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Abstract— In the context of challenging and dangerous en-
vironments, robot teams are increasingly employed in various
applications such as search-and-rescue missions in unstable,
post-disaster areas, mine rescue operations, and military patrols
in contested zones. This paper addresses the challenge of
teammate-aware active search, focusing on the robots’ ability
to locate targets of interest and maintain communication with
teammates to ensure safe operation under adversity. Our ap-
proach leverages multi-agent reinforcement learning techniques
to enable robots to robustly search for targets of interest using
multi-sensory information while maintaining communication
with at least one other teammate. The robots utilize a prior
map indicating probability distributions of potential targets
in the environment, enhancing their search efficiency. Human
operators are integrated as part of the agent team. Humans
can provide real-time input and feedback to adjust the robots’
strategies based on their observations and capabilities that
robots do not possess. This collaboration allows for an exchange
of information between the robots and the human member, uti-
lizing both the speed of robots and the understanding of human
members. This synergy between the high robotic precision and
speed and the human intuition creates a robust framework
for teammate-aware active search operations. By incorporating
the human component into the loop, this approach insures
that the human perspective remains central and critical to the
mission. The interactive AI system prioritizes human situational
awareness, allowing operators to make adjustments in real-time.
Through this integration, we aim to create a balance between
the strengths of both, humans and robots, ensuring successful
outcomes in adverse and complex conditions.

I. INTRODUCTION

The objective of this research is to address teammate-
aware active search, where robot teams are tasked with
detecting and analyzing targets of interest in the environ-
ment while maintaining robust communication with their
teammates. The robots should collaborate with a human
team member to keep them informed of any changes in
the environment. The robots are equipped with state-of-the-
art navigation and maneuver capabilities, allowing them to
execute search missions effectively. However, the challenge
lies in balancing the need to maintain contact with teammates
and the human team member, and the necessity to exploit
a deeper contextual understanding of targets of interest, a
skill that human operators possess. Not only do robots need
to search for changes while maintaining communication, but
they also have to dynamically learn new policies as the prob-
ability distributions of where the targets occur dynamically
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Fig. 1. A multi-robot team is deployed in a simulated environment to search
for targets of interest (represented by white points). Effective teammate-
aware active search will enable the robot team to identify targets while
maintaining communication with teammates.

shift as more areas are explored.
Robots are deployed based on their sensor and com-

munication capabilities, navigating according to a shared
policy that includes objectives for environmental exploration.
Each robot must adjust its route and actions to ensure
continuous communication with at least one other teammate,
maintaining a robust network under varying environmental
conditions. The collected data is processed through a cen-
tralized system for comprehensive analysis of environmental
changes. We utilize a centralized Q-function, enabling coor-
dinated decision-making based on the state and actions of
all robots. The decision-making process is formulated as an
optimization problem.

Figure 1 depicts multiple robots in a simulated Unity
environment preparing to navigate to their goal positions
to explore those areas. The simulated environment mimics
real-world conditions, with varied terrains and obstacles.
The white dots represent the locations known to the robots
through a prior probability map, which indicates the areas
with the highest likelihood of targets of interest and is
updated dynamically as the robots explore more areas of
the environment. The robots’ movement and decisions are
planned by a shared policy that ensures efficient coverage
of the area while maintaining communication with at least
one other robot (i.e., no robot is isolated from the rest of the
team). Similarly, communication must be maintained with a
human teammate, for guidance and decision making input.

A multi-objective multi-agent decision framework for
multi-objective stochastic games (MOSGs) [1] addresses var-
ious algorithms for cooperative multi-objective multi-agent
systems, such as local search and reinforcement learning ap-



proaches. While [1] provides a comprehensive framework for
multi-objective multi-agent decision-making and emphasizes
the importance of cooperative game theory concepts, our
approach addresses the challenge of dynamically learning
new policies and adapting in changing, adverse environments
by maintaining communication at all times.

An approach to multi-agent reinforcement learning by
proposing a method to approximate hierarchical belief struc-
tures using recursive deep generative models to form and
update beliefs about the knowledge and policies of other
agents. [2] addresses the complexities of environments that
are partially observable and dynamic due to the nature of
interactions and learning processes of multiple agents.

Our research extends these methods by applying a similar
recursive belief models to a practical scenario to solve the
problem of teammate-aware active search in adverse environ-
ments by enabling autonomous robots to dynamically adapt
their search strategies (using multi-sensory input) to evolving
environmental conditions. We integrate the belief models into
a centralized-decision making framework allowing real-time
coordination and communication among agents.

A probabilistic recursive reasoning for multi-agent rein-
forcement learning framework, where agents consider how
their opponents might react to their future actions is pre-
sented in [3]. Bayesian methods are used to calculate con-
ditional policies of opponents, leading to the development
of decentralized-training-decentralized-execution algorithms,
demonstrating the value of recursive reasoning in achieving
convergence where conventional gradient-based methods fail.
Our work leverages the concept of recursive reasoning and
multi-agent reinforcement learning to enable agents to adapt
to the actions of others in a shared environment. We apply
these principles to teammate-aware active search in partially
observable environments and integrate belief models into
a centralized decision-making framework, ensuring coor-
dination and communication at all times, under varying
environmental conditions. Our approach involves updating
strategies as the agents’ knowledge about the environment
increases, demonstrating the feasibility of implementing the
recursive belief models in more complex applications.

In assessing the current status, challenges, and future
directions of multi-robot systems in search and rescue (SAR)
missions, [4] motivates the importance and potential of multi-
robot systems to enhance disaster response through improved
coverage, redundancy, and task decomposition. Key chal-
lenges include: decentralized coordination, translating the
results of learning from simulation to real-world scenarios,
realistic evaluations to include issues like scalability, and
algorithmic bias. Our work builds on these foundations by
addressing the challenges of maintaining robust communi-
cation and coordination among robot teams in dynamic and
contested conditions.

Additional research [5] has explored the application of
deep reinforcement learning in the context of decentralized
cooperative control for multi-agent robotic systems in con-
tinuous action spaces, with partial observability. This aligns
with our work in the domain of coordination among multiple

autonomous agents using reinforcement learning. We also
seek to address the challenges of maintaining communication
and coordination in partially observable environments.

II. APPROACH

In our MARL framework, each robot operates au-
tonomously with the ability to learn and adapt. The agents
navigate according to a shared policy designed to maximize
environmental scanning and coverage. The framework lever-
ages a centralized Q-function to coordinate decision-making
among the agents, ensuring that actions are taken with a
holistic view of the system’s state and objectives. Inspired by
[2], we model the problem as a Partially Observable Markov
Decision Process (POMDP) for a team of robots. Each robot
operates in a partially observable environment.

We derive and present the following equations to provide
details about the state, action, history, policy, transition, and
observation models used in our approach:
State and Observation:

• st ∈ S: The state of the environment at time t.
• oit ∈ O: The observation made by robot i at time t.

Action:
• ait ∈ A: The action taken by robot i at time t.

History:
• hi

t = (oi1, o
i
2, . . . , o

i
t−1, o

i
t): The history of observations

and actions for robot i up to time t.
Policy:

• πi(ait|hi
t): The policy of robot i.

Transition and Observation Models:
• p(st+1|st, a1t , a2t , . . . , ant ): The state transition model,

dependent on the actions of all robots.
• p(oit|st, ait): The observation model for robot i.

Objective Function: The objective is to maximize the ex-
pected cumulative reward while maintaining communication
and efficient exploration.

max
π

{
E

[ ∞∑
l=0

γl (R(st, at, ot, st+1)

−
∑
i

Ci(pik, pjl, at, qr)

)∣∣∣∣π
]}

(1)

Where:
• γ: Discount factor
• R(st, at, ot, st+1): Reward function
• Ci(pik, pjl, at, qr): Cost function

Reward Function: The reward function incorporates the
following:

1) Change Detection:

Rcd =

n∑
i=1

I(change detected by robot i) (2)

Where I is an indicator function that is 1 if a change
is detected and 0 otherwise.



2) Communication Maintenance:

Rcm =

n∑
i=1

n−1∑
j=1
j ̸=i

I(robot i communicating with robot j)

(3)
3) Exploration Efficiency:

Ree =

n∑
i=1

area explored by robot i
total area

(4)

The total reward is:

R(st, at, ot, st+1) = wcdRcd + wcmRcm + weeRee (5)

Where wcd, wcm, wee are weights for each component.

Cost Function:
The cost function is represented by Ci(pik, pjl, at, qr)

which is the cost for robot i to move from cell k to cell
l in the environment. The overall cost function is the sum of
all individual cost functions.

The integration of recursive belief models and Bayesian
updates for belief states into reinforcement learning is
achieved, as in [2], by representing the belief states as neural
codes, learning hierarchical belief structures, and updating
these beliefs using Bayesian inference and reinforcement
learning techniques. Each agent maintains a belief state that
not only reflects its understanding of the environment but also
its beliefs about other agents’ beliefs. Each agent i maintains
a belief state of the environment and a history of observations
and actions of all other agents. Agents form higher-order
beliefs recursively. This is done through a recurrent neural
network (RNN) to encode the history into a neural belief
state. The transition probabilities are updated using Bayesian
inference, reflecting new observations.

a) Zeroth-Order Belief::

B0
t (i) = p(St|Ht(i))

where St is the state of the environment and Ht(i) is the
history of observations and actions for agent i.

b) Higher-Order Beliefs:: Agents form higher-order
beliefs recursively. The first-order belief B1

t (i) represents
agent i’s belief about the zeroth-order beliefs of other agents:

B1
t (i) = p(B0

t (j ̸= i)|Ht(i))

and so on.
Agent i learns its zeroth-order belief B0

t (i) using an RNN
to encode the history Ht(i) into a neural belief state b0t (i):

b0t (i) = RNN(b0t−1(i), Yt(i))

where Yt(i) is the observation of agent i at time t. The belief
state B0

t (i) is then obtained by mapping b0t (i) through a
generative model. The transition probabilities P (st, at, ot, s

′)
are updated using Bayesian inference, reflecting the new
observations ot. The updated belief state Bl

t(i), where l is
an arbitrary higher-order belief, is computed as:

Bl
t+1(i) = BayesUpdate(Bl

t(i), at, ot)

Fig. 2. Overview of the mathematical formulation

The optimization formulation can hence be extended to
incorporate the recursive belief models (developed by [2])
and Bayesian updates as:

max
π

{
E

[ ∞∑
l=0

γl (R(st, at, ot, st+1)

−
∑
i

Ci(pik, pjl, at, qr)

)∣∣∣∣π,Bl

]}
(6)

The policy is updated using reinforcement learning tech-
niques. Figure 2 presents an overview of the layout of the
optimization formula.

Agents must collaborate to maximize overall coverage and
efficiency. A common policy that aligns the objectives of all
agents facilitates coordinated actions. All data collected by
individual agents are processed through a centralized system,
which analyzes the changes in the environment and updates
the shared policy accordingly. In addition, ensuring continu-
ous communication under varying environmental conditions
is necessary to enable real-time information sharing and
coordination and to guarantee that no agent is out of the
loop.

III. EXPERIMENTAL DESIGN

Our evaluation of this approach uses a realistic 3D sim-
ulator capable of both simulating environmental physics
and robot sensor and platform dynamics. This simulation
is implemented in Unity to create a detailed and dynamic
environment with different terrains, obstacles, and areas of
interest. We incorporate elements that simulate adverse con-
ditions, such as low-light areas or varying visibility levels.
Each robot is equipped with simulated sensors for detecting
areas of interest in the environment and communication tools
for maintaining contact with other robots. We leverage the
ML-Agents package to train the robots using reinforcement
learning algorithms1. Each robot is an autonomous agent
capable of learning from its environment and updating its
policies based on the new information discovered by the
robot itself, as well as its teammates. We set random proba-
bility distributions for target locations (prior beliefs) that are
updated as the robots gather more data by exploring more
areas in the environment.

1ML-Agents: https://github.com/Unity-Technologies/ml-agents



Fig. 3. The progression of a multi-robot team during a teammate-aware
active search mission. Frame 1 shows the robots starting together, ready
to begin their search. In Frame 2, the robots split up to explore multiple
targets. Frame 3 illustrates the robots maintaining communication while
being spread out, ensuring they stay connected.

Figure 3 illustrates the behavior of a multi-agent team
during a teammate-aware search operation. In the most left
frame, the entire human-robot team starts together, preparing
for the search mission. In the middle frame. The robots split
up to cover multiple targets, temporarily disconnecting from
each other. Using our algorithm, despite being spread out,
the robots reposition themselves to maintain communication
with at least one other teammate.

Each robot shares a belief map of Gaussian probabilities
indicating where the targets of interest are likely located in
the environment. As the robots explore more areas of the
environment, these probabilities dynamically adjust based on
their findings. For instance, discovering a hidden path in a
forest increases the likelihood of finding other hidden paths
in similar areas (co-located changes). Conversely, finding an
unexpected element, such as a building in an open field,
reduces the assumed probability of similar findings in other
areas like a nearby dense forest (unexpected findings). If a
target is not found in one section of the environment, the
probability of finding similar targets in related sections may
decrease (absent evidence). However, if a target is not found
in an area where it was not expected, such as a hidden
path in a busy urban area, the probability of finding such
targets elsewhere remains unchanged (expected absence).
Additionally, failing to find a hidden path across multiple
sections of the forest lowers the overall probability of finding
any hidden paths (widespread absence). Finally, finding a
benign or unrelated object, like a parked car on a road, does
not affect the probability distribution in other areas (unrelated
findings).

Performance metrics include search efficiency, robustness
of communication, and the adaptability of the robots to
environmental changes. We will evaluate the performance of
the robots in various scenarios to assess the effectiveness of
the reinforcement learning algorithm. By implementing this
approach, we aim to demonstrate the feasibility of the use
of reinforcement learning for teammate-aware active search
in contested environments, providing an adaptable solution
for real-world applications. To evaluate the effectiveness of
our algorithm, we propose a concrete evaluation plan that
includes:

• Scenario Testing: The experiments will be run in a
variety of environments, with varying levels of com-
plexity, including, but not limited to, static environment
and dynamic environments.

• Baseline Comparison: The performance of the pro-

posed MARL approach will be compared against other
techniques and algorithms, with and without reinforce-
ment learning. For instance, we will compare our
results with recent MARL frameworks such as the
Information-sharing Constrained Policy Optimization
(IsCPO) method [6].

• Real-time Monitoring: The search efficiency will be
quantified through the collected data to measure the rate
of exploration as well as communication robustness and
adaptability.

• Post-Scenario Analysis: The adaptation patterns of the
agents will be evaluated after each experiment. This
will include the search paths and communication logs
between the agents.

• Quantitative Metrics: Quantifiable metrics will be
used to measure performance, including search time, to-
tal distance traveled, communication uptime percentage,
number of communication interruptions, time to adapt
to new conditions, and success rate in target detection.

IV. TECHNICAL PROGRESS

We have designed a custom reinforcement learning en-
vironment using the PPO (Proximal Policy Optimization)
algorithm to train multiple agents to navigate towards goal
positions. The current implementation, developed in a Gym-
based environment, allows for agents to move within a 2D
space, where they are spawned in random positions and aim
to reach randomly placed goals. Each agent’s movement
is controlled by continuous actions, and their observations
include their positions as well as the positions of the near-
est goals. The reward function is designed to encourage
agents to reduce their distance to the goals while penaliz-
ing movements out of bounds. So far, the implementation
has demonstrated the capability of the agents to learn and
navigate towards goals efficiently. However, to enhance the
complexity and realism of the environment, we plan on
adding additional constraints to make the reward function
match the reward function presented in Section II.

V. CONCLUSION

In this work, we present the challenge of teammate-aware
active search in adverse environments by integrating human
operators into multi-robot teams. Our proposed approach
leverages multi-agent reinforcement learning techniques to
enable robots to robustly search for targets of interest while
maintaining communication with each other and a human
member of the team. The integration of recursive belief
models and Bayesian updates will allow the robots to dy-
namically adapt their strategies as they explore more areas
in the environment and gather new data. We also propose an
evaluation plan to measure the effectiveness of our approach,
by testing our algorithm in various scenarios, and comparing
them with the state-of-the-art methods in the literature. This
research will determine the feasibility of integrating multi-
agent reinforcement learning with human-robot collaboration
for teammate-aware active search in contested and dynamic
environments.
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