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ABSTRACT

With high-quality motion datasets more accessible, data-driven modelling of close
interactions between two or more people has attracted more research interest in
recent years. Such models can be used to understand the intent of the people by
predicting the reactive motion when they are closely interacting with each other.
However, failure in synchronising the motions between people as well as implau-
sible motions such as interpenetrations of body parts can still be found in State-of-
the-Art (SOTA) interaction prediction approaches. We argue that commonly used
motion representations in Euclidean space, such as joint positions and joint angles
in previous approaches do not capture the spatial relations between the body parts
effectively. In this paper, we propose a new Transformer, called ‘TopoFormer’,
for predicting the reactive motion of one of the characters in a Two-person close
interaction by giving the motion of the other character and the interaction class
label as input. TopoFormer consists of a Topology-Aware Spatio-Temporal Em-
bedding and Spatial Relation-aware Multi-Headed Self Attention (SR-MSA) to
facilitate the learning of the latent representation of close interactions. By repre-
senting the body parts using a set of articulated chains instead of the commonly
used graph-based structure in recent works, the spatial relations can be more effec-
tively represented using a topology-based representation, Gauss Linking Integral
(GLI). Experimental results highlight the effectiveness of our proposed method as
we achieved SOTA performance in Aligned Mean Error (AME) and a newly pro-
posed metric Average Interpenetration per Frame (AIF) across different datasets
and qualitatively more synchronised and plausible interactions.

1 INTRODUCTION

Understanding the intent of people who are closely interacting with each other, such as having a lot
of body contact and tangling of the body parts/limbs, can be used in a wide range of downstream
applications including group behavior understanding, human-robot interactions, crowd simulations,
etc. While there have been huge advances in modelling single human motion in recent years, han-
dling close interactions with two or more characters is still a challenging task. Even with a high-
quality motion dataset (Guo et al., 2022; Fieraru et al., 2020) for training a state-of-the-art deep
neural network for interaction prediction Chopin et al. (2023); Guo et al. (2022); Men et al. (2022);
Goel et al. (2022); Peng et al. (2023); Tanke et al. (2023); Xu et al. (2023) , recent work in SOTA
reactive motion prediction method (Chopin et al., 2023) still generates asynchronous interactions
and implausible motions such as interpenetration of body parts.

The core difficulty of representing the interaction semantics in skeletal motions lies in its raw rep-
resentation. Existing methods employ joint position, angles, velocities, etc. either/both in the Eu-
clidean space or/and a skeleton-based topological graph. These representations do not capture the
semantics at the posture level in interactions. Taking hugging as an example. The semantics of
hugging dictate one person’s arms surrounding the other person’s torso. The geometric details such
as the wrist positions are insignificant as long as the ‘surrounding’ exists, e.g. over the shoulder
or around the waist. This suggests a topological feature at play instead of a geometric one. Fur-
thermore, most topological features (betti numbers, geometric genus) are discrete, and unfriendly
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Figure 1: Effective Receptive Field (ERF) (Luo et al., 2016) given the frame of interest (in black
box) of the cartwheel motion. Red regions correspond to high dependency. Top: Highlights which
of the motions importance as per our frame of interest. Middle: The heatmap of each frame as per
our proximal bias of Relative Positional Encoding. Bottom: The line graph of the ERF as per the
frames of interaction. Our TopoFormer is able to learn the topological and proximal relationship
across the spatio-temporal domain of the interaction.

to deep learning. As a result, a topological feature with continuous parameterization is needed to
describe the interaction semantics.

To tackle this problem, topology-based motion representations Ho & Komura (2009); Ho et al.
(2013) have been proposed for synthesising close interactions. Specifically, Gauss Linking Integral
(GLI) was used in the aforementioned approaches for representing body parts in proximity. GLI is a
signed scalar value which can be computed from two 3D curves. Imagine the serial chains illustrated
in Figure 3 (right) represent a pair of entangled limbs of the character(s), switching between the left
and right configurations will easily result in interpenetrations which is indicated by a significant
change in the GLI values (i.e. sign change). By minimizing the changes of the pairwise GLIs over
consecutive frames, the interpenetration of body parts can be avoided.

In this work, we propose a new Transformer, called TopoFormer, for predicting the reactive motion
of one of the characters in a two-person close interaction by giving the motion of the other character
and the interaction class label as input. TopoFormer consists of a Topology-Aware Spatio-Temporal
(TST) embedding and Spatial Relation-aware Multi-Headed Self Attention (SR-MSA) to facilitate
the learning of the latent representation of close interactions. By representing the body parts using
a set of articulated chains instead of the commonly used graph-based structure in recent works, the
spatial relations can be more effectively represented using GLI.

To demonstrate the effectiveness of our method, we compared our method with SOTA approaches on
the reactive motion prediction task on the ExPI (Guo et al., 2022) and CHI3D (Fieraru et al., 2020)
datasets with different settings. Our method achieved SOTA performance in Aligned Mean Error
(AME) and a newly proposed metric Average Interpenetration per Frame (AIF), which produced
qualitatively more synchronised and plausible interactions.

2 RELATED WORK

Learning from motion data became the mainstream for close interaction generation in recent years
as two-person interaction datasets (Shen et al., 2020; Guo et al., 2022; Fieraru et al., 2020) are more
accessible. Existing methods are mainly focusing on interaction prediction (i.e. given the initial
motions of two people, the future motions will be predicted) and reactive motion prediction (i.e.
given the motion of one person, the motion of the other person will be predicted).
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Interaction Prediction While motion prediction for a single person is an active research area,
predicting the motions of multi-person simultaneously is relatively new to the community. Rahman
et al. (2023) applied several best practices in single-person motion prediction to the multi-person
prediction problem. Kundu et al. (2020) proposed using two recurrent neural networks, namely
Cross-Conditioned Recurrent Networks, to predict the future motion of another character according
to the initial motion input for synthesizing two-person interactions. The 2-stream cross-prediction
approach is also proposed in (Guo et al., 2022) with the cross-interaction attention (XIA) module.
For interactions with relatively fewer body contacts such as those in social interactions, Social Dif-
fusion (Tanke et al., 2023) was used for modelling the distribution of multi-person interactions using
a diffusion-based framework. Xu et al. (2023) proposed DuMMF to model social interactions us-
ing a dual-level model, with the local level for individual motion while the global level for social
interaction by taking into account the correlations between the motions of the people in the scene.
TBIFormer (Peng et al., 2023) forecasts the 3D pose sequences of multi-person using a transformer-
based architecture. However, the human skeletal structure was modelled in an abstract way by
performing an average pooling on each of the 5 body parts. In contrast, our proposed method mod-
els all body joints based on a topology-aware spatiotemporal embedding. This can more effectively
model close interactions such as hugging and dancing.

Reactive Motion Prediction A GAN-based model with dual discriminators has been proposed in
(Men et al., 2022) to generate the follower’s motion. By having one discriminator for real/fake and
the other one for interaction classification, the quality of the synthesized motion can be improved.
Goel et al. (2022) proposed a conditional hierarchical GAN which models each character at full-body
level and limb-level. The follower’s motion is then synthesized according to the leader’s motion and
the interaction class label. InterFormer (Chopin et al., 2023) is the first transformer-based method
for reactive motion prediction which models the poses using a graph representation.

GLI for Close Interaction Generation GLI can be used for representing the topology between
articulated objects such as human body parts. Ho & Komura (2007) proposed using PD-control
to maintain the GLI values between body parts to preserve entangled limbs in wrestling motions.
The topology-based pose representation can also be used with local Principal Component Analysis
(lPCA) to construct a latent space for synthesizing close character-object interactions (Ho et al.,
2013). Topology Coordinates (Ho & Komura, 2009) was proposed to further improve the control-
lability of the synthesis of tangling motions in human-human and human-object interactions. By
modifying the distribution of the GLI values in the writhe matrix, the 3D configuration of the inter-
acting body parts can be controlled intuitively in complex tasks such as tangling and untangling.

3 METHODOLOGY

An overview of the network components is illustrated in Figure 2. The spatial and topological
features (Section 3.1) are fed into the Topology-Aware Spatio-Temporal (TST) block (Section 3.2)
for motion embedding. The proposed Spatial Relation-aware Relative Position Encoding (srRPE,
Section 3.3) and Spatial Relation-aware Multi-head Self-Attention (SR-MSA, Section 3.4) further
learn the importance of the interacting body parts in proximity. Finally, the predicted reactive motion
will be reconstructed into 3D skeletal motion using the Transformer Decoder (Section 3.5).

3.1 SPATIAL AND TOPOLOGICAL FEATURES

Given the 3D positions of the joints in each frame, the spatial information is represented as a 1-D
vector. The skeletal structure we used consists of 18 joints (for ExPI, 19 for CHI3D), and this results
in a 1-D vector with 54 elements.

Inspired by the success of using GLI as soft constraints in an optimization-based approach Ho &
Komura (2009) for generating collision-free close interactions, we propose encoding the pairwise
GLIs of closely interacting body parts to prevent implausible motions such as interpenetrations.
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Figure 2: Our overview for TopoFormer. On the left, our Topology-aware Spatio-Temporal Block
takes the input interaction poses and Gauss Linking Integrals for each pair of chains alongside
Temporal Position Encoding (TPE) and Frame Position Encoding (FPE) to get the Topology-aware
Spatio-Temporal (TST) Embedding. On the right, the TST Embedding is concatenated with a stan-
dard transformer positional encoding to our TopoFormer Blocks. Our Spacial Relation-aware Rela-
tive Position Encoding is incorporated in each SR-MSA block. Our TopoFormer encodings are used
as Key and Values for a standard Transformer Decoder to get the output poses.

Gauss Linking Integral (GLI) Given two directed curves γ1 and γ2, the Gauss Linking Integral
(GLI) (Pohl, 1968) can be calculated by Eq. 1 by integrating along the two curves:

G(γ1, γ2) =
1

4π

∫
γ1

∫
γ2

dγ1 × dγ2 · (γ1 − γ2)

∥γ1 − γ2∥3
(1)

where × and · are cross-product and dot-product operators, respectively. GLI is a signed scaler value
which computes the average number of crossings from all viewing directions of the two curves, such
as Figure 3 (right). Please refer to the Supplementary Material (SM) for the discretization of Eq. 1
and the analytical solution for GLI calculation.

Figure 3: Representing a skeletal pose by 6 serial chains (left). Examples of GLI values computed
from different configurations of a pair of serial chains representing the body parts (right).

Representing Skeletal Pose using GLI We divide the ground truth character sequence into 6
serial chains in Figure 3 {SA

i,t}6i=1 for each frame t. Since GLI can be used as a topological repre-
sentation of two curves, the poses have to be represented by a set of serial chains. Representing each
limb and torso using a serial chain (Figure 3 left) is an intuitive choice. With 6 serials chains in each
pose, 15 pairwise GLI will be calculated from each frame in the input motion.

3.2 TOPOLOGY-AWARE SPATIO-TEMPORAL (TST) BLOCK

The extracted spatial and topological features are concatenated as a 1-d vector with 54 + 15 = 71
elements (for the ExPI dataset) and passed into an encoder to further extract the latent represen-
tation. Inspired by the superior performance obtained using basic MLP networks with positional
encoding in NeRF (Mildenhall et al., 2020) and a recent study on human motion prediction (Guo
et al., 2023), we propose to use an MLP with 8 hidden layers as the TST architecture. Each MLP
layer is followed by a ReLu activation (Agarap, 2018). Furthermore, we facilitate the usage of two

4



Under review as a conference paper at ICLR 2024

Figure 4: Effective Receptive Field (Luo et al., 2016) of the proximal bias given the frame of interest
(in black box) of the cartwheel motion of the last head of the last transformer block. Red regions
correspond to high dependency. At the (top) is the ground truth cartwheel motion. (left) is with
MLP positional encoding and (right) is with our srRPE.

positional encoding (Mildenhall et al., 2020), Temporal Positional Encoding (TPE) and Frame Po-
sitional Encoding (FPE). The TPE maps the temporal coordinates from 1 : T . The FPE maps the
spatial and topological frame features from 1 : D . The output of the TST Block is concatenated
with the action label of the class interaction to form the TST embedding.

3.3 SPATIAL RELATION-AWARE RELATIVE POSITION ENCODING (SRRPE)

In close interactions, body segments in close proximity are usually more important as they provide
the context of the interactions. For example, the hands are in contact in the ‘high-five’ action. In
addition, those body segments have to be coordinated carefully when editing or synthesizing the
motions to avoid generating infeasible motions with interpenetrations. Here, we propose a novel
interaction-aware relative position encoding based on the body part-based structure of the two char-
acters. Given the 15 unique pairs of chains as explained in Section 3.1, we compute the minimum
distance between the joint locations on the 2 chains in each pair to get srRPEϵRTx15. Finally,
the minimum joint-joint distance is mapped to a set of integer relative position encoding using a
piecewise index function (Wu et al., 2021):

g(x) =

{
|x|, |x| ≤ α

sign(x)×min(β, [α+ ln (|x|/α)
ln (γ/α) (β − α)]), |x| > α

(2)

. By specifying the values for α, β and γ, we can control the piecewise point, output range and
curvature of the logarithmic parts, respectively.

3.4 SPATIAL RELATION-AWARE MULTI-HEAD SELF-ATTENTION (SR-MSA)

In each encoder block of the TopoFormer, the Spatial Relation-aware Multi-Head Self-Attention
(SR-MSA) is constructed to incorporate the proximity of the interaction’s input motion chains. Each
SR-MSA block has a common srRPE which is mapped by three learnable lookup tables, Key, Query
and Value. srRPEk, srRPEq, srRPEvϵRTxNh . For a multi-head self-attention of heads m, if each
head has a dimension of Nh then Nd = mxNh is the dimension of the input feature xϵRTx(mxNh)

to the SR-MSA block. Specifically, it is formulated as

q = Wqx, k = Wkx, v = Wvx,
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proximalbiasi,j,h = qi,h · srRPEqi,h + kj,h · srRPEki,h,

attnsrRPEi,j,h = qi,h · kj,h + proximalbiasi,j,h,

ˆattnsrRPEi,.,h = softmax(
attnsrRPEi,.,h√

Nh
),

y =

L∑
j=1

ˆattnsrRPEi,j,h(vj,h + srRPEvi,j,h).

Our proximal bias provides adaptive weighted information about the proximal nature of the interac-
tion frames. This has more semantic information as compared to an MLP-positional encoding which
maps the Euclidean x,y,z of the pose via MLP to a proximal bias. The proximal bias is visualized in
Figure 4. We can see that the starting of the tumbling motion of the cartwheel is captured by our sr-
RPE whereas the MLP-positional encoding has a decaying proximalbias dependency. Furthermore,
experimental results in Tables 6 and 4 show the superiority of the srRPE. We use LayerNorm (Ba
et al., 2016) after each SR-MSA block.

3.5 TRANSFORMER DECODER

A standard Transformer decoder (Vaswani et al., 2017) is used in our proposed network for gener-
ating the output (i.e. 3D skeletal pose) through modelling the relationship between the queries and
keys. Specifically, the Key and Value token is the output of our proposed TopoFormer Block. The
Query token is taken as the output of the reactive poses mapped with an MLP.

3.6 LOSS FUNCTION

As the ultimate goal is to predict the follower’s motion based on the leader’s motion as input, we pro-
pose to use a reconstruction loss to measure the quality of the predicted follower’s motion. Specifi-
cally, we used the Mean Per Joint Position Error (MPJPE):

L =
1

J ∗N

T+N∑
i=N+1

J∑
j=1

||ŷi,j − yi,j ||2 (3)

where J is the total number of joints, and ŷi,j and yi,j are the 3D positions of the j-th joint at i-th
frame in the ground-truth and predicted motions, respectively.

4 EXPERIMENTAL RESULTS

4.1 DATASETS

In this section, the details of the 2 publicly available datasets used in our experiments will be pre-
sented. To facilitate the learning process, We normalized all motions by removing the global trans-
lation and rotation about the vertical axis such that the first person is forward-facing and located at
the origin.

Extreme Pose Interaction (ExPI) Dataset (Guo et al., 2022) is a recently published dataset
which contains 115 high-quality close two-person interaction sequences from 7 classes, such as
the Cartwheel interaction, captured using an optical MOCAP system. Each interaction is provided
as the 3D joint position sequences of the two characters. There are two protocols used in our exper-
iments: 1) Cross-Subject protocol (known as ’common action split’) used for the interaction predic-
tion task as in Guo et al. (2022), 2) Cross-Trial protocol by gathering the 2 couples who performed
all common interaction classes (as in the CS protocol) in the dataset, with a 7:3 training/testing ratio.

Close Human Interactions 3D (CHI3D) Dataset (Fieraru et al., 2020) is a high-quality 3D mo-
tion dataset which contains 631 two-person interaction sequences captured from 6 human subjects
grouped up in 3 pairs. The dataset includes various types of interactions, such as Grabbing, Hand-
shaking, Hitting, Holding Hands, Hugging, Kicking, Posing, and Pushing. We grouped the 3 subject
pairs interactions and divided them using a 7:3 training/testing ratio with a Cross-Trial protocol.
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For evaluation purposes, we further scaled the motions spatially such that the AME to be computed
is comparable to those obtained from the ExPI dataset. We assume the first subject in each pair is
170cm tall (head to toe) to compute the scaling factor. The fingers, thumbs and toes were removed
to reduce the total number of joints from 25 to 19 for each pose. Also, the motion sequences were
downsampled from 50 fps to 25 fps to reduce the temporal resolution.

4.2 IMPLEMENTATION DETAILS

The code base is built upon Pytorch library. The experiments are conducted using Nvidia RTX 2080
Ti Graphics card, Adam Optimizer (Kingma & Ba, 2014) with a learning rate of 1 × 10−4, batch
size of 6, and 50 epochs for all datasets. Each SR-MSA block has m = 4 heads and ND = 256. For
srRPE, α = 0.001, β = 90 and γ = 16000 is set for all datasets. We set L = 7 for our TPE and
FPE (Mildenhall et al., 2020). For TST Block, there are 7 MLP layers with hidden dimension 256
and 8th MLP layer with hidden dimension 50. There are 6 TopoFormer blocks for our encoder.

4.3 EVALUATION METRICS

The following metrics were used for evaluating the performance of reactive motion prediction:

Aligned Mean Error (AME) (Guo et al., 2022) measures the Mean Per Joint Position Error
(MPJPE) between the ground truth Ĝ and the predicted P̂ reactive motions: AME(P,G) =

MPJPE(TA(P̂ , Ĝ), Ĝ), where TA is the best rigid alignment between the normalized motions P̂

and Ĝ. Such an approach ignores the position bias while focusing on the error in the predicted pose.

Average Interpenetration per Frame (AIF) measures the absolute difference in GLI of two articu-
lated chains for the ground truth (GT) and predicted (p) motion over two consecutive frames exceeds
a threshold and indicates if an interpenetration has taken place:

AIF(A,B) =
1

T

T∑
t

6∑
i

6∑
j,

f(Ai, Bj , t)

f(a, b, t) =

{
1, |G(apt+1, b

p
t+1)−G(apt , b

p
t )| > 0.5 and |G(aGT

t+1, b
GT
t+1)−G(aGT

t , bGT
t )| ≤ 0.5

0, otherwise

. where A and B contain the 6 serial chains for representing the skeletal pose of each person.

4.4 QUANTITATIVE EVALUATION

We compare our proposed method against the recent deep learning based approaches, including Men
et al. (2022); Goel et al. (2022) and state-of-the-art (SOTA) InterFormer (Chopin et al., 2023) in the
literature on the reactive motion prediction task.

For the ExPI dataset, the results of the Cross-Trial (CT) protocol are presented in Table 1 (leftmost
values in each column). The results show that our proposed method achieved the lowest average
AME (on all interaction classes) across all 10 different prediction duration (from 0.2s to 4s), which
highlights the proposed method generates motions which are more similar to the ground truth.

Compared with SOTA InterFormer (Chopin et al., 2023), it can be seen that our method achieves
a much lower AME, which is around 21% to 48% lower, in all prediction duration. Among all the
methods, there is a general trend in increasing AME when the prediction duration increases. This
aligns with the assumption that the prediction task becomes more challenging when the prediction
duration increases. Nevertheless, our method shows a more significant advantage over InterFormer
with a 48.39% and 46.03% lower AME under the prediction duration of 3.6s and 4.0s, respectively.

We further challenge our method by using the Cross-Subject (CS) protocol introduced in Guo et al.
(2022) for the interaction prediction task. By using the CS protocol, the skeletal structures (e.g. bone
lengths) in the testing set are unseen during training which brings a huge challenge to the reactive
motion prediction task. On the other hand, it is less of a problem for the interaction prediction tasks
as the initial observations (i.e. pose sequences) of both people are available during inference.

From Table 1 (rightmost values in each column), it can be seen that the AME obtained under the
CS protocol is higher than those from the CT protocol. The overall trend is similar to the CT

7



Under review as a conference paper at ICLR 2024

Table 1: The AME of the predicted reactive motion under different prediction durations in the ExPI
dataset. xx/xx are the results under the CT/CS protocols.

AME (averaged across actions) (↓) - CT/CS
Time (sec) 0.2 0.6 1.0 1.4 2.0 2.4 2.8 3.2 3.6 4.0
Men et al. (2022) 80/90 80/94 81/98 82/104 84/115 86/115 87/116 88/117 90/119 91/122
Goel et al. (2022) 71/82 72/85 72/87 74/90 76/93 78/108 80/109 80/110 82/113 85/115
Chopin et al. (2023) 32/61 36/64 40/70 45/74 47/77 57/92 57/96 58/97 62/96 63/94
Ours 25/58 25/60 26/62 28/63 28/65 30/70 30/71 31/74 32/76 34/78

results, with the AME increasing with the prediction duration, as well as our proposed method
outperforms all the other methods. Note that the difference in the AME between our method and
SOTA InterFormer (Chopin et al., 2023) is getting smaller under the CS protocol. However, it is
worth noting that InterFormer (Chopin et al., 2023) requires the first frame of the reacting person as
input to take advantage of facilitating the prediction using the ‘known’ skeletal structure.

To evaluate the robustness of our method, we further conducted the experiments on CHI3D (Fieraru
et al., 2020) and the results are shown in Table 2. The maximum prediction duration is shorter be-
cause some of the motion sequences in the dataset only have 3.0s. Our method outperforms all other
methods across all prediction durations, with around 5% to 26% lower in AME than InterFormer.

Table 2: The AME of the predicted reactive motion under different prediction durations in the
CHI3D dataset.

AME (averaged across actions) (↓)
Time (sec) 0.2 0.6 1.0 1.4 2.0 2.4 2.8 3.0
Men et al. (2022) 81 83 86 87 89 90 93 94
Goel et al. (2022) 73 76 77 80 82 84 85 88
InterFormer (Chopin et al., 2023) 62 66 67 68 68 69 71 74
Ours 46 47 50 52 54 55 59 60

Another important property for introducing the TST block is to avoid interpenetration of body parts
in the predicted motions. Table 3 presents the AIF in the ExPI and CHI3D datasets. In general, the
ExPI dataset is more challenging since there are more body contacts in the interactions which more
easily results in interpenetrations. Also, ExPI (CS) is more challenging than ExPI (CT) as discussed
in the previous sections. Nevertheless, our method outperforms all other methods by achieving a
lower AIF consistently across all datasets and protocols.

Table 3: The averaged number of interpenetrations per frame in the generated motions in the ExPI
and CHI3D datasets.

Method AIF (↓)
ExPI (CT) ExPI (CS) CHI3D

Men et al. (2022) 0.04015 0.05384 0.00409
Goel et al. (2022) 0.03215 0.04847 0.00388

InterFormer (Chopin et al., 2023) 0.02140 0.02992 0.00329
Ours 0.01521 0.02643 0.00250

4.5 ABLATION STUDY

Here, we present the results to highlight the importance of different components in our method.

Topology-aware Spatio-Temporal Block The effectiveness of including the TST embedding is
evaluated in an ablation study on the ExPI dataset using the CT protocol (Table 4). The results
show that both the TST embedding and srRPE are needed to achieve the best performance in our
proposed method. It can also be seen that srRPE has a more positive impact on the quality of the
prediction motion. In addition to AME, AIF is also another important metric for evaluating close
interactions. The AIF results of our ablation studies are presented in Table 5. In particular, the AIF
increases more significantly when the TST block is not included in the network. This highlights the
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TST block facilitates the learning of a topology-aware latent space which can effectively reduce the
generation of implausible motions with interpentrations of the body parts.

Table 4: Ablation Study on Topology Aware Spatio-Temporal Embedding and srRPE. The ExPI
dataset and Cross-Trial (CT) protocol were used.

AME (averaged across actions) (↓)
Time (sec) 0.2 0.6 1.0 1.4 2.0 2.4 2.8 3.2 3.6 4.0
No TST Embedding 29 29 29 30 31 32 34 35 35 36
No srRPE 33 33 33 35 35 36 37 38 39 42
Ours 25 25 26 28 28 30 30 31 32 34

Table 5: Ablation Study on different components and their impact on AIF. The ExPI dataset and
Cross-Trial (CT) protocol were used.

Method AIF (↓)
No srRPE Query 0.01648
No srRPE Key 0.01576

No srRPE Value 0.01639
No TST 0.02085

No srRPE 0.01639
Ours 0.01521

Spatial Relation-aware Relative Positional Encoding In Table 6, we focus on evaluating the
components under the SR-MSA block and srRPE on the ExPI dataset using the CT protocol. It can
be seen that the AME increases when there is no srRPE Query, srRPE Key or srRPE Value used in
the SR-MSA block. We also replaced our proposed srRPE with an MLP Positional Encoding block
which resulted in a significant increase in AME. By encoding the proximal nature of the frames of
interaction, we are able to generate high quality synthesized motion.

Table 6: Ablation Study on different components under the SR-MSA block. The ExPI dataset and
Cross-Trial (CT) protocol were used.

AME (averaged across actions) (↓)
Time (sec) 0.2 0.6 1.0 1.4 2.0 2.4 2.8 3.2 3.6 4.0
No srRPE Query 27 27 28 29 29 31 32 33 36 37
No srRPE Key 26 26 27 28 29 31 31 32 37 37
No srRPE Value 27 27 28 28 29 31 32 33 36 37
MLP Positional Encoding 35 35 36 38 39 38 39 39 40 43
Ours 25 25 26 28 28 30 30 31 32 34

We further demonstrate the importance of the proposed relative position encoding by visualizing the
effective receptive field using a heatmap (Figure 1, middle row) and line graph (Figure 1, bottom
row) on the cartwheel motion (top row) from the ExPI dataset. , and the representative key poses (top
row) are rendered using the corresponding colours. Our TopoFormer is able to learn the topological
and proximal relationship across the spatio-temporal domain of the interaction.

5 CONCLUSION

In this paper, we propose a new Transformer, called ‘TopoFormer’, for reactive motion predic-
tion in Two-person close interactions. The proposed Topology-Aware Spatio-Temporal Embedding
and Spatial Relation-aware Multi-Headed Self Attention (SR-MSA) effectively earn the topologi-
cal and proximal relationship across the spatio-temporal domain of the interaction. Experimental
results highlight the effectiveness of our method which achieved SOTA performance across differ-
ent datasets. In the future, we will explore applying our methods to other related tasks such as
interaction prediction.
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A APPENDIX - SUPPLEMENTARY MATERIALS

A.1 DISCRETISATION AND ANALYTICAL SOLUTION FOR GLI CALCULATION

As stated in Section 3.1.1, the GLI of two curves can be computed using Eq. 1 (in the paper).
However, it is computationally costly to compute the GLI for long curves since there is a double
integral in the equation. On the other hand, an analytical solution Levitt (1983) can be used when
chained segments approximate the curves. Here, we first discretise the curves by representing each
character using two sets of chains to capture the limb-level and body-level interactions as explained
in Section 3.1.2 in the paper.

Given two chains, S1 and S2, with m and n line segments on the chains, respectively. The GLI can
be calculated by

GLI(S1, S2) =

m∑
i=1

n∑
j=1

Ti,j

where Ti,j is the writhe of segment i and segment j.

The analytical solution Levitt (1983) can be used for calculating Ti,j . Specifically, given line seg-
ments i (with end points a and b) and j (with endpoints c and d), we can define 6 vectors as rab
(a → b), rac (a → c), rad (a → d), rbc (b → c), rbd (b → d), rcd (c → d). The vectors will be used
for calculating the normal vectors of the tetrahedron created using those 4 endpoints:

na =
rac × rad
|rac × rad|

, nb =
rad × rbd
|rad × rbd|

,

nc =
rbd × rbc
|rbd × rbc|

, nd =
rbc × rac
|rbc × rac|

.

Finally, Ti,j is calculated by

Ti,j = arcsin(nanb) + arcsin(nbnc) + arcsin(ncnd)

+ arcsin(ndna).

A.2 EXPERIMENTAL RESULTS

A.2.1 VISUALIZATION OF THE LATENT SPACE

We further visualize the latent representation learned using our proposed TopoFormer Encoder in
Figure 5. It can be seen that each motion is represented in a longer clustered trajectory where
each point corresponds to the encoding of the poses in a given sequence. This aligns well with the
rationale behind the design as now the motions are having smoother transitions in the topology-
informed interaction space.

A.2.2 QUALITATIVE EVALUATION

The quality of the generated interactions can also be evaluated qualitatively in Figure 6 to 11. Read-
ers are referred to the accompanying video demo for the predicted reactive motion quality and com-
parison with STOA.
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Figure 5: t-SNE representation of the topological aware latent space from our TopoFormer Encoder
for ExPI (CT) experiment. Each color represents an input motion of the same class interaction.

Figure 6: Interaction Motion for ExPI (Cross-Trial) a-frame. Top row is the ground truth. Bottom
row is our synthesized results.

Figure 7: Interaction Motion for ExPI (Cross-Trial) aroundtheback. Top row is the ground truth.
Bottom row is our synthesized results.
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Figure 8: Interaction Motion for ExPI (Cross-Trial) cartwheel. Top row is the ground truth. Bottom
row is our synthesized results.

Figure 9: Interaction Motion for ExPI (Cross-Trial) toss-out. Top row is the ground truth. Bottom
row is our synthesized results.

Figure 10: Interaction Motion for CHI3D (Cross-Trial) hug. Top row is the ground truth. Bottom
row is our synthesized results.

Figure 11: Interaction Motion for CHI3D (Cross-Trial) handshake. Top row is the ground truth.
Bottom row is our synthesized results.
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