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ABSTRACT

Knowledge distillation (KD) techniques have emerged as a powerful tool for trans-
ferring expertise from complex teacher models to lightweight student models, par-
ticularly beneficial for deploying high-performance models in resource-constrained
devices. This approach has been successfully applied to graph neural networks
(GNNs), harnessing their expressive capabilities to generate node embeddings that
capture structural and feature-related information. In this study, we depart from
the conventional KD approach by exploring the potential of collaborative learning
among GNNs. In the absence of a pre-trained teacher model, we show that relatively
simple and shallow GNN architectures can synergetically learn efficient models
capable of performing better during inference, particularly in tackling multiple
tasks. We propose a collaborative learning framework where ensembles of student
GNNs mutually teach each other throughout the training process. We introduce
an adaptive logit weighting unit to facilitate efficient knowledge exchange among
models and an entropy enhancement technique to improve mutual learning. These
components dynamically empower the models to adapt their learning strategies
during training, optimizing their performance for downstream tasks. Extensive
experiments conducted on three datasets each for node and graph classification
demonstrate the effectiveness of our approach.

1 INTRODUCTION

Graph Neural Networks (GNNs) have emerged as powerful tools for learning representations of
structured data and for the extraction of node and graph embeddings to facilitate a wide range of
graph mining tasks, including node classification, link prediction, and graph classification Kipf and
Welling (2016); Hamilton et al. (2017); Borisyuk et al. (2024); Schlichtkrull et al. (2018). GNNs
generally leverage the message-passing framework, where nodes aggregate information from their
neighbors to capture information about node features and the underlying graph structures.

In deep learning (DL), knowledge distillation (KD) methods have been instrumental in balancing
model size and accuracy. These methods involve transferring knowledge from complex teacher
models to smaller student models, enabling the student model to emulate the pre-trained teacher’s
logits and/or feature representation, thereby matching or surpassing the teacher’s performance.
However, applying KD to GNNs presents unique challenges, particularly due to their typically
shallow architectures and over-smoothing issues Li et al. (2018).

In this study, we demonstrate a departure from the traditional approach of distilling knowledge from
a teacher GNN to a student GNN and instead propose a mutual learning approach to train small
but powerful GNNs. Our motivation partly comes from a recent study Guo et al. (2023), which
demonstrates that GNNs can encode complementary knowledge owing to their diverse aggregation
schemes. Furthermore, mutual learning involves a collective training process where untrained student
models collaboratively work to solve a task Zhang et al. (2018). This collaboration entails matching
alternative likely classes predicted by other participants to increase each participant’s posterior
entropy, ensuring better generalization during testing Pereyra et al. (2017). The rationale behind
mutual learning lies in the fact that each model starts training from a different initialization and is
guided by its supervision loss. This individualized guidance and initialization ensures that the models
avoid learning identical representations, even when predicting the same labels.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Despite the suitability of graph learning techniques for numerous large-scale industrial applications,
MLPs remain prevalent for various prediction tasks within this domain Zhang et al. (2021). Zhang
et al. (2021) demonstrate that MLPs can effectively learn from pre-trained GNNs, suggesting that the
disparity in expressive power between GNNs and MLPs is often negligible in real-world scenarios.
Therefore, we leverage mutual learning to improve performance across GNNs and subsequently
showcase that this knowledge is transferable to MLPs that are suitable for latency-constrained
industrial applications.

In this work, we (1) investigate the feasibility of cooperatively training multiple GNNs, (2) propose
enhancements in collaboration to ensure that each participant prioritizes crucial knowledge, an
aspect often overlooked in conventional deep mutual learning, and (3) explore the transferability of
representations acquired during collaboration by each target model for KD. To achieve these goals,
we introduce a novel framework, Graph Mutual Learning (GML), designed to collectively train a
set of untrained GNNs. Our framework promotes and enables collaborative learning and knowledge
sharing among peers, resulting in improved performance compared to isolated training. To enhance
generalization, we incorporate the confidence penalty mechanism Pereyra et al. (2017) to penalize
low-entropy output distributions. We also propose an adaptive logit weighting scheme to allow each
model to focus on essential knowledge during the mutual learning process for efficient learning.
Finally, beyond mutual learning, we adapt GML for KD, ensuring that the representation acquired
during collaborative training can be easily transferred to a student MLP for faster inference.

To summarize, our contributions are: (1) We employ mutual learning to collectively train a group
of GNN peers. This approach enhances the performance of individual models by promoting collab-
orative learning and knowledge sharing. (2) We introduce an adaptive logit weighting scheme to
efficiently prioritize crucial knowledge during collaborative training, enhancing the efficiency of the
learning process. (3) We adapt the GML framework for knowledge distillation, ensuring that the
representations acquired during collaboration are versatile and readily transferable to other models.1
(4) We evaluate the effectiveness and performance of our approach using publicly available datasets
for node and graph classification tasks. Empirical results show that GML significantly improves the
performance of shallow GNNs for different tasks.

2 RELATED WORK

Graph Neural Networks. Early research in GNNs laid the foundation for their application in various
domains, including social networks, bioinformatics, and recommendation systems Borisyuk et al.
(2024); Kang et al. (2022); He et al. (2020). Techniques such as recursive neural networks applied
to directed acyclic graphs Frasconi et al. (1998); Sperduti and Starita (1997) paved the way for the
development of GNNs. Generally, GNNs employ a message-passing framework, utilizing an iterative
approach to aggregate neighborhood information. This process entails nodes aggregating feature
vectors from their neighbors to compute their updated feature vectors Xu et al. (2018a;b); Gasteiger
et al. (2018). Kipf and Welling (2016) made key contributions by introducing the Graph Convolutional
Network (GCN), a novel architecture tailored for graph data. GCNs estimate node embeddings
by aggregating information from neighboring nodes and applying a self-loop update technique.
Similarly, Hamilton et al. (2017) introduced GraphSage, which utilizes aggregation functions to
generate embeddings for each node in its neighborhood. While these works have significantly
advanced GNNs by presenting different architectures, our research focuses on adapting deep mutual
learning techniques to enhance the training and performance of existing GNN architectures, rather
than proposing new architectures.

Knowledge Distillation. Knowledge distillation, proposed by Hinton et al. (2015), has become widely
adopted for training compact models under the supervision of larger teacher models. The applicability
of KD spans various domains and applications, including model compression Polino et al. (2018),
reinforcement learning Rusu et al. (2015), and enhancement of generalization capabilities Tang et al.
(2016). In GNNs, KD techniques have been adapted to improve model performance Guo et al. (2023),
mitigate negative effects of graph augmentation Wu et al. (2022), and feature transformation Yang
et al. (2021). Notable KD techniques for GNNs include TinyGNN by Yan et al. (2020), a framework
which enables smaller GNNs to learn local structural knowledge from deeper models, and the method
proposed by Deng and Zhang (2021), leveraging multivariate Bernoulli distributions to model graph

1Our codes can be found in the anonymous link: https://anonymous.4open.science/r/collab-gnn-46DF/
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Figure 1: The GML architecture with two GNN models, GNNtar and GNNcol, training together.
The adaptive logit weight unit prioritizes crucial knowledge and the uncertainty enhancement unit
penalizes models with low entropy. The process yields two improved models GNN ′

tar and GNN ′
col.

topology structures for effective knowledge transfer. Similarly, Zhou et al. (2021) presented a strategy
for distilling holistic knowledge from attributed graphs through a contrastive learning approach. Zhang
et al. (2021) proposed a method to facilitate KD from GNNs to enhance the performance of MLPs,
which is beneficial for accelerated inference. While these techniques demonstrate the potential of
KD for improving GNN performance, our research aims to investigate a novel approach for KD that
leverages mutual learning techniques to enhance transferability and proficiently transfer improved
knowledge to an MLP for downstream tasks.

Collaborative Learning. Similar works on collaborative learning can be found in the natural lan-
guage processing (NLP) domain. Liu et al. (2023a) introduce a generator-predictor framework for
rationalization, where multiple generators offer varied insights to the predictor to tackle poor corre-
lation and degeneration problems. This framework is characterized by a many-to-one relationship.
In contrast, our approach employs peer-based learning across GNNs, utilizing mutual learning and
distilling the knowledge into an MLP. The authors in Liu et al. (2024b) used KL-divergence to
maximize the separation between target labels and irrelevant parts of the text, proposing the minimal
conditional dependence criterion, whereas we employ the method to allow models to distill crucial
knowledge from other peers in the same training cohort. Liu et al. (2023b) suggest varying learning
rates for individual generators and predictors to address the degeneration problem and encourage
improved cooperation. However, controlling through Lipschitz continuity can hinder the adaptive
nature of the model and is more challenging to implement. In contrast, we provide a temperature
control mechanism that is easier to implement and allows dynamic control over model prediction.

Deep Mutual Learning. Deep Mutual Learning (DML), introduced by Zhang et al. (2018), extends
the KD framework from its conventional uni-directional transfer to enable bidirectional knowledge
exchange between models. Since its introduction, DML has been widely adopted across various
domains within DL, including federated learning and Bayesian neural networks Wang et al. (2024a);
Liu et al. (2024a); Luo and Zhang (2024). For instance, Wang et al. (2024b) leverage DML for client
updates in a study focused on employing heterogeneous model reassembly for personalized federated
learning. Similarly, Pham et al. (2024) utilize DML to enhance the performance of Bayesian Neural
Networks. In the context of GNNs, Li et al. (2024) adapted DML to multi-modal recommendation
tasks, emphasizing collaborative training across uni-modal bipartite user-item graphs. While these
applications demonstrate the versatility of DML, our study investigates its applicability for node and
graph classification tasks and introduces novel techniques to enhance DML in graph learning.

3 METHODOLOGY

Problem Statement. Consider a graph G = (V,E,X), where V is the set of N nodes, E ⊆ V × V
are the observed links, and X ∈ RN×D is the attributes matrix. Each node vi ∈ V has a D-
dimensional attribute vector xi ∈ RD. For graph classification tasks, each graph is associated with a
label Y = {yi}Mi=1, where yi ∈ {1, 2, 3, . . . , C}, C is the total number of classes, such that for any
class c, 1 ≤ c ≤ C, and M is the number of graphs. For node classification, Y = {yi}Ni=1, where
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yi ∈ {1, 2, 3, . . . , C}, and N is the number of nodes in the graph. Given the posterior probability
p1 from a GNN θ1 for a node v, the objective is to improve the generalization performance of θ1 by
using another model θ2 to provide knowledge in the form of its posterior probability p2.

Proposed Approach. Our approach involves collaboratively training a set of untrained shallow GNNs
by matching their posterior probabilities, as depicted in Figure 1. This technique aims to enhance
the performance of a target model participating in the collaborative training process. Subsequently,
we adapt the target model for KD (details of the KD architecture are provided in Appendix A). The
untrained GNN cohort comprises models initialized differently and may have different architectures,
each featuring a classifier producing a probability distribution over the available classes. We show in
Section 3.1 that different random initializations lead to diverse feature representations among the
models. Our mutual learning method consists of three unique parts: (1) mutual learning for graph
learning, (2) adaptive logit weighting, and (3) uncertainty enhancement. Each component contributes
to improving the generalization performance of the target model.

3.1 EXPLORING GRAPH NEURAL NETWORK ARCHITECTURES FOR MUTUAL LEARNING

We investigate how different GNN architectures encode features. Different from the analysis of Guo
et al. (2023), we also consider the impact of different random initializations on the similarities
between the learned representations of similar models. To assess the similarities between layers in
different model combinations, we utilize Centered Kernel Alignment (CKA) Kornblith et al. (2019)
as our metric. CKA measures the similarity between representations learned by different models, with
a higher CKA value indicating greater similarity. We conduct experiments involving training three
distinct GNN architectures—3-layer GCN, Graph Attention Network (GAT), and GraphSage—using
the Citeseer dataset. For each layer, we compute the average pooling of all embeddings, which serves
as the representation for that layer. Figure 2 illustrates the layer-wise similarities among the models.

Initially, we examine the results obtained from using similar model architectures for mutual learning
but with different random initializations. Figures 2 (a) and 2 (b) reveal that the similarities between
layers 1/2/3 of two GCN architectures are 0.87/0.18/0.63, while those between layers 1/2/3 of two
GraphSage architectures are 0.43/0.21/0.19. Figures 2 (c) and 2 (d) present the similarity between
layers of diverse models with varying random initializations. In particular, the results illustrate
that the similarities between layers 1/2/3 of GCN and GAT models are 0.27/0.05/0.44, and those
between layers 1/2/3 of GCN and GraphSage models are 0.22/0.076/0.046. These results suggest
that GNNs with differing architectures and random initializations yield dissimilar embeddings. In
addition, the result shows that when initialized differently, GNNs with the same architectures can
diverge in how they encode features in their internal layers.

Leveraging insights from our analysis, we apply our mutual learning technique using various model ar-
chitectures and random initialization. This approach enables the models to acquire diverse knowledge,
thereby enhancing generalization.

3.2 GRAPH MUTUAL LEARNING

Our formulation for graph mutual learning involves a collaborative training approach between a
cohort of two shallow GNNs to improve their generalization performance. Extension to more than two
peers is straightforward and is given in Appendix B. Given a graph dataset G for node classification,
each model θj predicts the probability of the c-th class for node v using the softmax function with
temperature scaling:

pcj =
exp(zv,cj /Tv)∑C
c=1 exp(z

v,c
j /Tv)

(1)

Here, zv,cj represents the logits for class c produced by model θj , and Tv is the temperature parameter
for node v used to soften the logits, controlling the sharpness of the probability distribution.

In mutual learning, one GNN model, denoted as the target model θtar, collaborates with another peer
model θcol by leveraging its posterior probability distribution pcol as shared knowledge to improve
its generalization. Each model in the cohort has a local supervision loss Lsup between the predicted
logits and the correct labels. Mutual learning aims to align the probability distributions of the two
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(a) GCN-GCN (b) GSage-GSage (c) GCN-GAT (d) GCN-GSage

Figure 2: Centered kernel alignment similarity between model layers 1, 2, and 3. (a) and (b) show
the similarity between models of the same architecture but different initializations. (c) and (d) show
the similarity between models of different architectures and different initializations.

models, encouraging them to learn from each other’s predictions. This alignment is achieved through
the Kullback Leibler (KL) Divergence loss. Thus, the overall loss of models θtar and θcol is given as:

Ltar = Lsuptar +DKL(pcol||ptar) (2)
Lcol = Lsupcol

+DKL(ptar||pcol) (3)

where Lsuptar
and Lsupcol

represent the local supervision losses for the target and collaborative
model, respectively. The KL divergence terms for the target and collaborative peer, DKL(pcol||ptar)
and DKL(ptar||pcol), measure the discrepancy between the probability distributions of the two
models, encouraging them to converge towards similar predictions. For our setting, we use the
cross-entropy loss as the local supervision loss for each model, ensuring that they learn to predict the
correct class labels for the graph nodes.

3.3 ADAPTIVE LOGIT WEIGHTING

The adaptive logit weighting module is designed to prioritize shared knowledge during the mutual
learning process between two shallow GNNs. This module consists of two learnable variables, χj

and ϕj , where χj ∈ RN×h and ϕj ∈ Rh×C . Given the prediction probabilities pj for all nodes V ,
the module calculates the negative entropy of the logits, denoted as H(pj) ∈ RN×1, to measure the
model’s confidence. This entropy information is then used to compute an adaptive weight vector W c

j
for each class c, ensuring that more important logits receive higher weights. The adaptive weight
vector W c

j of the c-th class is computed as:

W c
j =

exp(σc
j)∑C

c=1 exp(σ
c
j)

(4)

where σc
j represents the importance score for class c obtained from the negative entropy H(pj) and

the learned parameters χj and ϕj . σj is given as H(pj)
Tχjϕj ∈ R1×C and σc

j ∈ σj .

Subsequently, for each node v, the prediction probabilities pj ∈ R1×C are adjusted based on the
adaptive weight vector Wj ∈ R1×C using the Hadamard product:

p′j = pj ·Wj (5)

The adaptive logit weighting module is trained jointly with the participating models by minimizing
the loss function, which includes the KL divergence between the adjusted prediction probabilities of
the target and collaborative models, along with regularization terms for the learnable variables:

Ltar = Lsuptar
+DKL(p′col||p′tar) + β(∥χtar∥+ ∥ϕtar∥) (6)

Lcol = Lsupcol
+DKL(p′tar||p′col) + β(∥χcol∥+ ∥ϕcol∥) (7)

Here ∥χtar∥ and ∥ψtar∥ are the L1 norms of the learnable variables for the target model. ∥χcol∥ and
∥ψcol∥ are for the collaborating peer. β is a hyperparameter used to balance the regularization terms,
controlling the impact of the L1 norms of the learnable variables.

5
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3.4 ENHANCING UNCERTAINTY

Ensuring appropriate uncertainty in machine learning models is crucial for their generalizability and
adaptability to various real-world scenarios. In our mutual learning framework between two models
θ1 and θ2, we aim to enhance uncertainty to prevent overfitting and improve adaptability. We begin
by examining the KL divergence that matches the posterior probabilities p1 and p2 between the two
models for a training example:

DKL(p2||p1) =
C∑

c=1

pc2 log
pc2
pc1

(8)

Expanding Equation 8, as shown in Appendix C, reveals that the equation can be decomposed into a
negative entropy and a cross-entropy term.

During optimization, we aim to minimize DKL(p2||p1) with respect to zv,c1 (from Eq. 1), the logits
of θ1. According to Hinton et al. (2015), optimizing this divergence yields:

∂DKL(p2||p1)
∂zv1

= τ(p1 − p2) (9)

where τ is a temperature scaling parameter. If the probability distributions perfectly match, no
knowledge transfer occurs between the models.

While minimizing the KL divergence implicitly considers the entropy of the distribution, it primarily
focuses on cross-entropy. When the student’s predicted distribution matches the teacher’s distribution
and the ground-truth logit is significantly higher than the other logits, the student can become
overconfident. This overconfidence leads to the student assigning nearly all probability to a single
class, resulting in overfitting and reduced adaptability Szegedy et al. (2016). To address this, we
introduce a confidence penalty term to the loss functions of each model. This penalty term serves
as a regularization factor, discouraging peaked distributions by maintaining appropriate uncertainty
levels during training Pereyra et al. (2017). Specifically, we incorporate H(ptar|v) and H(pcol|v),
denoting the negative entropy of the predicted probabilities for a given training example v. Where γ
is a hyperparameter that balances the contribution of the confidence penalty terms, the loss of the
participating models is:

Ltar = Lsuptar +DKL(pcol||ptar)− γH(ptar|v) (10)
Lcol = Lsupcol

+DKL(ptar||pcol)− γH(pcol|v) (11)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

The following outlines our experimental setup, including datasets, hardware specifications, and the
baseline models we employed for GML.

Datasets We evaluate the performance of our GML approach using three widely-used datasets for
both node classification and graph classification tasks Sen et al. (2008); Namata et al. (2012); Hu et al.
(2020); Borgwardt et al. (2005). For node classification, we employ the Cora, Citeseer, and PubMed
datasets. For graph classification, we utilize the PROTEINS dataset along with two Open Graph
Benchmark (OGB) datasets Hu et al. (2020): Ogbg-molbace and Ogbg-molbbbp. Additionally, we
assess the performance of our approach adapted for KD using five datasets for node classification Sen
et al. (2008); Namata et al. (2012); Shchur et al. (2018): Cora, Citeseer, PubMed, Amazon Computers,
and Amazon Photo. Detailed information about these datasets is provided in Appendix D.

Models. We use the GCN Kipf and Welling (2016), GAT Veličković et al. (2017), and Graph-
Sage Hamilton et al. (2017) as our baseline GNN models. GCN introduces a fundamental approach to
graph representation learning by aggregating information from neighboring nodes through graph con-
volutions. GAT incorporates attention mechanisms that dynamically compute attention coefficients
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based on node features, allowing the model to focus on informative neighbors. GraphSage aggregates
information from sampled neighboring nodes using different aggregation functions, enabling the
model to capture diverse neighborhood information. We use three combinations for the diverse
architectural design and also evaluate our approach using architectural design with the same type of
GNN models. In Appendix E, we provide further details about the architectures of these models.

Evaluation. In our experiments, we evaluate all approaches using accuracy as the primary metric.
Due to the complexity of graph classification tasks, we report the average accuracy with the standard
deviation after five training iterations for each experiment involving graph classification tasks with
mutual learning. For other experiments, we report the average accuracy with the standard deviation
derived from ten training iterations.

4.2 PERFORMANCE EVALUATION

We evaluate GML’s potential to enhance the performance of baseline GNNs through collaborative
training. We then investigate whether these enhancements can be effectively leveraged to improve
the performance of GML in graph learning tasks. We evaluate three distinct model combinations to
assess the effectiveness of GML across a diverse range of architectures and initialization schemes:
GraphSage-GCN, GAT-GraphSage, and GCN-GAT. For GraphSage-GCN and GAT-GraphSage
architectures, we present results with GraphSage as the target model, while for GCN-GAT, we focus
on GCN as the target model. Our experimental findings, detailed in Table 1, demonstrate the efficacy
of GML in improving the performance of baseline GNN models across various scenarios. For instance,
consider the GAT-GraphSage architecture with GraphSage as the target model on the Cora dataset.
Without GML, the accuracy stands at 86.58%, whereas with GML, it improves to 88.55%. Our
results consistently show that integrating GML with our enhancements leads to notable performance
improvements over baseline GNN models. For example, employing the GAT-GraphSage combination
with GraphSage as the target model results in an accuracy increase from 69.64% to 70.36% on the
PROTEINS dataset with the introduction of the confidence penalty technique. Similarly, using the
GraphSage-GCN combination with GraphSage as the target model on the Ogbg-molbbp dataset
shows promising results. The initial accuracy of the baseline GNN model improves from 84.20% to
85.38% with the integration of the adaptive logit weighting technique. These findings underscore the
significance of employing GML with appropriate enhancement techniques to improve the performance
of shallow GNN models.

Node Classification Graph Classification

Models Methods Cora Citeseer PubMed Ogbg-molbace Ogbg-molbbbp PROTEINS

GraphSage-GCN-S

Ind 86.58 ± 0.68 76.57 ± 1.24 89.03 ± 0.50 77.43 ± 1.90 84.20 ± 0.63 69.64 ± 1.25

GML 87.00 ± 0.52 77.80 ± 0.51 89.66 ± 0.34 78.32 ± 0.94 84.79 ± 0.85 69.28 ± 1.54

GML-Co 87.32 ± 0.50 75.99 ± 0.66 90.19 ± 0.30 79.03 ± 1.67 84.07 ± 1.1 69.76 ± 0.79

GML-W 87.49 ± 0.40 76.93 ± 0.50 89.17 ± 0.25 77.79 ± 0.37 85.38 ± 0.94 70.24 ± 0.91

GML-C 88.69 ± 0.38 76.13 ± 0.46 90.17 ± 0.13 78.23 ± 1.23 85.05 ± 0.50 70.96 ± 1.08

GAT-GraphSage-S

Ind 86.58 ± 0.68 76.57 ± 1.24 89.03 ± 0.5 77.43 ± 1.90 84.20 ± 0.63 69.64 ± 1.25

GML 88.55 ± 0.24 77.37 ± 0.59 89.7 ± 0.24 78.23 ± 1.34 84.07 ± 1.15 69.4 ± 0.99

GML-Co 87.88 ± 0.68 76.61 ± 0.62 90.13 ± 0.30 78.58 ± 1.55 84.72 ± 1.2 69.64 ± 1.45

GML-W 87.36 ± 2.79 76.45 ± 0.75 89.20 ± 0.20 78.76 ± 1.13 84.39 ± 0.82 70.36 ± 0.79

GML-C 88.57 ± 0.41 77.45 ± 0.6 90.24 ± 0.23 78.05 ± 1.27 84.07 ± 2.03 70.36 ± 1.44

GCN-GAT-C

Ind 88.87 ± 0.10 76.55 ± 0.21 87.20 ± 0.05 75.93 ± 1.64 84.52 ± 0.27 71.45 ± 1.32

GML 89.24 ± 0.39 76.71 ± 0.23 87.20 ± 0.18 73.54 ± 1.48 84.26 ± 0.9 71.20 ± 1.16

GML-Co 89.06 ± 0.24 76.73 ± 0.27 87.33 ± 0.10 75.22 ± 2.00 84.26 ± 0.52 71.20 ± 1.62

GML-W 89.24 ± 0.26 76.63 ± 0.17 87.15 ± 0.10 76.48 ± 0.85 84.59 ± 0.52 71.08 ± 0.60

GML-C 89.26 ± 0.31 76.61 ± 0.23 87.45 ± 0.14 74.87 ± 1.61 84.33 ± 0.82 71.81 ± 0.27

Table 1: Classification performance of mutual learning for node and graph classification. Ind is the
performance of the target model without any mutual learning. S and C represent GraphSage and
GCN as target models, respectively. Thus, GraphSage-GCN-S denotes GML with GraphSage and
GCN, using GraphSage as the target model. GML-Co represents the performance of the target model
with adaptive logit weighting and uncertainty enhancement. GML-W denotes the performance with
only adaptive logit weighting and GML-C represents the performance with uncertainty enhancement.
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4.3 BEYOND GRAPHS TO GRAPH-LESS NEURAL NETWORKS

Beyond GML, we investigate whether the improvements achieved through GML can be transferred to
a simple MLP via KD to satisfy the requirement for faster inference in industrial settings. The distilled
MLP is referred to as a graph-less neural network Zhang et al. (2021). Our analysis consists of diverse
architecture settings, including GraphSage-GCN, GAT-GraphSage, and GCN-GAT architectures.
For the KD process, we maintain GraphSage as the teacher model from GraphSage-GCN and GAT-
GraphSage architectures, while GCN serves as the teacher obtained from the GCN-GAT architecture.
Table 2 presents the results of our experiment. We found that KD improves the performance of
individual MLPs by leveraging deep mutual learning with our specific enhancements (adaptive
logit weighting or confidence penalty). For example, using GraphSage as the teacher model from a
GraphSage-GCN combination increases the accuracy of the MLP on the Cora dataset from 70.10%
to 87.66% while using the adaptive logit weighting unit. Through KD, the teacher model acquires
more generalizable and transferable knowledge, enabling efficient training of student MLP models
that can rival the baseline teacher model in competitiveness.

Models Methods Cora Citeseer PubMed A-Computers A-photo

Ind-MLP 70.10 ± 1.12 67.88 ± 0.53 84.25 ± 0.75 77.59 ± 0.64 87.42 ± 0.75

GraphSage-GCN-S

KD without GML 86.01 ± 0.19 75.11 ± 0.08 88.98 ± 0.14 89.03 ± 0.31 94.87 ± 0.09

KD + GML 86.18 ± 0.24 76.01 ± 0.16 89.45 ± 0.17 89.48 ± 0.30 95.02 ± 0.13

KD + GML-Co 87.49 ± 0.28 75.81 ± 0.30 89.53 ± 0.20 89.44 ± 0.27 94.56 ± 0.16

KD + GML-W 87.66 ± 0.24 76.27 ± 0.10 88.46 ± 0.22 89.46 ± 0.26 94.08 ± 0.13

KD + GML-C 86.03 ± 0.23 75.71 ± 0.26 89.24 ± 0.28 89.04 ± 0.20 95.18 ± 0.15

GAT-GraphSage-S

KD without GML 86.01 ± 0.19 75.11 ± 0.08 88.98 ± 0.14 89.03 ± 0.31 94.87 ± 0.09

KD + GML 85.67 ± 0.10 76.55 ± 0.19 89.58 ± 0.27 90.04 ± 0.23 94.95 ± 0.20

KD + GML-Co 87.44 ± 0.16 75.97 ± 0.26 89.88 ± 0.23 89.47 ± 0.20 94.43 ± 0.09

KD + GML-W 85.99 ± 0.32 76.27 ± 0.01 89.36 ± 0.25 88.96 ± 0.20 94.80 ± 0.19

KD + GML-C 86.33 ± 0.26 76.57 ± 0.45 89.42 ± 0.21 90.10 ± 0.25 95.43 ± 0.10

GCN-GAT-C

KD without GML 88.52 ± 0.51 78.92 ± 0.23 88.45 ± 0.15 77.04 ± 0.36 90.17 ± 0.52

KD + GML 87.91 ± 0.22 79.00 ± 0.16 88.55 ± 0.23 77.54 ± 0.40 90.68 ± 0.41

KD + GML-Co 88.42 ± 0.23 78.82 ± 0.38 88.29 ± 0.39 76.36 ± 0.64 90.21 ± 0.40

KD + GML-W 88.32 ± 0.28 78.42 ± 0.30 88.43 ± 0.20 77.36 ± 0.34 90.72 ± 0.37
KD + GML-C 88.72 ± 0.19 79.48 ± 0.22 88.49 ± 0.41 77.82 ± 0.37 90.62 ± 0.29

Table 2: Performance of MLP with KD using the target model. Ind is the performance of the MLP
without any mutual learning. We use models with different architectures for mutual learning.

4.4 DOES KD WORK WITH A TARGET MODEL THAT LEARNS FROM A PEER WITH SIMILAR
ARCHITECTURE?

We explore whether KD remains effective when applied to pairs of GNNs with identical architectural
settings. Specifically, we consider three possible pairs: GraphSage-GraphSage, GAT-GAT, and GCN-
GCN. Our assessment focuses on determining if GML’s performance and proposed enhancements
extend to scenarios where the target and peer models share the same architecture. The results of
our evaluation are presented in Table 3. They show that GNNs with identical architectures can
indeed exchange essential knowledge to enhance their performance. The proposed enhancements
also improve the performance of GNNs with similar architectures, facilitating better generalization
and emphasizing critical knowledge exchange during mutual learning. For example, using GAT as
the teacher model from a GAT-GAT combination increases the accuracy of the MLP on the Citeseer
dataset from 77.69% to 80.56% while using the adaptive logit weighting unit. This observation aligns
with our initial investigation into GNN embeddings, revealing that even with identical architectures,
GNNs may encode distinct embeddings when initialized with different random seeds.

4.5 ABLATION STUDIES

Does mutual learning facilitate knowledge distillation? Tables 2 and 3 demonstrate the enhanced
performance of the vanilla MLP model following KD using the teacher model derived from the
GML process. Notably, the improvements in the MLP model stem from the superior performance
of the teacher model, which has benefited from prior enhancement through GML. Figure 3 shows
the outcomes of our experiments across diverse architectures, confirming the correlation between
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Models Methods Cora Citeseer PubMed A-Computers A-photo

Ind-MLP 69.14 ± 1.28 68.28 ± 0.85 85.29 ± 0.49 77.1 ± 0.68 86.83 ± 0.60

GraphSage-GraphSage

KD without GML 89.06 ± 0.13 76.73 ± 0.26 89.75 ± 0.19 88.66 ± 0.38 95.3 ± 0.22

KD + GML 88.65 ± 0.80 76.55 ± 0.16 90.22 ± 0.20 88.79 ± 0.19 94.73 ± 0.13

KD + GML-Co 88.99 ± 1.7 76.11 ± 0.16 90.39 ± 0.28 88.63 ± 0.15 95.35 ± 0.29
KD + GML-W 89.63 ± 0.14 78.06 ± 0.14 89.63 ± 0.16 89.04 ± 0.17 95.17 ± 0.15

KD + GML-C 89.33 ± 0.17 76.31 ± 0.32 90.24 ± 0.17 88.39 ± 0.38 94.38 ± 0.27

GAT-GAT

KD without GML 87.98 ± 0.34 77.69 ± 0.12 88.72 ± 0.19 85.52 ± 0.19 90.01 ± 0.25

KD + GML 88.18 ± 0.33 79.92 ± 0.16 88.92 ± 0.31 86.53 ± 0.35 90.63 ± 0.39

KD + GML-Co 86.35 ± 0.33 80.20 ± 0.28 89.17 ± 0.28 86.67 ± 0.35 92.39 ± 0.23
KD + GML-W 87.04 ± 0.24 80.56 ± 0.25 88.82 ± 0.21 84.78 ± 0.31 90.43 ± 0.24

KD + GML-C 88.15 ± 0.36 80.12 ± 0.32 89.12 ± 0.32 85.81 ± 0.36 91.91 ± 0.41

GCN-GCN

KD without GML 89.04 ± 0.29 79.90 ± 0.14 89.37 ± 0.22 77.20 ± 0.44 89.09 ± 0.41

KD + GML 89.14 ± 0.18 80.26 ± 0.14 89.37 ± 0.25 77.48 ± 0.47 89.22 ± 0.41

KD + GML-Co 89.29 ± 0.21 80.28 ± 0.27 89.51 ± 0.35 78.22 ± 0.47 89.16 ± 0.68

KD + GML-W 89.24 ± 0.17 80.14 ± 0.24 89.29 ± 0.14 75.46 ± 0.71 89.54 ± 0.46
KD + GML-C 89.19 ± 0.18 80.54 ± 0.36 89.43 ± 0.21 78.73 ± 0.71 89.53 ± 0.68

Table 3: Performance of MLP with KD using the target model. Ind is the performance of the MLP
without any mutual learning. We use models with same architecture for mutual learning.

(a) GraphSage-GCN-S (b) GAT-GraphSage-S (c) GCN-GAT-C

Figure 3: Results of KD with the best performing GML technique. We show the difference in the
performance of KD with the MLP without KD as influenced by GML.

the improvement in the MLP model and the enhanced performance of its corresponding teacher
model. However, the extent of performance enhancement varies across datasets and architectures.
For example, the smallest performance gain is observed in the A-Computers dataset employing the
GCN-GAT architecture with GCN as the teacher model. This observation underscores the dependency
of the vanilla MLP model’s improvement on the quality of the teacher model and its comparative
performance against the student MLP.

Impact of hyperparameters γ, β and temperature Tv. We conducted experiments using the
GraphSage-GCN combination, with GraphSage as the target, to analyze the sensitivity of the parame-
ters β, γ, and Tv . In this analysis, we systematically varied one parameter at a time while keeping the
others constant. The results, as depicted in Figure 4 indicate that the parameter γ remains relatively
stable across a wide range of values, with a noticeable decrease in accuracy observed for larger values
of γ. Conversely, the parameter β demonstrated the highest accuracy with larger values. As for
Tv, the highest accuracy was achieved when its value was 1.0, with accuracy decreasing as Tv was
increased to 10. These findings suggest that all three parameters exhibit stability over large intervals.

Does expanding the cohort impact performance? We evaluate the performance of our GML
technique by aggregating predictions from models that offer complementary perspectives. Initially,
we assess GML’s performance using models of identical architecture that are initialized with different
random seeds. We then extend the evaluation to include models with distinct architectures, randomly
selected from the pool of models in Section 4.2. The results are summarized in Figure 5. Our
experiment demonstrates a general improvement in performance as the number of models in the
cohort increases, indicating that our approach scales effectively with an increasing number of models
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(a) γ (b) β (c) Tv

Figure 4: Sensitivity analysis of the balancing parameters γ, β and the temperature Tv .

in the cohort. With greater hardware resources, this scalability can be further exploited through
parallelization, enabling larger cohorts to enhance GML performance.

Figure 5: Comparison of GML ensemble
method with deep ensembles.

How does GML compare with ensemble learning
without collaboration? We apply the same selec-
tion methods from the expanding cohort experiment
to compare the performance of GML with standard
ensemble techniques. As shown in Figure 5, our
results indicate that traditional ensemble methods
consistently outperform single-model predictions.
Specifically, for ensemble sizes greater than five,
performance improves notably when the ensemble
consists of diverse models. When we adapt our ap-
proach to ensemble techniques, GML demonstrates
superior performance compared to standard ensem-
ble methods. Moreover, the inclusion of diverse
models in the ensemble enhances predictive accu-
racy for ensemble sizes where n > 5 (with n rep-
resenting the number of models). This suggests
that GML effectively capitalizes on model diversity,
leveraging complementary knowledge to boost overall performance.

Effect of noisy graph structures on GML. In previous research, Bechler-Speicher et al. (2023)
noted that GNNs often overfit to graph structures, especially in situations where disregarding noisy
structures could lead to better performance. We observe that GML can reduce this overfitting tendency
in GNNs. The detailed experimental setup and results are provided in Appendix I.

Impact of adaptive logit weighting unit and the confidence penalty mechanism To evaluate
the contributions of the logit weighting unit and the confidence penalty mechanism to improving
GML performance, we conducted additional experiments focused on node classification using the
largest dataset in our paper for this task, PubMed. Our result is in Appendix J, with a sanity check in
Appendix K showing the improvements are not due to random fluctuations.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduced Graph Mutual Learning (GML), a novel approach that leverages deep
mutual learning techniques to enhance GNNs. We augmented the mutual learning process with two
key techniques: adaptive logit weighting and a confidence penalty term, which proved effective in
transferring crucial knowledge between collaborating peers and promoting entropy for improved
generalization. Furthermore, we adapt our approach for KD, demonstrating that knowledge acquired
during the mutual learning process can be effectively transferred to a student model for downstream
tasks. Extensive experiments on node and graph classification datasets empirically demonstrate that
our approach can enhance shallow GNN models through online distillation techniques. Future work
will focus on evaluating the robustness of GML against noisy or adversarial data and developing
novel techniques to enhance its scalability, particularly for large-scale graph datasets.
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Figure 6: Architecture of the KD and Deployment Processes Between GNN and MLP.

A KNOWLEDGE DISTILLATION (KD) ARCHHITECTURE

KD was introduced by Hinton et al. Hinton et al. (2015), where a student learns from a larger teacher
model. Zhang et al. Zhang et al. (2021) extended this idea to GNNs, which generate soft targets
that are used to train a student MLP. Given that the soft target from the teacher model is zv and the
prediction of the student is ŷv , the loss function of the student is given by:

Lstudent = Lsup +DKL(zv||ŷv) (12)

where Lsup is the supervision loss and DKL(zv||ŷv) is the KL-divergence between the teacher and
student predictions.

In Figure 6, we present the architecture used to train and deploy the MLP. Initially, the MLP undergoes
a KD process, learning from a pre-trained GNN in an offline distillation phase. Here, the MLP is
trained using node features but benefits from a more robust GNN trained with node features and graph
topology information. Following the offline KD, the MLP is deployed online for faster inference,
utilizing only the features of new nodes.

B EXTENSION OF MUTUAL LEARNING

For a two-peer cohort, our mutual learning loss functions are given as:

Ltar = Lsuptar
+DKL(pcol||ptar)− γH(ptar|v) (13)

Lcol = Lsupcol
+DKL(ptar||pcol)− γH(pcol|v) (14)

Similar to the original deep mutual learning approach Zhang et al. (2018), we can extend it to a cohort
of K peers, where the target model takes the average of its KL divergence with the other K − 1 peers
as follows:

Ltar = Lsuptar
+

1

K − 1

K−1∑
k=1,k ̸=tar

DKL(pk||ptar)− γH(ptar|v) (15)

Lcol = Lsupcol
+

1

K − 1

K−1∑
k=1,k ̸=col

DKL(pk||pcol)− γH(pcol|v) (16)
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C EXPANSION OF KL-DIVERGENCE

DKL(p2||p1) =
C∑

c=1

pc2 log
pc2
pc1

DKL(p2||p1) =
C∑

c=1

pc2(log p
c
2 − log pc1)

DKL(p2||p1) =
C∑

c=1

pc2 log p
c
2 −

C∑
c=1

pc2 log p
c
1

(17)

The first term of the equation is the negative entropy term while the second term is the cross entropy.

D DATASET DETAILS

We employ a total of eight datasets in our experiments. Specifically, for the tasks involving mutual
learning for node and graph classification, we use three datasets each. Additionally, for KD adaptation,
we focus on five node classification datasets. For all node classification tasks, we employ a split ratio
of 0.70/0.15/0.15 for training/validation/testing sets. For graph classification tasks, we utilize a split
ratio of 0.75/0.10/0.15 for the training/validation/testing sets.

Node Classification Datasets:

Cora Dataset. The Cora dataset Sen et al. (2008) comprises 2708 scientific papers categorized into
seven classes, with a citation network containing 5429 connections. Each paper is represented by a
binary word vector denoting the presence or absence of each term from a dictionary of 1433 unique
words.

Citeseer Dataset. The CiteSeer dataset Sen et al. (2008) comprises 3,312 scientific papers categorized
into six classes. Within this dataset, there exists a citation network containing 4,732 links. Each
paper is represented by a binary word vector indicating whether a particular word from a dictionary
of 3,703 unique words is present (1) or absent (0).

PubMed Dataset. The PubMed dataset Namata et al. (2012) encompasses 19,717 scientific publi-
cations sourced from the PubMed database, focusing on diabetes, and classified into one of three
categories. Within this dataset, there exists a citation network comprising 44,338 links. Each publi-
cation is represented by a TF/IDF weighted word vector derived from a dictionary containing 500
distinct words.

Amazon Computers. Amazon Computers (A-Computers) Shchur et al. (2018) represents goods
as nodes and frequent co-purchases as edges to classify goods into their respective product cate-
gories using bag-of-words features extracted from product reviews. This dataset consists of 13,752
nodes,491,722 edges, and 767 features with 10 classes.

Amazon Photo. Amazon photo (A-Photo) Shchur et al. (2018) represents goods as nodes and frequent
co-purchases as edges to classify goods into their respective product categories using bag-of-words
features extracted from product reviews. This dataset consists of 7,650 nodes,238,162 edges, and 745
features with 8 classes.

Graph Classification Datasets:

Ogbg-molbace Dataset. Th molbace dataset Hu et al. (2020) is from the Open Graph Benchmark
(OGB) for the task of graph property prediction. The dataset consists of 1,513 graphs with average
nodes of 34.1 and average edges of 36.9. The dataset is provided for binary class prediction tasks.

Ogbg-molbbbp Dataset. Similar to the molbace dataset, the molbbbp dataset Hu et al. (2020) is from
the Open Graph Benchmark (OGB) for the task of graph property prediction. The dataset consists of
2,049 graphs with 24.1 average nodes and 26.0 average edges. The dataset is also provided for binary
class prediction tasks.
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(a) GAT-GAT (b) GAT-GSage

Figure 7: CKA Similarity Between Layers of Models. L1, L2, and L3 are layers 1, 2, and 3, respec-
tively. (a) shows the similarity between models of the same architecture but different initializations.
(b) shows the similarity between models of different architectures and initializations.

PROTEINS Dataset. This dataset Borgwardt et al. (2005) was derived from the work of Dobson
and Doig Dobson and Doig (2003) and consists of proteins classified as enzymes or non-enzymes.
In the PROTEINS dataset, amino acids are represented as nodes and an edge represents the spatial
proximity between the nodes. The dataset consists of 1,113 graphs with approximately 39.1 nodes
and 145.6 edges. Each node has 3 features and the graph is classified into 1 of 2 available classes.

E IMPLEMENTATION DETAILS

We use the Adam optimizer Kingma and Ba (2014) for optimization with a weight decay of 5× 10−4.
We designed a 2-layer GCN and GAT and a 3-layer GraphSage. For GCN and GraphSage, we use
the ReLU activation for function and the ELU Clevert et al. (2015) activation for GAT. We set the
hidden dimensions for node classification tasks to 64, 64, and 8 for the GCN, GraphSage, and GAT
models, respectively. The dimensions of χj and ϕj are set to 64. In GAT, we use 4 attention heads
across all node classification datasets. or graph mutual learning experiments, we set γ and β as 1 for
the Citeseer and PubMed datasets, and γ as 0.01 for Cora. We set γ = 1 and β = 1 for A-Computers
during knowledge distillation. For A-Photo, γ and β were set to 0.1 and 0.01, respectively. The early
stopping patience threshold was set to 1500 in node classification experiments.

For graph classification tasks, our models included a read-out layer with a final classifier. We used
hidden dimensions of 16, 16, and 8 for GCN, GraphSage, and GAT models. The dimensions of χj

and ϕj are set to 16. In mutual learning experiments for graph classification, we set Tv to 6 and γ as
1. The early stopping patience threshold for graph classification experiments was set to 200.

Hardware Details. We run all experiments on a single NVIDIA RTX A6000 GPU with 64GB RAM.

Software Details. We performed all experiments on a computer with an operating system Ubuntu
(version 18.04.6 LTS). We implemented our models using PyTorch Paszke et al. (2017) and Pytorch
Geometric Fey and Lenssen (2019).

F ADDITIONAL RESULTS ON THE EXPLORATION OF GRAPH NEURAL
NETWORK ARCHITECTURES FOR MUTUAL LEARNING

We show additional results on the CKA between two GNN architectures—3-layer GAT and Graph-
Sage—using the Citeseer dataset. Figure 7 (a) shows that the similarities between layers 1/2/3 of
the GAT architectures are 0.4/0.078/0.34, while Figure 7 (b) shows that the similarities between the
layers of the GAT and GraphSage architectures are 0.36/0.35/0.11.
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G ADDITIONAL EXPERIMENT

Node Classification Graph Classification

Models Methods Citeseer Ogbg-molbbbp

GCN-GAT-T

Ind 75.79± 0.76 82.95± 1.25

GML 76.29± 0.64 82.95± 1.41

GML-Co 76.27± 0.59 83.67± 0.91

GML-W 76.21± 0.31 85.05 ± 1.51
GML-C 76.51 ± 0.52 83.80± 1.00

Table 4: Additional results for the classification performance of mutual learning for node and graph
classification. GCN-GAT-T denotes GML with GCN and GAT, using GAT as the target model.

Models Methods Cora Citeseer PubMed
Ind-MLP 70.10± 1.12 67.88± 0.53 84.25± 0.75

GraphSage-GCN-C

KD without GML 88.52± 0.51 78.92± 0.23 88.45± 0.15

KD + GML 88.62± 0.23 78.36± 0.13 88.75± 0.26

KD + GML-Co 88.62± 0.25 79.12± 0.25 88.29± 0.31

KD + GML-W 88.67 ± 0.23 78.74± 0.26 88.46± 0.22

KD + GML-C 88.40± 0.29 79.18 ± 0.38 88.78 ± 0.35

GAT-GraphSage-T

KD without GML 85.28± 0.14 76.69± 0.10 88.75± 0.25

KD + GML 83.87± 0.13 75.81± 0.10 88.46± 0.22

KD + GML-Co 84.33± 0.31 77.07 ± 0.03 88.54± 0.28

KD + GML-W 86.08 ± 0.27 76.67± 0.17 88.96 ± 0.23
KD + GML-C 83.50± 0.52 76.61± 0.50 88.49± 0.31

GCN-GAT-T

KD without GML 85.28± 0.14 76.69± 0.10 88.75± 0.25

KD + GML 86.03± 0.29 78.48 ± 0.29 88.38± 0.23

KD + GML-Co 85.25± 0.22 77.88± 0.33 88.27± 0.35

KD + GML-W 85.63± 0.17 78.06± 0.14 88.75 ± 0.14
KD + GML-C 87.32 ± 0.33 77.84± 0.25 88.45± 0.36

Table 5: Additional results for the performance of MLP with KD using the target model. We use
models with different architectures for the mutual learning process.

We present additional findings of the graph mutual learning process in Table 4, where we cooperatively
train GCN and GAT models, with GAT as the target model instead of GCN. We utilized the Citeseer
dataset for node classification and the Ogbg-molbbbp dataset for graph classification. The results
demonstrate the effectiveness of our enhancements in improving mutual learning performance.
Furthermore, we explored switching the target model for the knowledge distillation (KD) process,
employing models with diverse architectures. The results are detailed in Table 5. The experiments
were conducted using the Cora, Citeseer, and PubMed datasets. Our findings illustrate that our
enhancements enable switching the teacher model for KD while still achieving performance gains
compared to baseline models without cooperative training.

H EXPERIMENT ON OGBN-ARXIV

We conducted additional experiments on the larger ogbn-arxiv dataset from the OGB benchmark. This
dataset is more representative of real-world graph scenarios while remaining within our computational
budget. In this experiment, we used the GAT model as the target and evaluated GML’s performance
across varying cohort sizes with different initializations. The results, presented in Table 6, indicate
that GML performs effectively on larger datasets, maintaining its ability to improve accuracy and
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generalization. However, as the number of participating models increases, training time and memory
usage also grow. We propose that this computational overhead can be mitigated through parallelization
if sufficient GPUs with adequate memory are available. These findings provide a foundation for
future exploration into scaling online collaborative learning techniques with GNNs to even larger
datasets.

# Models Mean Accuracy (%) Mean Time (s) Mean Memory (MB)
1 53.93 ± 0.21 153.801 ± 55.931 270.47 ± 12.99
2 54.00 ± 0.16 389.386 ± 107.798 270.55 ± 12.97
3 54.03 ± 0.15 1660.993 ± 1184.938 270.69 ± 11.62
5 54.05 ± 0.09 2366.298 ± 608.315 270.85 ± 11.58

Table 6: Performance Metrics Across Different Numbers of Models

I EFFECT OF NOISY GRAPH STRUCTURES ON GML.

Methods No graph Random Barabási-Albert
GCN-Ind 89.00 70.00 69.33
GCN-GAT-C N/A 71.30 76.30

Table 7: Comparison of GML with single model GCN when trained with different graph structures
on the Iris dataset.

To demonstrate that our method can reduce the effect of overfitting to graph structures, we conducted
an experiment using the Iris dataset, which is not inherently a graph dataset. We trained a GCN model
with the Iris features and then created both a random graph and a Barabási-Albert graph for this dataset.
The Barabási-Albert graph, generated through preferential attachment, is a scale-free graph. The
results, presented in Table 7, showed a performance drop when training on these graphs, highlighting
how GNNs can overfit to graph structures even when they are unnecessary for the classification task.
More details on this issue can be found in Bechler-Speicher et al. (2023). Additionally, to illustrate
the importance of our mutual learning approach, we repeated the experiment with the generated
graphs using mutual learning. The results indicate significant performance improvements: from
70.00% to 71.30% with the random graph and from 69.33% to 76.30% with the Barabási-Albert
graph. These improvements demonstrate that mutual learning helps GNNs leverage their collective
knowledge to reduce overfitting to specific graph structures.

J IMPACT OF ADAPTIVE LOGIT WEIGHTING UNIT AND THE CONFIDENCE
PENALTY MECHANISM

We tested two cohorts: one with similar architectures in the cohort and another with randomly
sampled architectures from the three models utilized in our work. We designed this to minimize
potential human bias. In our experiments, we executed the experiments 10 times, calculating the
mean accuracy and standard deviation for each cohort. As shown in Figure 2, our results demonstrate
that the integration of both the adaptive logit weighting unit and the confidence penalty significantly
enhances performance compared to GML.

K SANITY CHECK

To further validate our findings, we applied the Wilcoxon signed-rank test on experiments in Ap-
pendix J, where the null hypothesis (H0: our model does not yield significantly better results than
GML) was tested. With a significance level of p < 0.05, we obtained a p-value of 0.00098 for both
the mixed and same architecture cohorts. This result allows us to confidently reject H0, confirming
that the improvements observed are statistically significant and not due to random fluctuations.These
results underscore the substantial impact of the adaptive logit weighting unit and the confidence
penalty mechanism.
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Figure 8: Comparison of our improvements over GML.

L IMPACT OF THE ENTROPY ENHANCEMENT COMPONENT UNDER NOISY
CONDITIONS

To evaluate the impact of the entropy enhancement component under noisy conditions, we conducted
additional experiments using GAT and GCN, with GCN as the target model. We introduced Laplace
noise of varying magnitudes (0.1, 0.3, 0.5, and 0.9) to the node features and applied GML with the
entropy enhancement component. The results, presented in Table 8, demonstrate the key insights.

Improved robustness at mild to moderate noise levels: Our findings shows that at noise levels
0.1, 0.3, and 0.5, GML with entropy enhancement component consistently outperformed individ-
ually trained GNN models. This improvement highlights the collaborative nature of GML, where
models share complementary knowledge, effectively mitigating the impact of noise and preserving
generalization ability, even under perturbations.

Diminished effectiveness at high noise levels: At higher noise magnitudes (e.g., 0.7 and 0.9), the
noise become dominant, reducing the effectiveness of knowledge transfer and entropy enhancement.
While GML still shows some robustness compared to individual models, the performance gap narrows
as the noise levels increases.

M GRAPH-AWARE ADAPTIVE LOGIT WEIGHTING

Our current GML design achieves (i) Enhanced Expressiveness: By focusing on knowledge transfer
among GNNs inherently suited for graph structures, our framework enables the ensemble to capture
richer and more diverse graph representations. (ii) Adaptive Learning: We utilize techniques like
adaptive logit weighting and entropy enhancement to optimize knowledge exchange among GNN
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Noise Level GML-C (%) GML (%) Individual GCN (%)
No noise 89.16± 0.28 88.77± 0.57 86.35± 0.13
0.1 82.86± 0.55 80.64± 0.57 79.88± 0.29
0.3 82.12± 0.64 80.76± 0.76 80.81± 0.27
0.5 81.40± 0.48 78.77± 0.76 81.87± 0.44
0.7 77.02± 0.69 77.32± 0.90 79.01± 0.42
0.9 82.41± 0.33 80.52± 0.65 83.03± 1.00

Table 8: GCN Results Across Different Setups and Noise Levels

peers. These components dynamically adjust learning strategies, particularly benefiting shallow
GNNs that may lack the capacity of deeper models in other domains. Through collaboration, these
models enhance their performance and generalization. However, GML can be extended to leverage the
message-passing capability of GNNs seamlessly. To illustrate the potential for leveraging message-
passing mechanisms more explicitly, we extended GML by incorporating a graph convolutional
layer into the entropy computation process. Specifically, we refined the entropy values using
neighborhood information via graph convolution. The negative entropy H(pj) is passed through a
graph convolutional layer:

Hg(pj) = GCNConv
(
H(pj), edge index

)
, (18)

where Hg(pj) ∈ RN×1 represent graph-convolved entropy, incorporating information from neighbor-
ing nodes and edge index denote the adjacency list representing the graph structure. The importance
score for class c is then computed using the graph-convolved entropy:

σc
j = Hg(pj)

⊤χjϕj . (19)

The adaptive weight vector remains the same but now uses the revised importance scores. This
refinement enables GML to utilize message-passing explicitly, enriching the knowledge exchange by
considering graph topology during the computation of importance scores.

In our experiment experiment using the GCN-SAGE-S architecture on the Cora dataset, we observed
improved performance with this extension. The results, presented in Table 9, demonstrate that
integrating message-passing into GML further enhances its effectiveness for graph-specific tasks.

Dataset Best Accuracy Before (%) Accuracy After (%)
Cora 88.69± 0.38 89.48± 0.42
Citeseer 77.80± 0.51 78.78± 0.32
PubMed 90.19± 0.30 90.31± 0.24

Table 9: Comparison of Accuracy Before and After Graph-Aware Optimization for Different Datasets

N TRADE-OFFS BETWEEN MODEL DIVERSITY AND COMPUTATIONAL
DEMANDS

As highlighted in Figure 5, we extended the GML framework to cohorts of up to 10 GNNs. These
results demonstrate consistent improvements in accuracy and generalization as the number of partici-
pating models increases, showcasing the scalability of GML.

We further investigate the computational costs of GML compared to traditional unidirectional KD
methods. While GML does not require a pre-trained teacher model, it does introduce additional
computational overhead due to the collaborative training process. To quantify this, we conducted
additional experiments on the Citeseer dataset, varying the number of peer models in GML and
measuring training time, memory usage, and performance. To compare with unidirectional KD, we
used the same GML framework but modified the knowledge transfer mechanism from bidirectional
to unidirectional. The results, summarized in Table 10, reveal that while increasing the number of
models improves accuracy and generalization, it also increases computational demands (time and
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memory). However, these demands can be mitigated with parallelization. For instance, by aligning
the number of participating GNNs with available GPUs, training time can be significantly reduced.
This highlights GML’s practicality even in resource-constrained settings, as it can leverage modern
hardware to balance model diversity and computational efficiency.

# Models Mean Accuracy (%) Mean Time (s) Mean Memory (MB)
GML

1 64.86± 3.28 0.783± 0.002 117.998± 0.031
2 65.41± 1.67 1.930± 0.075 121.821± 0.032
3 70.06± 0.91 3.214± 0.088 127.683± 0.032
5 70.40± 1.66 7.433± 0.114 131.541± 0.032
9 71.67± 0.29 18.155± 0.303 164.438± 0.032
12 71.96± 0.54 32.733± 0.604 171.965± 0.032

Unidirectional KD
1 - 0.500± 0.054 108.035± 0.032
2 - 1.401± 0.040 124.779± 0.032
3 - 2.407± 0.005 123.759± 0.032
5 - 4.628± 0.007 131.984± 0.032
9 - 8.006± 0.006 156.583± 0.032
12 - 12.006± 0.013 156.982± 0.032

Table 10: Performance Metrics Across Different Numbers of Models for GML and Unidirectional
KD

O IMPACT OF MUTUAL LEARNING ON NODE CLASSIFICATION AND GRAPH
CLASSIFICATION.

While our evaluation covers both node and graph classification tasks (as shown in Table 1), our
analysis reveals subtle differences in GML’s impact at these levels. For node classification, the
maximum performance gain (+2.44%) slightly exceeds that for graph classification (+2.32%). This
suggests that GML is particularly effective for localized tasks, such as node classification, where
learning fine-grained, node-specific features and their immediate neighborhood structures is crucial.
In contrast, graph classification, which depends on capturing holistic, global structural representations,
also benefits from GML, albeit to a slightly lesser extent. This difference highlights a potential area
for optimization to further enhance GML’s capability to model and transfer global graph properties
effectively. Additionally, we observed that the standard deviation for node classification (0.38) is
significantly smaller than that for graph classification (1.67). This indicates that GML provides more
stable and consistent performance improvements for node-level tasks, possibly due to the localized
nature of mutual learning among peer models.

P LIMITATIONS AND FUTURE DIRECTIONS

This section highlights the framework’s strengths while addressing key limitations and potential
improvements.

• Increased Computational Costs: Training larger GML cohorts demands significantly
higher time and memory resources, which can limit feasibility for extensive deployments.

• Scalability Challenges: Although performance improves with additional participating
GNNs, the corresponding rise in computational demands poses difficulties for large-scale
implementations.

• Model Diversity Trade-Off: Achieving optimal diversity within the cohort requires careful
architectural selection, adding complexity to the design process.

• Knowledge Transfer Limitations: While GML consistently improves peer-to-peer GNN
collaboration in graph classification, its effectiveness in transferring knowledge from GNNs
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to MLPs for graph-level tasks remains suboptimal. This highlights the need for enhanced
methods to better capture and transfer global structural properties, a focus of future work.

To address these challenges, potential improvements should include techniques that can address
the challenge of leveraging knowledge gained through GML during knowledge transfer to MPLs,
leveraging parallel processing with multiple GPUs, employing model compression techniques, and
optimizing the trade-off between model diversity and computational efficiency.
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