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Enhancing Model Interpretability with Local Attribution over
Global Exploration

Anonymous Authors

ABSTRACT
In the field of artificial intelligence, AI models are frequently de-

scribed as ‘black boxes’ due to the obscurity of their internal mech-

anisms. It has ignited research interest on model interpretability,

especially in attribution methods that offers precise explanations

of model decisions. Current attribution algorithms typically eval-

uate the importance of each parameter by exploring the sample

space. A large number of intermediate states are introduced dur-

ing the exploration process, which may reach the model’s Out-of-

Distribution (OOD) space. Such intermediate states will impact the

attribution results, making it challenging to grasp the relative im-

portance of features. In this paper, we firstly define the local space

and its relevant properties, and we propose the Local Attribution

(LA) algorithm that leverages these properties. The LA algorithm

comprises both targeted and untargeted exploration phases, which

are designed to effectively generate intermediate states for attribu-

tion that thoroughly encompass the local space. Compared to the

state-of-the-art attribution methods, our approach achieves an av-

erage improvement of 38.21% in attribution effectiveness. Extensive

ablation studies within our experiments also validate the signifi-

cance of each component in our algorithm. Our code is available at:

https://anonymous.4open.science/r/LA-2024

CCS CONCEPTS
• Security and privacy→ Trusted computing.

KEYWORDS
XAI, Interpretability, Attribution

1 INTRODUCTION
Recent years have witnessed the emergence of deep learning, which

has significantly advanced the development of artificial intelligence

(AI). It has enabled computers to learn from extensive data and

achieve remarkable performance in areas such as image recognition

and natural language processing [9, 11], contributing to almost ev-

ery aspect of our daily life. For instance, in healthcare, deep learning

aids doctors in diseases diagnosis and treatments planning [4]. In

transportation, it powers autonomous vehicles that navigate cities

and highways safely and efficiently [16]. It also enhance customer

service by answering inquiries and solving issues [1]. Moreover, AI
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is becoming pivotal in industries such as finance andmanufacturing,

where it optimizes operations and boosts efficiency [3, 13, 29].

Deapite AI’s increasing practice, its models are often regarded as

‘black box’, reflecting the transparency and trust concerns in under-

standing how these models make decisions. It leads to several sig-

nificant challenges and potential issues. First, it undermines users’

trust in AI systems. In critical sectors like healthcare and finance, a

transparent decision-making process is essential for users to trust

the recommendations [12, 14]. A lack of trust will greatly reduce

the practical value of even the state-of-the-art technology [33]. Sec-

ondly, it complicates the identification and mitigation of errors or

biases. For example, addressing gender or racial bias in AI assisted

hiring is challenging without insights into the decision-making

criteria [28]. Furthermore, the ‘black box’ nature of AI poses chal-

lenges for legal and ethical responsibility [6]. In cases where AI

systems cause harm or disputes, pinpointing responsibility is dif-

ficult if the principles behind the behavior cannot be explained.

Lastly, this opacity can also hinder the regulation and public over-

sight of AI technologies, leading to technological developments

that deviate from societal ethics and values.

To address these challenges, Explainable AI (XAI) becomes a

trending topic for research, aiming to increase the transparency

and interpretability of artificial intelligence decision-making pro-

cesses. LIME is one of the earliest methods which approximates

the behavior of complex models around given inputs [19]. How-

ever, it fails to provide comprehensive and precise insights, and can

sometimes produce misleading explanations due to the reliance on

simplified assumptions about model behavior. Later approaches,

such as Grad-cam [20] and Score-cam [30], which use gradients

information, are limited by model structure and do not produce

fine-grained (input-dimension consistent) results. Introduced in

Integrated Gradients (IG) [25] with the axiomatic properties, Sen-
sitivity and Implementation Invariance, attribution method marks

a significant advancement in XAI. As a more robust approach, it

provides high-resolution, fine-grained explainability and are not

limited to model structure, allowing for precise attribution of model

results based on rigorous axiomatic principles.

Current attribution methods generally calculate the importance

of each dimension by accumulating gradients over intermediate

states [17, 25, 31, 35], which ensures compliance with axioms of

Sensitivity and Implementation invariance [25]. However, they

often fail to address the plausibility of these intermediate states.

Considering the extensive input space neural networks encounter,

it is impractical to accurately assess every potential state. In this

work, we firstly investigate this phenomenon and define a space

that neural networks are responsible for as the In-Distribution (ID)

space, whereas the space they are not responsible for is termed Out-

Of-Distribution (OOD) space. We observe that, most intermediate

states utilized in current attribution algorithms often fall within

the defined OOD space, which has led to attribution errors.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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To further investigate what types of intermediate states will

contribute to attribution results, we discuss two research questions:

• RQ1: Does the significance of the attribution results still

hold if there is a critical deviation in the features?

• RQ2: Can we still accurately assess the importance of re-

maining features when key features are excluded?

In addressing these research questions, we introduce the con-

cept of local spaces, where attribution approves to be valuable and

precise. Inspired by MFABA [35] and AGI [17], we explore a combi-

nation of targeted and untargeted adversarial attacks in local spaces.

We provide a thorough analysis from an optimization perspective

on how these attacks can be integrated and their contribution to

attribution exploration. Building on this analysis, we propose the

Local Attribution (LA) method, for which we provide the detailed

mathematical derivations and proofs demonstrating its compliance

with attribution axioms. Our contributions are outlined as follows:

• We identify that current attribution methods often assign

intermediate states to spaces not contributing to attribution

results. To address this issue, we introduce two research

questions and the concept of attribution local spaces.

• We design a Local Attribution (LA) method to ensure that

each intermediate state remains within the attribution local

space, and we provide detailed mathematical derivations and

proofs of its axiomatic properties.

• With extensive experiments, we demonstrate the effective-

ness of the LA method. Compared to other state-of-the-art

methods, LA algorithm improves the Insertion Score by an

average of 38.21% and reduces the Deletion Score by 11.52%,

significantly outperforming existing technologies.

• We have released the implementation code of the LA algo-

rithm, to facilitate the exploration, validation and improve-

ment together with other XAI researchers.

2 RELATEDWORK
In this section, we explore different methods used for explaining

Deep Neural Networks (DNNs) and provide a critical discussion

of these approaches, which are grouped by three types: local ap-

proximation methods, gradient-based attribution methods, and

adversarial-sample-based attribution methods.

2.1 Local Approximation Methods
Local approximation methods seek to understand the behavior

of the original model near specific inputs by constructing an ap-

proximate, more interpretable model. A well-known method is

LIME [19], which approximates local explainability by using mul-

tiple interpretable structures near the sample. However, LIME’s

local explainability requires assumptions, which may not always

be accurate. Moreover, LIME can be time-consuming for individual

samples. While rudimentary for neural network applications, LIME

has been foundational in advancing local explainability methods.

Following developments include Layer-wise Relevance Propaga-

tion [2] and DeepLIFT [21]. DeepLIFT quantifies the importance of

features by comparing the differences between input features and

predefined reference points. Although DeepLIFT performs well in

local explanation of nonlinear models, its high sensitivity to the

choice of reference points can lead to inconsistencies in attribution

results. Additionally, DeepLIFT does not satisfy the Implementation

invariance axiom proposed in IG [25], leading to potential biases.

2.2 Gradient-based Attribution Methods
Training neural networks inherently utilize gradients, which has

inspired the gradient-based methods that use model gradient in-

formation to explain decisions. Early methods like Saliency Map

(SM) [22] identify the most important features for model predictions

by calculating the gradients of input features relative to the model

output. However, SM is prone to gradient saturation, resulting in

unstable attribution results, and it does not meet the Sensitivity

axiom mentioned in subsequent IG [25], meaning it can yield a zero

attribution even if the model output changes. Later methods such as

Grad-cam [20] and Score-cam [30] use intermediate layer gradient

information but cannot provide high-resolution fine-grained ex-

plainability results, and thus cannot be considered true attribution

methods (refer to Section 3.1 problem definition).

The IG method addresses the insufficient gradient issue of SM

by integrating gradients along the path from baseline to input,

introducing the axioms of sensitivity and implementation invari-

ance, which are fundamental guarantees for attribution algorithms.

Our design also provides proofs of compliance with these axioms.

However, IG’s main challenge lies in its high computational cost,

requiring multiple forward and backward passes. To improve com-

putational efficiency, Fast IG (FIG) [8] optimizes the IG method

by improving numerical integration techniques to speed up the

attribution process. Although this optimization enhances efficiency,

the approximate nature of numerical integration might introduce

new errors, affecting the accuracy of attribution results. Addition-

ally, Expected Gradients (EG) [5] provides a more stable and con-

sistent assessment of feature importance by considering multiple

baselines and averaging their gradients, improving the IG method.

However, a limitation of the EG method is its assumption that

contributions from different baselines are equal, which may not

be suitable for all types of data and model structures, thus affect-

ing the generalizability of its explanations. SmoothGrad (SG) [24]

improves the smoothness and stability of attribution results by

adding random noise to inputs, reducing the noise in single gradi-

ent calculations. Despite these improvements, the addition of noise

may also mask understanding of subtle features important to the

model’s decision-making process, thus reducing the accuracy of

explanations. Guided IG (GIG) [10] combines the principles of IG

and guided backpropagation by selectively backpropagating gradi-

ents to enhance interpretability. However, GIG’s limitation is that it

may overemphasize features directly related to specific categories

while ignoring indirect features that are equally important to model

decisions, somewhat limiting its ability to provide comprehensive

explanations. This school of attribution algorithms based on IG is

limited by the choice of baseline in the attribution path, introducing

a significant amount of irrelevant noise.

2.3 Adversarial-sample-based Attribution
Methods

Adversarial-sample-based attribution methods provide deep expla-

nations of models by generating adversarial samples and exploring

model decision boundaries, meaning the attribution process no
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longer relies on manually specified baseline points. Adversarial

Gradient Integration (AGI) [17] is a representative work that uses

adversarial samples to explore decision boundaries and improves

attribution performance through nonlinear path integral gradients.

While AGI offers an innovative method of explanation, its perfor-

mance highly depends on the quality of the adversarial samples,

which may not be stable in some cases.

Boundary-based Integrated Gradients (BIG) [31] introduces a

boundary search mechanism to optimize the baseline selection,

thereby obtaining more accurate feature attributions. However,

BIG relies on a linear integration path, which may limit its ability to

capture the nonlinearity and complexity in model decision. AttEX-

plore [34] improves feature attribution by combining adversarial

attacks with model parameter exploration, emphasizing the ability

to transition between different decision boundaries. Although At-

tEXplore shows foresight in enhancing the generalization ability of

model explanations, its high computational complexity may limit its

application on large-scale models and datasets. MFABA (More Faith-

ful and Accelerated Boundary-based Attribution) [35] enhances the

accuracy and computational efficiency of explanations through

second-order Taylor expansion and decision boundary exploration,

particularly suited for complex model explanations. Nonetheless,

its reliance on higher-order derivatives may increase the compu-

tational burden, especially when dealing with large deep learning

models. This class of adversarial-sample-based attribution methods

introduces a large number of intermediate states from the OOD

space during the adversarial attack process, as shown in Figure. 1,

affecting the accuracy of attribution (discussed in Section 3.2).

3 METHOD
In this section, we define the attribution task, the local properties of

attribution, and the algorithmic procedure of the LA (Local Attribu-

tion) method. Ensuring local properties is key to the rationality of

attribution results, and within these constraints, it is still possible

to achieve results that satisfy the remaining axioms of attribution.

We will describe these in detail below and provide rigorous mathe-

matical derivations. Additionally, the LA algorithm consists of two

parts: targeted and untargeted attribution, which can be combined

under the premise of maintaining local properties.

3.1 Problem Definition
Given neural network parameters𝑤 ∈ R𝑛 and a sample 𝑥 ∈ R𝑛 to

be attributed, we aim to use an attribution method to obtain attri-

bution results 𝐴(𝑥) ∈ R𝑛 , where 𝐴𝑖 (𝑥) represents the importance

of the 𝑖-th feature dimension. The greater the attribution result,

the more important the dimension is for the model’s decision. We

use 𝑓 (𝑥) ∈ R𝑐 to represent the model output, where 𝑐 denotes the

number of classes.

3.2 Local Space of Attribution
Before introducing local properties, we present a critical research

question: RQ1: After significant deviation of features, does
the importance assessment of altered features have refer-
ential significance? Current mainstream attribution algorithms

overlook this question. To illustrate, consider a toy example where

a data sample 𝑥 has four dimensions 𝑥 = [6, 8, 6, 10]. During the use

OOD 

Space

Untargeted 

Attack

Local Space 

LA (ours)

Targeted 

Attack

Figure 1: A vast amount of Out-of-Distribution (OOD) space
exists outside the defined Local Space, where samples within
the OOD space lack guidance for attribution. Furthermore,
the use of both untargeted and targeted attacks enables the
exploration of a possibly comprehensive Local Space. This
aspect was discussed in depth from the perspective of the
loss function in Section 3.3.

0 2 4 6 8
Attack Steps

0.0

0.2

0.4

0.6

0.8

C
on

fid
en

ce
Category Confidence

Figure 2: When adversarial attacks exceed two iterations, the
model essentially lacks the current category’s characteristics,
and subsequent samples in the OOD space no longer guide
the attribution algorithm meaningfully.

of IG [25], gradients of intermediate variables accumulated from

the sample to the baseline are considered. Suppose there is only

one intermediate state, and the baseline is 𝑏 = [0, 0, 0, 0]. Thus, the
intermediate variable 𝑥 ′ lies between 𝑥 and 𝑏 at 𝑥 ′ = [3, 4, 3, 5]. At
this moment, we need to compute the gradient information, but is

this gradient information truly valuable? Given the vast input space

neural networks face—a space so large it’s impossible to traverse

fully—it means that models generally need only be responsible for

In-Distribution (ID) samples, and most of the space filled with Out-

Of-Distribution (OOD) samples is meaningless. Similarly, in the

OOD space, gradients will lack instructive significance because it

is virtually impossible for the model to encounter 𝑥 ′ = [3, 4, 3, 5]
in tasks, and 𝑥 ′ at this point cannot sustain the model’s decision,

placing 𝑥 ′ within the OOD space. This means that assessing sample
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feature importance in scenarios where features undergo signifi-

cant deviations and cannot maintain model decisions introduces

too much extraneous information from spaces the model is not

responsible for. Other methods like MFABA [35] and AGI [17] use

adversarial attacks to obtain intermediate states 𝑥 ′, but when ad-

versarial attacks are sufficiently frequent, 𝑥 ′ will ultimately fall into

OOD space. As shown in Figure. 2, after two or more adversarial

attacks, the attack samples are insufficient to maintain the model’s

decisions, leading to serious attribution biases.

We need further definition on what samples are considered to

be in the ID space. In Multiplicative Smoothing (MuS) [32], the

explainable method stable can be seen as when enough important

features are satisfied, adding additional features will not affect the

original model’s decision. That is, the model has obtained enough

important features to maintain the current decision, meaning these

crucial features are key to keeping the target within the ID space.

This also leads to RQ2: When important features are disre-
garded, can the remaining features still be correctly assessed
for importance?

As shown in Figure. 3, since assessing feature importance is

meaningless without important features, we must ensure that these

features do not change during the assessment. Unfortunately, we

cannot determine which features are important during the assess-

ment phase (importance can only be confirmed after, not during

the assessment, as they influence each other). Here, we provide the

definition of when an intermediate state is considered to be in the

Out-of-Distribution (OOD) space:An intermediate state is in the
OOD space if it cannot maintain the same model decision as
the original state. The only remaining option is to ensure that all

features are assessed within a local space where no significant
deviations occur.

Next we give the definition of attribution local space:

Theorem 3.1 (Local Space). Given a sample 𝑥 , the 𝜖-Local Space
of 𝑥 , denoted as 𝐵𝜖 (𝑥), is defined as:

𝐵𝜖 (𝑥) = {𝑥 | |𝑥𝑖 − 𝑥𝑖 | ≤ 𝜖𝑖 } (1)

where 𝜖 ∈ R𝑛 and 𝜖𝑖 =
𝑥𝑖
𝑠 , with 𝑠 being a hyperparameter that

controls the size of the local space (Spatial Range).

We assume that the importance assessment within the local

space is valid. Notably, each feature’s constraint 𝜖𝑖 on the local

space varies; larger feature values usually imply greater activation

but also indicate lower sensitivity to changes, warranting a larger

local space. We use the mapping 𝜖𝑖 =
𝑥𝑖
𝑠 to make the constraints

linearly related to the size of features. Our experiments will analyze

the difference between using constant 𝜖𝑖 and linearly related 𝜖𝑖 .

Next, we introduce our Local Attribution algorithm and present

our core theorem:

Theorem 3.2 (LA). Given parameters𝑤 ∈ R𝑛 and corresponding
sample 𝑥 , the local attribution for dimension 𝑖 can be expressed as

𝐿𝐴(𝑥𝑖 ) = E
𝑥=𝑢 (�̃� ),�̃�∼𝐵 𝜖

2

(𝑥 )

[
(𝑥𝑖 − 𝑥𝑖 ) ·

𝜕𝐿 (𝑥𝑖 ;𝑦,𝑤)
𝜕𝑥𝑖

]
(2)

where 𝐵 𝜖
2

(𝑥) denotes the 𝜖
2
-Local Space of sample 𝑥 , and 𝑢 rep-

resents the exploration function.

We define the importance of each dimension in the sample point

based on the expected change in the loss function value caused

within the local space. Intuitively, the dimensions that cause greater

changes in the loss function within the effective space (local space)

are more sensitive. Next, we will present the derivation proof from

the expected change in the loss function to Eq. 2.

Proof. Consider the expansion of the loss function 𝐿:

𝐿(𝑥 ;𝑦,𝑤) = 𝐿(𝑥 ;𝑦,𝑤) + (𝑥 − 𝑥) · 𝜕𝐿(𝑥 ;𝑦,𝑤)
𝜕𝑥

+ O (3)

where O represents higher order infinitesimals. From the property

of expectation and the symmetry of the local space, we have:

E
�̃�∼𝐵 𝜖

2

(𝑥 )
[𝐿 (𝑥𝑖 ;𝑦,𝑤) − 𝐿(𝑥 ;𝑦,𝑤)]

= E
�̃�∼𝐵 𝜖

2

(𝑥 )

[
(𝑥 − 𝑥) 𝜕𝐿(𝑥 ;𝑦,𝑤)

𝜕𝑥

]
= E

�̃�∼𝐵 𝜖
2

(𝑥 )
[(𝑥 − 𝑥)] · 𝜕𝐿(𝑥 ;𝑦,𝑤)

𝜕𝑥
= 0

(4)

because
𝜕𝐿 (𝑥 ;𝑦,𝑤 )

𝜕𝑥 is independent of the choice of 𝐵 𝜖
2

(𝑥).
Firstly, we perform a first-order Taylor expansion of the loss

function calculated for sample 𝑥 to get Eq. 3, which is substituted

into Eq. 4 to calculate the expected transformation of the loss func-

tion within the local space. (Taking one dimension of 𝑥 , replacing 𝑥

with 𝑥𝑖 in the formula, the derivation process remains unchanged,

i.e., E
�̃�∼𝐵 𝜖

2

(𝑥 )
[𝐿 (𝑥𝑖 ;𝑦,𝑤) − 𝐿(𝑥𝑖 ;𝑦,𝑤)] = 0). We see that under a

first-order approximation, it is not possible to evaluate each feature

through a single local space sampling. Introducing higher-order

approximations can mitigate this issue, but due to the presence

of sampling, it is impractical to introduce finite differences [15]

to approximate the Hessian matrix in intermediate computations,

which also makes introducing higher-order approximations com-

putationally infeasible.

E
𝑥=𝑢 (�̃� ),�̃�∼𝐵 𝜖

2

(𝑥 )
[𝐿(𝑥 ;𝑦,𝑤) − 𝐿(𝑥 ;𝑦,𝑤)]

= E
𝑥=𝑢 (�̃� ),�̃�∼𝐵 𝜖

2

(𝑥 )

[
(𝑥 − 𝑥) 𝜕𝐿(𝑥 ;𝑦,𝑤)

𝜕𝑥
+ (𝑥 − 𝑥) 𝜕𝐿(𝑥 ;𝑦,𝑤)

𝜕𝑥

]
= E

𝑥=𝑢 (�̃� ),�̃�∼𝐵 𝜖
2

(𝑥 )

[
(𝑥 − 𝑥) 𝜕𝐿(𝑥 ;𝑦,𝑤)

𝜕𝑥

]
=

𝑛∑︁
𝑖=1

E
𝑥=𝑢 (�̃� ),�̃�∼𝐵 𝜖

2

(𝑥 )

[
(𝑥𝑖 − 𝑥𝑖 ) ·

𝜕𝐿(𝑥 ;𝑦,𝑤)
𝜕𝑥𝑖

]
(5)

□

To enable practical computation, we introduce an exploration

function 𝑢, which ensures that the transformed samples remain

within the 𝜖-Local Space (proof in Appendix C). Inspired byMFABA [35]

and AGI [17], the function 𝑢 can utilize both untargeted (Eq. 6) and

targeted (Eq. 7) adversarial attacks, where the choice of 𝑦𝑡 is from

categories other than the most probable, selected in descending

order of confidence. Our experiments will involve an ablation study

on the number of categories selected.

𝑢𝑢 (𝑥) = 𝑥 + 𝜀

2

· sign
(
𝜕𝐿(𝑥 ;𝑦,𝑤)

𝜕𝑥

)
(6)
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Figure 3: After removing the important features, the relative importance of the remaining features is not as significant. As
shown in (a), the features in the red area are notably more important for the category of cats compared to those in the blue
area. However, as depicted in (b), after the cat features have been removed, it becomes challenging to assess the importance of
the remaining features.

𝑢𝑡 (𝑥) = 𝑥 − 𝜀

2

· sign
(
𝜕𝐿(𝑥 ;𝑦𝑡 ,𝑤)

𝜕𝑥

)
(7)

3.3 Deep Analysis of Untargeted and Targeted
Adversarial Attacks

The direct output of our neural network is defined as 𝑧 = 𝑓 (𝑥) ∈
R𝑐 , and after passing through a softmax function, 𝑧 becomes a

probability distribution 𝑝 = softmax(𝑧) ∈ R𝑐 with 𝑝𝑖 ∈ (0, 1).
Observing the gradient

𝜕𝑧𝑖
𝜕𝑥 ∈ R𝑛 , updating 𝑥 along the direction

of
𝜕𝑧𝑖
𝜕𝑥 increases 𝑧𝑖 (proof refers to Eq. 3, the Taylor expansion). We

examine the gradient information of 𝑧 during the computation of

cross-entropy loss as shown in Eq. 8.

𝜕𝐿(𝑥 ;𝑦,𝑤)
𝜕𝑧𝑖

=

{
𝑝𝑖 − 1 if 𝑖 = class of 𝑦

𝑝𝑖 otherwise

(8)

Using the chain rule for gradients, we find
𝜕𝐿 (𝑥 ;𝑦,𝑤 )

𝜕𝑥 =
𝜕𝐿 (𝑥 ;𝑦,𝑤 )

𝜕𝑧𝑖
·

𝜕𝑧𝑖
𝜕𝑥 . Combining with Eq. 8, we observe that when 𝑖 is the original

category (the most probable category), the gradient information

𝜕𝑧 𝑗
𝜕𝑥 , 𝑗 ≠ 𝑖 , will be low, since the probability values 𝑝 𝑗 are lower

than for the original category. Thus, relying solely on untargeted

adversarial attacks to explore the local space might neglect the in-

formation from categories other than the original. This necessitates

the introduction of targeted attacks for other categories. As shown

in Figure. 1, considering that the sign of targeted adversarial at-

tacks is opposite to that of untargeted attacks, analyzing with 1−𝑝 𝑗

becomes relevant, where 1 − 𝑝 𝑗 is large when 𝑝 𝑗 is small, allow-

ing the preservation of gradient information

𝜕𝑧 𝑗
𝜕𝑥 . From a gradient

perspective, it is crucial to incorporate both forms of adversarial

attack in the local space, and since 𝜖𝑖 remains the same under both

attack conditions, their effects can be combined additively.

3.4 Local space sampling optimization
Finally, for the sampling process from 𝐵(𝑥) to obtain 𝑥 , we can

approximate it iteratively, using the gradient calculated from the

previous sample step to perform a one-step attack from the original

sample. If the sign of the gradient in the same dimension changes

within a local space, it indicates that the dimension is sensitive and

requires further exploration. If the dimension remains unchanged,

it implies that maintaining the current dimension does not require

alteration, thus reducing the scope of space that random sampling

needs to explore. The obtained 𝑥 still resides within the local space

𝐵(𝑥), and we provide rigorous proof in Appendix D and pseudocode

in Appendix E.

4 EXPERIMENTS
In this section, we provide a detailed description of the series of

experiments conducted using the Local Attribution (LA) algorithm,

including the choice of datasets, models, baseline methods, evalua-

tion metrics, and experimental analysis.
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Table 1: Performance comparison of LA with 11 other competing methods across four models using Insertion and Deletion
Scores. Higher Insertion and lower Deletion indicate better attribution performance, with Insertion considered more significant
than Deletion

Method

Inception-v3 ResNet-50 VGG16 MaxViT-T

Insertion Deletion Insertion Deletion Insertion Deletion Insertion Deletion

FIG 0.05604 0.08542 0.03165 0.04278 0.02495 0.03880 0.23969 0.28277

DeepLIFT 0.09273 0.06974 0.04469 0.03378 0.03969 0.02343 0.26163 0.26138

GIG 0.10591 0.03879 0.05059 0.02005 0.04236 0.01649 0.29247 0.19346

IG 0.10863 0.04546 0.05802 0.02837 0.04461 0.02166 0.32399 0.26316

SG 0.18743 0.03688 0.12434 0.02316 0.12690 0.01746 0.46441 0.16277

BIG 0.20548 0.09443 0.12242 0.07208 0.08349 0.05596 0.36900 0.26257

SM 0.31201 0.10237 0.13429 0.08475 0.09684 0.06357 0.30256 0.24372

MFABA 0.32255 0.09913 0.14623 0.08333 0.11410 0.06083 0.28051 0.42919

EG 0.34311 0.28816 0.27563 0.22065 0.27820 0.35596 0.49227 0.55472

AGI 0.40435 0.08678 0.41482 0.06224 0.32855 0.05438 0.52116 0.24486

AttEXplore 0.44321 0.08062 0.32366 0.05471 0.29926 0.04445 0.40683 0.25082

LA (ours) 0.54415 0.07366 0.51956 0.04856 0.42071 0.04318 0.67147 0.23326

4.1 Dataset and Models
Our experiments randomly selected 1000 images from the Ima-

geNet dataset, following the precedent set by existing methods

such as AGI [17], MFABA [35], and AttEXplore [34]. Furthermore,

we tested the LA algorithm using four different convolutional neu-

ral network architectures to assess its effectiveness and generality,

namely Inception-v3 [26], ResNet-50 [7], VGG16 [23], and MaxViT-

T [27].

4.2 Baselines
To comprehensively evaluate the performance of the Local Attri-

bution (LA) algorithm and ensure the fairness of our assessments,

we have compared LA against eleven baseline methods. These

baselines cover a wide range of XAI methods, including AGI [17],

AttEXplore [34], BIG [31], DeepLIFT [21], EG [5], FIG [8], GIG [10],

IG [25], MFABA [35], SG [24] , and SM [22]. These methods repre-

sent various technical approaches in the field of model explainabil-

ity, providing a broad reference standard for evaluation.

4.3 Evaluated Metrics
We employed two traditional metrics, Insertion Score and Dele-

tion Score, to assess the explanatory power of each explainabil-

ity method. These metrics evaluate the model’s dependence on

different parts of the input data by analyzing changes in model

performance [17]. The Insertion Score evaluates changes in model

performance by progressively converting pixels from a baseline

state (usually a state containing no meaningful information, such

as all-black or all-white images) to the pixels of the original image.

This conversion involves incorporating a certain number of the

most important pixels, as determined by the explainability method,

from the baseline state to their values in the original image. This

process is repeated, re-evaluating the model’s performance each

time until all pixels have been converted from the baseline state

to their corresponding pixels in the original image. The Insertion

Score is typically quantified by the degree of improvement in model

performance, represented by the following formula:

InsertionScore =
1

𝑁

𝑁∑︁
𝑖=1

(𝑃𝑖 − 𝑃0)

where𝑁 is the total number of steps, 𝑃𝑖 is themodel performance

score after step 𝑖 , and 𝑃0 is the initial state performance score (when

no significant pixels are inserted).

The Deletion Score is calculated by progressively removing

the most important pixels from the original image and observing

changes in model performance. Each removal involves replacing a

certain number of the most important pixels (again determined by

the explainability map) with pixels of a baseline state. This process

is continuously repeated, re-evaluating the model’s performance

each time, until all pixels deemed important have been removed.

The Deletion Score is quantified by the degree of reduction in model

performance, represented by the following formula:

DeletionScore =
1

𝑁

𝑁∑︁
𝑖=1

(𝑃
full

− 𝑃𝑖 )

where 𝑃
full

is the model performance score under the full image,

and 𝑃𝑖 is the model performance score after step 𝑖 when important

pixels have been removed.

We identified implementation biases in the Insertion Score and

Deletion Score in the open-source codes of RISE [18], MFABA [35],

BIG [31], and AGI [17]. Previous works performed importance rank-

ing by sorting each channel of the image separately, but the actual

evaluation process should treat each input dimension equivalently.

Therefore, we corrected this bias in this paper. To ensure consis-

tency in experimental results, we also replicated the experiments
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Figure 4: Visual comparison of the attribution effects of LA and other competing algorithms on the Inception-v3

Prediction: African_hunting_dog
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Figure 5: Visual comparison of the attribution effects of LA and other competing algorithms on the MaxViT-T

from previous works (presented in Appendix F). Notably, prioritiz-

ing the insertion of important features with the Insert score and

prioritizing the removal of unimportant features with the Deletion

Score are equivalent, as known by symmetry. Furthermore, accord-

ing toRQ2, when important features are lost, the attribution results

are less meaningful, implying that a Deletion score focused on re-

moving important features only needs to be within a minimal range

and is less informative than prioritizing the addition of important

features with the Insertion score.

4.4 Parameters
In this series of experiments, we set the number of sampling to 30

for the MaxViT-T model and 20 for the other models. The spatial

range 𝑠 was consistently set to 20 across all experiments.

4.5 Experimental Results
As shown in Tab. 1, our LA method achieved significant improve-

ments. Compared to other methods, the average increase in Inser-

tion across the four models was 0.31758, and the average reduction

in Deletion was 0.028883. Specifically, the average improvements

in Insertion for the Inception-v3, ResNet-50, VGG16, and MaxViT-T

models were 0.30948, 0.36262, 0.28626, and 0.31197 respectively;

while the reductions in Deletion were 0.019774, 0.017429, 0.025277,

and 0.053052 respectively. Compared to the latest attribution meth-

ods like AGI, MFABA, and AttEXplore, LA showed clear advance-

ments. Notably, LA not only improved in terms of Insertion but

also reduced Deletion, indicating a comprehensive enhancement

in explainability performance compared to these methods. While

some methods slightly outperformed LA in terms of Deletion, their

Insertion scores were substantially lower than LA. As previously

mentioned, the significance of Insertion outweighs that of Deletion,
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Figure 6: Comparison of Insertion and Deletion Scores across
Different Models and Space Constraints
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Figure 7: Comparison of Insertion and Deletion Scores across
Different Models and Attack Type

thereby firmly establishing the efficacy of the LA method. More

results are provided in Appendix F and G.

Additionally, Figure. 4 and Figure. 5 show the attribution results

of our LA method versus other methods on the Inception-v3 and

MaxViT-T models. It is evident that our LA method more accurately

and concisely captures the key features in images, while the outputs

from other methods appear more dispersed and blurred.

4.6 Ablation Studies
4.6.1 Impact of Constant vs. Linear Space Constraints on Effec-
tiveness. This section discusses the impact of Constant and Linear

space constraints on the effectiveness of LA. We fixed the number

of samples and the spatial range 𝑠 at 20. As shown in Figure. 6,

across different models, the attribution performance under Linear

space constraints was comprehensively better than under Constant

constraints, with significantly higher Insertion Scores and lower

Deletion Scores under Linear constraints.

4.6.2 Impact of Attack Type on Effectiveness. We discuss the impact

of targeted and untargeted attacks on the effectiveness of LA. The

number of samples and the spatial range 𝑠 were kept constant at

20. As depicted in Figure. 7, across different models, the Insertion

from Untargeted Attacks was higher than from Targeted Attacks.

However, the Deletion Scores were relatively similar, showing little

variation.

4.6.3 Impact of Sampling Times on Effectiveness. This part dis-

cusses how the number of Sampling affects the effectiveness of LA.
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Figure 8: The impact of changes in sampling times on the
performance of the LA method on the Inception-v3
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Figure 9: The impact of changes in Spatial Range 𝑠 on the
performance of the LA method on the Inception-v3 model

We kept the spatial range 𝑠 at 20. As shown in Figure. 8 with an in-

crease in sampling rate, LA’s Insertion Score increased and showed

a trend towards convergence, while the increase in Deletion Score

was more abrupt.

4.6.4 Impact of Spatial Range 𝑠 on Effectiveness. In this section, we

explore the impact of the spatial range 𝑠 on the effectiveness of LA.

The number of samples was fixed at 20. As illustrated in Figure. 9,

with an increase in 𝑠 , the Insertion Score initially increased and then

decreased, peaking when 𝑠 was at 10. Conversely, the Deletion Score

increased with larger 𝑠 values, but the rate of increase gradually

weakened.

5 CONCLUSION
In this paper, we identifies the challenge of ineffective intermediate

states in current attribution algorithms, which has significantly

impacted the attribution results. To better investigate this issue, we

introduces the concept of Local Space to ensure the validity of inter-

mediate states during the attribution process. With these findings,

we propose the LA algorithm, which can comprehensively explore

the Local Space using both targeted and untargeted adversarial

attacks, thereby achieving state-of-the-art attribution performance

in comparison with other methods. We provide rigorous mathe-

matical derivations and ablation study to validate the significance

of each component in our algorithm. We anticipate this work will

facilitate the attribution method in XAI research.
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