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ABSTRACT

Neural networks (NNs) are known to exhibit simplicity bias, where they tend to
prioritize learning simple features over more complex ones, even when the latter
are more informative. This bias can result in models making skewed predictions
with poor out-of-distribution (OOD) generalization. To address this issue, we pro-
pose three techniques to mitigate simplicity bias. One of these is a modification to
the Feature Sieve method. In the second method we utilize neuronal correlations
as a penalizing effect to try and enforce the learning of different features. The
third technique involves a novel feature-building approach called Self-Supervised
Augmentation. We validate our methods’ generalization capabilities through ex-
periments on a custom dataset.

1 INTRODUCTION

Motivated by the need to understand generalization in deep learning, there has been a surge of studies
focusing on the function classes favored by current training techniques for large neural networks
(Morwani et al., 2023; Zhang et al., 2022), (Zhang et al., 2021). A growing hypothesis suggests that
deep learning methods prefer learning simple functions over the data. While this inductive bias helps
prevent overfitting and improves in-distribution generalization in many cases, it proves inadequate in
certain scenarios. Neural networks exhibit a bias for simple features: given two features with equal
predictive power on the training set, gradient-based methods often cause the network to prioritize
learning the simpler features. This preference can reduce robustness to adversarial samples and
hinder OOD generalization.

Definition 1.1 (Low dimensionality simplicity bias). A model f : Rd → Rc with inputs x ∈ Rd

and outputs f(x) ∈ Rc (e.g., logits for c classes), trained on a distribution (x, y) ∼ D satisfies low
dimensional simplicity bias if there exists a projection matrix P ∈ Rd×d satisfying:

• rank(P ) = k ≪ d,

• f(Px(1) + P⊥x
(2)) ≈ f(x1) ∀(x(1), y(1)), (x(2), y(2)) ∼ D,

• An independent model g trained on (P⊥x, y) where (x, y) ∼ D achieves high accuracy.

We identify key limitations in existing methods and propose solutions, validated through exper-
iments on a custom dataset. Our contributions include a modified feature sieve method for bet-
ter forgetting gradient flow across layers, a novel regularization term to reduce excessive Neu-
ronal Correlation within batches, a feature mapping technique called Self-Supervised Augmentation
that enhances complex feature learning through forced reconstruction, and the creation of a novel
CIFAR10-MNIST dataset designed for robust evaluation of our methods.

∗All authors contributed equally to this work.
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2 METHODOLOGY

2.1 WEIGHTED FORGETTING SIEVE

The Feature Sieve in Tiwari & Shenoy (2023) employs a ’forgetting gradient’ to encourage lower
layers to discard simpler features in favor of more complex ones, but its effectiveness is limited by
gradient flow constraints. To address this, we propose attaching sieves to multiple layers, enabling
direct propagation of forgetting gradients to their respective layers while blocking their influence on
lower layers to stabilize training. Additionally, we introduce a weighted forgetting loss, where lower
layers receive stronger forgetting gradients, following a decreasing power series on the weights. To
manage computational costs, this attachment can be restricted to a fixed number of lower layers,
ensuring efficiency without excessive overhead. An illustration of this concept can be found in
Figure 1b, and the pseudocode for this algorithm can be found in Appendix section A.2.

2.2 CORRELATION REGULARIZATION

When a model predominantly relies on simpler features to make predictions, the feature maps in the
lower layers tend to exhibit high correlation along the channel dimension. Jin et al. (2022) introduced
a metric to penalize this excessive correlation, which has been shown to improve out-of-distribution
(OOD) generalization. While some degree of correlation is necessary for aggregating information
from lower to upper layers, excessive correlation in lower-layer activations indicates simplicity bias,
hindering the network from capturing more diverse local features. To mitigate simplicity bias, we
introduce a regularization term in the loss function that penalizes excessive correlation in the feature
maps of lower layers along the channel dimension. The regularization term is computed by first
extracting channel-wise values for a each spatial dimension, then constructing a covariance matrix
between channels for each spatial dimension using values from multiple samples in the batch. The
final regularization penalty is obtained by summing the absolute values of the off-diagonal elements
in the covariance matrix across all spatial dimensions, ensuring reduced redundancy in learned fea-
tures. Details on the mathematical formulation of Neuronal Correlation can be found in Appendix
section A.3. An illustration of this concept can be found in 1a.

2.3 SELF SUPERVISED AUGMENTATION

In the above methods, we aim to motivate the model to learn higher-complexity features. Instead of
directly forcing the model, we employ a self-supervised method to encode these features in a com-
pressed representation. Specifically, we construct an autoencoder, where the encoder part mirrors
the initial layers of the deep learning model. The autoencoder is trained to take an image as input
and reconstruct the same image as output. This forces the model to capture all useful features in the
intermediate representation, as it must learn these features to accurately reconstruct the image. After
training the autoencoder, we extract the learned weights and integrate them into the deep learning
model, freezing these layers. The model is then fine-tuned on the classification task. An illustration
of this concept can be found in 2.

3 DATASET AND RESULTS

We build a custom CIFAR10-MNIST dataset that combines the CIFAR-10 and MNIST datasets using
a transparency factor α = 0.3, creating a superimposed representation with both feature sets to
evaluate our methods for this task. We experiment with a simple 5 layer CNN model. We refer to
the plain model as Simple CNN.

The first task, known as the two-image task, involved training on image pairs: “plane” + “0” and
“car” + “1”. During testing, the model encountered novel pairs not found in training: “plane” + “1”
and “car” + “0”. The goal was to correctly classify the CIFAR image while preventing reliance on the
MNIST features. The results for this task for all the methods are presented in Table 1. As visible,
the Weighted Forgetting Sieve outperforms the Feature Sieve. Correlation Regularization on the
Simple CNN also exhibits an improvement over traditional training. Self-supervised Augmentation
achieves the best results among all the methods compared.
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(a) Correlation Regularization (b) Weighted Forgetting Sieve

Figure 1: Visualization and explanation of key components: (a) Correlation Regularization, where
for a fixed spatial coordinate, values along the channel and batch dimensions are collected to con-
struct the covariance matrix between different channels. In the final loss term, all the non-shaded
terms in the covariance matrix are summed up. (b) Weighted Forgetting Sieve, where each layer
has an auxiliary layer attached to it. The dotted arrows denote the flow of feature maps during the
forward pass. The solid arrows denote the flow of forgetting gradient during the backward pass. As
is visible, each layer receives its own forgetting gradient.

Figure 2: Architecture for the Self-Supervised Augmentation Method

We also tested our best performing method, Self-Supervised Augmentation, on the three-image test.
Its training set included {“plane” + “0”}, {“car” + “1”}, and {“bird” + “2”}, while the test set
included all possible combinations of these images. As evidenced by 3, the Self-supervised Aug-
mented CNN exhibits higher cross-pair accuracy than the simple CNN, indicating that our method
can successfully learn higher-complexity features. Additional experiments and their results can be
found in Appendix section A.1.

MNIST Class CIFAR Class
Plane Car Bird

0 99.4 5.6 11.8
1 3.8 99.2 25.2
2 17.6 24.4 99.0

MNIST Class CIFAR Class
Plane Car Bird

0 88.0 20.0 46.0
1 15.8 93.2 38.4
2 41.2 28.4 77.8

Figure 3: Results for the three-image test. (Left) Simple CNN (Right) Self-supervised Augmented
CNN.

4 FUTURE WORK AND CONCLUSION

Neural networks have been shown to exhibit a bias for learning simple features in favor of more
complex features. This affects their robustness and out-of-distribution generalization. The meth-
ods presented in this paper include the Weighted Forgetting Sieve, Correlation Regularization and
Self-Supervised Augmentation. The results from our designed tasks demonstrate the effectiveness
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Table 1: Results for the two-image pair task

Model Training Accuracy (%) Test Accuracy (%)

Simple CNN 97.3 8.6
Feature Sieve 97.0 25.0
Weighted Forgetting Sieve 94.0 36.0
Correlation Regularization 84.0 32.0
Self-supervised Augmentation 84.0 46.0

of these methods in reducing simplicity bias in neural networks. Future work includes applying
these methods in conjunction with one another, and theoretically grounding these works to better
understand their advantages and limitations.
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A APPENDIX

A.1 ADDITIONAL RESULTS ON THE CIFAR10-MNIST DATASET

Figure 4: Sample images from the training and test datasets for the two-image task.

Variable Alpha Test. We tried varying the transparency value, α, to investigate its effect on the
results. The α values we tested with were {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}. During the Simple CNN
training stage, for α = 0.05, the accuracy increased gradually with epochs. However, for α = 0.5,
the accuracy reached 85% in epoch 1 and 96% by epoch 5, indicating that the model was primarily
learning simpler features. We also observed that for α values of 0.05 and 0.1, where the digits were
barely visible, both the Simple CNN and the Self-Supervised Augmented CNN performed similarly.
However, for α = 0.2 and higher, the test loss on the cross terms dropped significantly for the Simple
CNN, while it remained declined much less rapidly for the Self-Supervised Augmented CNN.

Ten-image Task. In the ten-image task, we scale up the tests to include all 10 labels of the CIFAR10
and MNIST datasets. As shown by the results in 5, the model on average improves the accuracy of
the Simple CNN by almost 25%.

Base Model Variations. We also explored two base model variations to analyze their impact on
results. First, we increased the number of model parameters to examine its effect on performance.
Without augmentation, the results for the Simple CNN remained unchanged compared to the smaller
model, but after applying Self-supervised Augmentation, they were better than even the smaller
augmented model. Second, we tested training without freezing weights, allowing gradients to flow
through all layers. As expected, this led to a slight decrease in accuracy compared to our approach,
where weights are frozen after transfer.
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Figure 5: Ten-image task result. The Simple CNN has very low accuracy in the cross terms, while
the Self-Supervised Augmented CNN has significantly better cross term accuracies, denoting its
superior generalization capabilities.

A.2 PSEUDOCODE FOR WEIGHTED FORGETTING SIEVE

Algorithm 1 Weighted Forgetting Sieve

Require: Neural network modelM, importance weights w, input image x, optimizerO, scheduler
S , number of classes C

Ensure: Updated model with selectively forgotten information
1: Create uniform distribution target y← 1

C1B×C {B is batch size}
2: SetM to evaluation mode
3: s1, s2, s3, s4, s5, ←M(x) {Forward pass through the model}
4: O.zero grad() {Reset gradients}
5: for i ∈ {1, 2, 3, 4, 5} do
6: SetM to evaluation mode
7: Set sievei to training mode
8: Set corresponding core network components to training mode:
9: - conv layeri, pooling layeri, batch normi

10: ℓi ← wi · BCE(si,y) {Weighted binary cross-entropy loss}
11: ℓi.backward {Compute gradients}
12: end for
13: O.step() {Update model parameters}
14: if S is not None then
15: S.step() {Update learning rate schedule}
16: end if
17: return M{Return updated model}

A.3 NEURONAL CORRELATION DEFINITION

Let Tl ∈ Rn×A×B represent the feature maps at the l-th convolution layer, and let Tliab, where
i ∈ {1, . . . , n}, represent the output of the i-th feature map in the l-th layer at the spatial dimension
(a, b).

We define the correlation regularization term ρ(Tl) as:

ρ(Tl) =

h∑
b=1

w∑
a=1

n∑
i,j=1
i ̸=j

∣∣∣∣ρ(Tliab, Tljab)

2

∣∣∣∣
where:
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ρ(Tliab, Tljab) =
cov(Tliab, Tljab)

σTliab
σTljab

, ρ(Tliab, Tljab) ∈ [−1, 1].

Intuitively, ρ(Tl) represents the total pairwise correlation between channels in the feature maps
of the l-th layer.
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