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Abstract

Complex simulation of physical systems is an
invaluable tool for a large number of fields, in-
cluding engineering and scientific computing. To
overcome the computational requirements of high–
accuracy solvers, learned graph neural network
simulators have recently been introduced. How-
ever, these methods often require a large number
of nodes and edges, which can hinder their per-
formance. Moreover, they cannot evaluate con-
tinuous solutions in space and time due to their
inherently discretized structure. In this paper, we
propose GRAPHSPLINENETS, a method based
on graph neural networks and orthogonal spline
collocation (OSC) to accelerate learned simula-
tions of physical systems by interpolating solu-
tions of graph neural networks. First, we em-
ploy an encoder-decoder message passing graph
neural network to map the location and value of
nodes from the physical domain to hidden space
and learn to predict future values. Then, to re-
alize fully continuous simulations over the do-
main without dense sampling of nodes, we post–
process predictions with OSC. This strategy al-
lows us to produce a solution at any location in
space and time without explicit prior knowledge
of underlying differential equations and with a
lower computational burden compared to learned
graph simulators evaluating more space–time lo-
cations. We evaluate the performance of our
approach in heat equation, dam breaking, and
flag simulations with different graph neural net-
work baselines. Our method shows is consistently
Pareto efficient in terms of simulation accuracy
and inference time, i.e. 3× speedup with 10%
less error on flag simulation.
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1. Introduction
Simulations of partial differential equations (PDEs) describ-
ing physical processes are an invaluable tool for an increas-
ing number of disciplines. As a result, the scientific machine
learning community has been focused on crafting compu-
tationally inexpensive yet accurate simulation methods to
expand the range of applicability of dynamical system simu-
lators. Traditional simulation methods (Houska et al., 2012),
such as the first principle model solver and the generalized
Gauss-Newton methods, can be costly in calculations: in
particular, complex physical simulations need substantial
computational resources to be performed. In recent years,
PDEs simulators have been widely used in a variety of ap-
plied problems such as game physics engines (Lewin, 2021),
Virtual Reality (VR), (Höll et al., 2018) and the metaverse
(Taheri et al., 2021). Thus, the development of accurate and
fast simulators becomes fundamental to the deployment of
such new technologies.

Previous research has shown successes in applying deep
learning for simulating a variety of PDEs (Raissi et al.,
2019). Graph-based simulation methods (Sanchez-Gonzalez
et al., 2020; Pfaff et al., 2021) have used graph neural
networks as a natural representation of the simulation un-
derlying discretized dynamics; their discretization is often
a fundamental part of making simulations viable. These
paradigms have proven successful in learning generalizable
particle and mesh–based simulators thanks to the ability
of graphs in capturing local and global phenomena while
retaining properties such as spatial equivariance and transla-
tional invariance (Bronstein et al., 2021).

Despite their advantages, a significant downside of mesh-
based graph models is their inherent structural discretiza-
tion, making it hard to achieve physical space or time–
space continuous simulations. The encoder–decoder strat-
egy has hidden layers representing physical states out of
mesh points, enabling a space-continuous representation
(Alet et al., 2019). In addition, message passing neural
network (MPNN) of derivatives, combined with numerical
accumulation methods, work for time-continuous predic-
tion (Iakovlev et al., 2020). However, these continuous
approaches require more mesh points for higher–accuracy
simulations, which yield a heavy computational burden.
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On the other hand, collocation methods have considerable
benefits in terms of the computational complexity of the
number of collocation points and the ability to yield con-
tinuous results, such as the smoothest spline collocation,
modified spline collocation (Fairweather & Meade, 2020),
and the Cubic Spline Orthogonal Spline Collocation (OSC)
methods for PDEs (Bialecki & Fairweather, 2001).

In this paper, we introduce GRAPHSPLINENETS: by lever-
aging the OSC method, we can readily obtain space–time
continuous, free form simulations by starting from an in-
trinsically discrete GNN without the need for explicit prior
knowledge of the problem to be solved. We utilize the
method as an efficient post–processing scheme that can
be applied to several different GNN simulators. GRAPH-
SPLINENETS allow us to reduce the number of space and
time sample points of the ad–hoc trained underlying graph
module that leads to Pareto–efficient simulations in terms
of solution accuracy and inference speed. We demonstrate
the method on the heat equation PDE benchmark, on a
dam–breaking particle–based meshless simulation, and on a
mesh–based cloth simulation.

2. Related Work
We identify related works for this paper in the area of numer-
ical methods and deep learning for PDE simulation and cat-
egorize them into three main areas, namely: deep learning
for physical simulations, graph neural network simulators,
and the relationship between collocation methods and deep
learning.

Deep Learning for Physical Simulations Solving dif-
ferential equations with deep neural networks has been an
active research area to solve the issues of traditional PDEs
solvers, which often suffer from unsustainable computa-
tional requirements and scalability issues that can hinder
real–time applications (see Appendix C.1 for further in-
sights). Deep neural networks have been shown to be a
viable alternative to numerical methods to solve the issues
of scalability and inference time requirements. Physics
Informed Neural Networks (PINNs) (Raissi et al., 2019),
which aid in both the solution and discovery of PDEs by us-
ing ad–hoc deep architectures and loss functions enforcing
boundary conditions, have received considerable attention
due to their flexibility in tackling a wide range of data–
driven solutions and discovery of PDE, even though they
have been shown suffer from unstable training and conver-
gence issues (Wang et al., 2022). The problem of solving
PDEs, which we deal with in this paper, has also been ex-
plored with convolutional neural networks (Guo et al., 2016;
Bhatnagar et al., 2019) which naturally incorporate the in-
ductive bias of spatial invariance. Another active area of
research concerns the use of neural operators (Lu et al.,

2019; Li et al., 2020a; Kovachki et al., 2021) which map
between infinite–dimensional function spaces. Several soft-
ware libraries that have been developed to deal with numeri-
cal methods for deep learning efficiently include Poli et al.
(2020); Chen et al. (2020); Lu et al. (2021).

Graph Neural Network Simulators The use of graph
neural networks (GNNs) to address the simulation of a sys-
tem with a finite number of sample points has been investi-
gated to address issues from other deep learning paradigms
for simulation. GNNs extend other models as convolu-
tional neural networks to irregular grids and also capture
physical principles deriving from geometric deep learning
such as spatial equivariance and permutation (Bronstein
et al., 2021) while constraining interactions to local neigh-
borhoods (see Appendix C.2 for further intuitions on the
success of GNNs for simulation). Alet et al. (2019) intro-
duces the Graph Element Networks architecture to model
continuous underlying physical processes with no a–priori
graph structure by modeling adaptively sampled points in
a graph. Sanchez-Gonzalez et al. (2020) develops with the
Graph-based Neural Simulator (GNS) paradigm a model
that learns a system dynamic update by creating graph edges
on neighbor finite particles and performing message pass-
ing: this is shown to faithfully contain rollout errors and
generalize well to unseen conditions. Pfaff et al. (2021)
extends the mesh–free GNS to mesh–based simulations:
the resulting model can capture mesh–space interactions by
having edges corresponding to the ones of the mesh and
obtains cheaper simulations than the baseline numerical
solvers. Other related works include applications to control
(Sanchez-Gonzalez et al., 2018), the extension of neural op-
erators to graphs (Li et al., 2020c;b), and hybrid approaches
with graph networks with traditional fluid simulation solvers
(de Avila Belbute-Peres et al., 2020).

Collocation Methods and Deep Learning While
continuous–time graph models that have been previously ex-
plored (Poli et al., 2019; Xhonneux et al., 2020) can theoret-
ically capture a system’s time evolution, space–continuous
graph models still suffer from the problem of the inherent
graph discretization. For this reason, representing the space
and time–continuous nature of simulations has been mainly
dealt by using interpolation methods such as linear interpo-
lation in Alet et al. (2019). However, these methods may
not be suitable for simulation due to their lack of differentia-
bility that may be necessary for instance in control problems
(Liang et al., 2019) as well as falling short of realistic sim-
ulation which is often continuously differentiable (i.d. C1

class). Unlike previous approaches, we employ the Orthog-
onal Spline Collocation (OSC) (Bialecki & Fairweather,
2001) method to efficiently obtain C1 class solutions to dif-
ferential equations given few partition points and obtain
both space and time continuous simulation based on an un-
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Figure 1. Rollout comparison between the ground truth and our method. GNN is the baseline model (MeshGraphNet) of our GRAPH-
SPLINENETS, which cannot directly predict intermediate states. By applying the time–oriented OSC method, we obtain realistic
time–continuous simulations while at the same time speeding up the learned simulator by not needing additional graph neural network
evaluations in time.

derlying GNN simulator. Other deep collocation methods
include Guo et al. (2019), which shows an ad–hoc colloca-
tion method for the bending analysis of the Kirchoff plate
which cannot be easily tackled with mesh–based methods
since it requires C1 continuity. Brink et al. (2021) introduces
a deep–learning model based on feed–forward networks and
collocation method to approximate a variety of strong–form
PDEs. Unlike the paradigms mentioned above that rely on
deep learning to obtain collocation weights, we employ the
OSC method to obtain the weights which have theoretical
guarantees on convergence. Moreover, the synergy of OSC
with GNNs enables our module to tackle diverse problems
without the need of crafting over–engineered schemes while
efficiently balancing between solution accuracy and infer-
ence time.

3. Methodology
3.1. Problem Set

We consider a continuous dynamic PDE system with state
u(x, t) ∈ R that evolves over time t ∈ R+ and bounded
domain x ∈ Ω ⊂ RD


L(u) = f(x, t), (x, t) ∈ Ω× R+

B(u) = g(x, t), (x, t) ∈ ∂Ω× R+

u(x, 0) = u0(x),x ∈ Ω

(1)

where B(·) is the boundary condition and u0(·) is the initial
condition. We denote X = {x0,x1, · · · ,xN} ∈ X as
the set of physical space locations of sample point. Yt =
{yt0, yt1, · · · , ytN , } ∈ Y is the state of sample points at time
t, i.e. yti = u(xi, t).

A simulator S : Y → Y maps the current state
of sample points to a future state with fixed timestep.

We denote the prediction trajectory from t0 to tK as
{Yt0 , Ŷt1 , · · · , ŶtK}. A simulation model M(·; θ) : Y →
Y with learnable parameter θ takes an input Ytk and pre-
dicts the next timestep state Ŷtk+1 = M(Ytk ; θ). The gap
between prediction states and ground truth can be used as
the loss function L = ∥Ŷtk+i −Ytk+i∥2.

In the rest of this paper, we will follow the notation conven-
tion in which the superscript denotes the time–space index
and the subscript denotes the space index.

3.2. Graph OSC Network Architecture

The overall architecture of GRAPHSPLINENETS is shown
in Figure 2. Given the initial state of the domain, we firstly
employ graph neural networks to obtain discrete predictions.
Then, we apply the time–oriented collocation method and
space–oriented collocation method on these discrete pre-
dictions to get simulation functions, generating time and
space–continuous simulations. We describe our model in
three parts: graph neural network, time–oriented orthogonal
collocation, and space–oriented orthogonal collocation.

Graph neural network structure We employ an Encoder–
Processor–Decoder structure to predict sample point values
at the next timestep.

The encoder represents sample points in the input space as a
node in latent graph space, where an adjacency matrix is cre-
ated to describe the connection. Symmetrically, the decoder
maps the updated graph to output space, representing hidden
features to physical space’s values for each sample point. A
message passing neural network is applied to update node
features in hidden graph layers dynamically. The weights of
the encoder, decoder, and message passing layers constitute
the learning parameters of the graph neural networks, that
can be trained by minimizing the end–to–end loss between
the simulation results in physical space and the ground truth.
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Figure 2. The overall scheme of GRAPHSPLINENETS can be split into three parts. Graph Neural Network takes the initial states to
make rollout predictions of the value of sample points at several subsequent stages. This process is discrete and the time gap between
input and prediction is fixed. Time–oriented OSC takes one sample point’s states at all prediction steps as input and yields as output a
simulation function of this sample point’s value over time. By substituting time tk +∆t we can obtain the value of the sample point
at this time frame. Space–oriented OSC takes the sample points’ value at one–time frame as input and yields as output a simulation
function of values in the domain. By substituting the location we can get the value of any point within the domain at this time frame. Here
Hr(πi) denotes all C1 polynomials under order r.

Encoder E(X,Yt) : X ×Y → G encodes observed sample
points in physical space to a graph G = (V,E) ∈ G as
a hidden layer with vertices V = {vi}Ni=0 connected by
undirected edges E = {eij}, following the strategy of
nearest neighbors. Vertical and edge features are assigned
during the encoder process, including position, physical
value, vertices distances. Details of feature are shown in
Section 4.1.

Processor P(G) : G → G firstly generates messages for
every edges based on features of connected vertices, i.e.
mij = ϕ(vi,vj , eij). Then, it updates vertices and edges
by aggregating messages v̂i = γ(vi,

⊕
j∈N (i) mi,j), êij =

ψ(eij ,mij) where N (·) are connected neighbors, γ and
ψ are implemented using multi–layer perceptrons (MLP)
with a residual connection. Message passing can consist of
multiple steps, depending on graph complexity and physical
system scale. The final output of the processor is an updated
graph Ĝ, which can be considered as the predicted graph at
the next timestep. We set the notation of graph at time tk to
Gtk , then the output of processor is Ĝtk+1 = P(Gtk).

Decoder D(G) : G → Y extracts updated values for sample
points as prediction at the next timestep, i.e. Ŷtk+1 =
D(Ĝtk+1).

Time-oriented OSC One sample point’s value changes
from 0 to T over time, following an Ordinary Differential
Equation (ODE)


u(t) = f(t), t ∈ [0, T ]

u(0) = u0(x0)

u(T ) = uT (x0)

(2)

Decide Partition and Collocation Points

Initial Simulator Polynomial Parameters

Generate an Algebra Problem
by Substituting Collocation Points

Solve for Simulator Polynomial Parameters

Simulate Values at the Whole Domain

Figure 3. The overall process of applying the OSC method. We
firstly choose a rule to generate partition and collocation points,
where the rule can be isometric distribution, Fundamental Solution
Method (Katsurada & Okamoto, 1996) or Gaussian–Legendre
quadrature rule (De Boor & Swartz, 1973). Then, we define
the simulator to be a series of C1 continuous polynomials. To
define the simulator’s parameters, we generate an algebra problem
by substituting values of collocation points to get the equations.
Finally, we solve the algebra problem to get the parameters and
then use the simulator to obtain values over the whole domain.

The primary technique for using the OSC approach is
given in Figure 3. For time–oriented OSC we consider
an isometric split of the temporal domain with N partitions
π : 0 = t0 < t1 < · · · < tN = T . We aim to find one
polynomial under order r on each partition and make these
N polynomials C1 continuous. These polynomials have the
degree of freedom N(r − 1). To decide those parameters,
we select r− 1 collocation points in each partition to decide
those parameters. Note that these collocation points can be
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Figure 4. Running time and MSE error of interpolation methods
and OSC method on [Left] 1-D non-linear PDEs and [Right] 2-D
non-linear PDEs, changing the number of collocation points from
10 to 20.

isometric or non-isometric: we leave them isometric for the
sake of graph neural network prediction.

Then, given an initial value of t0 = 0, the graph neural net-
work predicts in a rollout fashion a series of values at these
collocation points. By substituting locations and values of
collocation points to polynomials, we can transfer this ODE
problem to algebraic equations. Notice that the coefficient
matrix of this algebraic equation is almost block diagonal
(ABD) (De Boor & De Boor, 1978). This kind of system
is commonly easy and cheap to be solved (Amodio et al.,
2000).

More details about deriving the degree of freedom, visualiza-
tion of the ABD coefficient matrix, and detailed technique
of applying the time–oriented OSC are shown in Appendix
A.1.

Space-oriented OSC In one time frame, the state of the
domain Ω can be described by

{
ux(x) = fx(x),x ∈ Ω

B(ux(x)) = gx(x),x ∈ ∂Ω
(3)

For simplicity and without loss of generality, we consider
the unit domain [0, 1]D = Ω. Similarly with the time-
oriented OSC split strategy, for each dimension, we split the
domain into N partitions πi : 0 = pi0 < pi1 < · · · < piN =
1, i = 1, · · · , D. Here the partitions can be isometric or
non–isometric. Our target is to find one polynomial under
order r on each partition for every dimension and make
these N × D polynomials C1 continuous in the domain.
For example, we can choose the piecewise Hermite cubics
as the base. The simulation result is the linear combina-
tion of each dimension’s basis, with the degree of freedom
ND(r − 1)D. For each dimension, we select r − 1 col-
location points in each partition via the Gauss—Legendre

quadrature rule1(De Boor & Swartz, 1973). Thus, we obtain
in total ND(r − 1)D collocation points in the space.

We can get prediction values at collocation points via a
graph neural network and the time-oriented OSC. Then, we
substitute locations and values to polynomials to transfer
the original problem to an algebraic equation. Note that the
coefficient matrix of this algebraic equation is also ABD.
By solving this algebra equation, we can get the simulation
result. Mode details about applying space–oriented OSC
are shown in Appendix A.2. With the help of a graph neu-
ral network, time–oriented OSC, and space-oriented OSC,
simulators can cover all the spatio-temporal domains. To
make the model more robust to noisy inputs, we corrupt
the input features of the graph with random-walk noise, so
the training distribution is similar to the distribution created
during rollouts.

3.3. Model Training

After deciding the time–oriented OSC time step length and
space–oriented OSC collocation points’ locations, we train
the graph neural network by supervising on the per-node out-
put features produced by the decoder using a mean square er-
ror loss between predictions and their corresponding ground
truth.

4. Experiments
We evaluate GRAPHSPLINENETS on three dynamical sys-
tems: heat equation, mesh–free compressible fluids, and
deformable mesh–based cloth simulation.

4.1. Experimental Domains

Heat Equation These datasets are generated by FEniCS
Logg et al. (2012). We set the space domain to Ω = [0, 1]×
[0, 1] and time domain to [0, 1] with a total of 500 time steps.
Each time step corresponds to ∆t = 0.1 s. At each time
step, the dataset has a fixed mesh with 49 nodes and 248
edges. This dataset is split into batches of 500 : 100 : 100
of train, validation, and test set. We initialize these datasets
by fixing four boundaries to 0 and setting one or multiple
locations within the domain with the initial temperature.

Dam Breaking Simulation This dataset is generated
by Taichi Hu et al. (2019) and simulates a process of 2–
dimensional, particle–based water flow with an initialized
state of an enclosed rectangular dam. At t0 = 0, one dam
wall crashes and lets the water flow down. This dataset has
3200 sample points and 1000 time steps, where each time
step corresponds to ∆t = 0.01 s. This dataset is split into
batches of 800 : 100 : 100 for train, validation and test set.

1Widely used quadrature rule that can keep simulation results
A-stable (Iserles, 2009)
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Figure 5. Comparing dam breaking simulation results (down) with the ground truth (up) at t = 1, 2, · · · , 5 time frames. The colors
changing from blue to red show the increase of particle position moving gradient. GRAPHSPLINENETS takes the initial state as the input
and predicts 40 rollouts, where one rollout maps to 15 frames of ground truth (∆t = 0.15 s). Then, the time-oriented OSC is applied to
simulate values between rollout steps, including the 5 frames shown here.

Cloth Simulation We utilize the cloth simulation dataset
with no adaptive remeshing2 in Pfaff et al. (2021). We
choose this experimental domain to demonstrate how
GRAPHSPLINENETS scale to high–dimensional regimes
and deal with chaotic systems such as cloth simulation. The
dataset is generated by the cloth simulator ArcSim (Narain
et al., 2012) with different initialized positions and rotations
of a fixed–mesh flag composed of 1579 points. The trajec-
tory in time is simulated in the presence of constant wind
and fixed flag handles for a total of 400 timesteps: each
timestep corresponds to ∆t = 0.02 s. The dataset is split
into batches of 1000:100:100 of train, validation, and test
trajectories.

4.2. Model Training

Heat Equation In the heat equation simulation, the num-
ber of nodes and connections does not change along the
process and we hence keep the graph structure fixed. The
input of the graph model is the state value, i.e. the temper-
ature, of each mesh node at the initial time frame and its
output is the mesh state at the subsequent step. We train
a message passing neural network model by minimizing
the squared difference between the target next state and the
model prediction (further details are available in Appendix
B.2).

Dam Breaking Simulation The particle–based dam
breaking dataset cannot be represented by a fixed mesh
due to the chaotic nature of moving particles. We create
the graph neural network iteratively online as in Pfaff et al.
(2021) by searching for the nearest neighbors of each parti-
cle in a connectivity radius. Since the number of particles
is fixed, the time-oriented OSC can be applied to each par-

2Dataset available at: https://github.com/deepmind/deepmind-
research/tree/master/meshgraphnets

Collocation Points Ground Truth GNN Prediction OSC Simulation
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1.5

Collocation Points Partition Points

Figure 6. Heat Equation Simulation with central initialization (up)
and four corners with dynamically changing boundary condition
(down). GNN has discrete prediction result at each step, while
with space-oriented OSC, our GRAPHSPLINENETS can have a
continuous prediction in the domain.

ticle. The graph neural network takes as input the current
positions, node types, and their relative positions as well as
a history of past states to infer the state update and is thus
trained on the next state target update, i.e. the accelerations
(more details are available in Appendix B.3).

Cloth Simulation We implement the mesh–based graph
simulator in Pfaff et al. (2021) as a baseline model to effi-
ciently deal with the flag mesh–based simulation and pro-
duce stable rollouts. Similarly to the dam breaking simu-
lation, we encode the absolute and relative positions and
velocities of each node and their types as well as the posi-
tions in the mesh–space which yields more stable rollouts.
The model is optimized to predict the dynamics state update
values.

https://github.com/deepmind/deepmind-research/tree/master/meshgraphnets
https://github.com/deepmind/deepmind-research/tree/master/meshgraphnets
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4.3. Results

OSC and Interpolation Methods We show the effective-
ness of orthogonality by testing spline collocation methods
with different basis (orthogonal and non orthogonal) on the
2D heat equation simulation and the results are shown in
Figure 7 (Left). With an orthogonal basis, the collocation
method can get more accurate results with 40% reduction
in running time. Moreover, since creating the OSC coeffi-
cient matrix involves independent operations, we can use
multiprocessing to efficiently create it. Multiprocessing also
helps for solving the generated algebraic equations with
almost block diagonal matrices and we further our contribu-
tions by implementing the algorithm on GPU to increase its
efficiency. We show the results of parallelization and GPU
implementation in Figure 7.
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Figure 7. [Left] Comparison of spline collocation method with
different basis; 1D with 10 collocation points. [Right] CPU and
GPU multiprocessing comparison of running times; 2D domain
with (8× 8) collocation points. By efficiently parallelizing OSC,
we can speed up its calculations by more than 10×.

We also compare the OSC with several widely used interpo-
lation methods: linear, bilinear, 1–D cubic, and 2–D cubic
interpolation methods. Note that OSC methods can have
customized orders, e.g. the same with cubic interpolation
(order 3) or higher (order > 4). Higher–order polynomials
can better describe non–linear problems. These methods are
applied to four linear and non–linear problems. Results of
running time and accuracy comparisons are shown in Fig-
ure 4. OSC methods have the lowest error while incurring
low computational requirements among the compared meth-
ods. The number of sample points affects the performance:
however, it is demonstrated that OSC has lower calculation
complexity O(n2logn) than the cubic interpolation method
O(n3/4), where n is the number of sample points (Toraichi
et al., 1987). Further insights are shown in Appendix B.1.

Heat Equation A visualization of simulation results for
the centrally initialized heat equation is shown in Figure 6.
GEN has discrete prediction results, while our approach can
produce continuous simulations with errors lower than 10−7

at any point within the domain. Finally, we discuss the accu-
racy and running time with rollout steps for two approaches

on heat equation by time region and space region.

With the help of time–oriented OSC, GRAPHSPLINENETS
have a nearly 90% running time reduction while keeping
similar or lower Mean Squared Error (MSE) loss compared
to GEN as shown in Table 1. Moreover, Figure 9 shows
the comparison of the two models’ performance with the
increase of collocation points and rollout steps. With the
increase of collocation point number, our model can cap-
ture more information than GEN. Meanwhile, since the
GRAPHSPLINENETS can afford a longer graph neural net-
work prediction step, it tends to be more stable for long
rollout steps, which is shown in Figure 9.

Dam Breaking We train GRAPHSPLINENETS with the
time step ∆t = 0.15 s. Results comparing our model result
with the ground truth are shown in Figure 5. Compared
to the baseline GNN, which is trained with the time step
∆t = 0.03 s, our approach takes 47% less time to execute
while the difference of average prediction mean square error
with GNN is lower than 10−3. More details about the result
are shown in Appendix B.3.

Flag Simulation We train the baseline purely GNN model
predicting the state update at each time step of ∆t = 0.02 s
and two models predicting the update each 5 and 10 sim-
ulation time steps, respectively, corresponding to 0.1 and
0.2 seconds. Figure 8 shows rollout errors and our module
speedup, while Figure 1 illustrates sample time propagation
and comparison with the collocation method. Our method
produces stable rollouts even with larger time steps com-
pared to the baseline model while recovering the intermedi-
ate time–steps and providing speedups in the range of 1.8×
to more than 7× compared to the baseline model.

5. Conclusion
We introduce GRAPHSPLINENETS, a novel method that can
be integrated as a post–processing scheme into several learn-
able GNN modules for improving the solution of a variety
of physical processes in terms of both accuracy and infer-
ence time. Our approach integrates the theory of Orthogo-
nal Spline Collocation methods to achieve space and time
continuous simulations without heavy burdens on the com-
putational side. We demonstrate how GRAPHSPLINENETS
are robust in predicting complex, high–dimensional pro-
cesses characterized by several different PDE processes,
such as the ones arising directly from differential equations,
particle–based fluid dynamics, and mesh–based deformable
cloth simulation. This work represents a significant step
forward in learnable simulation approaches and offers key
advantages for obtaining solutions to complex systems in
science and engineering.

A limitation of our current approach is that collocation is in-
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Figure 8. Flag simulation results. [Left]: root mean squared error (RMSE) propagation: our modules predict state updates
every 5 (∆t = 0.1 s - Ours–5) and 10 (∆t = 0.2 s, Ours–10) steps with time–oriented collocation can produce stable
rollouts and perform competitively with the baseline model in the long run. [Middle] 1–second predictions: around this
rollout time, decoherence takes effect due to the chaotic nature of the flag simulation: our method collects lower error
compared to the baseline GNN. [Right]: CPU and GPU rollout time comparisons accounting for graph inference and the
OSC method demonstrate noticeable speedups in terms of solution inference time.

Table 1. Inference times and rollout errors of GRAPHSPLINENETS and GEN.
Running Time MSE Loss

Model (6 × 6) (8 × 8) (10 × 10) (12 × 12) (14 × 14) (16 × 16) (6 × 6) (8 × 8) (10 × 10) (12 × 12) (14 × 14) (16 × 16)

GEN 3.70 × 10−2 5.81 × 10−2 6.55 × 10−2 6.71 × 10−2 7.00 × 10−2 7.35 × 10−2 2.01 × 10−4 1.28 × 10−4 8.29 × 10−5 7.14 × 10−5 2.14 × 10−6 1.32 × 10−6

Ours 6.59 × 10−4 1.99 × 10−3 2.04 × 10−3 5.88 × 10−3 6.77 × 10−3 8.52 × 10−3 5.02 × 10−4 2.78 × 10−4 1.02 × 10−5 2.13 × 10−5 1.22 × 10−6 9.88 × 10−7

10−3 10−2 10−1

Time

0

2

4

M
S

E
L

os
s

×10−4

(4x4)

(6x6)

(8x8) (10x10)

(12x12)

(4x4)

(6x6)

(8x8)

(10x10)

(12x12)

Ours

GNN

0 25 50 75
Rollout Steps

0.0

0.5

1.0

1.5

2.0

×10−4

Ours

GNN

Figure 9. Comparison between our GRAPHSPLINENETS and GEN
on the time region. [Left] comparison of error and time of two
models with the number of time–oriented OSC collocation point
changing from 4× 4 to 12× 12. [Right] error propagation with
rollout steps with 10 (time) and 10× 10 (space) collocation points
shows how GRAPHSPLINENETS contains the error better during
rollout.

troduced as post-processing to obtain continuous solutions;
we plan to explore further the possibility of embedding a
learnable spline collocation step within the model. More-
over, our work does not consider evolving collocation points,
where the location of collocation points is adapted during
the rollout steps to allow for a more efficient (in the number
of nodes) inference of the solution.
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Supplementary Material: Efficient Continuous Spatio-Temporal Simulation with
Graph Spline Networks

A. Supplementary Material on Orthogonal Spline Collocation
We further illustrate the OSC method by providing numerical examples in this section.

A.1. 1-D OSC Example

For simplicity and without loss of generality, we consider the function domain as the unit domain [0, 1] and we set
N = 3, r = 2, which means that we use a three-order three-piece function to simulate the 1-D ODE problem as shown in
Equation. 2. We firstly choose the partition points as xi, i = 0, · · · , 3, x0 = 0, x3 = 1. The number of partition points is
N + 1 = 4. Then, based on Gauss-Legendre quadrature rule, we choose collocation points. The number of collocation
points within one partition is r − 1 = 1, so we have in total N × (r − 1) = 3 collocation points ξi, i = 0 · · · , 3.

After getting partition points and collocation points, we construct the simulator. Here we have three partitions; in each
partition, we assign a 2-nd order polynomial

a0,0 + a0,1x+ a0,2x
2, x ∈ [x0, x1] (S1a)

a1,0 + a1,1x+ a1,2x
2, x ∈ [x1, x2] (S1b)

a2,0 + a2,1x+ a2,2x
2, x ∈ [x2, x3] (S1c)

Notice that these three polynomials should be C1 continuous at the connecting points, i.e. partition points within the domain.
For example, Equation S1a and Equation S1b should be continuous at x1, then we can get two equations{

a0,0 + a0,1x1 + a0,2x
2
1 = a1,0 + a1,1x1 + a1,2x

2
1

0 + a0,1 + 2a0,2x1 = 0 + a1,1 + 2a1,2x1
(S2)

For the boundary condition

û(x) =

{
b1, x = x0

b2, x = x3
(S3)

we can also get two equations {
a0,0 + 0 + 0 = b1

a1,0 + a1,1 + a1,2 = b2
(S4)

We sum up the equations we got so far. Firstly, our undefined polynomials have N × (r + 1) = 9 parameters. The C1

continuous condition will create (N − 1)× 2 = 4 equations and the boundary condition will create 2 equations. Then, we
obtain N × (r − 1) collocation points. For each collocation point, we substitute it to polynomials to get an equation. For
example, if the ODE in Equation 2 is

û(x) + û′(x) = f(x), x ∈ [0, 1] (S5)

By substituting collocation point ξ0 into the equation, we can obtain

û(ξ0) + û′(ξ0) = f(ξ0)

=⇒ a0,0 + a0,1ξ0 + a0,2ξ
2
0 + a0,1 + 2a0,2ξ0 = f(ξ0)

=⇒ a0,0 + a0,1(ξ0 + 1) + a0,2(ξ
2
0 + 2ξ0) = f(ξ0)

(S6)
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Now we can see that the number of equations is the same as the degree of freedom of polynomials

Parameters︷ ︸︸ ︷
(r + 1)×N =

Boundary︷︸︸︷
2 +

C1Continuous︷ ︸︸ ︷
(N − 1)× 2+

Collocation︷ ︸︸ ︷
N × (r − 1)

(S7)

In this example, generated equations are constructed as an algebra problem Aa = f where the weight matrix is an almost
block diagonal (ABD) matrix as shown in Figure S1.

(A) (B)

0

Not 0

Figure S1. Visualization of an almost block diagonal matrix. Such matrices can be cheaply solved by exploiting their properties.

A =


1 0 0 0 0 0
1 ξ0 + 1 ξ20 + 2ξ0 0 0 0
1 x1 x21 −1 −x1 −x21
0 1 2x1 0 −1 −2x1
0 0 0 1 ξ1 + 1 ξ21 + 2ξ1
0 0 0 1 1 1

 , (S8a)

a =


a0,0
a0,1
a0,2
a1,0
a1,1
a1,2

 , f =


b1
f(ξ0)
0
0

f(ξ1)
b2

 . (S8b)

A.2. 2–D OSC Example

For simplicity and without loss of generality, we consider the function domain as unit domain [0, 1] × [0, 1] and we set
Nx = Ny = 2, r = 3. The selection of partition points and collocation points is similar to the 1-D OSC method; we have
N2 × (r − 1)2 = 16 collocation points in total. For simplicity, we note the partition points in two dimensions to be the
same, i.e., xi, i = 0, 1, 2. Unlike the 1–D OSC method, we choose Hermite bases to describe the simulator, which is kept
C1 continuous. For instance, the base function at point x1 would be

H1(x) = f1(x) + g1(x)

f1(x) =

{
(x−x0)(x1−x)2

(x1−x0)2
, x ∈ (x0, x1]

(x−x2)(x−x1)
2

(x2−x1)2
, x ∈ (x1, x2]

g1(x) =

{
+ [(x1−x0)+2(x1−x0)](x−x0)

2

(x1−x0)3
, x ∈ (x0, x1]

+ [(x2−x1)+2(x−x1)](x2−x)2

(x2−x1)3
, x ∈ (x1, x2]

(S9)

We separately assign parameters to basis functions, i.e. H1(x) = a1,if1(x) + b1,ig1(x) for x variable in the [x0, x1] ×
[yi−1, yi] partition. Then, the polynomial in a partition is the multiple combination of base functions in two dimensions. For
example, the polynomial in the partition [x0, x1]× [y0, y1] is

[ax0,1f0(x) + bx0,1g0(x) + ax1,1f1(x) + bx1,1g1(x)]

×[ay0,1f0(y) + by0,1g0(y) + ay1,1f1(y) + by1,1g1(y)]
(S10)
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Now we consider the degree of freedom of these polynomials. By definition, we have 2n(r − 1)(n+ 1) = 24 parameter.
Considering the boundary conditions, we have 24− 4×N = 16 parameters. The number is equal with collocation points
N2 × (r − 1)2, which means that we can get an algebra equation by substituting collocation points. Solving this equation,
we can obtain the simulator parameters.

We can similarly multiply basis functions and set parameters to the simulation result for the higher dimension OSC method.
And then select partition points and collocation points by the same strategy with the 2–D OSC method. Then we can
generate and solve the algebra equation similarly to what we did for the 1–D case.

A.3. Simple Numerical Example

We set N = 3, r = 3 to simulate the problem


u+ u′ = sin(2πx) + 2πcos(2πx)

u(0) = 0

u(1) = 0

(S11)

we can get a simulation solution

û(x) =


6.2x− 0.4x2 − 31.4x3, x ∈ [0, 1/3)

1.5 + 1.6x− 13.8x2 + 9x3, x ∈ [1/3, 2/3)

28.5− 100x+ 108.5x2 − 37x3, x ∈ [2/3, 1]

(S12)

A visualization of this simulation results is shown in Figure S2.

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.5

0.0

0.5

1.0

Simulation Ground Truth Partition Points Collocation Points

Figure S2. 1-D OSC example problem simulation result visualization, with the mean square loss around 5× 10−4 compared with the real
solution u(x) = sin(2πx).

B. Supplementary Experimental Results
B.1. OSC

We compared the OSC with linear, bilinear, 1–D cubic, and 2–D cubic interpolation methods on four types of problems:
1–D linear, 1–D non-linear, 2–D linear, and 2–D non-linear problems. In these experiments, we test different simulator
orders of the OSC method. For example, we set the order of the simulator to 4 for 1–D linear problem and 2 for 2–D linear
problem. When the order of the simulator matches the polynomial order of the real solution, OSC can directly find the real
solution. For non-linear problems, increasing the order of the simulator would be an ideal way to get a lower error. For
example, we set the order of the simulator to 4 for 1–D non-linear problem and 5 for 2–D non-linear problem. Thanks to the
efficient calculation of OSC, even though we use higher–order polynomials to simulate, we still employ a lower running
time to obtain results compared to other methods.

B.2. Heat Equation

We construct the graph by encoding the sample points’ location and value to three features. The connection of nodes is
provided by the FEniCS dataset generator, which follows the rule of unit mesh connections. These connections do not
change during training. To construct the neural network, we employ 3 layers of message passing neural network; each layer
contains 3 MLPs. Before training, we apply as normalization an independent noise Ñ(0, 10−4) to each node’s value. During
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Table 1. Error of OSC and four interpolation methods on different PDE problems: u(x) = x4 − 2x3 + 1.16x2 − 0.16x (1-D linear),
u(x) = sin(3πx) (1-D non-linear), u(x, y) = x2y2 − x2y − xy2 + xy (2-D linear), u(x, y) = sin(3πx)sin(3πy) (2-D non-linear).

MODEL 1-D LINEAR 1-D NON-LINEAR 2-D LINEAR 2-D NON-LINEAR

NEAREST INTERPOLATION 2.3670×10−6 1.7558×10−2 1.9882×10−3 3.8695×10−2

LINEAR INTERPOLATION 1.8928×10−7 8.7731×10−4 3.4317×10−4 1.1934×10−2

QUADRATIC INTERPOLATION 2.6748×10−10 2.8827×10−6 - -
CUBIC INTERPOLATION 3.5232×10−12 2.2654×10−7 2.9117×10−4 4.5441×10−3

OSC 3.4153×10−31 4.1948×10−8 1.7239×10−32 3.4462×10−5

training, we load the training trajectories (single frame) randomly to generate target frames nodes value (∆t = 0.01 for
GNN and ∆t = 0.05 for GRAPHSPLINENETS). The loss is the mean square error between the target frames’ node value
and the ground-truth one. We use the Adam optimizer (Kingma & Ba, 2014) to optimize the loss with a batch size of 2.

We test the performance of GRAPHSPLINENETS and GNN on one heat equation which is centrally initialized, and the four
boundaries are fixed to 0 (Figure S3). The ground truth is generated with the resolution 256× 256. GRAPHSPLINENETS is
trained on 8× 8 collocation points with a time step ∆t = 0.5 s. After we get the prediction values of collocation points, we
apply the space–oriented OSC to get simulation polynomials in the domain. Then we can get the same resolution predictions
with ground truth. Meanwhile, we train a GNN model on all the ground truth nodes with a time step ∆t = 0.1 s. We can
see from the table that GRAPHSPLINENETS uses less than 10% of GNN’s running time while the loss gap is lower than
5× 10−4.
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Figure S3. Heat equation with central initialization and zero boundary condition. [Left] ground truth solution of this problem. [Right]
GRAPHSPLINENETS simulation results, with 16 partitions and (8× 8) collocation points.

We also test GRAPHSPLINENETS on different heat equations. Figure S4shows one heat equation with zero initialization and
dynamically changing boundary conditions. We choose 16 sample points within the domain and get the series of values
along time, which is shown in Figure S5. In this experiment, we fix the order of time–oriented OSC to 4. We can see that our
model yields accurate results for different locations’ sample points. 1–D cubic interpolation method works on less dynamic
points. However, for more complex points, the cubic interpolation method collects a considerable amount of error (Figure
S5 (0.9, 0.9), while our approach can still converge close to the ground truth.

We then discuss the influence of collocation point numbers. By increasing the number of space–oriented OSC collocation
points, we can see the error of GRAPHSPLINENETS gets close results to GNN (Figure S6 left) while keeping the running
time shorter. In the case of (14 × 14) collocation points, GRAPHSPLINENETS has a loss gap lower than 3 × 10−7 with
GNN but takes only 43% time of GNN. We also illustrate the error curve of our strategy based on the number of collocation
points to demonstrate its strong convergence capabilities.
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Figure S4. Heat equation with zero initialization, one boundary (0, 0)− (0, 1) is fixed to 0, two boundaries (0, 0)− (0, 1), (0, 1)− (1, 1)
are not restricted, and one boundary (1, 0)− (1, 1) is dynamic by sin(t).

Table 2. Inference times and rollout errors of our method and GNS on the Dam Breaking dataset with different collocation points for 50
rollout steps. GRAPHSPLINENETS perform competitively or even outperform the baseline model while cutting down considerably the
running time.

Running Time MSELoss

Model 15 21 27 15 21 27

GNS 3.44 × 10−1 4.71 × 10−1 6.32 × 10−1 2.98 × 10−3 2.28 × 10−3 1.98 × 10−3

Ours 4.02 × 10−2 6.55 × 10−2 2.91 × 10−1 1.08 × 10−2 7.78 × 10−3 1.62 × 10−3

B.3. Dam Breaking

We define the input velocity as average velocity between the current and previous timesteps, calculated for three dimensions
ptk
x = (vtk

x − v
tk−1
x )/∆t. This property is encoded to the node feature. For each node, we find all neighbors within a

connectivity radius to connect. We decide the connectivity radius by setting a maximum connectivity k. For each node,
we calculate the average distance of its k nearest neighbors, then keep this distance during training. We create the graph
structure by using 3 message passing neural network layers with each one containing 3 MLPs.

Before training, we apply independent noise N (0, 10−3) to every node’s vector. We only apply one normalization before
training. During the training, the graph takes several previous trajectories as input, and the output is be the velocity at this
time step. Then, we accumulate this output with time to get the position of this node at the next time frame. We calculate the
loss by comparing the position and velocity of each node with the ground truth. We apply stochastic gradient descent via
Adam to optimize the loss. Results are shown in Table 2.

B.4. Flag Simulation

We retain most of the experimental settings of the FLAGSIMPLE experiment in (Pfaff et al., 2021). More specifically, we
utilize the same latent vector representations of size 128 at each node and edge and the same number of message passing
steps (15). We utilize a batch size of 2 instead of 1 as in (Pfaff et al., 2021), which we found to be less brittle to training for
fewer epochs. We trained the model for 1M training steps with the Adam optimizer subject to an exponential learning rate
decay from 10−4 to 10−6. We empirically found the choice of training noise to be essential for successful model training. In
particular, we used the same training noise of 1e-3 with the noise correction parameter γ set to 0.1 in the one–step baseline
GNN. For models predicting multiple steps, we experimentally found multiplying the step size ratio by the initial training
noise to be successful. For instance, supposing that the baseline model predicts with a step update of 0.02 s, the model with
step size 5 (i.e. ∆t = 0.1 s) is trained with noise of scale 1e-3 × 5 = 5e-3. In Figure S7 we show differences between linear
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Figure S5. Value changing for 16 sample points along time of the heat equation in Figure S4, including ground truth, 1–D cubic
interpolation results and our simulations. Location of sample point is marked in the left bottom corner.

interpolation and OSC for a sample point in the flag simulation.

B.5. Hardware and Software

Experiments were carried out on a machine equipped with an INTEL CORE I9 7900X CPU with 20 threads and a NVIDIA
RTX 2080 TI graphic card with 11 GB of VRAM. Software–wise, we used FEniCS (Logg et al., 2012) for Finite Element
simulations for the heat equation experiments; Taichi (Hu et al., 2019) for the dam breaking simulation, while the flag dataset
was obtained with ArcSim (Narain et al., 2012). We implemented a parallelizable routine for the OSC method using the
multiprocessing libraries in Python and PyTorch for GPU parallelization (Paszke et al., 2019). The GRAPHSPLINENETS
code was written in Python, and PyTorch was used for deep learning while the Deep Graph Library (DGL) (Wang et al.,
2020) for graph neural networks.

C. Supplementary Material on Physical Simulations and Deep Learning
C.1. Classical Simulators

Classical numerical methods for solving PDEs can be broadly divided into mesh–based and mesh–free approaches. Mesh-
based methods notably include the Finite Element Method (FEM) (Zienkiewicz et al., 1977), Finite Volume Method,
(Eymard et al., 2000) and deformable materials simulators (e.g., cloth) (Baraff & Witkin, 1998; Narain et al., 2012). Their
mesh–free counterparts include Molecular Dynamics, (MD) (Rapaport & Rapaport, 2004), the Material Point Method
(Bardenhagen & Kober, 2004) for finite particles, and the Smoothed Particle Hydrodynamics (Monaghan, 1992) which
specializes in fluid simulation. The choice between mesh–free and mesh–based methods is usually dictated by computational
efficiency. For example, while turbulent flow simulations may be represented in a particle-by-particle fashion, describing
flows at sample points through a mesh may be desirable, thus noticeably reducing inference times by making meshing
more coarse where details do not considerably hinder the simulation. Similarly, domains with dynamically changing
volumes, such as fluid simulation, can benefit more from mesh–free particle simulators rather than forcing an unnatural
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Figure S6. Comparison between GRAPHSPLINENETS and GNN in the space region. [Left] figure compares the error and time of two
models with the number of space–oriented OSC collocation points of GRAPHSPLINENETS setting from 2× 2 to 26× 26, while the GNN
model has the number of space collocation point 32× 32. Note that the error of GRAPHSPLINENETS is calculated by firstly applying
space–oriented OSC to collocate values at GNN’s collocation points and then comparing them with the ground truth. [Right] shows the
error decreasing with the number of space–oriented OSC collocation points increasing.
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Figure S7. Trajectory in time and space of a single node from the flag simulation experiment. While linear interpolation fails to capture
complex behaviors, the OSC method can model intermediate steps with guarantees of solution convergence and lower computational
overheads compared to other methods such as cubic interpolation.

mesh descriptor. Major downsides of classical numerical simulators are that they often require extensive knowledge about
the simulated domains as well as taking considerable computational resources and time to infer solutions: deep learning has
proven to be a valid and faster alternative to existing numerical solvers (Thuerey et al., 2021).

C.2. Further Intuition on Graph Networks Simulators and OSC

Graph neural networks have intrinsically desirable properties for physical simulation. Since they can be used on unstructured
grids, they are able to represent complex systems with changing connectivity. Moreover, the graph structurally attains
equivariance, while translation invariance can also be easily achieved by considering relativity in nodes’ positions rather
than their absolute values. Like Molecular Dynamics, our module can construct edges based on each particle neighborhood
to capture message passing locality (Toshev et al., 2022). Moreover, similarly to how FEM works, we can consider fixed
neighbor connections in mesh space, thus constraining our optimization to a specific geometry. However, unlike the classical
FEM and MeshGraphNets, GRAPHSPLINENETS can infer the space continuously without the need to refine the mesh
structure. Moreover, given collocation points in time, our model can also obtain time–continuous simulation without the
need to constrain the rollouts to an iterative solver.


