. Results are
obtained with both 100 and 1000 training samples. The ini-
tial particles and the target distribution are shown in Figure
1 (left). We then run DMPS, SVGD, ULA, and SGM for
each batch of training and initialization samples, visualiz-
ing an instance in Figure 1. Particles generated by the two
deterministic methods, DMPS and SVGD, lie only on the
two-dimensional plane of the training data, but the particles
generated using SVGD do not fully explore the target distri-
bution. Particles generated by the two stochastic methods,
ULA and SGM, span the full three-dimensional space due
to the added noise. Errors are plotted in Figure 3, for both
choices of training set size. We see that DMPS exhibits
the smallest errors, and that this error decreases as we in-
crease the number of generated particles. SGM shows a
similar trend, but with larger errors. The performance of

Initialization and target distribution

Generated particles

Figure 1: The arc: 900 generated particles using DMPS,
SVGD, ULA, and SGM with 1000 training samples.

ULA does not seem to improve after using more training
samples, which might be due to finite discretization timestep
(although it was chosen small relative to the width of the
target, h = 5×10−4). SVGD gives the largest errors, which
do not seem to decrease with more particles.

The reason why DMPS performs better might be that the
kernel method for approximating the generator relies on
diffusion maps, or more broadly, the graph Laplacian, which
is widely used for manifold learning due to its flexibility
in detecting the underlying geometry. The fact that the
generator is approximated as a whole distinguishes it from
other score-based methods. SGM also produces generally
good results. However, it does require orders of magnitude
more computation. For the arc problem, with 1000 training
samples and 100 initial particles, running DMPS took 6.21
seconds, while training SGM (running 5000 epochs) took
1633 seconds (27 minutes).
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Figure 2: Hyper-semisphere: 300 generated samples using
DMPS, SVGD, ULA and SGM in three dimensions with
1000 training samples.

DMPS SVGD ULA SGM
d = 3 0.018 ± 0.000 0.146 ± 0.023 0.033 ± 0.001 0.032 ± 0.002
d = 6 0.142 ± 0.000 0.267 ± 0.017 0.185 ± 0.001 0.170 ± 0.002
d = 9 0.303 ± 0.000 0.361 ± 0.008 0.378 ± 0.001 0.348 ± 0.003
d = 12 0.441 ± 0.000 0.811 ± 0.078 0.555 ± 0.002 0.496 ± 0.004
d = 15 0.564 ± 0.001 0.986 ± 0.005 0.713 ± 0.002 0.608 ± 0.002

Table 1: Hyper-semisphere: error comparison (± standard
error) between DMPS, SVGD, ULA, and SGM.

4.2. Hyper-semisphere: 2 to 14-dimensional manifolds

We next study an example where data are uniformly sam-
pled on a half-sphere embedded in ambient dimensions
d ∈ {3, 6, 9, 12, 15}; in each case, the manifold is thus of
dimension d− 1. For this problem, the number of training
samples and the number of generated particles are fixed to
1000 and 300, respectively. A visualization for d = 3 can
be seen in Figure 2. We show the error (in OT distance),
and the standard error of the mean error over 10 trials, in
Table 1. For all dimensions, DMPS enjoys the smallest error
and the smallest standard error, followed by SGM and ULA,
which also produce relatively small errors and stable results.
SVGD has the largest error and does not produce stable
results (large variability over the 10 trials).

4.3. High energy physics: gluon jet dataset

We now study a real-world example from high energy
physics, where the goal is to generate relative angular co-
ordinates ηrel, ϕrel and relative transverse momenta prel

T of
elementary particles produced in a gluon jet. Details on
the dataset are in Kansal et al. (2021). For this experiment,
we first normalize the training data so that they have mean
0 and variance 1. We use 1000 samples for training and
initialize 100, 300, 900, and 2700 particles respectively

# particles DMPS SVGD ULA SGM
100 0.0027

±9.30 × 10−5
0.0071
±2.40×10−5

0.0049
±2.61×10−4

0.0039
±2.09×10−4

300 0.0021
±6.66 × 10−5

0.0068
±2.73×10−5

0.0044
±2.02×10−4

0.0030
±0.83×10−4

900 0.0020
±5.78 × 10−5

0.0066
±2.78×10−5

0.0036
±1.57×10−4

0.0028
±1.34×10−4

2700 0.0019
±5.98 × 10−5

0.0066
±3.04×10−5

0.0034
±1.25×10−4

0.0026
±1.20×10−4

Table 2: Gluon jet dataset: error comparison (± standard
error) between DMPS, SVGD, ULA, and SGM, for different
numbers of generated particles.

from U(−1, 1)3 for the generative process. Target samples
and generated samples compare favorably, as shown in Ap-
pendix G.3. We also compared DMPS, SVGD, ULA and
SGM with the same setup, and the errors (± standard error)
are shown in Table 2. We see that DMPS achieves the best
performance on both cases in this problem.

5. Conclusion
We introduced DMPS as a simple-to-implement and com-
putationally efficient kernel method for generative mod-
eling. Our approach combines diffusion maps with the
LAWGD approach to construct a generative particle sys-
tem that adapts to the geometry of the underlying distri-
bution. Our method compares favorably with other com-
peting schemes (SVGD and ULA with learned scores, and
diffusion-based generative models) on synthetic datasets,
consistently achieving the smallest errors in terms of regular-
ized OT distance. While the examples presented here are of
moderate dimension (up to d = 15 for the example in Sec-
tion 4.2), we expect that more sophisticated kernel methods
(Li et al., 2017) can slot naturally into the DMPS framework
and help extend the method to higher-dimensional prob-
lems. Future research will also study the convergence rate
of the method in discrete time and with finite samples, and
consider more complex geometric domains.
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A. Details of Wasserstein gradient flow and LAWGD algorithm
A.1. Gradient flow on Wasserstein space

Let F (µ) be a functional over the space of probability measures, i.e., F : P2(Rd) → R. We seek to steer the measure µt (at
time t) in the direction of steepest descent, defined by F and a chosen metric. That is, ∂µt

∂t = −∇W2
F (µt), where ∇W2

denotes the general gradient in Wasserstein metric. Under some smoothness assumptions, we can write this as

∂µt

∂t
= div(µt∇δF (µt)), (6)

where δF (µ) is the first variation of F evaluated at µ (Villani, 2003). If we choose the functional F to be the Kullback–
Leibler (KL) divergence, F (µ) = DKL(µ||π), then (6) becomes

∂µt

∂t
= div

(
µt∇ log

dµt

dπ

)
,

which is the Fokker–Planck equation (Jordan et al., 1998). The measure µt can be approximated by particles {xi(t)}
evolving according to the following dynamics,

ẋ = −∇ log
dµt

dπ
(x).

Forward Euler discretization with stepsize h then yields the following numerical scheme,

xt+1 = xt − h∇ log
dµt

dπ
(xt).

A.2. LAWGD algorithm

One challenge with the scheme above is that the measure µt is intractable at time t. To solve this problem, SVGD (Liu &
Wang, 2016) implements the following kernelized dynamics (in the continuum limit),

ẋ = −
∫

K(x, y)∇ log
dµt

dπ
(y)dµt(y).

The expression above can be equivalently written as

ẋ = −
∫

K(x, y)∇dµt

dπ
(y)dπ(y). (7)

Define

Kπf(x) :=

∫
K(x, y)f(y)dπ(y).

Then we write (7) as

ẋ = −Kπ∇
dµt

dπ
(x),

and under SVGD, the density evolves according to

∂tµt = div

(
µtKπ∇

dµt

dπ

)
.

On the other hand, LAWGD makes the JKO scheme implementable by considering the following kernelization

ẋ = −∇Kπ
dµt

dπ
(x),
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and expanding it to obtain

ẋ = −
∫

∇1K(x, y)
dµt

dπ
(y)dπ(y)

= −
∫

∇1K(x, y)dµt(y). (8)

The kernel Kπ is specifically chosen to be −L −1, where L = ∇2 − ⟨∇V,∇·⟩ is generator of the Langevin diffusion
process. Here we assume L has discrete spectrum (see Appendix B). This choice is motivated by the rate of change of KL
divergence,

∂t DKL(µt||π) = −Eπ

[
dµt

dπ
LKπ

dµt

dπ

]
. (9)

Indeed, such a choice yields

∂t DKL(µt||π) = −Eπ

[(
dµt

dπ

)2
]

≤ −Eπ

[(
dµt

dπ
− 1

)2
]
= −χ2(µt||π). (10)

The evolution of the density under LAWGD thus follows

∂tµt = div

(
µt∇L −1 dµt

dπ

)
.

Now suppose we initialize {xi
0}Mi=1 ∼ µ0. We then obtain a discrete algorithm from (8), where the update step reads

xi
t+1 = xi

t −
h

M

M∑
j=1

∇1KL −1(xi
t, x

j
t ). (11)

Here KL −1 can be understood as a kernelized version of L −1, satisfying L −1f(x) =
∫
KL −1(x, y)f(y)dπ(y). In

particular, setting f = dµt

dπ , we have L −1 dµt

dπ (x) =
∫
KL −1(x, y)dµt

dπ (y)dπ(y) =
∫
KL −1(x, y)dµt(y). More details can

be found in Chewi et al. (2020).

B. Spectral properties of L

Suppose D is compact and L = ∇2 − ⟨∇V,∇·⟩ has discrete spectrum {σi}∞i=1. Then the spectrum is bounded σ0 = 0 ≤
σ1 ≤ σ2 ≤ · · · ≤ B < ∞ (Shi, 2020). Let ϕi be their corresponding eigenfunctions on D. The action of L on a function
f ∈ L2(π) reads

L f(x) =

∞∑
i=1

σi⟨ϕi, f⟩L2(π)ϕi(x),

and its inverse has the following expression

L −1f(x) =

∞∑
i=1

σ−1
i ⟨ϕi, f⟩L2(π)ϕi(x).

C. Finite sample approximation of the operator
In this section, we introduce the finite sample counterpart to 2.1. We consider the approximation of the generator of the
Langevin diffusion process L from finite samples {zi}Ni=1 ∼ π. In this case, we have

Mϵ,N (x, y) =
Kϵ(x, y)√∑N

i=1 Kϵ(zi, y)
√∑N

i=1 Kϵ(x, zi)
,
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and the corresponding Lf
ϵ,N and Lb

ϵ,N can be written as

P f
ϵ,N (x, y) :=

Mϵ,N (x, y)∑N
i=1 Mϵ,N (zi, y)

,

P b
ϵ,N (x, y) :=

Mϵ,N (x, y)∑N
i=1 Mϵ,N (x, zi)

,

and we set

Pϵ,N (x, y) =
1

2

(
P f
ϵ,N (x, y) + P b

ϵ,N (x, y)
)
. (12)

Similarly, its action on a function g writes

T f,b
ϵ,Ng(x) =

N∑
i=1

P f,b
ϵ,N (x, zi)g(zi).

Let

Lf,b
ϵ,N :=

T f,b
ϵ,N − Id

ϵ
.

Similar to their spatial continuum limit, we have

lim
ϵ→0,N→∞

Lf
ϵ,N = lim

ϵ→0,N→∞
Lb
ϵ,N = L .

Then, similar to (2), we have that

lim
ϵ→0,N→∞

∑N
i=1 P

f,b
ϵ,N (x, zi)g(zi)− g(x)

ϵ
= L g(x),

and

Lϵ,N =
1

2
(Lf

ϵ,N + Lb
ϵ,N ).

is the symmetric kernel.

C.1. Computing ∇1Pϵ(x, y)

Recall that Pϵ =
1
2 (P

f
ϵ + P b

ϵ ). We then compute ∇1P
f
ϵ (x, y) and ∇1P

b
ϵ (x, y) separately.

C.1.1. COMPUTING ∇1P
f
ϵ (x, y)

Recall

P f
ϵ (x, y) :=

Mϵ(x, y)∫
X
Mϵ(x, y)dπ(x)

,

where

Mϵ(x, y) :=
Kϵ(x, y)√∫

X Kϵ(x, y)dπ(x)
√∫

Y Kϵ(x, y)dπ(y)
. (13)

Then

∇1P
f
ϵ (x, y) =

∇1Mϵ(x, y)∫
X
Mϵ(x, y)dπ(x)

.
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We then compute ∇1Mϵ(x, y). Let dϵ(x) =
∫
Y Kϵ(x, y)dπ(y) and dϵ(y) =

∫
X Kϵ(x, y)dπ(x), then

∇1Mϵ(x, y) =
∇1Kϵ(x, y)

√
dϵ(y)

√
dϵ(x)−

(
∂
∂x

√
dϵ(x)

)√
dϵ(y)Kϵ(x, y)

dϵ(x)dϵ(y)
,

where

∇1Kϵ(x, y) = −
(
x− y

ϵ

)
e−

∥x−y∥2
2ϵ , (14)

∂

∂x

(√
dϵ(x)

)
=

1

2

∫
Y

(
−
(
x− y

ϵ

)
e−

∥x−y∥2
2ϵ

)−1/2

dπ(y). (15)

C.1.2. COMPUTING ∇1P
b
ϵ (x, y)

On the other hand, we have

P b
ϵ (x, y) :=

Mϵ(x, y)∫
Y Mϵ(x, y)dπ(y)

,

and

∇1P
b
ϵ (x, y) =

∇1Mϵ(x, y)
∫
Y Mϵ(x, y)dπ(y)−

∫
Y ∇1Mϵ(x, y)dπ(y)Mϵ(x, y)(∫

Y Mϵ(x, y)dπ(y)
)2 ,

where all the ingredients are computable from (13), (14), and (15).

C.2. Computing ∇1Pϵ,N (x, y)

The discrete version is obtained by replacing the integral with its empirical average. Similarly, let {zi}Ni=1 ∼ π, and define
dϵ,N (x) =

∑N
i=1 Kϵ(x, z

i) and dϵ,N (y) =
∑N

i=1 Kϵ(z
i, y). Recall that

Mϵ,N (x, y) =
Kϵ(x, y)√∑N

i=1 Kϵ(zi, y)
√∑N

i=1 Kϵ(x, zi)
,

then

∇1Mϵ,N (x, y) =
∇1Kϵ,N (x, y)

√
dϵ,N (y)

√
dϵ,N (x)−

(
∂
∂x

√
dϵ,N (x)

)√
dϵ,N (y)Kϵ(x, y)

dϵ,N (x)dϵ,N (y)
,

and

∂

∂x

(√
dϵ,N (x)

)
=

1

2

N∑
i=1

−

(
x− zi

ϵ

)
e−

∥x−zi∥2

2ϵ

−1/2

.

Finally, similar to the previous section, we have that

∇1P
f
ϵ,N (x, y) =

∇1Mϵ,N (x, y)∑N
i=1 Mϵ,N (zi, y)

,

and

∇1P
b
ϵ,N (x, y) =

∇1Mϵ,N (x, y)
(∑N

i=1 Mϵ,N (x, zi)
)
−
(∑N

i=1 ∇1Mϵ,N (x, zi)
)
Mϵ,N (x, y)(∑N

i=1 Mϵ,N (x, zi)
)2 .
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D. Convergence analysis
We comment on the convergence rate of our scheme at the population level. From (9), we see that if the kernel is exact, then
the rate of change of the KL divergence is −Eπ

[
dµt

dπ LKπ
dµt

dπ

]
. If we replace Kπ by its kernel approximation L−1

ϵ , then
the resulting rate of change is

∂t DKL(µ̂t||π) = −Eπ

[
dµ̂t

dπ
LL−1

ϵ

dµ̂t

dπ

]
,

where µ̂t is the distribution at time t obtained from the following evolution

ẋ =

∫
∇1KL −1,ϵ(x, y)dµ̂t(y).

Classical results from diffusion map literature (Hein et al., 2005; Singer, 2006) reveal that the bias
∣∣L f(x)− Lϵf(x)

∣∣ ∼
O(ϵ) if data lie on a compact manifold. Using the same assumptions, we state the following theorem.

Theorem D.1. Suppose the target distribution π is supported on a compact manifold. Let µ0 be the initial distribution of the
particles and µ̂t be the distribution of the generated process at time t, and assume that dµ̂t

dπ is finite and twice differentiable
for all t. Then we have

DKL(µ̂t||π) ≤
(
O(ϵ) + DKL(µ0||π)

)
e−t.

Proof. From diffusion map approximation, we have
∣∣∣L dµ̂t

dπ (x)− Lϵ
dµ̂t

dπ (x)
∣∣∣ ∼ O(ϵ). Then obtain that ,

L
dµ̂t

dπ
(x) =

(
Lϵ +O(ϵ)

) dµ̂t

dπ
(x)

by factoring out dµ̂t

dπ (x). Then using Neumann series or binomial expansion

L −1 dµ̂t

dπ
(x) =

(
Lϵ +O(ϵ)

)−1 dµ̂t

dπ
(x)

=
(
L−1
ϵ −O(ϵ)L−2

ϵ +O(ϵ)2
) dµ̂t

dπ
(x)

=
(
L−1
ϵ +O(ϵ)

) dµ̂t

dπ
(x).

This follows from the fact that the inverse L−1
ϵ is bounded. We then have

L −1 = L−1
ϵ +O(ϵ).

We can then write

Eπ

[
dµ̂t

dπ
LL−1

ϵ

dµ̂t

dπ

]
=Eπ

[
dµ̂t

dπ
L

(
L −1 dµ̂t

dπ
+O(ϵ)

)]

=Eπ

[(
dµ̂t

dπ

)2
]
+O(ϵ),

and consequently by (10),

∂t DKL(µ̂t||π) = −χ2(µ̂t||π) +O(ϵ).

Then using the results (Theorem 1) in Chewi et al. (2020) and Gronwall’s inequality, we have

DKL(µ̂t||π) ≤
(
O(ϵ) + DKL(µ0||π)

)
e−t.
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E. Regularity assumptions
We state here the regularity assumptions needed for the gradient to converge. The statement and the proof are adapted from
Peres.
Theorem E.1. Suppose Lϵf(x) is a family of bounded differentiable functions from D to R converging pointwise to L f(x)
as ϵ → 0. Furthermore, suppose ∇Lϵf(x) is a family of uniformly equicontinuous functions. Then L f(x) is differentiable
on D and ∇Lϵf(x) converges to ∇L f(x) uniformly.

Proof. We first choose a countable set of ϵ, say, ϵ = {1/n}∞i=1, and we use Ln to denote Lϵ=1/n for convenience. Since
Lnf(x) are uniformly bounded and ∇Lnf(x) are uniformly equicontinuous, ∇Lnf(x) are uniformly bounded. Then
∇Lnf(x) has a subsequence ∇Ln(k)f(x) that converges uniformly to some function g ∈ C(D) by Arzela-Ascoli theorem.
We then show that g = ∇L f(x) by contradiction. Suppose ∇Lnf(x) does not converge uniformly to ∇L f(x). Then
there exists ϵ > 0 and another subsequence ∇Lm(k)f(x) of ∇Lnf(x) such that ∥∇Lm(k)f − ∇L f∥∞ > ϵ for all k.
But by Arzela-Ascoli theorem, ∇Lm(k) has a subsequence converging uniformly to ∇L f(x): contradiction. Therefore,
∇Lnf(x) converges to ∇L f(x) uniformly on D.

F. Numerical results
F.1. Measuring the error using OT distance

We compute the OT distance using the Sinkhorn–Knopp algorithm (Cuturi, 2013; Knight, 2008). The cost matrix is set to
be the pairwise distance between the reference samples and generated particles, and each sample is assigned equal weight
marginally. The number of reference samples is chosen to be large to mitigate error in the OT distance resulting from
discretization of the target: 20000 for the Mickey mouse, two moons, the arc problems, the high energy physics example,
and 50000 for the hyper-semisphere example due to its higher dimension. The entropic regularization penalty 1/λ is set
to be O(10−2) in Mickey mouse, two moons, the arc problems, and hyper-semisphere example, and O(10−3) in the high
energy physics example. Each experiment is repeated 10 times for reproducibility; this replication involves sampling new
training data and repeating all steps of each algorithm. For the the Mickey mouse, two moons, the arc problems, the number
of generated particles is varied over {100, 300, 900, 2700}; for the hyper-semisphere example, it is fixed to 300.

F.2. The arc: one-dimensional manifold embedded in a three-dimensional space

Figure 1 shows the initial particles and the target distribution, and the comparison between different methods. Figure 3
shows the error comparison between different methods.

G. Additional numerical results
G.1. Mickey mouse: two-dimensional connected domain

In this example, the target distribution is uniform over a compactly supported Mickey mouse-shaped domain. The generative
process is initiated uniformly inside a circle. Results are obtained with both 1000 and 2000 training samples. In Figure 4,
we show the initial particles, the generated particles and the target distribution. Both methods capture the shape relatively
well. However, particles generated from SVGD move out of the domain, while most of the particles generated using DMPS
stay inside. In some cases, the SVGD-generated particles exhibit a non-uniform pattern; see Figure 8. Figure 9 shows
quantitative comparisons of the error.

G.2. Two moons: two-dimensional disconnected domain

In this example, the target distribution is uniform and compactly supported on a two-moon-shaped domain. In contrast with
the previous example, the domain is disconnected. Though the underlying distribution has zero density outside the support,
the finite kernel bandwidth enables the methods to be implementable in this case. Results are obtained with 500 and 1000
training samples. We show the initial particles, target distribution, and particles generated with DMPS, SVGD, and ULA in
Figure 6 and the regularized OT distance in Figure 7. As we can see in Figure 6, SVGD does not explore the very end of the
domain and ULA has mny samples that diffuse out of the support. The error plot (Figure 7) shows that DMPS enjoys the
smallest error in terms of OT distance, and that this the error decreases with more generated particles. While ULA shows a
similar convergence (with larger values of error), the error of SVGD fluctuates as more particles are included.
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Figure 3: The arc: error comparison between DMPS, SVGD, ULA, and SGM. Solid lines use 100 training samples; dashed
lines use 1000.

Figure 4: Mickey mouse: 2700 generated particles using DPMS and SVGD, with 2000 training samples
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Figure 5: Distributions of the target samples and 2700 generated particles using DMPS, SVGD, ULA, and SGM in the gluon
jet example. Coordinates are ηrel, ϕrel, and prel

T , respectively.

G.3. High energy physics: gluon jet dataset

We present the distribution of the generated particles using different methods. For this comparison, the number of training
samples is 1000 and the number of generated particles is 2700. In each figure, we plot 2000 target samples as a reference.
As we can see in Figure 5, particles generated using DMPS, ULA, and SGM resemble those from the target distribution.
Nevertheless, particles generated using SVGD fail to capture the target distribution.
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Figure 6: Two moons: 900 generated particles from DMPS, SVGD, and ULA with 500 training samples

Figure 7: Two moons: error comparison between DMPS, SVGD, and ULA. Solid lines use 500 training samples, dashed
lines use 1000.
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Figure 8: Mickey mouse: an instance of running the SVGD generative model shows strange non-uniform pattern with 1000
training samples and 2700 generated particles

Figure 9: Mickey mouse: error comparison between DMPS, SVGD

Figure 10: Hyper-semisphere: error comparison between DMPS, SVGD, ULA and SGM


