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ABSTRACT

Incomplete multi-view clustering (IMVC) aims to cluster multi-view data that are
only partially available. This poses two main challenges: effectively leveraging
multi-view information and mitigating the impact of missing views. Prevailing
solutions employ cross-view contrastive learning and missing view recovery tech-
niques respectively. However, they either neglect valuable complementary infor-
mation by focusing only on consensus between views or provide unreliable re-
covered views due to the absence of supervision. To address these limitations,
we propose a novel Unified and Robust Representation Learning for Incomplete
Multi-View Clustering (URRL-IMVC). URRL-IMVC learns a unified embedding
that is robust to view missing conditions by integrating information from multiple
views and neighboring samples. Firstly, to overcome the limitations of cross-view
contrastive learning, URRL-IMVC incorporates an attention-based auto-encoder
framework to fuse multi-view information and generate unified embeddings. Sec-
ondly, URRL-IMVC directly enhances the robustness of the unified embedding
against view-missing conditions through KNN imputation and data augmentation
techniques, eliminating the need for explicit missing view recovery. Finally, incre-
mental improvements are introduced to further enhance the overall performance,
such as adaptive masking, dynamic initialization, etc. We extensively evaluate the
proposed URRL-IMVC framework on various benchmark datasets, demonstrat-
ing its state-of-the-art performance. Furthermore, comprehensive ablation studies
are performed to validate the effectiveness of our design.

1 INTRODUCTION

Multi-view data (Fu et al., 2020) is commonly collected and utilized in various domains, making
multi-view clustering (MVC) a crucial tool for analyzing such data and uncovering its underlying
structures (Chao et al., 2021; Chen et al., 2022). Previous research has proposed several approaches
(Xu et al., 2022; 2021) achieving promising performance by exploiting consensus or complemen-
tary information between views. However, in real-world applications, some views may be partially
unavailable due to sensor malfunctions or other practical reasons. Existing MVC methods heavily
rely on complete views to learn a comprehensive representation for clustering, making them in-
adequate under such conditions. To address this issue, Incomplete Multi-view Clustering (IMVC)
methods have been introduced to reduce the impact of missing views (Wen et al., 2023). Various
IMVC approaches have been proposed, including matrix decomposition (Li et al., 2014), kernel-
based (Liu et al., 2017), and graph-based (Gao et al., 2016) methods. With the superior feature
representation ability demonstrated by deep learning, some IMVC methods have integrated deep
learning techniques, known as Deep Incomplete Multi-view Clustering (DIMVC) methods, which
we will mainly discuss below. The key challenges in the IMVC task revolve around two problems:
i) effectively utilizing multi-view information, and ii) mitigating the impact of missing views. Previ-
ous DIMVC works (Wang et al., 2018; Lin et al., 2021; 2023; Jin et al., 2023; Liu et al., 2023) have
employed two mainstream strategies to address these problems: 1) cross-view contrastive learning,
and 2) missing view recovery. However, these strategies have inherent drawbacks.

A general framework for cross-view contrastive learning is illustrated in Fig 1a, which originates
from the MVC approaches. In this framework, Deep Neural Network (DNN) auto-encoders are em-
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ployed to extract embeddings for each view. The embeddings are then aligned using a contrastive
loss, aiming to minimize the distance between embeddings from the same sample across differ-
ent views while simultaneously maximizing the distance with other samples (Jin et al., 2023; Lin
et al., 2021; Yang et al., 2023b). However, this framework primarily focuses on extracting consensus
information in multi-view data, overlooking the valuable complementary information present. Addi-
tionally, the efficiency of the pair-wise contrastive strategy suffers as the number of views increases,
and the effectiveness of this strategy diminishes due to less overlapped information between views
(See Table 7 for experimental analysis). Theoretical analysis by Trosten et al. (2023) supports these
observations, highlighting that contrastive alignment can reduce the number of separable clusters in
the representation space, with this effect worsening as the number of views increases.

(a) Cross-view contrastive learning framework (b) Missing view recovery framework

(c) Our unified learning framework

Figure 1: A comparison between our unified learning framework and commonly used cross-view
contrastive learning and missing view recovery framework. The key difference lies in how the
unified embedding for clustering is obtained. Our design 1c directly fuses multi-view information
and utilizes KNN imputation and data augmentation to obtain unified and robust embedding under
view-missing conditions, avoiding the drawbacks of 1a and 1b.

The missing view recovery framework, as depicted in 1b, is commonly adopted in IMVC ap-
proaches. Typically, a DNN is employed to recover the missing view, either in the data or latent
space. Subsequently, MVC methods or another view fusion network are utilized for clustering
based on the recovered views. However, the reliability of the recovered views is a concern since
the recovery ability of DNNs relies on unsupervised training. Meanwhile in some instances, (Liu
et al., 2023) for example, missing views are recovered by a fused embedding in the first stage, and
subsequently used to generate another fused embedding for clustering in the second stage, intro-
ducing unnecessary complexity and inefficiency to the pipeline. We propose that a well-designed
recovery-free method can achieve comparable performance to recovery-based methods while offer-
ing the advantages of simplicity and reduced computational overhead (See Table 12 for experimental
analysis).

To address the aforementioned challenges, we propose a Unified and Robust Representation Learn-
ing framework for Incomplete Multi-View Clustering (URRL-IMVC). Our framework, depicted
in Fig 1c, is designed to be cross-view contrastive learning-free and missing view recovery-free.
First, in order to overcome the limitations of cross-view contrastive learning, our approach focuses
on learning a unified embedding that captures the comprehensive representation. We achieve this
by employing a scalable attention-based auto-encoder network, which intelligently fuses the infor-
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mation from multiple views to generate the desired representation. Second, to tackle the issue of
missing views, we aim to directly enhance the robustness of the unified embedding against view-
missing conditions without explicitly recovering the missing views. We introduce two strategies to
achieve this robustness. 1) We treat view missing as a form of noise and draw inspiration from suc-
cessful applications of denoising and masked auto-encoders (Vincent et al., 2008; He et al., 2022).
Our proposed approach randomly drops out existing views as a form of data augmentation to simu-
late the view missing condition. By reconstructing denoised input data from the unified embedding
and imposing constraints between the augmented and un-augmented embeddings, we enhance the
robustness of the unified representation. 2) As the old saying goes, “One cannot make bricks with-
out straw”, it is hard to directly learn to reconstruct a dropped-out view. We introduce k-nearest
neighbors (KNN) as additional inputs, with a cross-view imputation strategy to fill in the miss-
ing or dropped-out views, providing valuable hints for reconstruction. We would like to highlight
that while previous methods have focused on either fusing multi-view information (Wang et al.,
2021; Lin et al., 2022) or incorporating neighborhood information (Nguyen et al., 2021; Wang et al.,
2019b; Yang et al., 2020; Tu et al., 2021) for clustering, our approach represents one of the ini-
tial endeavors to fuse both aspects, thanks to the scalability of our proposed framework. Finally,
we conduct experiments based on this framework and make incremental improvements to enhance
clustering performance and stability. Some of the key enhancements include adaptive masking and
positional encoding in the Transformer-based Encoder to filter out noise and emphasize critical in-
formation, as well as dynamic initialization in the Clustering Module to improve clustering stability.

To summarize, our main contributions are:

• We propose a unified representation learning framework that efficiently fuses both multi-
view and neighborhood information, allowing for better capturing of consensus and com-
plementary information while avoiding the limitations of cross-view contrastive learning.

• We proposed novel strategies, including KNN imputation and data augmentation, to di-
rectly learn a robust representation capable of handling view-missing conditions without
explicit missing view recovery.

• Multiple incremental improvements and thorough ablation studies are conducted, leading
to enhanced clustering performance and providing valuable insights for future research in
this field.

• Through comprehensive experiments on diverse benchmark datasets, we demonstrate the
superior performance of our unified representation learning framework, establishing it as
the state-of-the-art method for incomplete multi-view clustering.

2 RELATED WORKS

Related traditional IMVC approaches are described in Appendix A. Deep neural networks (DNNs)
have shown good performance in learning feature representation, which is beneficial for the IMVC
task. Various IMVC approaches have integrated DNNs into their framework, denoted as DIMVC
approaches. In terms of network architecture, DIMVC approaches can be divided into four cate-
gories. (1) Auto-encoder-based approaches (Lin et al., 2022; Jin et al., 2023; Lin et al., 2021; 2023).
These approaches utilize auto-encoders to extract high-level features of each view, which are usually
combined with contrastive learning or cross-view prediction to handle the incompleteness problem.
(2) Generative network-based approaches. For the IMVC task, an intuitive solution is to complete
the missing views with generative models, transforming it into an MVC task. Adversarial learning
(Goodfellow et al., 2014) is commonly adopted by generative IMVC approaches including AIMVC
Xu et al. (2019), PMVC-CG Wang et al. (2018), and GP-MVC Wang et al. (2021) to improve
data distribution learning in the context of IMVC. (3) Graph Neural Network-based (GNN-based)
approaches (Wang et al., 2022; 2018). These approaches aim to learn consensus representations
from the structure information contained in the graphs constructed for each view. (4) Transformer
(Vaswani et al., 2017) or attention-based approaches. The Transformer network has gained attention
in recent years due to its successful application in various domains. Its architecture, along with its
Multi-head Attention mechanism, has been particularly effective in capturing complex relationships.
In the field of DIMVC, RecFormer (Liu et al., 2023) proposed a Transformer auto-encoder with a
mask to recover missing views, while MCAC (Zhang & Zhu, 2023) and IMVC-PBI (Li et al., 2023a)
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incorporated attention mechanisms into their frameworks. In this paper, we leverage an auto-encoder
architecture based on the Transformer framework to address the challenges of the IMVC task.

3 THE PROPOSED METHOD

Notations. An incomplete multi-view dataset with N samples and V views is denoted as X =
{X(1), X(2), · · · , X(V )}, X(v) ∈ RN×dv , where dv denotes the dimension of v-th view. The view
missing condition can be described by a binary missing indicator matrix M ∈ {0, 1}N×V , where
Mij = 0 indicates the j-th view of the i-th sample is missing and Mij = 1 just the opposite. An
extra restriction is imposed:

∑
j Mij ≥ 1, ensuring that at least one view is available for each

sample, which is essential for the clustering task.

3.1 FRAMEWORK

Figure 2: The framework of URRL-IMVC. During training, the input data is augmented to simulate
view-missing conditions, and KNN Imputation provides hints for missing views, forming an input
batch with both neighbor and view dimensions. This batch is fed into the auto-encoder network,
consisting of the Encoder (including the Neighbor Dimensional Encoder and View Dimensional En-
coder), the Decoder, and the Clustering Module. The Encoders fuse information from the neighbor
and view dimensions to generate a unified embedding. The Decoder reconstructs the augmented
input, and the Clustering Module produces clustering results. Additionally, an un-augmented em-
bedding is obtained by passing the original input data through the shared Encoders. Three loss
functions, including Reconstruction loss, Robustness loss, and Clustering loss, enhance robustness
against view-missing conditions and encourage learning clustering-friendly embeddings.

Unlike many prior approaches in the field of MVC that employ view-specific auto-encoders for each
view, we propose a novel framework using a unified auto-encoder that effectively fuses multi-view
data. The network architecture, depicted in Fig 2, consists of three key modules: the Encoder f , the
Decoder g, and the Clustering Module h. The Encoder can be further divided into two submodules:
the Neighbor Dimensional Encoder (NDE) and the View Dimensional Encoder (VDE). To provide
a formal description, the framework operates as follows. Given an incomplete multi-view data
sample x = {x(1),x(2), · · · ,x(V )},x(v) ∈ Rdv from dataset X with its missing indicator vector
m ∈ {0, 1}V , we apply K-Nearest-Neighbor (KNN) Imputation and Data Augmentation (KIDA),
as described in section 3.2, to obtain the input for the auto-encoder network,

x̄, x̄′′, m̄, m̄′ = KIDA(x,m); x̄(v), x̄′′(v) ∈ Rk×dv ; m̄, m̄′ ∈ {0, 1}k×V (1)

where x̄, m̄ is the data and mask after KNN Imputation, while x̄′′, m̄′ is the augmented version of
x̄, m̄, and k is the hyperparameter k in KNN. Next, these inputs are fed into the Encoder network
to obtain the augmented and un-augmented embeddings, denoted as z′ and z respectively,

z = f(x̄, m̄;θE), z
′ = f(x̄′′, m̄′;θE); z, z

′ ∈ Rde (2)
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where θE represents the parameters of the Encoder and de is the dimension of the embedding.
Following that, the Decoder maps the augmented embedding back to the data space in order to
reconstruct the data sample,

x̂′ = g(z′;θD), x̂′(v) ∈ Rdv (3)
where similarly θD represents the parameters of the Decoder. Simultaneously, clustering is per-
formed using the un-augmented embedding,

c = h(z;θC), c ∈ [0, 1]dc (4)

where c is the clustering result, and represents the probabilities of the data sample belonging to dc
cluster centers. During training, the loss function defined in equation 5 is computed to optimize
parameters θE ,θD,θC ; During testing, c is regarded as the final clustering result.

In the following sections, we will introduce the Encoder module, including NDE and VDE. The
detailed design of the Decoder and the Clustering Module are referenced in Appendix B.3 and B.4.

3.1.1 NEIGHBOR DIMENSIONAL ENCODER

KNN Imputation 3.2 provides additional information for missing views, but the retrieved nearest
neighbors may contain noise and be unreliable. To address this issue, we propose the Neighbor Di-
mensional Encoder (NDE), which is a series of customized Transformer Encoders (Vaswani et al.,
2017), with each one dedicated to a view to fuse its KNN input and filter out noise. The customiza-
tion of the NDE module mainly involves three key aspects:

Distance-based Positional Encoding (DPE). The order or distance of the KNN instances contains
vital information regarding the reliability of the inputs, with farther neighbors noisier and less reli-
able. To capture this information for the permutation invariant Transformer structure, we introduce
Distance Positional Encoding (DPE) to provide this extra KNN order information. We explored vari-
ous designs of positional encoding (PE) considering the data sources and their combination with data
in Table 11. Among these configurations, concatenating cosine distance-based (inspired by Nguyen
et al. (2021)) or learnable PE with the input yielded the best results. For better interpretability, we
chose cosine distance-based as our final design.

Distance-based Adaptive Masking. In addition, we propose Distance-based Adaptive Masking
(DAM) based on the Transformer’s masking mechanism to emphasize the reliability of the input
KNN instances, which have a more direct influence than DPE. Originally, the Transformer’s mask is
binary, with 0 for identity and −∞ for masked. We extend this masking mechanism by introducing a
continuous mask with a mapping from the cosine distance. The mapping is an exponential function
that maps 0–2 to 0–−∞. This masking reduces the weight of distant neighbors in the self-attention
mechanism, effectively suppressing noise in the network.

Output choice. (Figure 5a) For fusing input sequence information, in typical natural language
processing tasks, an additional token like [CLS] is often added (Devlin et al., 2019). However, in
our unsupervised task, adding such a meaningless token can introduce noise and lead to performance
degradation. Instead, we choose the first output of the NDE module as the result. This design makes
the output more correlated with the first input, which is always the most reliable sample in our KNN
case. Consequently, important information is emphasized.

For additional formulations and discussions about the NDE, please refer to Appendix B.1.

3.1.2 VIEW DIMENSIONAL ENCODER

The View Dimensional Encoder (VDE) is designed to fuse view representations and obtain unified
embedding. It consists of two parts, with firstly a Feed-Forward Network (FFN) to map the rep-
resentations of different dimensions to the same latent space, and then followed by a Transformer
Encoder for fusion. The FFN consists of three fully connected layers, without normalization or
dropout layers, which can be detrimental to the stability of training. The Transformer Encoder is
also customized to serve the purpose of view fusion. A key difference between view fusion and KNN
fusion is that views are permutation invariant, meaning that changing the order of views should yield
the same output. Guided by this principle, we introduce three key customizations:

Positional Encoding. Positional Encoding is not used in VDE for the permutation invariant princi-
ple.
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Three-level Adaptive Masking. Similar to the design in NDE, we employ a masking mechanism
in VDE to emphasize the reliability of the inputs. As the input is view representations, it can be
roughly divided into three categories based on data completeness: (1) complete, (2) missing view
with KNN imputation, and (3) missing view without imputation. We design a Three-level Adaptive
Mask (TAM) for these categories, the mask values range from completely unmasked (1) to fully
masked (3), with an intermediate masking level (2) in between.

Output choice. (Figure 5b) To ensure permutation invariance and avoid bias towards any specific
views, the embedding is generated by averaging all Transformer output vectors.

For formulations about the View Dimensional Encoder (VDE), please refer to our Appendix B.2.

3.2 DATA AUGMENTATION AND IMPUTATION

The KNN Imputation algorithm is described in Appendix B.5, and below we introduce the data
augmentation strategy in our framework.

Our framework is inspired by the denoising auto-encoder, which helps to learn robust representa-
tions by introducing noise during training. Three types of noise are designed, including Gaussian
noise, random dropout, and view dropout. Gaussian noise helps prevent overfitting by introducing
variability in the input data. Random dropout, functional as a regularization technique, encourages
the model to learn more robust features by forcing it to rely on different subsets of the input data.
View dropout is a noise specifically designed for the IMVC task. It randomly drops out (or masks)
one or more views from the input data during each training iteration. This encourages the model to
learn representations that are more robust to missing views and helps improve the performance of
the model on incomplete multi-view datasets. The formulation is placed in the Appendix B.6.

3.3 TRAINING STRATEGY AND LOSS FUNCTION

3.3.1 LOSS FUNCTION

In the training process, we utilize a combination of three loss functions formulated as follows:

L(x, x̂′, z, z′, c) = Lrec(x, x̂
′) + λ1Laug(z, z

′) + λ2Lclu(c) (5)

Lrec (equation 21): This loss term corresponds to the reconstruction loss of the auto-encoder. By
minimizing this loss, the auto-encoder learns to reconstruct the input data accurately. Laug (equation
22): The embedding robustness loss, encourages the learned representations to be consistent when
augmentations are applied, promoting the robustness of the learned representations. Lclu (equation
23): The DEC-based clustering loss. This loss optimizes embeddings for clustering with gradients
from high-confidence samples. Hyperparameters λ1 and λ2 control the balance between different
loss components. By jointly minimizing the three loss terms, our network can learn representations
that are both informative and clustering-friendly. For the formulation of each loss function, please
refer to our Appendix B.7.

3.3.2 TRAINING STRATEGY

The training process is divided into two stages. In the first stage, the auto-encoder is pre-trained
using Lrec and Laug , focusing on learning robust representations. Once the pre-training is complete,
the Clustering Module is initialized. In the second stage, Lclu is added for joint training to learn a
clustering-friendly representation. Experiments show that the DEC-based method is sensitive to the
initialization of the cluster centers. To address this issue, we proposed a Dynamic Initialization
strategy. An unsupervised metric score s based on the Davies-Bouldin Index (DBI) and the standard
deviation of cluster sizes is introduced to evaluate the quality of checkpoints. The checkpoint with
the best score is eventually used for initializing the cluster centers. For a detailed description of
the training process, including the formulation of the unsupervised metric score s and the training
Algorithm 2, please refer to the corresponding sections in our Appendix B.8.

4 EXPERIMENTS

Please refer to Appendix C.1 for the hyperparameter settings and design details in our experiments.

6



Under review as a conference paper at ICLR 2024

4.1 DATASETS AND METRICS

Experiments were performed on four multi-view datasets to validate the effectiveness of our method.
The dataset characteristics are summarized in Table 1. We report the widely used metrics Clustering
Accuracy (Acc), Normalized Mutual Information (NMI), and Adjusted Rand Index(ARI) as results.
We run each experiment 10 times and report the average value and standard deviation (after ±).
Details about our experiment and view-missing settings can be found in Appendix C.2.

Table 1: The statistic of 4 datasets used in our experiments.

Name Views Clusters Samples Dimensions
Handwritten (Duin, 2023) 6 10 2000 240/76/216/47/64/6

Caltech101-7 (Cai et al., 2013) 5 7 1400 40/254/1984/512/928
ALOI Deep (Liu et al., 2023) 3 100 10800 2048/4096/2048

Scene15 (Fei-Fei & Perona, 2005; Cai et al., 2013) 2 15 4485 20/59

Table 2: Comparison of our method with state-of-the-art approaches on 4 benchmark datasets. A
fixed missing rate mr = 0.5 is applied to all datasets. The best result is highlighted in bold while
the suboptimal is underlined.

Datasets Handwritten Caltech101-7

Metrics Acc(%) NMI(%) ARI(%) Acc(%) NMI(%) ARI(%)

Completer (Lin et al., 2021) 55.67± 4.78 54.73± 3.08 34.11± 4.12 56.21± 8.64 52.07± 5.51 33.72± 8.20
DSIMVC (Tang & Liu, 2022) 76.65± 5.91 71.33± 3.42 63.67± 5.59 67.76± 3.76 57.12± 1.99 49.10± 2.92

SURE (Yang et al., 2023b) 65.47± 6.27 61.85± 4.98 50.41± 7.14 68.14± 5.50 53.63± 5.26 47.69± 6.81
DCP (Lin et al., 2023) 68.10± 4.51 68.88± 2.16 50.94± 6.25 61.68± 8.21 62.99± 5.33 45.71± 9.44

CPSPAN (Jin et al., 2023) 89.27± 3.78 83.18± 2.01 79.98± 3.70 77.62± 4.74 69.70± 4.04 63.23± 5.51
RecFormer (Liu et al., 2023) 89.59± 0.77 80.30± 1.16 78.02± 1.55 73.39± 2.45 63.02± 2.40 57.54± 2.97

URRL-IMVC (ours) 94.66 ± 0.33 88.68 ± 0.52 88.57 ± 0.68 92.95 ± 2.60 86.29 ± 1.76 86.02 ± 2.91
Datasets ALOI Deep Scene15

Metrics Acc(%) NMI(%) ARI(%) Acc(%) NMI(%) ARI(%)

Completer (Lin et al., 2021) 43.56± 3.42 72.92± 1.65 19.39± 2.11 39.09± 2.09 42.04 ± 1.79 23.35± 1.72
DSIMVC (Tang & Liu, 2022) 71.98± 2.25 90.53± 0.65 69.09± 1.78 29.75± 1.51 32.97± 0.90 15.62 ± 0.68

SURE (Yang et al., 2023b) 50.77± 4.70 86.51± 1.45 42.07± 6.20 38.83± 2.25 37.24± 0.55 20.98± 1.09
DCP (Lin et al., 2023) 58.45± 7.41 87.60± 2.77 53.05± 12.27 38.27 ± 1.66 41.46 ± 0.93 22.39 ± 1.27

CPSPAN (Jin et al., 2023) 74.08± 3.91 92.54± 1.13 72.86± 3.04 37.46± 1.91 41.61 ± 1.86 22.80± 1.65
RecFormer (Liu et al., 2023) 85.45± 1.79 96.52± 0.24 84.85± 1.14 33.90± 1.45 34.34± 1.18 17.10± 1.12

URRL-IMVC (ours) 92.33 ± 0.70 97.93 ± 0.22 91.98 ± 0.71 41.69 ± 1.60 40.88± 0.92 23.93 ± 1.11

4.2 COMPARISON WITH STATE-OF-THE-ARTS

We compare our approach with several state-of-the-art approaches listed in Table 2. Other compar-
isons about textual datasets, different view numbers, traditional IMVC methods, model parameters,
and computational costs can be found in Appendix C.3.

Comparison on different datasets. URRL-IMVC achieved state-of-the-art performance on the
four benchmark datasets, surpassing most existing approaches, as indicated in Table 2. Our ap-
proach consistently outperformed other SOTA methods across all evaluation metrics, except for the
NMI on the Scene15 dataset (discussion in Appendix C.4). Additionally, URRL-IMVC exhib-
ited stability compared to other SOTA methods, with a relatively low standard deviation across 10
experiments. This excellent clustering performance and stability can be attributed to our unified
embedding approach, which effectively captures the underlying data structure while remaining ro-
bust in the presence of missing views. Notably, our approach excelled on datasets with a larger
number of views, such as Handwritten and Caltech101-7, thanks to its ability to leverage the con-
sensus and complementary information in multi-view data. This advantage mitigates the limitations
of cross-view contrastive learning as the number of views increases.

Comparison with different missing rates. As depicted in Figure 3, URRL-IMVC consistently
outperformed other approaches, establishing an upper bound for clustering performance regardless
of the missing rate (mr). Our approach displayed better stability compared to other methods, with a
gradual decrease in accuracy as the missing rate increased. In contrast, other approaches exhibited
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(a) (b) (c)

Figure 3: Comparison with state-of-the-art approaches under different missing conditions on the
Caltech101-7 dataset. The performance of each approach is reported using fold lines.

more fluctuation, rendering their results less predictable. Notably, DCP and Completer experienced
a significant decline in performance when the missing rate reached 0.75, as they only trained their
cross-view contrastive and recovery networks using complete samples. Insufficient training samples
led to unsatisfactory recovery outcomes and fragile representations for clustering. In contrast, our
approach focused on the robustness of the unified representation, allowing us to circumvent these
limitations and achieve stable and high performance across varying missing rates.

4.3 ABLATION STUDIES

Unless otherwise specified, the experiments were conducted on the Caltech101-7 dataset with the
missing rate mr = 0.5. In certain experiments, the Clustering Module and Dynamic Initialization
were disabled to provide clearer observations of specific phenomena. Additional ablation studies
regarding detailed designs (e.g., cluster initialization) and hyperparameters (e.g., k in KNN Imputa-
tion) can be found in Appendix C.5 and C.6.

4.3.1 ABLATION ON MODULES

Table 3: Ablation study on our designed modules. We begin with a baseline model, which consists
of a simple Transformer-based auto-encoder with binary masks. We then gradually incorporate our
designed modules and report the metrics along with their increments. “KNN”: KNN Imputation;
“Aug”: data augmentation and robustness loss; “DPE&AM”: DPE, DAM and TAM described in
NDE and VDE; “CM”: clustering module and clustering loss; “DI”: Dynamic Initialization for CM.

Dataset Baseline + KNN + Aug + DPE&AM + CM + DI

Acc 76.93± 4.35 83.68± 2.79 84.77± 3.59 85.25± 4.82 91.73± 4.23 92.95± 2.60
Increment +6.75 +1.09 +0.48 +6.48 +1.22

NMI 64.79 ± 2.18 72.76 ± 2.21 74.92 ± 2.54 75.91 ± 3.33 85.33 ± 3.18 86.29 ± 1.76
Increment +7.97 +2.15 +0.99 +9.42 +0.96

ARI 56.52 ± 3.99 68.60 ± 4.48 71.76 ± 3.69 72.61 ± 5.50 84.70 ± 4.62 86.02 ± 2.91
Increment +12.08 +3.16 +0.85 +12.09 +1.33

In Table 3, we present the results of our ablation study on the main modules we designed. The results
show that KNN Imputation had significant improvements compared to the baseline, and augmenta-
tion further boosted the performance. Note that KNN Imputation and augmentation actually had ap-
proximately equal contributions, the difference in increment comes from the order they are applied.
Additionally, KNN Imputation seemed to enhance the stability of the performance, while augmen-
tation had the opposite effect. This aligns with our expectations, as the former provides additional
information, leading to a more stable training process, while the latter adds constraint information,
resulting in a more unstable training process. The incorporation of Distance-based Positional En-
coding and Adaptive Masking slightly improved the performance. Although the improvements were
modest, these modules contributed to capturing the underlying data structure more effectively. The
introduction of the Clustering Module significantly improves the clustering performance. However,
it did not improve the stability. This is consistent with our observation that DEC-based training
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is sensitive to initialization and cannot achieve good clusters with poor initialization. Finally, the
inclusion of Dynamic Initialization partially addressed this issue and improved both stability and
accuracy. Overall, the ablation study provides valuable insights into the contributions and effects of
each module on the performance of our approach.

4.3.2 VISUALIZATION

(a) Raw data (38.43) (b) 200 iteration (73.43) (c) 1600 iteration (89.86)

(d) 2200 iteration (87.86) (e) 2400 iteration (90.14) (f) 4400 iteration (94.14)

Figure 4: T-SNE visualization of the embeddings during the training process on the Caltech101-7
dataset. The iteration number and corresponding accuracy, is recorded below each sub-figure. The
training process consists of 4400 iterations, with the Clustering Module initialized at 2200 iterations.

Figure 4 presents a T-SNE visualization of the embeddings during one training process. Initially, in
Figure 4a, the visualization of the multi-view raw data concatenated as embeddings appears to be
disorganized. After 200 iterations of training, in Figure 4b, inherent structures start to be captured,
and the local accuracy peak value (89.86) occurs at 1600 iterations 4c. At 2200 iterations, the
Clustering Module is initialized, and joint training with DEC-based clustering loss commences.
Note that according to our dynamic initialization strategy, the checkpoint with the best unsupervised
metric score 24, is loaded for joint training, which is 1600 (better than 2200) in this case. After 200
iterations of joint training, as depicted in Figure 4e, the clusters become more compact. Finally, at
the end of the training, as shown in Figure 4f, the clusters become very compact, numerous samples
initially misclustered with low confidence are now corrected, and the accuracy reaches 94.14. For
visualization of loss and clustering performance throughout training, please refer to Appendix C.7.

5 CONCLUSION

In this paper, we proposed URRL-IMVC, a novel unified and robust representation learning frame-
work for the incomplete multi-view clustering task. By leveraging carefully designed modules,
including neighbor dimensional encoders and view dimensional encoders, we successfully fuse the
multi-view information into a unified embedding. URRL-IMVC offers a more comprehensive so-
lution compared to potentially limiting cross-view contrastive learning. Through the utilization of
KNN imputation and data augmentation strategies, we directly acquire robust embeddings that ef-
fectively handle the view-missing condition, eliminating the need for explicit missing view recovery
and its associated computation and unreliability. Furthermore, incremental improvements, such as
adaptive masking and dynamic initialization, significantly enhance the clustering stability and per-
formance, achieving state-of-the-art results. This improved robust and unified representation learn-
ing framework acts as a powerful tool for addressing the challenges of IMVC and provides valuable
insights for future research in this domain.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Massih R. Amini, Nicolas Usunier, and Cyril Goutte. Learning from multiple partially observed
views - an application to multilingual text categorization. In Y. Bengio, D. Schuurmans, J. Laf-
ferty, C. Williams, and A. Culotta (eds.), Advances in Neural Information Processing Systems,
volume 22. Curran Associates, Inc., 2009.

Xiao Cai, Hua Wang, Heng Huang, and Chris Ding. Joint stage recognition and anatomical annota-
tion of drosophila gene expression patterns. Bioinformatics, 28(12):i16–i24, 2012.

Xiao Cai, Feiping Nie, and Heng Huang. Multi-view k-means clustering on big data. In Twenty-
Third International Joint conference on artificial intelligence, 2013.

Guoqing Chao, Shiliang Sun, and Jinbo Bi. A survey on multiview clustering. IEEE Transactions
on Artificial Intelligence, 2(2):146–168, 2021. doi: 10.1109/TAI.2021.3065894.

Man-Sheng Chen, Jia-Qi Lin, Xiang-Long Li, Bao-Yu Liu, Chang-Dong Wang, Dong Huang, and
Jian-Huang Lai. Representation learning in multi-view clustering: A literature review. Data
Science and Engineering, 7(3):225–241, 2022.

Shijie Deng, Jie Wen, Chengliang Liu, Ke Yan, Gehui Xu, and Yong Xu. Projective incomplete
multi-view clustering. IEEE Transactions on Neural Networks and Learning Systems, pp. 1–13,
2023. doi: 10.1109/TNNLS.2023.3242473.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019.

Robert Duin. Multiple Features. UCI Machine Learning Repository, 2023. DOI:
https://doi.org/10.24432/C5HC70.

L. Fei-Fei and P. Perona. A bayesian hierarchical model for learning natural scene categories.
In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), volume 2, pp. 524–531 vol. 2, 2005. doi: 10.1109/CVPR.2005.16.

Lele Fu, Pengfei Lin, Athanasios V Vasilakos, and Shiping Wang. An overview of recent multi-view
clustering. Neurocomputing, 402:148–161, 2020.

Hang Gao, Yuxing Peng, and Songlei Jian. Incomplete multi-view clustering. In Zhongzhi Shi,
Sunil Vadera, and Gang Li (eds.), Intelligent Information Processing VIII, pp. 245–255, Cham,
2016. Springer International Publishing. ISBN 978-3-319-48390-0.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K.Q. Weinberger (eds.), Advances in Neural Information Processing
Systems, volume 27. Curran Associates, Inc., 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), December 2015.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 16000–16009, June 2022.

Menglei Hu and Songcan Chen. Doubly aligned incomplete multi-view clustering. In Proceedings
of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, pp.
2262–2268. International Joint Conferences on Artificial Intelligence Organization, 7 2018. doi:
10.24963/ijcai.2018/313.

Menglei Hu and Songcan Chen. One-pass incomplete multi-view clustering. Proceedings of the
AAAI Conference on Artificial Intelligence, 33(01):3838–3845, Jul. 2019. doi: 10.1609/aaai.
v33i01.33013838.

10



Under review as a conference paper at ICLR 2024

Peihao Huang, Yan Huang, Wei Wang, and Liang Wang. Deep embedding network for clustering.
In 2014 22nd International Conference on Pattern Recognition, pp. 1532–1537, 2014. doi: 10.
1109/ICPR.2014.272.

Jiaqi Jin, Siwei Wang, Zhibin Dong, Xinwang Liu, and En Zhu. Deep incomplete multi-view clus-
tering with cross-view partial sample and prototype alignment. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11600–11609, June 2023.

Haobin Li, Yunfan Li, Mouxing Yang, Peng Hu, Dezhong Peng, and Xi Peng. Incomplete multi-view
clustering via prototype-based imputation. In Edith Elkind (ed.), Proceedings of the Thirty-Second
International Joint Conference on Artificial Intelligence, IJCAI-23, pp. 3911–3919. International
Joint Conferences on Artificial Intelligence Organization, 8 2023a. doi: 10.24963/ijcai.2023/435.
Main Track.

Shao-Yuan Li, Yuan Jiang, and Zhi-Hua Zhou. Partial multi-view clustering. Proceedings of the
AAAI Conference on Artificial Intelligence, 28(1), Jun. 2014. doi: 10.1609/aaai.v28i1.8973.

Xingfeng Li, Yinghui Sun, Quansen Sun, Zhenwen Ren, and Yuan Sun. Cross-view graph matching
guided anchor alignment for incomplete multi-view clustering. Information Fusion, 100:101941,
2023b. ISSN 1566-2535. doi: https://doi.org/10.1016/j.inffus.2023.101941.

Fangfei Lin, Bing Bai, Kun Bai, Yazhou Ren, Peng Zhao, and Zenglin Xu. Contrastive multi-view
hyperbolic hierarchical clustering. arXiv preprint arXiv:2205.02618, 2022.

Yijie Lin, Yuanbiao Gou, Zitao Liu, Boyun Li, Jiancheng Lv, and Xi Peng. Completer: Incomplete
multi-view clustering via contrastive prediction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 11174–11183, June 2021.

Yijie Lin, Yuanbiao Gou, Xiaotian Liu, Jinfeng Bai, Jiancheng Lv, and Xi Peng. Dual contrastive
prediction for incomplete multi-view representation learning. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 45(4):4447–4461, 2023. doi: 10.1109/TPAMI.2022.3197238.

Chengliang Liu, Jie Wen, Zhihao Wu, Xiaoling Luo, Chao Huang, and Yong Xu. Information
recovery-driven deep incomplete multiview clustering network. IEEE Transactions on Neural
Networks and Learning Systems, pp. 1–11, 2023. doi: 10.1109/TNNLS.2023.3286918.

Junjie Liu, Junlong Liu, Shaotian Yan, Rongxin Jiang, Xiang Tian, Boxuan Gu, Yaowu Chen, Chen
Shen, and Jianqiang Huang. Mpc: Multi-view probabilistic clustering. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9509–9518,
June 2022.

Xinwang Liu, Miaomiao Li, Lei Wang, Yong Dou, Jianping Yin, and En Zhu. Multiple kernel k-
means with incomplete kernels. Proceedings of the AAAI Conference on Artificial Intelligence,
31(1), Feb. 2017. doi: 10.1609/aaai.v31i1.10893.

Xinwang Liu, Xinzhong Zhu, Miaomiao Li, Lei Wang, En Zhu, Tongliang Liu, Marius Kloft, Ding-
gang Shen, Jianping Yin, and Wen Gao. Multiple kernel kk-means with incomplete kernels.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(5):1191–1204, 2020. doi:
10.1109/TPAMI.2019.2892416.

Xinwang Liu, Miaomiao Li, Chang Tang, Jingyuan Xia, Jian Xiong, Li Liu, Marius Kloft, and
En Zhu. Efficient and effective regularized incomplete multi-view clustering. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 43(8):2634–2646, 2021. doi: 10.1109/TPAMI.
2020.2974828.

Charles Mallah, James Cope, and James Orwell. Plant leaf classification using probabilistic in-
tegration of shape, texture and margin features. Pattern Recognit. Appl., 3842, 02 2013. doi:
10.2316/P.2013.798-098.

Xuan-Bac Nguyen, Duc Toan Bui, Chi Nhan Duong, Tien D. Bui, and Khoa Luu. Clusformer:
A transformer based clustering approach to unsupervised large-scale face and visual landmark
recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 10847–10856, June 2021.

11



Under review as a conference paper at ICLR 2024

Weixiang Shao, Lifang He, and Philip S. Yu. Multiple incomplete views clustering via weighted non-
negative matrix factorization with $$l {2,1}$$regularization. In Annalisa Appice, Pedro Pereira
Rodrigues, Vı́tor Santos Costa, Carlos Soares, João Gama, and Alı́pio Jorge (eds.), Machine
Learning and Knowledge Discovery in Databases, pp. 318–334, Cham, 2015. Springer Interna-
tional Publishing. ISBN 978-3-319-23528-8.

Weixiang Shao, Lifang He, Chun-ta Lu, and Philip S. Yu. Online multi-view clustering with incom-
plete views. In 2016 IEEE International Conference on Big Data (Big Data), pp. 1012–1017,
2016. doi: 10.1109/BigData.2016.7840701.

Huayi Tang and Yong Liu. Deep safe incomplete multi-view clustering: Theorem and algorithm. In
Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato
(eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pp. 21090–21110. PMLR, 17–23 Jul 2022.
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A RELATED WORKS APPENDIX

A.1 TRADITIONAL IMVC APPROACHES

In the past decade, extensive research has been conducted on the Incomplete Multi-view Clustering
(IMVC) task, leading to the proposal of various solutions (Wen et al., 2023), mainly including matrix
factorization-based, kernel-based and graph-based methods. Matrix factorization-based approaches,
such as Partial Multi-view Clustering (PMVC) (Li et al., 2014), were among the earliest studies
in this field. Zhao et al. (2016) and Xu et al. (2018) extended the idea of matrix factorization by
incorporating graph embedding techniques. To handle more complex missing conditions, weighted
matrix factorization-based approaches have been proposed, including (Shao et al., 2015; 2016; Hu
& Chen, 2018; 2019), which demonstrate improved performance in handling complex missing data
scenarios. Kernel-based IMVC approaches focus on learning consensus representations or multi-
ple representations from multiple kernels, which capture different aspects of the data. For instance,
Trivedi et al. (2010) proposed Laplacian regularization and kernel canonical correlation analysis
for solving the IMVC problem. Multiple kernel K-means-based approaches, such as (Liu et al.,
2017; Ye et al., 2017; Zhu et al., 2018; Liu et al., 2020), have also been proposed. Graph-based
approaches aim to obtain a consensus graph or representation by combining information from mul-
tiple incomplete graphs from each view, facilitating a better understanding of the underlying data
structure. Gao et al. (2016) proposed recovering missing latent representations via co-training to
obtain the consensus representation. Wang et al. (2019a) introduced spectral perturbation theory
to address the problem, providing insights into the impact of perturbations on graph Laplacians.
Additionally, Wen et al. (2020) presented adaptive graph construction for learning consensus rep-
resentation, which dynamically adjusts the graph structure based on the data. CGMAA (Li et al.,
2023b) generated bipartite graphs for clustering and proposed to address the cross-view anchor mis-
alignment problem by predefining an anchor graph according to the prior anchor information. Yang
et al. (2023a) proposed CGMIMC to solve the IMVC task by constructing connection graphs and
adopting cross-view graph matching. PIMVC proposed by Deng et al. (2023) formulated a graph-
regularized projective consensus representation learning model with graph constraint to overcome
the drawbacks of matrix factorization-based methods. We also noted that some other methods with
different thinking have also emerged. For example, Multi-view Probabilistic Clustering (MPC) (Liu
et al., 2022) proposes a multi-view fusion method based on posterior matching probabilities, which
achieves very competitive results on the IMVC task. These aforementioned approaches represent
significant contributions to the IMVC field and have paved the way for further advancements. These
aforementioned approaches represent significant contributions to the IMVC field and have paved the
way for further advancements.

B METHOD APPENDIX

B.1 NEIGHBOR DIMENSIONAL ENCODER - FORMULATION AND DISCUSSION

The Neighbor Dimensional Encoder (NDE) can be formulated as,

xN = {x(1)
N ,x

(2)
N , · · · ,x(V )

N }, x(v)
N ∈ Rdv (6)

x
(v)
N = f

(v)
N (DPE(x̄(v)), DAM(x̄(v));θ

(v)
N )[0,:] (7)

It can be observed from Fig 2 and the above equations that a separate network is used for each
view as the input dimension varies. The basic structure of NDE follows the structure of the Trans-
former Encoder (Vaswani et al., 2017). The vth Transformer Encoder corresponding to the vth
view is represented with f

(v)
N (·;θ(v)

N ) in equation 7, and θ
(v)
N is its parameters. It takes two inputs

DPE(x̄(v)) and DAM(x̄(v)), they are the input sequence and the mask respectively, generated
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with Distance-based Positional Encoding (DPE) and Distance-based Adaptive Masking (DAM) op-
eration described below. As described in section 3.1.1, we only take the first vector from the output
sequence, which is denoted by [0, :].

The DPE can be explained as,

DPE(x̄(v)) = x̄(v) ⊕ d(x̄(v)), d(x̄(v)) ∈ Rk×k (8)
in which d() is the function calculating the pair-wise distance of k vectors and return a k×k distance
matrix, and ⊕ stands for matrix concatenation. For the pair-wise distance function, we tried cosine
distance and Euclidean distance and found cosine distance more suitable. Given two input vectors
x1 and x2, the cosine distance is formulated as,

dcos(x1,x2) = 1− x1 · x2

||x1|| · ||x2||
(9)

We conjecture that cosine distance is more suitable for two reasons. First, its value range is 0–2,
which is more stable than Euclidean distance. Second, as we are using zero vectors to represent
missing samples, the distance between missing samples and any other samples is fixed to 1 with
cosine distance, which also helps stabilize the training.

The masked self-attention in Transformer can be described as,

Attention(Q,K, V,MN ) = softmax(
QKT

√
dk

+MN )V (10)

where Q,K, V stands for Query, Key, and Value matrix respectively, and MN is the mask applied.

In our situation, we are looking for a method to reduce the influence of noisy neighbors, while
emphasizing high-confidence neighbors, so Distance-based Adaptive Masking is proposed. Like in
the DPE, we map the cosine distance to the mask used in this Transformer Encoder. For mapping
0–2 to 0–(-inf), the mapping function is designed based on the exponential function,

MN = DAM(x̄(v)) = −eα·d(x̄
(v))[0,:]+β (11)

where d(x̄(v))[0,:] is the first row of the distance matrix, representing the cosine distance between
each neighbor and the center sample, α and β are two hyperparameters that control the mapping
range. After the mapping, the mask is broadcasted and applied to the neighbor sample to lower its
weight in self-attention adaptively.

B.2 VIEW DIMENSIONAL ENCODER - FORMULATION

As depicted in Figure 2, the VDE consists of a Feed Forward Network (FFN) part and a Transformer
Encoder part. The FFN part of VDE for mapping embeddings to the same latent space can be
described as,

xA = x
(1)
A ⊕ x

(2)
A ⊕ · · · ⊕ x

(N)
A , xA ∈ RV×de (12)

x
(v)
A = σ(σ(x

(v)
N W

(v)
1 + b

(v)
1 )W

(v)
2 + b

(v)
2 )W

(v)
3 + b

(v)
3 (13)

In the equation, ⊕ represents the concatenate operation, σ is the activation function, W and b are
the weight matrix and bias vector of the fully connected (FC) layer respectively.

The Transformer Encoder part of the VDE can be explained as,

z =

V∑
v=1

fV (xA, m̄,m;θV )/V (14)

in which fV (·;θA) is the VDE Transformer Encoder structure. As mentioned in section 3.1.2, the
output is averaged as the unified embedding z.

The Three-level Adaptive Masking (TAM) used in the Transformer Encoder part is formulated as,

MV =



0,mj = 1

γ,

k∑
i=1

m̄ij > 0 & mj = 0

−∞,

k∑
i=1

m̄ij = 0 &mj = 0

(15)
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in which m̄ and m are the KNN imputation generated and the original missing matrix. γ is a
negative hyperparameter to control the emphasizing intensity.

(a) Neighbor Dimensional Encoder (b) View Dimensional Encoder

Figure 5: An intuitive visualization of the output choice of the Neighbor Dimensional Encoder
(NDE) and View Dimensional Encoder (VDE). For VDE, we only illustrated the Transformer En-
coder part. In NDE, the first of the output sequence is chosen to provide a bias on the most reliable
input. In VDE, the outputs are fused to provide an unbiased representation of all views.

B.3 DECODER

The Decoder in our model is designed as a compact 4-layer FFN, to reconstruct the input. Similar to
the FFN in VDE, we removed its normalization and dropout layer for better stability. Through our
experiments, we have observed that a deep and complex Decoder does not necessarily improve the
clustering performance and may even have negative effects in certain cases. One possible explana-
tion for this phenomenon is that a shallow and simple Decoder serves as a regularization technique
on the embedding space. By establishing a simple mapping from the embedding space to the data
space, the shallow Decoder prevents the embedding space from collapsing. This regularization ef-
fect is similar to the Locality-preserving Constraint proposed by Huang et al. (2014), which helps
preserve the local structure of the data. The process of Decoder is formulated as,

x̂ = {x̂(1), x̂(2), · · · , x̂(V )}, x̂(v) ∈ Rdv (16)

x̂(v) = g(v)(z; θ
(v)
D ) (17)

B.4 CLUSTERING MODULE - DESCRIPTION AND FORMULATION

The auto-encoder we have designed allows us to obtain robust representations and capture the in-
herent structures of data. However, these inherent structures may not necessarily follow a cluster-
oriented distribution. To enhance the clustering performance, we introduce a Clustering Module
inspired by DEC (Xie et al., 2016). Additionally, we design a dynamic initialization strategy, as
described in Appendix B.8, to improve the clustering stability by finding better initialization. Be-
low we describe the procedure of the DEC-based Clustering Module. First, a traditional clustering
method is used to generate the cluster centers θC = µ ∈ Rdc×de from embedding z. Then, the
similarity matrix q ∈ [0, 1]N×dc is generated with Student’s t-distribution, in which qij represents
the possibility sample i belongs to cluster j, and c ∈ Rdc defined in equation 4 is a row of q. With
the similarity matrix q, we calculate the target distribution p as,

pij =
q2ij/fj∑dc

j=1(q
2
ij/fj)

(18)

in which fj is the soft cluster size
∑N−1

i=0 qij . The training target is the KL-Divergence between p
and q (equation 23) which is defined in Appendix B.7. Our improvement on the initialization of the
Clustering Module is explained in Appendix B.8. Finally, the clustering result can be obtained by
finding the maximum possibility in each row of q.

B.5 KNN IMPUTATION - FORMULATION

Below we introduce the KNN Imputation operation described in equation 1 and 19. The KNN
search is conducted separately in each view, taking into account the incomplete condition. For
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existing views, the KNN is directly obtained, while for missing views, existing views from the same
sample are used for search KNN. Specifically, for a missing view x

(v)
i of sample xi, we first find

all existing views x(b)
i of the same sample. Then we iterate through the KNN samples x(b)

j of these

existing views to check if x(v)
j exists. If it does, we appended it to the KNN list of the missing view.

Finally, we select the top k samples from the KNN list as the imputation for the missing view. If the
length of the KNN list is less than k, then the remaining positions are filled with zeros. The detailed
procedures are listed in Algorithm 1. Along with the KNN imputation x̄, a missing indicator matrix
m̄ ∈ Rk×V is generated, where 1 represents a position filled with a KNN sample and 0 represents a
position filled with zeros.

Algorithm 1 Procedure of KNN Imputation

Input: Target x(v)
i , which is the vth view of the ith sample, dataset X , missing indicator matrix

M , hyperparameter k.
1: if Miv = 1 then ▷ The view exists
2: Return x

(v)
i ’s KNN

3: else ▷ The view is missing
4: a = 0, create empty KNN list
5: while a < k do ▷ Traverse k neighbors
6: b = 1
7: while b <= V do ▷ Traverse all views
8: if b = v or Mib = 0 then ▷ bth view of target sample xi is missing
9: pass

10: else ▷ bth view of target sample xi exists
11: Find ath nearest neighbor of x(b)

i , denoted as x(b)
j

12: if Mjv = 0 then ▷ vth view of neighbor xj is missing
13: pass
14: else ▷ vth view of neighbor xj exists
15: Add x

(v)
j to KNN list

16: end if
17: end if
18: b = b+ 1
19: end while
20: a = a+ 1
21: end while
22: if KNN list length < k then
23: Pad KNN list with zeros to length k
24: else
25: Choose top k from KNN list
26: end if
27: Return KNN list
28: end if

Output: KNN Imputation x̄
(v)
i

B.6 DATA AUGMENTATION - FORMULATION

Below are the equations for the three kinds of augmentation we used. By combining equation 19
and 20, the KIDA operation in equation 1 is obtained.

x̄′, m̄′ = IKNN(x,m⊙mvd), P (mvd = 0) = ϕ1 (19)

x̄′′ = (x̄′ + ϕ2n)⊙mrd, n ∼ N (0, 1), P (mrd = 0) = ϕ3 (20)
The view dropout augmentation is shown in equation 19, where random views are masked or
dropped out with a possibility of ϕ1, before the KNN Imputation (Algorithm 1) step. The dropout
mask is applied with element-wise multiplication, denoted by ⊙. The masked views are regarded
as missing views in both the KNN Imputation and the auto-encoder network. After the KNN Im-
putation, in equation 20, Gaussian noise is added to the input data to introduce variability, whose
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intensity is controlled by a hyperparameter ϕ2. After that, random values in the input are set to zero
with a probability of ϕ3, which is the random dropout augmentation. Finally, the augmented input
x̄′′ along with the corresponding missing indicator matrix m̄′ can be used for training. By incor-
porating these noise augmentation techniques, our approach enhances the robustness of the model
to missing views, introduces variability in the input data, and helps prevent overfitting during the
training process.

B.7 LOSS - FORMULATION

Below we introduce the formulation of the three loss terms. The first is the reconstruction loss of
the auto-encoder, denoted as,

Lrec(x, x̂
′) =

V∑
v=1

(||x̂′(v) − x(v)||2 ×mv) (21)

The missing indicator mv is multiplied so only the mean square errors of existing views are cal-
culated. Note that during training, the network output is x̂′ as the input is the augmented input x̄′′

(equation 2 and 3), so the network learns to reconstruct masked views with KNN hints and cross-
view correlation and thus, learns to predict missing views’ information implicitly. The second loss
is the embedding robustness loss against augmentation.

Laug(z, z
′) = −log

e−||z′
i−zi||∑B

j=1 e
−||z′

i−zj ||
(22)

During training, we infer both augmented input x′′ and original input x, and obtain the correspond-
ing embeddings z′ and z. Our robustness goal is equivalent to minimizing the distance between z′

and z (equation 2). As we are using mini-batched training, we designed the above loss term based on
cross-entropy loss. By minimizing the loss function, the distance between z′

i and zi is minimized
while the distances between z′

i and embeddings of other samples zj , j ̸= i are maximized. This
design prevents the embedding space from collapsing. The third loss is the DEC-based clustering
loss (Xie et al., 2016) used in the Clustering Module (Appendix B.4), which is the KL divergence
between distribution p′ and q′ computed from augmented input x′′ during training.

Lclu(c) = KL(p′||q′) =

B∑
i=1

dc∑
j=1

p′ij log
p′ij
q′ij

(23)

The final loss is the weighted sum of the above three loss terms, formulated in 3.3

B.8 TRAINING STRATEGY AND ALGORITHM

Below we introduce the Dynamic Initialization strategy and Algorithm 2 to describe the detailed
training procedure.

During auto-encoder pre-training, several checkpoints are saved. Then during Cluster Module ini-
tialization (Appendix B.4), an unsupervised metric is introduced to determine which checkpoint
shows the best clustering structure and load it for joint training. The unsupervised metric score s is
designed as,

s = DBI(c, z) + ω · ς(
N∑
i=1

cij)/µ(

N∑
i=1

cij) (24)

The metric consists of two terms. The first term is the Davies–Bouldin Index DBI() for measuring
the clustering performance, and the second term is the normalized standard deviation of cluster size
for avoiding trivial solutions.

∑N
i=1 cij is the cluster size vector, we calculate its standard deviation

ς and normalize with average size µ, ω is a hyperparameter to control the balance between the two
terms. We choose the checkpoint with the lowest s for Clustering Module initialization and joint
training.

The training process is controlled by three hyperparameters: Ep, which represents the number of
pre-training epochs, Ej , which represents the number of joint training epochs, and Ec, which repre-
sents the starting point at which the checkpoints for dynamic initialization are saved.
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Algorithm 2 Training process of URRL-IMVC
Input: Dataset X , missing indicator matrix M , hyperparameters.

1: Initialize model parameters θE , θD, and θC . Pre-compute KNN-search results. epoch = 0,
iteration per epoch = Ie, checkpoint save interval = Es

2: while epoch < Ep do ▷ Stage 1: Pre-training
3: iteration = 0
4: while iteration < Ie do
5: Pre-process: KNN Imputation and Data Augmentation by equation 19 and 20, and

obtain processed data x̄, x̄′′ and processed mask m̄, m̄′.
6: Forward: network forward by equation 2, 3, and obtain embedding z′, z and recon-

struction x̂′

7: Loss: Compute loss by equation 5, in which Lclu is ignored.
8: Backward: Loss backward and update model parameters θE and θD.
9: iteration = iteration + 1

10: end while
11: if epoch mod Es = 0 & epoch > Ec then
12: Save checkpoint
13: end if
14: epoch = epoch + 1
15: end while
16: Gather all saved checkpoints. ▷ Clustering Module Initialization
17: Compute unsupervised metric scores s for all checkpoints by equation 24.
18: Load checkpoint argmin(s), and initialize cluster centers µ.
19: while epoch < Ep + Ej do ▷ Stage 2: Joint Training
20: iteration = 0
21: while iteration < Ie do
22: Pre-process: KNN Imputation and Data Augmentation by equation 19 and 20, and

obtain processed data x̄, x̄′′ and processed mask m̄, m̄′.
23: Forward: network forward by equation 2, 3, and obtain embedding z′, z, reconstruction

x̂′, and clustering result c′
24: Loss: Compute loss by equation 5.
25: Backward: Loss backward and update model parameters θE , θD, and θC .
26: iteration = iteration + 1
27: end while
28: epoch = epoch + 1
29: end while

Output: Model parameters θE , θD, θC , final clustering result c
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C EXPERIMENTS APPENDIX

C.1 IMPLEMENTATION DETAILS

Hyperparameter Settings. We set most of the hyperparameters empirically with grid search, and
the same setting is used for all experiments if not specifically mentioned. α and β in equation 11
is set to 20 and -3 respectively. γ in equation 15 is set to -10. The hyperparameter k in KNN
Imputation is set to 4. The data augmentation hyperparameter in equation 20 ϕ2, and ϕ3 are fixed at
0.05, while ϕ1 in equation 19 which controls view dropout possibility is set to be growing with the
actual missing rate of the dataset, defined as,

ϕ1 = ϵ+ (1− ϵ)× (1−
∑N

i=0

∑V
j=0 Mij

N × V
)2 (25)

in which we set ϵ = 0.15. The loss weight hyperparameters λ1 and λ2 are set to 0.001 and 0.1
respectively. ω in equation 24 is set to 5. The embedding dimension de is set to 256. Batch size B
is set to 64 for both training and testing and the learning rate is fixed at 3e-4 throughout training. A
small weight decay of 4e-5 is used for less over-fitting. The training epoch parameter Ep (Appendix
B.8)is set to 100, 100, 15, and 50 respectively for the four datasets in Table 1 to maintain roughly
the same training iteration. Ec = 0.7Ep is set for all datasets. As for Ej , we found that training with
DEC-based loss on some datasets (ALOI Deep and Scene15 in this paper) can diverge, possibly due
to imbalanced cluster size. For these datasets, we simply skip the second stage’s joint training, i.e.,
Ej = 0, while for other datasets Ej = Ep.

Design details. PReLU (He et al., 2015) is used as the activation function in the VDE and the
Decoder. Dropout is not used in any modules of our network. Agglomerative clustering with “ward”
linkage is used for initializing cluster centers in the Clustering Module.

C.2 DATASETS AND EXPERIMENTS SETTING

Our chosen datasets vary in views (2–6), clusters (7–100), samples (1400–10800), and feature types
(deep feature/hand-crafted feature), providing a comprehensive evaluation of approaches. Two pa-
rameters missing number mn and missing rate mr are defined to control the missing conditions.
We first select N × mr samples as incomplete samples, then randomly select mn views of each
incomplete sample as missing views. We fix mn and vary mr in our experiments, mn are fixed at
4, 3, 2, 1 for the 4 datasets respectively. Importantly, it should be noted that within the same set of
experiments, we ensured that the input data and missing indicator matrix remained consistent across
different methods, ensuring fair comparisons. For comparison with state-of-the-art methods in Table
2 we reproduce the results with their published code, while for experiments in Table 6 we align our
dataset settings with MPC (Liu et al., 2022) and directly cite their results. Several prior works are
difficult to adapt to different numbers of views, which could hinder real applications. For instance,
Completer (Lin et al., 2021) and SURE (Yang et al., 2023b) are only capable with 2-view datasets,
and DCP (Lin et al., 2023) can only handle datasets with fewer than 4 views without extensively
modifying the code. We randomly select views when the dataset has more views than required.

C.3 COMPARISON WITH STATE-OF-THE-ART METHODS

Table 4: The statistic of 2 datasets with textual features.

Name Views Clusters Samples Dimensions
BDGP (Cai et al., 2012; Tang & Liu, 2022) 2 5 2500 1750/79

Reuters (Amini et al., 2009; Yang et al., 2023b) 2 6 18758 10/10

Comparison on textual datasets. The experiments in Table 2 are conducted mainly on image
features, so another experiment in Table 5 is conducted to examine the model’s performance on
textual datasets (Table 4). BDGP (Cai et al., 2012; Tang & Liu, 2022) is a multi-modal dataset with
1750-d visual features and 79-d textual features as two views. Reuters (Amini et al., 2009; Yang
et al., 2023b) is a multilingual dataset, English and French are used as two views. As shown in
Table 2, our approach still achieves optimal or suboptimal results with textual features, proving its
effectiveness.
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Table 5: Comparison of our method with state-of-the-art approaches on 2 benchmark datasets with
textual input. A fixed missing rate mr = 0.5 is applied to all datasets. The best result is highlighted
in bold while the suboptimal is underlined.

Datasets BDGP Reuters

Metrics Acc(%) NMI(%) ARI(%) Acc(%) NMI(%) ARI(%)

Completer (Lin et al., 2021) 58.37± 4.87 48.52± 4.34 25.13± 6.71 40.30± 7.32 22.86± 6.44 10.53± 8.25
DSIMVC (Tang & Liu, 2022) 95.71 ± 0.21 87.08 ± 0.54 89.62 ± 0.51 48.39± 2.92 31.88 ± 2.27 26.04 ± 2.27

SURE (Yang et al., 2023b) 63.27± 7.55 41.35± 7.70 36.51± 8.87 48.63 ± 3.56 27.73± 2.46 22.46± 1.59
DCP (Lin et al., 2023) 55.82± 7.02 44.56± 8.92 20.08± 11.71 39.02± 3.16 22.47± 4.19 6.92± 3.34

CPSPAN (Jin et al., 2023) 81.40± 8.64 66.19± 6.61 64.71± 9.89 39.35± 2.13 14.47± 2.01 12.37± 1.79
RecFormer (Liu et al., 2023) 49.76± 3.49 38.62± 3.30 19.01± 2.68 39.70± 5.14 17.27± 2.83 14.82± 3.19

URRL-IMVC (ours) 92.52 ± 5.71 82.29 ± 5.66 84.26 ± 7.57 49.91 ± 2.44 29.49 ± 1.38 25.71 ± 2.08

Table 6: Comparison with latest IMVC methods. All experimental setups were kept consistent with
MPC, so we directly inherited results from MPC’s paper. “Fp” and “Fb” represent Pairwise and
Bcubed F-measure respectively. The best result is in bold and suboptimal underlined.

Dataset Handwritten (Duin, 2023) 100Leaves (Mallah et al., 2013) Humbi240 (Yu et al., 2020)

Task Method Fp Fb NMI ARI Fp Fb NMI ARI Fp Fb NMI ARI

MVC

OSLF (Zhang et al., 2021) 76.4 76.49 76.51 73.79 65.55 69.59 87.68 65.2 90.35 93.62 98.2 90.31
EEIMC (Liu et al., 2021) 75.86 76.52 78.28 73.17 74.1 77.53 91.18 73.84 91.45 94.45 98.54 91.41
UEAF (Wen et al., 2019) 82.57 82.45 83 79.91 64.54 72.81 89.18 64.16 86.36 90.36 97.11 86.3
PIC (Wang et al., 2019a) 80.84 81.14 83.26 78.72 78.04 81.49 92.76 77.82 94.34 96.29 98.95 94.32
MPC (Liu et al., 2022) 90.17 89.78 89.77 89.15 84.18 85.65 94.40 84.04 95.49 97.03 99.07 95.47
URRL-IMVC (Ours) 97.66 95.45 94.74 94.79 85.09 85.75 94.33 81.74 98.52 98.51 99.50 98.21

IMVC

OSLF (Zhang et al., 2021) 64.56 65.88 69.75 60.48 33.86 39.04 71.84 33.19 70.72 73.40 89.41 70.59
EEIMC (Liu et al., 2021) 78.26 78.79 79.53 75.85 52.65 56.74 81.11 52.18 80.94 86.24 94.84 80.86
UEAF (Wen et al., 2019) 81.54 81.88 82.39 79.49 38.47 45.87 75.62 37.82 86.04 89.96 96.81 85.98
PIC (Wang et al., 2019a) 78.46 79.32 81.34 76.04 50.79 55.61 80.72 50.30 83.30 85.74 94.64 83.23
MPC (Liu et al., 2022) 90.17 89.78 89.77 89.15 58.31 61.19 83.39 57.94 90.10 91.56 96.53 90.06
URRL-IMVC (Ours) 97.80 95.73 95.05 95.12 73.07 67.58 86.21 62.08 95.47 93.56 97.14 92.33

Comparison with traditional IMVC methods. Besides the DIMVC approaches, we also com-
pared our method with traditional IMVC approaches, the results are recorded in Table 6. The pro-
posed URRL-IMVC achieved consistently superior performance for the IMVC task regardless of
datasets and metrics, while for the MVC task, it achieved the best performance on Handwritten
and the Humbi240 dataset, and being comparable with MPC on 100Leaves. Generally speaking,
our proposed framework also achieved state-of-the-art results compared with traditional IMVC ap-
proaches.

Table 7: Comparison between our approach and cross-view contrastive learning-based approach
(CPSPAN) on Caltech101-7 dataset with a different number of views. The best results of CPSPAN
are achieved with 4 views, while with 5 views for our approach.

Views CPSPAN (Jin et al., 2023) URRL-IMVC (ours)

Acc(%) NMI(%) ARI(%) Acc(%) NMI(%) ARI(%)

2 50.88± 1.87 45.27± 2.50 35.79± 2.25 58.36± 3.01 47.16± 2.50 39.40± 2.71
3 73.17 ± 4.27 61.40 ± 4.29 55.37 ± 5.46 77.60± 0.88 67.61 ± 0.98 63.97 ± 1.33
4 84.89 ± 2.15 75.37 ± 2.45 71.79 ± 3.26 91.73 ± 0.47 83.57 ± 0.68 83.26 ± 0.76
5 77.62 ± 4.74 69.70 ± 4.04 63.23 ± 5.51 92.95 ± 2.60 86.29 ± 1.76 86.02 ± 2.91

Comparison with a different number of views. As we mentioned in the introduction, the effective-
ness of the cross-view contrastive learning strategy diminishes due to less overlapped information
between views. Observing from Table 7, adding more views may harm the clustering performance
of the cross-view contrastive learning-based approach, proving this point of view, and also being
consistent with the theoretical analysis from (Trosten et al., 2023). On the other hand, our approach
stably benefits from more views in the dataset, overcoming this drawback.
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Table 8: Comparison of model parameters and computational costs (Multiply-Adds, MACs) with
state-of-the-art DIMVC approaches.

Approach MACs (M) Parameters (M)

Completer (Lin et al., 2021) 8.98 6.82
DSIMVC (Tang & Liu, 2022) 9.89 9.33

SURE (Yang et al., 2023b) 8.24 8.24
DCP (Lin et al., 2023) 9.02 9.01

CPSPAN (Jin et al., 2023) 4.92 4.93
RecFormer (Liu et al., 2023) 12.08 6.09

URRL-IMVC (ours) 1.54 1.01

Comparison of model parameters and computational costs. We calculated single forward statis-
tics with the “thop” library1 on the Scene-15 dataset, the results are depicted in Table 8. Except for
the state-of-the-art performance, our model also enjoys fewer parameters and computational costs
thanks to our efficient design. Like prior works, the network hyperparameters of our model are not
carefully chosen, and the same network is used for all datasets. Thus, there might still be room for
improvement.

C.4 DISCUSSION ON SCENE15

Our approach achieved 41.69/40.88/23.93 for Acc/NMI/ARI on the Scene15 dataset, with slightly
lower NMI than Completer. So we conducted experiments searching for better performance and
found that training the network to 5 times the original iteration results in 43.93/43.31/26.43 which is
remarkably better than the original setting. However, not all datasets benefit from 5 times of training.
For instance, on Handwritten and Caltech101-7, 5 times of training results in worse performance
possibly due to auto-encoder overfitting. Currently, we have found four datasets that benefit from
more iterations of training, Scene15, Humbi240, BDGP, and 100Leaves (2 views). A hypothesis for
this phenomenon is that this characteristic is related to the number of views, as these three datasets
are all 2-view datasets. But it remains to be proved by future work, so in the paper, we still report
the performance without 5 times of training.

C.5 ABLATION ON DESIGN DETAILS

Table 9: Ablation test on the output choice of VDE and NDE. ”Mean” represents using the average
of all output vectors from the Transformer as output. The 1st represents using the first output vector,
2nd represents the second output vector, and so on. ”Concat+Linear” represents first concatenating
the output vectors and then using a linear layer to map the new vector to the desired dimension.

Output/Module NDE VDE

1st 93.36±0.89 89.73±3.26
2nd 91.87±1.01 88.75±3.56
3rd 90.47±3.15 87.23±3.67
4th 89.36±4.33 89.94±4.15
5th - 87.14±3.88

Mean 90.09±3.61 93.36±0.98
Concat+Linear 83.23±7.16 91.13±3.38

Ablation on Output Choice. We conducted the ablation test in Table 9 to find the best output
choice of both the Neighbor Dimensional Encoder (NDE, section 3.1.1) and the View Dimensional
Encoder (VDE, section 3.1.2). It can be observed that choosing the first vector of the Transformer
output sequence significantly outperforms other choices, and using the latter output vectors results
in worse and worse performance. It is consistent with our point of view that NDE needs a bias on

1https://github.com/Lyken17/pytorch-OpCounter
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the most confident input (the center sample or the nearest neighbor), and further neighbors contain
more noise to harm the final performance. For VDE the situation is different, using the average of all
output vectors outperforms other choices, which is consistent with our point of view that VDE needs
to be unbiased. Concatenation with linear layer does not perform well in both Encoders, possibly
due to lack of supervision.

Table 10: Ablation test on traditional clustering method for initialization. K-means and Agglom-
erative clustering with “ward” linkage are tested. Agglomerative clustering is much better both on
initialization and final clustering results thanks to its stability.

Cluster Method K-means Agglomerative

Initialize 84.84± 6.08 90.38 ± 1.46
Final 88.34± 6.33 93.36 ± 0.98

Ablation on Clustering Method. As shown in Table 10, we tried two kinds of traditional clustering
methods for Clustering Module initialization (Appendix B.4), K-means and Agglomerative cluster-
ing with “ward” linkage. Agglomerative clustering achieved much better results mainly due to its
stability in initialization. As we mentioned earlier in the paper, DEC-based clustering training is
sensitive to initialization, so a stable initialization can result in stable final clustering results.

Table 11: Ablation test on positional encoding (PE) for NDE. Cosine distance-based and learnable
PE achieved the best results, while sinusoidal PE had negative effects.

Type Cosine Euclidean Learnable Sinusoidal None

Concat 93.36 ± 0.98 92.73± 0.45 93.20± 0.59 90.91± 2.40 92.63± 2.30
Add - - 90.96± 3.60 92.29± 2.96 -

Ablation on Positional Encoding. We conducted an ablation study on the design of Positional
Encoding (PE) in NDE (section 3.1.1), the results are recorded in Table 11. Cosine distance and
Learnable PE with concatenation achieved the best results, while Euclidean distance PE achieved
secondary results but with the best stability. Sinusoidal PE had negative effects, especially when
concatenated with input. The result is consistent with the ablation study in (Nguyen et al., 2021),
while our PE generally has a smaller impact on the final result. The difference can come from our
other designs or the supervision.

Table 12: Ablation study on extra missing view recovery network and robustness learning. “RL”
represents the Robustness Learning in URRL-IMVC that consists of augmentation and robustness
loss. Adding an extra network 1 for missing view recovery only results in comparable performance
compared with our one network setting, while lacking Robustness Learning can cause a significant
performance drop. The phenomenon supports our point of view that directly learning robust embed-
ding is more efficient than explicitly recovering missing views.

Network 1 Network 2 Acc(%) NMI(%) ARI(%)

- with RL 92.95 ± 2.60 86.29 ± 1.76 86.02 ± 2.91
with RL with RL 92.93 ± 2.64 85.93 ± 1.74 84.98 ± 2.84
with RL w/o RL 89.65 ± 4.65 83.34 ± 3.66 81.72 ± 5.38
w/o RL w/o RL 87.23 ± 12.06 82.28 ± 6.62 79.96 ± 11.12

Ablation on Missing View Recovery and Robust Learning. Our results may raise the question
of whether combining our network and missing view recovery could achieve better results. Thus,
we conducted an ablation study to explore whether adding an additional missing view recovery
network could help. We followed the framework in RecFormer (Liu et al., 2023) and used two
identical URRL-IMVC networks, with the first network learning to recover the missing views and
the second network doing complete multi-view clustering. As the results in Table 12 show, with
our robustness learning strategy, comparable results are achieved with the extra recovery network.
Indicating the robustness learning strategy can replace the role of missing view recovery and thus,
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save the computational costs and parameters of the extra recovery network. On the other hand,
removing the robust learning in both networks can degrade the clustering performance and increase
instability, indicating that missing views recovered with simple strategies might be unreliable. The
phenomenon supports our point of view in the Introduction 1.

C.6 ABLATION ON HYPERPARAMETERS

Table 13: We conducted ablation tests on the two hyperparameters that control the balance between
three losses. The best result can be found with λ1 = 0.001 and λ2 = 0.1.

Loss Hyp 0.0001 0.001 0.01 0.1 1

λ1(λ2 = 0.1) 92.45± 2.49 93.36 ± 0.98 92.47± 0.68 85.37± 4.31 64.14± 3.13
λ2(λ1 = 0.001) 90.19± 1.57 90.23± 1.46 89.95± 1.21 93.36 ± 0.98 14.30± 0.02

Ablation on Loss Weights. The ablation on loss weights (equation 5) can be found in Table 13. The
weight for embedding robustness loss λ1 is best set to 0.001, which is also the smallest of the three
losses as it actually plays an auxiliary role during training. We found that this loss will automatically
decrease with the decrease of reconstruction loss, which is consistent with the intuition that learning
to recover dropped-out views shares nearly the same objective as learning to minimize the distance
between augmented and original embedding. The experiments also show that a large λ1 will reduce
the final performance, as the network focuses too much on augmentation and ignores the inherent
structure of data. The best weight for clustering loss λ2 is 0.1. The performance shows a leaping
change near 0.1 and achieves the best performance, while the training collapses when it passes 0.1.

Table 14: The ablation study on view dropout augmentation probability ϕ1 from equation 19. We
use grid search to determine the best value range of ϕ1 under different missing rates mr and try to
design a mapping function from the actual missing rate to the desired ϕ1. Generally speaking, a
larger missing rate requires a larger view dropout probability for augmentation, the ϕ1 value from
the designed mapping function, equation 25, is listed in the last column of the table.

Parameter ϕ1 = 0 ϕ1 = 0.15 ϕ1 = 0.3 ϕ1 = 0.45 ϕ1 = 0.6 Equation 25

mr = 0.00 89.30± 1.86 89.50± 1.77 88.91± 1.89 89.71 ± 1.19 86.94± 2.12 ϕ1 = 0.15
mr = 0.25 86.15± 2.42 88.12± 1.90 88.56 ± 1.55 86.51± 3.33 83.57± 4.74 ϕ1 = 0.17
mr = 0.50 83.35± 1.94 86.12 ± 1.57 85.61± 2.08 83.25± 3.86 82.25± 4.82 ϕ1 = 0.23
mr = 0.75 81.41± 2.79 81.78± 3.86 82.89 ± 4.51 80.82± 3.58 77.17± 5.63 ϕ1 = 0.32
mr = 1.00 76.31± 3.00 77.53± 3.63 77.02± 3.91 80.21 ± 2.94 79.19± 3.67 ϕ1 = 0.46

Ablation on View Dropout Probability ϕ1. We conducted a grid search to determine the best value
range of view dropout augmentation probability ϕ1 under different missing rates mr, and the results
are shown in Table 14. For view complete condition, ϕ1 < 0.6 have similar performance, while for
view incomplete condition, the desired ϕ1 ascends as the missing rate mr increases. According to
this observation, we designed the mapping function in equation 25 to follow this ascending trend,
and its value is listed in the last column of the table.

Table 15: Ablation test on the hyperparameter k in KNN. The result is unimodal with the best k = 4.
Larger k values tend to provide more stable results (smaller standard deviation).

k = 1 k = 2 k = 4 k = 8 k = 16

83.84± 3.38 84.84± 2.82 87.31 ± 2.01 87.00± 2.46 86.01± 1.28

Ablation on hyperparameter k for KNN. We conduct an ablation study on k in KNN Imputation
(Appendix B.5) to examine its effect. A large increment can be observed comparing k = 4 with
k = 1. However, the performance starts to drop as k > 4, which we infer can be caused by the
noise brought by further neighbors. On the other hand, larger k also seems to benefit the stability of
clustering.

24



Under review as a conference paper at ICLR 2024

Table 16: Ablation test on network hyperparameters. We vary Transformer block numbers in NDE
and VDE, the Feed Forward Network (FFN) dimension in NDE, VDE, and Decoder, and the unified
embedding dimension for this test. We report computational cost (Multiply-Adds, MACs), network
parameters, and Accuracy on the Caltech101-7 dataset as results. As observed, larger networks
do not necessarily yield better clustering performance, and the best results can be achieved with 2
Transformer blocks and 256 as FFN and embedding dimensions.

Transformer Blocks FFN Dimension Embedding Dimension MACs Parameters Accuracy

1 128 128 29.73 12.07 91.86 ± 1.80
2 128 128 33.65 13.03 91.29 ± 3.24
2 256 128 43.04 16.69 90.33 ± 5.26
2 256 256 43.98 17.13 92.95 ± 2.60
4 256 256 60.08 21.07 91.92 ± 2.57
4 512 256 97.05 34.14 89.31 ± 5.11
4 512 512 103.34 36.39 90.02 ± 3.29

Ablation on network hyperparameters. Though it is not the focus of most prior works, we also
conduct an ablation experiment (Table 16) on network hyperparameters to study the influence of
model size. It can be observed that larger models do not necessarily yield better clustering accu-
racy, the best result is achieved with a balanced setting with 2 Transformer blocks in the NDE and
VDE each, while FFN and embedding dimensions set to 256. A reasonable explanation for this
phenomenon can be, that small models fail to learn the complex fusion mapping between raw data
and unified embedding, while large models can easily overfit and weaken the relation between latent
space and data space.

C.7 VISUALIZATION

(a) Loss (b) Clustering Performance

Figure 6: Visualization of loss and clustering performance throughout the training process.

Visualization of Loss and Performance. We visualized the three loss terms and clustering perfor-
mance throughout one training process in Figure 6. In the first stage of training, both reconstruction
loss and robustness loss drop. In the second stage, however, reconstruction loss continues to drop
while robustness loss is sacrificed for clustering loss. As for clustering performance, in the first
stage, the clustering performance vibrates due to a lack of clustering-oriented supervision, and it is
stabilized in the second stage.
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