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ABSTRACT

Extreme weather events pose escalating risks to global society, underscoring the
urgent need to unravel their underlying physical mechanisms. Yet the prevailing
expert-driven, labor-intensive diagnostic paradigm has created a critical analytical
bottleneck, stalling scientific progress. While Al for Earth Science has achieved
notable advances in prediction, the equally essential challenge of automated di-
agnostic reasoning remains largely unexplored. We present the Extreme Weather
Expert (EWE), the first intelligent agent framework dedicated to this task. EWE
emulates expert workflows through knowledge-guided planning, closed-loop rea-
soning, and a domain-tailored meteorological toolkit. It autonomously produces
and interprets multimodal visualizations from raw meteorological data, enabling
comprehensive diagnostic analyses. To catalyze progress, we introduce the first
benchmark for this emerging field, comprising a curated dataset of 103 high-
impact events and a novel step-wise evaluation metric. EWE marks a step toward
automated scientific discovery and offers the potential to democratize expertise
and intellectual resources, particularly for developing nations vulnerable to ex-
treme weather.

1 INTRODUCTION

The increasing frequency and intensity of extreme weather events, driven by anthropogenic climate
change, pose a significant and escalating threat to global society and ecosystems. A deep under-
standing of the physical mechanisms and developmental processes behind these events is therefore
paramount. Such analysis is not only critical for accurate attribution and improving future fore-
casts but is also fundamental to comprehending the broader dynamics of our changing Earth sys-
tem. However, the prevailing approach to this diagnostic analysis remains a deeply labor-intensive
endeavor, reliant on a small pool of meteorological experts who apply years of accumulated, spe-
cialized knowledge to each case. In an era of accelerating climate change, where such events are
becoming commonplace, this manual paradigm is proving unsustainable. A vast and growing num-
ber of events remain unanalyzed, leaving critical patterns and insights undiscovered and hindering
our collective ability to adapt.

This critical gap in diagnostic analysis arises in part from the prevailing trajectory of Al develop-
ment in Earth system science, which has prioritized the development of powerful predictive mod-
els over tools that can automate and scale scientific understanding. While forecasting models like
Pangu-Weather B1 et al.| (2023)), GraphCast|Lam et al.| (2023), and FengWu Chen et al.|(2023a)) have
achieved remarkable success, they do not address the fundamental challenge of condensing and
reasoning with the vast body of expert knowledge required for diagnostic analysis.Consequently,
the equally crucial domain of post-event analysis, which involves understanding the complex at-
mospheric dynamics and physical mechanisms that precipitate an extreme event, has been largely
overlooked. This diagnostic process is fundamental to improving future forecasts, refining climate
models, and informing effective disaster mitigation strategies. The emergence of Large Language
Models (LLMs) and intelligent agents presents a promising new frontier, yet their application in
this specialized domain is hampered by the critical limitation that their vast knowledge is unmoored
from the physical reality captured in high-dimensional meteorological datasets. Without the ability
to access, process, and reason over observational data, their analytical potential remains untapped.

To bridge this chasm between abstract reasoning and data-driven scientific inquiry, we introduce the
Extreme Weather Expert (EWE), the first intelligent agent framework designed specifically for the



Under review as a conference paper at ICLR 2026

KEY PHYSICAL MECHANISMS:

Ridge (+200m)
to GuLf of Hexico

yd [ N\
=
\Think & Plan/

AN ya

What is the mechanism 4 u ) o
behind this extreme event? ( el
Images & |

:\F‘\ndmg'sy/x N »J

Figure 1: EWE identifies the driving factors of extreme events through a human-like reasoning
process by progressively retrieving data and use physics-based diagnostic toolkit.

diagnostic analysis of extreme weather events. As illustrated in Fig. [T EWE operationalizes the
workflow of a human expert. For any given event, it first leverages its embedded meteorological
knowledge to formulate a structured analytical plan. It then utilizes a specialized toolkit to retrieve
and process vast quantities of relevant meteorological data for the specific time and location. Cru-
cially, EWE autonomously generates Python-based visualization tools to transform raw numerical
data into interpretable formats, such as synoptic charts and diagnostic plots. These visualizations are
then interpreted by a multimodal large language model (MLLM), enabling a holistic analysis that
captures global patterns and key atmospheric features, mirroring the diagnostic process of human
experts and enhancing the credibility of its findings.

At its core, the EWE framework integrates three synergistic components: a) Knowledge-Enhanced
Planning guides the analysis workflow and constrains LLM hallucinations by decomposing com-
plex tasks into knowledge-anchored sub-tasks, leveraging Chain-of-Thought Wei et al.| (2022)); Yao
et al. (2023) prompting based on expert examples. b) Self-Evolving Closed-Loop Reasoning em-
ploys a unified Checker module to verify the success of each executed action, thereby ensuring
operational correctness. c) Meteorological Toolkit provides a specialized library of functions for
meteorological data retrieval, processing, and the computation of canonical diagnostic equations,
which guarantees that EWE can effectively design appropriate analytical tools for a given task.

As the first work dedicated to automated extreme weather analysis, this paper makes several key
contributions. To validate EWE and provide a fair benchmark for future research, we establish the
first comprehensive dataset for this task, curating 103 high-impact extreme weather events from the
past decade, sourced from the EM-DAT database and WMO reports and covering all major IPCC
ARG categories. Furthermore, we introduce a novel, LLM-based step-wise evaluation metric that
assesses the entire analytical workflow, from code generation to the extraction of key meteorological
insights. This provides a granular assessment of an agent’s true diagnostic capabilities. Collectively,
these contributions not only advance automated scientific discovery but also hold the potential to
democratize expertise, providing an accessible intellectual resource for developing nations that dis-
proportionately suffer from extreme weather yet often lack dedicated specialist teams.

2 RELATED WORK

Al for Meteorology. Recent advancements in meteorological foundation models, such as Pangu-
Weather [Bi et al.| (2023), GraphCast Lam et al.| (2023), and Fengwu |Chen et al.| (2023a), have
revolutionized global weather forecasting with unprecedented predictive accuracy. However, these
systems are primarily prognostic tools optimized for numerical fidelity, lacking intrinsic mecha-
nisms for causal inference or diagnostic interpretation. To address the need for interpretability,
another stream of research has leveraged explainable Al (XAI) techniques for climate science. XAl
methods [Srinivasan et al.| (2020); Happé et al.| (2024) have been used to uncover physical mech-
anisms, but often at the cost of oversimplifying multivariate interactions or requiring significant
domain expertise for post-hoc analysis. Recent work has demonstrated their potential in generat-
ing severe-weather outlooks [Lawson et al.| (2025), recognizing cartographic features on weather
maps Takasuka et al.|(2024), and assisting in data processing and event diagnosis tasks|Zhang et al.
(2025b). Yet, these models are confined to executing discrete, human-prompted tasks, such as gen-
erating analysis code or interpreting pre-selected visualizations, lacking the autonomy to orchestrate
an end-to-end physical mechanism inquiry. Our work builds upon these advancements by proposing
a novel paradigm that recasts the LLM from a passive tool into an autonomous agent for extreme
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Figure 2: Overview of EWE framework. User request starts self-evolving closed-loop reasoning,
and the framework ends with multi-faceted analytical report.

event. We introduce a framework where this agent independently manages the entire workflow, from
high-level event definition and exploratory data analysis to the identification of underlying physical
mechanisms. This is achieved through a closed-loop, iterative process that directly addresses the
limitations of prior work.

MLLM-Based Agent. The development of LLM-based agents, which utilize LLMs and increas-
ingly Multimodal Large Language Models as a reasoning backbone, has seen rapid progress Wang
et al.| (2024a); X1 et al.| (2025); Sumers et al.| (2023)). These agents are typically augmented with
memory |Zhang et al.| (2025c); [Zhong et al.| (2024)), structured planning |Wang et al.| (2022)); Weng
et al.| (2022), and tool-use capabilities (Chen et al.[(2024b); |Schick et al.| (2023); |Shen et al.| (2023))
to interact with external environments and act upon them. Researchers have extensively explored
methods to enhance these agents, including sophisticated prompting for reasoning Madaan et al.
(2023); Besta et al.| (2024), RAG for knowledge extension |Gao et al.| (2023)); |[Lewis et al.| (2020),
and reinforcement learning for post-training alignment Bai et al.| (2022); Kaufmann et al.| (2024).
Such enhanced agents have demonstrated significant promise in complex domains like embodied
simulation |Liang et al.|(2022); |Song et al.| (2023)), video games [Wu et al.[ (2024)).

3 METHOD

3.1 OVERVIEW.

Traditional diagnosis of extreme weather events relies on experts manually synthesizing multi-
source data to reconstruct an event’s physical mechanisms. This manual-centric approach is labor-
intensive, time-consuming, poorly scalable, and prone to subjective biases, proving inefficient for
rapidly evolving systems like cyclones. To overcome these limitations, we formalize extreme events
diagnosis as an autonomous exploration and reasoning task for an MLLM-powered agent. We ab-
stract the diagnostic workflow into an iterative trajectory, 7 = (g, ax, Ok, ik’)]ICV:p representing a
cycle of Thought, Action, Observation, and Interpretation. In this loop, the agent iteratively plans,
uses tools on meteorological data, and integrates observations with its internal knowledge to pro-
gressively construct a physically consistent causal explanation for the target event. To implement
this process, we propose Extreme Weather Expert (EWE), a novel framework integrating three core
components as illustrated in Fig.

Knowledge-Enhanced Planning. Leverages Chain-of-Thought (CoT) prompting with expert ex-
emplars to decompose the diagnostic task into a plan of knowledge-anchored sub-goals. This guides
the agent towards a rigorous and efficient analytical procedure.

Self-Evolving Closed-Loop Reasoning. The agent executes the plan by invoking tools. A unified
Checker module then validates both the operational success and physical plausibility of each action’s
output before proceeding, ensuring the integrity of the entire diagnostic pathway.
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Meteorological Toolkit. A specialized library of functions for meteorological data retrieval, pro-
cessing, and computation of canonical diagnostic equations. These tools provide the necessary
empirical grounding for the agent’s scientific conclusions.

3.2 KNOWLEDGE-ENHANCED PLANNING WITH CHAIN-OF-THOUGHT

To overcome the limitations of Large Language Models in complex meteorological analysis, such
as incomplete reasoning and a high propensity for hallucination, we propose a knowledge-enhanced
planning approach. This method utilizes expert-annotated chain-of-thought [Wei et al.| (2022)) to
structure the LLM’s problem-solving process. We argue that for domain-specific problem-solving,
emulating the reasoning path of an expert is a superior strategy for harnessing the internal knowledge
of the model and ensuring its reliable application. Therefore, we propose an analytical framework
to constrain the reasoning process, guiding the model to effectively retrieve, structure, and apply
its latent meteorological knowledge. Specifically, we first manually annotate step-by-step analytical
guidelines for different types of extreme events. These guidelines are provided to the agent for
initial planning and are also stored in a memory module as persistent and robust context, which the
LLM can reference when executing subtasks. This dual mechanism ensures that domain expertise
constrains the entire process, from high-level planning to low-level execution.

These CoT guidelines are constructed based on two key principles: 1. Step-by-step Analysis. This
principle decomposes complex diagnostics into a multi-scale, sequential workflow that emulates
expert procedures (e.g., identifying circulation patterns, calculating diagnostic fields like potential
vorticity). 2. Knowledge Grounding in Reasoning. This principle mandates that each reasoning
step explicitly cites the underlying physical laws, equations, or empirical rules. By forcing the LLM
to align its reasoning with this expert-defined structure, it learns to correctly access and utilize its
vast but often unstructured internal knowledge.

3.3 SELF-EVOLVING CLOSED-LOOP REASONING

The core of our agent is that it operates within a self-evolving, closed-loop reasoning framework
to automate the diagnosis of physical mechanisms. This framework enables the agent to iteratively
refine its analytical approach by seamlessly integrating thought, action, observation, interpretation,
and multi-faceted feedback.

The process begins with a thought phase. At each step k, the agent queries its structured memory
to reason about the current analytical objective. This process generates a structured reasoning trace,
which explicates the logic for formulating the subsequent action, ay. This action, typically a piece of
code for data processing or visualization, is then executed in the environment. The agent performs an
initial self-debug |Chen et al.| (2023b)); Wang et al.| (2024b)) based on direct environmental feedback,
such as execution errors or returned data, forming the primary feedback loop.

However, for complex physical mechanisms diagnosis, relying solely on environmental feedback is
insufficient, as it fails to detect latent flaws that do not cause explicit errors but can lead to erroneous
scientific conclusions. To address this, we introduce a dual-auditor module for comprehensive self-
evaluation. The Code Auditor ensures the procedural correctness of the agent’s generated code. It
performs static analysis to identify subtle yet critical bugs that escape standard exception handling,
such as the incorrect use of tool parameters or flawed data indexing. By flagging these latent bugs,
the auditor prevents the agent from deriving physical insights from corrupted data analysis. The
Content Auditor ensures the semantic integrity and perceptual clarity of the generated outputs, par-
ticularly visualizations. In atmospheric science, visual analysis is paramount. This auditor assesses
visualizations for issues like over-plotting, low-contrast color schemes, or occluded labels that could
obscure or misrepresent critical weather patterns.

The feedback from both the environment and the dual-auditor system is then integrated, informing
the agent’s next thought phase. This closed-loop process allows the agent to continuously evolve its
strategy, correcting not only its code but also its data presentation methods. If the current sub-task’s
goal is met, the agent advances to the next step in its overarching plan. This iterative refinement
cycle repeats until a logically coherent diagnosis of the physical mechanism is achieved, at which
point the process terminates.
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Figure 3: For all extreme event types, human-drafted checklists are refined by LLM. Then analytical
reports generated by EWE are assessed by corresponding refined criteria.

Memory. To support this long-horizon reasoning process, the agent employs a dynamic memory
management module. This module archives successfully executed actions and their outcomes as
positive exemplars to guide future reasoning. Upon the completion of a sub-task, the agent distills
the key findings into a concise summary for long-term retention. Concurrently, it prunes all transient
information associated with the completed sub-task, such as intermediate variables and detailed logs.
This strategy of knowledge distillation and context pruning ensures that the input context remains
salient and computationally tractable, preventing performance degradation from excessive context
length while reducing token consumption.

3.4 METEOROLOGICAL TOOLKIT

Data Acquisition Tool. We developed data acquisition tools to retrieve multivariate meteorological
data for specific extreme weather events. The tool queries a database by a specified temporal range
and a list of required variables. For this study, it sources data from the 0.25° ERAS reanalysis dataset
(>300TB). To provide a crucial baseline for anomaly quantification, the tool also extracts a 30-year
climatology. All retrieved data are packaged into NetCDF files with complete metadata preserved,
ensuring direct interpretability by our Al agent. The tool features a data-source agnostic design,
making it readily adaptable to other reanalysis or observational datasets.

Analysis Tools. We introduce the Analysis Toolkit to address a key limitation of LLMs in scientific
domains: while proficient at generating code for basic tasks (e.g., plotting with matplotlib), they
struggle with complex, domain-specific computations. For instance, calculating Integrated Vapor
Transport (IVT)—a critical diagnostic—requires both deep meteorological knowledge and precise
coding, a dual challenge for generalist models. Our toolkit directly addresses this by providing a cu-
rated library of pre-verified Python functions for such diagnostics. Each function was implemented
and rigorously cross-validated by domain experts to ensure scientific accuracy.

4 BENCHMARK

To rigorously assess the agent’s proficiency in analyzing extreme events, we have curated a dataset of
extreme events and introduce a multi-dimensional, step-wise automated evaluation framework. For
a given extreme weather event and an initial user prompt, the interaction between the agent and the
environment is captured as a trajectory, 7 = (79, 71, ..., 7). Each step 7, = (ag, ok, i) comprises
an action a; executed by the agent, the resultant observation o; from the environment (e.g., numerical
results, meteorological visualizations), and a corresponding interpretation ¢; generated by the agent
for diagnostic-related observations. Our framework evaluates the performance of the agent along
three primary dimensions, code, visualization, and physical diagnostic analysis. While the final
report is a key artifact,we argue that a step-wise evaluation is crucial for effective credit assignment
and for optimizing the decision-making policy.. Therefore, our framework computes a scalar reward
ry, for each step, formulated as: 7, = E(e, ax, ok, i) Where e represents the event context and £ is
our automated evaluator. The overall automatic evaluation pipeline is illustrated in Fig.

Event Collection. We constructed a dataset of high-impact extreme weather events by curating
records from the EM-DAT database and the WMO State of the Global Climate reports. Our method-
ology prioritizes events from the last decade with significant, documented socio-economic conse-



Under review as a conference paper at ICLR 2026

quences, global coverage (excluding Antarctica), and alignment with IPCC AR6 event categories:
temperature extremes (heatwaves, cold waves), extreme precipitation, droughts, and storms (tropi-
cal/extratropical cyclones). Events without demonstrable human impact, regardless of meteorolog-
ical severity, were excluded. Each event sample is annotated with its precise start and end dates,
location, and type. Missing temporal information was manually verified using public sources. To
ensure accurate alignment with local time, the timezone for each event location was recorded, facil-
itating analysis based on the natural day.

Checklist Annotation and Generation. We introduce a systematic evaluation framework cen-
tered on LLM-generated checklists to standardize the assessment of extreme event analysis. Initial
explorations with zero-shot generation yielded checklists that lacked the required granularity and
contextual relevance for specific events and analytical tasks. To overcome this, we developed a one-
shot exemplar-guided prompting strategy. The core of our method is a meticulously hand-crafted
exemplar, which serves as a one-shot prompt. This exemplar details a multi-modal evaluation rubric
for a canonical task, defining precise scoring criteria for code, visualizations, and physical diag-
nostics. By conditioning on this high-quality exemplar, the LLM learns to generate checklists that
are both structurally sound and semantically aligned with the task. The fidelity of these generated
checklists is further ensured through a rigorous human verification process on a randomly sampled
subset, validating their accuracy, coherence, and comprehensiveness.

The evaluation rubric itself is multi-dimensional. It first assesses Code Fidelity, verifying the cor-
rectness of the implementation, particularly the data processing pipelines, visualization rendering
code, and the accurate formulation of fundamental physical equations, such as potential vorticity.
The rubric then evaluates Visualization Quality, assessing the informativeness and perceptual clarity
of the visual outputs, including the efficacy of color maps, the precision of legends, and the clarity of
all textual annotations. Most critically, it gauges the Depth of Physical Interpretation. Beyond fac-
tual accuracy and consistency with visualizations, we evaluate the analysis’s explanatory power. We
prioritize a coherent, physically-grounded narrative that establishes clear causal links. For instance,
instead of merely stating an observation such as “positive vorticity advection”, a high-quality analy-
sis must causally link this observation to its physical implications, such as inducing upward vertical
motion and contributing to cyclogenesis. The objective is to reward a demonstrated understanding
of the underlying dynamics, rather than the simple recitation of disconnected diagnostic facts.

Step Classification. Each interaction step within the agent’s trajectory is assigned to a specific be-
havioral category (e.g., Data Exploration, Event Characterization, Dynamics Analysis). Technically,
this is achieved by first constructing a textual representation for each step, which concatenates the
action, observation, and the interpretation. This textual block is then processed by a Large Language
Model, which leverages its understanding of the semantic context to classify the step according to
a pre-defined taxonomy. This methodology facilitates the automated, granular annotation of agent-
environment interaction traces, which is a prerequisite for our subsequent category-aware evaluation,
where distinct sets of criteria are applied to assess the quality of different types of steps.

Evaluation Our methodology for evaluating the quality of generated content relies on a robust,
MLLM-based framework. For each classified step of the analytical process, we aggregate all per-
tinent artifacts—code, visualizations, and textual interpretations—along with the source event data
and a structured checklist. This consolidated multimodal content is then submitted to an MLLM-
based evaluator, which is primed with specialized meteorological domain knowledge for assessment.

To mitigate potential evaluator bias and ensure a fair comparison, we employ two state-of-the-art
models, namely GPT-4.1 and Gemini-2.5-pro as judge. The evaluation is conducted under two
complementary protocols:

Single-Response Grading: Each step of agent is assessed in isolation to assign an absolute score
reflecting its intrinsic quality. This protocol measures the standalone performance of each agent.

Comparative Grading: For a given event, outputs from all competing models are presented con-
currently to the judge. The judge first identifies the most meritorious response to serve as an ad-hoc
standard, and subsequently grades all candidates based on their quality relative to this standard.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS



Under review as a conference paper at ICLR 2026

Table 1: Quantitative Evaluation of LLMs on the Benchmark. Scores are assigned by an mLLM-as-
a-judge for seven key stages: analysis planning, data exploration, event identification, synoptic-scale
analysis, mesoscale analysis, thermodynamic analysis and final report. The evaluation is conducted
in two modes: Single-Response Grading (SG) and Comparative Grading (CG). Scores are normal-
ized to [0, 1], with higher values indicating better performance.

Model Plan Data Identification Synoptic. Mesoscale. Thermo. Report
Group: SG
Gemini-2.5-Pro 0.898 0.370 0.650 0.779 0.485 0.657 0.839
Claude-4-Sonnet 0.838 0.800 0.783 0.758 0.700 0.667 0.981
GPT-4.1-2025-04-14 0947 0.783 0.720 0.785 0.670 0.658 0.828
Llama-4-Maverick 0.669 0.729 0.452 0.530 0.343 0.396 0.587
04-mini-2025-04-16  0.974 0.751 0.607 0.780 0.655 0.661 0.720
Group: CG
Gemini-2.5-Pro 0.789 0.441 0.658 0.731 0.483 0.606 0.787
Claude-4-Sonnet 0.797 0.601 0.832 0.837 0.782 0.750 0.950
GPT-4.1-2025-04-14 0.832 0.624 0.750 0.776 0.664 0.696 0.869
Llama-4-Maverick 0.686  0.602 0.485 0.477 0.335 0.357 0.486
04-mini-2025-04-16  0.787 0.514 0.646 0.816 0.652 0.720 0.421

MLLMs. The task of agent demands strong
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reasoning, long-context processing, and multi- & o o8
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inference temperature to 0 for reproducibility.
Each agent run was limited to 40 steps, beyond
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and figure auditor were performed by the same  Figure 4: Statistics of extreme events in the test
model instance. set: the left panel shows the distribution of event
categories, and the right for the geographical dis-

Evaluation. We utilized GPT-4.1 for both =
tribution.

step classification and a checklist-based content

evaluation. The evaluator was supplied with
metadata (variables, units, time) for accurate assessment. While we tested Gemini-2.5-Pro as an

alternative, it tended to penalize correct code, leading to inaccurately low scores. Consequently, we
designated GPT-4.1 as the sole judge for our evaluation to ensure the consistency and reliability of

our results.

Dataset. Our dataset contains 103 extreme weather events across six types (Fig. [d). The most
prominent categories are cyclonic events (26.2% combined) and extreme precipitation (23.3%). The
dataset offers global coverage across all inhabited continents, with a distribution skewed towards
Asia (32.0%), Europe (24.3%), and North America (21.4%), reflecting global population and data
availability patterns.

5.2 MAIN RESULTS

We present a comprehensive evaluation of five leading Large Language Models on a complex, multi-
step meteorological analysis task. The performance of each model is quantified using an MLLM-
as-a-judge (Chen et al| (2024a)); [Zhang et al.| (2025a) across seven distinct stages of the analysis
pipeline. The results, presented in Tab. [I} detail the performance of five state-of-the-art models
across seven distinct analytical stages under two evaluation settings: Single-Response Grading (SG)
and Comparative Grading (CG).

Performance in Single-Response Grading (SG) Evaluation. Our independent SG evaluation re-
veals significant task specialization among models (see Tab.[I]). For instance, while 04-mini-2025-
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Now | need to analyze the large-scale atmospheric dynamics to understand
what caused this event. Let me start with the synoptic-scale analysis,
examining 500-hPa geopotential height patterns and upper-level flow during

Let me now create spatial maps to show the precipitation distribution and
then begin analyzing the large-scale atmospheric dynamics, starting with the
synoptic-scale patterns during the peak day.

the peak day.
precip_clim_peak = precip_clim ea_mm.isel(time=peak_idx) # Plot geqootential height contours
im2 = precip_clim peak.plot(ax=ax2, transform=ccrs.PlateCarree(), contoursl .= axl.contour(z500.longitude, 2500.latitude, 2500,
cmap='Blues', levels=np.arange(0, 51, 5), levels=np.arange (5400, 6000, 60), colors='black',
add_colorbar=False, extend='max') linewidths=1.5, transform=ccrs.PlateCarree())
ax2.set_extent([lon_min_ea, lon_max_ea, lat_min_ea, lat_max_ea], crs=ccrs.P axl.clabel (contoursl, inline=True, fontsize=8, fmt='%d')

ax2.set_title('Climatological Precipitation - July 6', fontsize=12, fontwei

ax2.gridlines(draw_labels=True, alpha=0.5)

The 500-hPa geopotential height map (top left) shows a prominent trough
positioned over eastern China and the Korean Peninsula, with Kyushu located

The spatial precipitation analysis for July 6, 2020 reveals the extreme nature downstream of this trough axis. This configuration promotes positive vorticity
and geographic focus of the rainfall event in Kyushu, Japan. . The observed advection and synoptic-scale lift over the region. The 250-hPa jet stream
precipitation map (top left) shows intense rainfall concentrated over Kyushu analysis (top right) displays a strong subtropical jet with wind speeds exceeding
and extending westward into the East China Sea, ... 60-70 m/s positioned just north of Kyush ...

Figure 5: Workflow example of extreme precipitation event analysis. Each step, from top to bottom,
presents the agent’s thought, action, observation, and interpretation.

04-16 excels at the initial Plan stage (0.974), Claude-4-Sonnet dominates the subsequent analyti-
cal phases, achieving the highest scores in event identification (Identi., 0.783), mesoscale analysis
(Meso., 0.700), and final synthesis (Report, 0.981). GPT-4.1-2025-04-14 also shows strong perfor-
mance, particularly in synoptic-scale analysis (Synop., 0.785).

Performance in Comparative Grading (CG) Evaluation. Our results show that Comparative
Grading (CG) is a more discriminative evaluation protocol than Single Grading (SG). Under CG,
the performance gaps between models widen significantly, particularly in complex analytical stages.
For instance, the performance spread between the top and bottom-performing models increased
from 0.255 (SG) to 0.360 (CG) in the Synoptic stage, and from 0.394 to 0.529 in the Report gen-
eration stage. This suggests that while most models produce acceptable standalone outputs, direct
side-by-side comparison effectively surfaces nuanced qualitative differences. This sharpened eval-
uvation clarifies the model hierarchy. Claude-4-Sonnet emerges as the top performer, excelling in a
majority of analytical stages: Identi. (0.802), Synop. (0.827), Meso. (0.782), Thermo. (0.750),
and Report (0.950). Its superior scientific reasoning is further highlighted by its scores increasing
in several tasks under CG, against a general deflationary trend. GPT-4.1-2025-04-14 remains the
strongest in upstream planning and data processing tasks (Plan: 0.832, Data: 0.624), whereas mod-
els like Llama-4-Maverick show a more significant performance drop, confirming CG’s efficacy in
identifying model-specific strengths and weaknesses.

Examples of Qualitative Results. Fig. [3]illustrates the workflow for analyzing extreme precipita-
tion events, which includes two main stages: event qualification and large-scale weather analysis.
For better understanding, each stage is organized from top to bottom to show the agent’s plan, the
code generated to accomplish the plan, the resulting visualization, and the analysis of the results.
These steps correspond to the thought, action, observation, and interpretation components described
in the main text. This structure clearly demonstrates how the agent decomposes the problem and
performs end-to-end reasoning and analysis.

5.3 ABLATION STUDY

We conduct comprehensive ablation studies on a limited set of samples. Our framework integrates
three key components: analysis tools, a code and figure auditor for verifying and correcting the gen-
erated code and analysis logic; and a meteorological Chain-of-Thought (CoT) that infuses domain
knowledge into reasoning process. As shown in Tab.[2] we evaluate the model performance on three
distinct analysis dimensions: synoptic-scale, mesoscale, and thermodynamic analysis.



Under review as a conference paper at ICLR 2026

Full model vs. Baseline. Our full model achieves the best performance across all three metrics.
Compared to the baseline model which excludes all components, the full model demonstrates a
significant improvement, particularly on synoptic-scale (+0.239) and mesoscale (+0.213) analysis.
This underscores the substantial value of the synergistic integration of our modules.

Importance of Analysis Tools. Removing the tools module from the full model results in a marked
performance degradation across all metrics, most notably in thermodynamic analysis, where the
score plummets from 0.679 to 0.537. This is expected, as thermodynamic analysis (e.g., calculating
potential temperature) heavily relies on precise numerical computations, which is the core function
of the tools module. This highlights that equipping the model with external computational tools is
indispensable for tackling scientific analysis tasks.

Role of the Auditor. Similarly, remov-
ing the auditor module leads to a perfor-
mance drop, especially in mesoscale anal-
ysis. This indicates that the auditor plays a
critical role in ensuring the correctness of
the figure and the reliability of the gener-
ated code. Through self-auditing and cor-
rection, the model produces more accu-
rate and reliable analyses, mitigating per-
formance losses caused by faulty code or
unclear visualization.

Figure 6: Visually analysing the contributions of con-

Fig. [6] highlights the contribution of our tent auditor. See text for details.

Figure Auditor to visualization clarity.
The baseline generation (left), depicting
the 500 hPa geopotential height and wind, is characterized by a high-density wind vector field that
creates visual clutter and obscures synoptic-scale features. In contrast, the refined output guided by
our auditor employs a sparsified vector field. This strategic downsampling significantly enhances
perceptual clarity, allowing for immediate identification of large-scale circulation. A clear example
is the pronounced low-pressure trough, where the refined visualization makes the southward-dipping
contours and the associated pre-trough southwesterly and post-trough northwesterly flows immedi-
ately apparent. This demonstrates the auditor’s effectiveness in producing scientifically interpretable
visualizations.

Foundational Role of CoT. Although there is

no setting where only the cot is removed, the

starkly poor performance of the baseline model Table 2: Ablation study on the effectiveness of
serves as strong evidence for the foundational key components.

role of cot. Without the meteorological do-

- > Tools  Auditor CoT Synop. Meso. Thermo.
main knowledge and structured reasoning path-

ways provided by cot, the model struggles to ef- ; v j 8;2% 82;2 8222
fectively utilize the tools, even when available, X ’ : ’

leading t hensi 1l . Ivti X X X 0.548 0.467 0.502
eading to a comprehensive collapse in analyti- v v v 0787  0.680 0679

cal capability.

6 CONCLUSION

This study proposes Extreme Weather Expert (EWE), the first intelligent agent for extreme weather
event analysis, addressing limitations of traditional labor-intensive methods. EWE integrates three
core components—Knowledge-Enhanced Planning, Self-Evolving Closed-Loop Reasoning, and a
Meteorological Toolkit—to enable credible, end-to-end diagnosis. A 103-event dataset and LLM-
based stepwise evaluation framework are built for validation. Experiments show Claude-4-Sonnet’s
superiority in key stages, and ablation studies confirm EWE components’ necessity. EWE estab-
lishes a foundational paradigm for autonomous extreme weather diagnosis, offering potential av-
enues for extension—such as integrating real-time observational data streams or expanding support
for underrepresented extreme weather types. This research not only advances the application of Al
agents in meteorological science but also provides a practical tool to mitigate the socio-economic
impacts of extreme weather events, particularly in regions with limited data and expert resources.
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A APPENDIX

A.1 USAGE OF LANGUAGE MODELS

We used a large language model (LLM) during the preparation of this manuscript, solely for editorial
purposes such as correcting typographical errors, improving grammar, and enhancing clarity and
readability.

A.2 EXAMPLES OF BENCHMARK

— name: 2018 North-east Asia heatwave
region: Eastern Asia
subregion: Japan
event: extreme heat
start: '20180701"'
end: '20180715'
timezone: Asia/Tokyo
— name: February 2021 Texas Cold Wave
region: Northern America
subregion: United States of America
event: cold wave
start: '20210213"
end: '20210217"'
timezone: America/Chicago
— name: "2021 China extreme precipitation”
region: Eastern Asia
subregion: China Henan
event: "extreme rainfall"
start: '20210717"'
end: '20210724'
timezone: Asia/Shanghai
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