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Abstract—Omnidirectional image quality assessment (OIQA)
has become an increasingly vital problem in recent years. Most
previous no-reference OIQA methods only extract local features
from the distorted viewports, or extract global features from
the entire distorted image, lacking the interaction and fusion
between local and global features. Moreover, the lack of reference
information also limits their performance. Thus, we propose a
no-reference OIQA model which consists of three novel modules,
including a bidirectional pseudo-reference module, a Mamba-
based global feature extraction module, and a multi-scale local-
global feature aggregation module. Specifically, by considering
the image distortion degradation process, a bidirectional pseudo-
reference module capturing the error maps on viewports is
first constructed to refine the multi-scale local visual features,
which can supply rich quality degradation reference information
without the reference image. To well complement the local
features, the VMamba module is adopted to extract the rep-
resentative multi-scale global visual features. Inspired by human
hierarchical visual perception characteristics, a novel multi-scale
aggregation module is built to strengthen the feature interaction
and effective fusion which can extract deep semantic information.
Finally, motivated by the multi-task managing mechanism of
human brain, a multi-task learning module is introduced to
assist the main quality assessment task by digging the hidden
information in compression type and distortion degree. Extensive
experimental results demonstrate that our proposed method
achieves the state-of-the-art performance on the no-reference
OIQA task compared to other models.

Index Terms—Bidirectional pseudo reference, omnidirectional
image quality assessment, Mamba, multi-scale aggregation, multi-
task learning, no-reference (NR).

I. INTRODUCTION

QUALITY degradation exists in various multimedia con-
tents, which can degrade their perceptual quality and

limit the applications. The quality degradation problem is
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more serious in omnidirectional scenarios due to the increased
data volume, and may affect the quality of experience (QoE)
more due to the immersive nature of virtual reality (VR) [1].
Therefore, it is significant to develop more effective quality
assessment method to further help optimize the QoE in VR
environment [2]–[4].

As a fundamental problem of QoE assessment, the task
of image quality assessment (IQA) has attracted remarkable
attention for a long time [5], [6], including two-dimensional
(2D) image, omnidirectional image (OI) and so on [7]–[9].
Among them, many omnidirectional image quality assessment
(OIQA) methods have been proposed in recent years with the
development of VR area, including full-reference (FR) metrics
[10]–[13], reduced-reference (RR) metrics [14], [15] and no-
reference (NR) metrics [16]–[19] according to whether the
reference information is introduced. In the early stage, many
FR OIQA methods have extended previous 2D IQA mod-
els such as peak-signal-to-noise ratio (PSNR) and structural
similarity (SSIM) into omnidirectional projection to perform
evaluation [10], [20]. Since an omnidirectional image (OI)
has a wider viewing range and more complicated perceptual
features than a traditional 2D image, the above 2D IQA-
based models lead to mediocre performances. In addition, for
real applications, the reference image for the omnidirectional
image is not always available, which makes the NR OIQA
metrics have more practical significance than the other two
types of OIQA methods.

Motivated by the important role of human visual system
(HVS) in image quality assessment area, many NR OIQA
models have been proposed by capturing representative visual
features and semantic information [21]–[23], which can be
categorized into three types: image-based, patch-based, and
viewport-based. Image-based models generally treat an omni-
directional image as a 2D image to capture global visual infor-
mation [24], [25]. However, due to the wide scene range and
large image size, such methods may ignore local visual dis-
tortions, which limits the performance [26], [27]. Because the
HVS is extremely sensitive to local information, many patch-
based models have been proposed based on the cropped 2D
image patches from an omnidirectional image, which obtains
rich local information to improve the overall performance [28],
[29]. Motivated by the viewing characteristics, some viewport-
based models have achieved good performance based on the
features extracted from each field of view (FoV). Moreover,
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considering the vital role of local and global features in IQA
tasks, some OIQA models have been proposed by integrating
local and global information, which presents an effective way
to obtain the representative visual features [30]–[32].

As the boost of deep learning, the deep neural network
(DNN) based methods have started to show their ability and
have become the mainstream of OIQA models [33]–[35].
Inspired by the human visual system, Jiang et al. [36] built
an effective network by mimicking human visual perception.
Xu et al. [22] proposed a GCN based OIQA method with
an elaborated viewports choosing algorithm, which proves the
importance of local features. Zhang et al. [37] proposed a
deep-learning based joint network to model the no-reference
quality assessment of omnidirectional images by considering
the viewports visual features. However, few works pay atten-
tion to multi-scale local and global information, and their in-
teractive relationship. To thoroughly learn the global and local
features in OIs, Zhou et al. [38] proposed a perception-oriented
u-shaped Transformer Network, which proves the importance
of local and global features in OIQA area. Inspired by this,
Tofighi et al. [39] introduced the local global Transformer
for OIQA by integrating local and global information, which
offers an effective IQA method for OIs. Later, Fan et al. [40]
proposed an omnidirectional image assessment network, which
proves the importance of multiscale feature extraction and fu-
sion on the representation of distortion information. Although
further progress has been achieved by the aforementioned
OIQA models, significant efforts on digging representative
local and global features and interactive relationship should
be made to build more effective models.

To deal with the problems and challenges mentioned above,
we propose an NR OIQA network by deeply fusing repre-
sentative multi-scale local and global semantic information.
Specifically, inspired by the pseudo reference conception pro-
posed in [41], [42], we first propose a bidirectional pseudo
reference module to extract multi-scale local semantic infor-
mation from two directions: the restoration direction and the
degradation direction, which can capture important quality
changing information in distorted image without the help of
reference image to augment the prediction accuracy. Inspired
by VMamba’s unprecedented capability in extracting features
from long range images or texts [43], a global feature extrac-
tion module based on VMamba is built to obtain multi-scale
global information. Then motivated by human hierarchical
visual perception characteristics, a multi-scale aggregation
module is adopted to extract the interactive information and
refine the shared features, which can achieve a better perfor-
mance than the simple fusion or concatenation way. To further
optimize the learning process, we apply a multi-task module to
assist the model to adaptively assign weights among different
tasks, which can yield a more stable performance. Our main
contributions are summarized as follows:

1) A bidirectional pseudo reference module is proposed to
extract representative local differences from two oppo-
site directions, which can well reflect the local quality
degradation and improve the feature representation.

2) A VMamba-based feature extraction module is designed
to catch efficient multi-scale global visual information to

well complement the local features, which can reduce
the data volume burden of the model and improve the
overall performance.

3) A multi-scale interactive feature fusion module is in-
troduced to the OIQA task to strengthen the feature
interaction and deep fusion, which can improve the
accuracy of our model.

4) A multi-task learning module is designed to guide the
model to adaptively assign weights among different
degradations, which can further improve the effective-
ness of our model.

To illustrate the idea more structurally, we arrange the
remainder of this paper as follows. The related works of this
paper are briefly reviewed in section II. Our proposed method
is introduced in detail in section III, and the experimental
results and the analysis are reported in section IV. Finally,
the conclusion of this work is presented in section V.

II. RELATED WORK

We review the related works including the previous OIQA
models and the VMamba structure in this section.

A. OIQA Models

FR OIQA metrics require all information of the reference
image, which can easily obtain the quality difference between
a distorted image and a reference image. Many traditional
FR OIQA methods extended the previous 2D IQA models to
evaluate the quality, such as PSNR and SSIM. The spherical
domain-based model (S-PSNR) was proposed by calculating
the PSNR value in the spherical domain. Then a CPP-PSNR
metric was designed by calculating the PSNR value in the
space of Craster parabolic projection (CPP) [26]. Motivated by
the above works, the weighted-to-spherically-uniform PSNR
and spherical domain-based SSIM models were built [44],
[45]. Although the above FR OIQA models present relatively
satisfactory results at the early stage, they were designed based
on 2D IQA metrics, and failed to obtain specific visual features
of OI, which limits further development of the omnidirectional
image quality assessment.

FR OIQA model presents a way to capture the quality
degradation in distorted image, but the reference information
is generally missing in real applications, which makes the
NR OIQA models more practical and popular [46], [47]. The
existing NR OIQA methods can be categorized into three
types, which are the whole image-based methods, patch-based
methods and viewport-based methods [21]. The whole image-
based methods took the equirectangular projection (ERP)
image as the input and directly calculated the image quality
[27]. The patch-based methods mainly focus on seeking for a
better representation space to obtain more effective features,
which digs deeply into the characteristics of the projection
methods including the segmented spherical projection (SSP),
cube map projection (CMP), equirectangular projection (ERP)
[21], etc. For example, in [8], an NR OIQA metric were
designed for OIs on the SSP space based on the local details
and global features in both bipolar regions of the reprojection
space. Jiang et al. [36] focused on the local visual features
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in the CMP space and built a NR OIQA work. Kim et al.
[48] introduced a no-reference patch based OIQA metric by
segmenting the OI in ERP format into non-overlapping patches
in a uniformed size and exploring the positional features of
them. Liu et al. [49] introduced an effective quality assessment
metric by fusing the local structural features and global natural
features based on the OI in ERP format.

The viewport-based NR OIQA metrics aim to simulate the
visual mechanism when human watching the VR contents [50].
In [22], the final quality score was obtained by calculating
both the global prediction quality of the entire image and the
local prediction quality of the viewports. Later, considering
the importance of viewports in six directions, a multi-channel
viewport-based method was designed [35]. Based on scene
content understanding, Zhang et al. [51] invented a saliency-
guided NR OIQA method by fusion multi-scale features of
each viewport. Considering the quality degradation in an
image is related to the type and degree of the distortion, the
auxiliary task for distortion type discrimination was utilized
in a multi-stream network [52], which motivates us to build
an effective multi-task model. Overall, the above works proves
that multi-scale features from both the local and global degrees
are particularly important in the OIQA task.

Although NR OIQA models perform better than FR models,
there is still room for improvement to make the OIQA more
effective. More accurate local and global visual features need
to be obtained, and the interactive relationship between them
should be considered in OIQA models. In addition, it is hard
to capture quality changing information without the reference
image. An effective module that can capture important quality
degradation information hidden in the distorted image should
be deeply dug. Overall, OIQA is a complex and challenging
work, which needs to take many factors into consideration,
such as human visual characteristics, quality degradation be-
tween the distorted image and the reference, etc.

B. OSIQA Models

By combining multiple images with overlapping areas, it
can produce an image with wide field-of-view (FoV) and high
resolution, which is called omnidirectional stitching image.
Omnidirectional stitching image quality assessment (OSIQA)
is a task aiming to assess the quality of omnidirectional
stitching images (OSIs) that contains multiple stitching distor-
tions. Tian et al. [53], [54] proposed some effective stitched
omnidirectional image quality evaluators by considering the
viewport-based visual features. Duan et al. [55] established an
omnidirectional stitching image quality assessment (OSIQA)
dataset, and proposed an effective IQA model. Zhou et al. [56]
proposed a hierarchical quality prediction method for stitched
panoramic images by aggregating pyramid features. Later,
they introduced another method for stitched panoramic image
quality assessment with patch registration and bidimensional
feaeture aggregation [57]. By applying integration of spatio-
temporal feature, Hu et al. [58] introduced an effective OSIQA
method. Although many works have been proposed on the
omnidirectional image quality assessment, the performance of
the omnidirectional stitching quality has not been sufficiently

explored. Since OSI is still an omnidirectional image, OSIQA
task can be applied to validate the generalization ability of the
OIQA model.

C. Mamba-based Vision Models

Mamba [59] has recently drawn considerable attention in
various areas, which yields significant results in long sequence
modeling tasks [60]–[62]. Mamba consists of repeated Mamba
blocks with state space model (SSM) blocks [63]–[65], stan-
dard normalization layers, and residual connections, which
relieves the constraints of modeling in a convolutional neural
network (CNN) [66]–[68]. Compared to Transformer [69],
Mamba provides us with advanced and excellent modeling
capabilities, but without secondary computing complexity. The
significant advantages over CNNs and Transformer demon-
strate Mamba’s enormous potential as a base model for vision
tasks, which promotes its further development.

Inspired by Mamba, VMamba [70] was proposed as an effi-
cient model based on down-sampling operations [71] and Vi-
sual State Space (VSS) blocks with 2D-selective-scan (SS2D)
blocks [43], as shown in Fig. 5. VMamba has bidirectional
selective state space model (SSM) blocks [59] along 2D axes
by integrating the information from all the other four pixels in
different directions around each pixel [43], which can capture
rich global semantic information by combining the information
of each pixel and reduce the time complexity. Many works
have introduced VMamba to various visual tasks and achieved
significant performance [72]–[76]. For example, Xie et al. [77]
introduced VMamba and reformed it in dynamic feature en-
hancement for multi-modal image fusion, which performs well
in medical imaging. Yang et al. [78] presented the advantages
of Mamba in feature extraction by inventing a scheme with
it for image segmentation, which achieves good results. Shi
et al. [74] introduced a network with VMamba for image
restoration and a state-of-the-art performance was achieved.
Ma et al. [76] then applied VMamba on crowd counting work
to solve the problems in counting specific points of a scene,
and invented a new approach that inherited the merits of
VMamba for global modeling and low computational costs,
which achieves a remarkable performance. Considering the
remarkable effectiveness of VMamba in the 2D image area,
especially its significance for long-range modeling, we choose
it as the backbone of the global branch of our model to capture
the global semantic features.

III. PROPOSED METHOD

In this section, our proposed model is described in detail.
The overall framework is shown in Fig. 1. Specifically, the
distorted OI is fed into a bidirectional pseudo-reference (BPR)
module to obtain two opposite pseudo-reference images, and
then split into viewports to extract the multi-scale local fea-
tures based on the error maps. To well complement the local
features on viewports, a VMamba module [70] is adopted to
extract the multi-scale global features. Then the local features
and global features are fused from shallow to deep based on
the Bi-Stream Multi-Scale Fusion Aggregation (BS-MSFA)
module. Finally, a multi-task learning module is introduced
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Instruction: 
Remove the distortion in the image 

or Restore the quality of the image

InstructIR

E

 Distorted omnidirectional image Restorted omnidirectional image

Fig. 2. The process of restoring a distorted omnidirectional image with textual
prompts by using InstructIR. E represents the embedding process.

to assist the main quality assessment task. All the modules in
our method are present in detail in this section.

A. The Bidirectional Pseudo-Reference (BPR) Module

The BPR module is designed to obtain the pseudo-reference
information from two opposite directions. Considering the
image distortion degradation process, we introduce a bidi-
rectional pseudo-reference module to obtain two pseudo-
reference images by restoring and degrading the distorted
image, which is presented as the restoration and degradation
modules, respectively, in Fig. 1. For the restoration module,
we adopt a novel generative model InstructIR [79], which is
designed based on the famous large language model GPT-4

(a) (b) (c)

(d) (e) (f)
Fig. 3. The distorted viewports and their restored viewports. (a), (b) and (c)
are the viewports of the OIs with different types of distortions. (d), (e) and
(f) are the restored viewports of (a), (b) and (c), respectively.

and the image restoration technique [83]. The method achieves
excellent performance in image restoration. Fig. 2 shows how
it works to restore a distorted image. We utilize this model
with the textual instructions to generate the restored image,
such as “Remove the distortion in the image” or “Restore the
quality of the image”. Since InstructIR relies on the semantic
content within the textual prompt, similar textual prompt also
works. Fig. 3 presents the viewports of the distorted OI with
different degrees of distortions and their corresponding re-
stored viewports. It can be seen that the restored viewport has
a better quality than the distorted viewport, which proves that
the restored viewport can well reflect the quality difference.

For the degradation module, we obtain the degraded images
by adding shuffled blur, down-sampling, and noise following
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(a) (b) (c)

(d) (e) (f)
Fig. 4. The distorted viewports and their degraded viewports. (a), (b) and
(c) are the viewports of the distorted OIs with different types of distortions
(JPEG [80], H.264/AVC [81] and H.265/HEVC [82], respectively). (d), (e)
and (f) are the degraded viewports of (a), (b) and (c), mainly adding JPEG
compression in level 3, Gaussian noise with σ = 0.008 and camera sensor
noise in level 3, respectively.

the work [84]. Particularly, the down-sampling is randomly
used from the nearest, bilinear or bicubic interpolations, and
the noise is synthesized by adding Gaussian noise in different
levels, JPEG compression or camera sensor noise, which
generates the degraded images with random types and random
levels of distortions to describe the distorted images in reality.
Specifically, JPEG compression and camera sensor noise level
range from 0 to 5. The higher the level, the worse the
quality. The standard deviation of Gaussian noise range from
0 to 12 (×10−3). The image gets blurrier with the standard
deviation increases. It needs to be mentioned that the overall
performance of our model is similar by training the degra-
dation module with a specific type of distortion to random
distortions. Since the type and level of the distortion is random
in real applications, we train the degradation module by adding
random types and levels of distortions and test the model also
with the random degradations. Fig. 4 presents the viewports of
the distorted OI with different degrees of distortions and their
corresponding degraded viewports. Three types of distortions
with different levels are randomly aggravated to the inputs to
generate the degraded images that has worse qualities. Other
than restored images that present the reference score from a
positive degree, degraded PR images can help the prediction
model compare with the worst quality score, which can reflect
the quality difference from an opposite direction.

B. Local Feature Extraction

With the help of the two pseudo-reference images, the local
features extraction can be conducted based on the quality
degradation information between the distorted image and its
pseudo-reference image. Considering that only one local view-
port of an omnidirectional image is watched at a time for a spe-
cific user, 20 viewports are first generated following the work
in [54]. To effectively capture the presentative quality changing
between the PR viewports and the distorted viewports, error
maps are calculated to capture the rich semantic difference
information from the two directions. Here, in order to obtain

a better correlation with the quality perceived by viewers, the
normalized log difference function [85] is adopted, which is
defined as in (1):

E = logα
(
α+ (Ir − Id)

2
)
, (1)

where α = ϵ/2552 is a constant with ϵ = 0.1, Ir is the value
of each pixel of the PR viewport, and Id is the value of each
pixel of the distorted viewport. With the log normalization
processing, the pixel values can be adjusted to a narrow range,
which can assist to capture important changes in an error map
[86]. After the necessary procedure, the error map is then
fed into the local feature extraction module. In this paper, we
elaborately take ResNet50 as the backbone to obtain the local
features. The ResNet50 consists of five stages: stage 0, 1, 2, 3
and 4, respectively, in which stage 1 includes three bottlenecks,
and stage 2, 3 and 4 include 4, 6 and 3 bottlenecks, respectively
[87]. We take the features from the last three stages as local
features in our method.

C. Global Feature Extraction

To well complement the above local feature, the global
feature is extracted based on the whole omnidirectional image
instead of the viewports. Since VMamba recently presents a
remarkable performance in feature extraction in deep learning
[70], we take it as the backbone of the global feature extraction
module, shown in Fig. 5. For an OI, it is firstly partitioned
into patches with a stem module, and a 2D feature map
Md ∈ RH

4 ×W
4 with the spatial dimension of H

4 × W
4 [70]

is consequently obtained to feed into the VMamba, where H
and W are the height and width of the image. Denoting the
output of stage n as vn, the output of the first stage can be
obtained as in (2) and (3):

T1 = SS2DB(LN(Md))⊕ Md, (2)

v1 = FFN(LN(T1))⊕ T1. (3)

For the output of stage n(n = 2, 3, 4) can be obtained as in
(4) and (5):

Tn = SS2DB(LN(DS(vn−1)))⊕ DS(vn−1), (4)

vn = FFN(LN(Tn))⊕ Tn, (5)

where SS2DB(·) denotes the SS2D block [70], LN(·) means
the layer normalization, FFN(·) is the feedforward neural
network, and DS(·) is down-sampling operation. The layer nor-
malization helps accelerate the training process to converge,
and down-sampling operation reduces the size of the matrix
in the procedure. The SS2D block is defined as in (6) and (7):

FSS2D(·) = SS2D(SiLU(Dwc(Linear(·)))), (6)

SS2DB(·) = Linear(LN(FSS2D(·))), (7)

where SS2D(·) is the 2D-Selective-Scan operation [88], and
Dwc(·) is a 3×3 depth-wise convolution layer. SiLU function
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Fig. 6. BS-MSFA module: (a) is BS-MSFA UNIT 1, and (b) is BS-MSFA
UNIT 2. c⃝ represents concatenate operation, and FC represents a fully-
connected layer.

is an activation function used commonly in deep models.
The linear operation helps VMamba to optimize the training
process. The outputs v2, v3, and v4 are then prepared for the
multi-scale fusion.

D. Bi-Stream Multi-Scale Feature Aggregation (BS-MSFA)

Bi-stream multi-scale feature aggregation (BS-MSFA) mod-
ule is designed to fuse the extracted local and global features.
To fully apply the interactive relationship between local and
global features, we adopt an interactive fusion module to ex-
tract the interactive information and refine the shared features.
Due to the task insensitivity, the regression learning module
based on the one layer output fails to give a satisfactory
performance. The multi-scale representation can provide us
with a new way to capture the crucial features [40], [89].
Here, we apply the outputs of last three stages of ResNet50 as
the multi-scale local features and take the outputs of the last
three VMamba stages as the multi-scale global features. To
avoid the rigid connection between multi-scale features, the
interactive fusion module with residual structure, namely Bi-
Stream Multi-Scale Feature Aggregation (BS-MSFA) module,
is proposed to reduce the shallow feature dimension and
achieve efficient fusion by digging the interactive relationship
between local and global features, shown in Fig. 6.

Specifically, BS-MSFA consists of one BS-MSFA unit 1
and two BS-MSFA unit 2. For the unit 1, as shown in Fig. 6a,
two features from both branches are fed into it to capture the
first level fusion features f1, which is defined as in (8):

f1 = FC(g(f1l ) c⃝g(f1g)), (8)

where FC(·) denotes a fully-connected layer, g(·) denotes
a global pooling operation, and c⃝ means the concatenate
operation. f1l and f1g are the first level of local features and
global features, respectively.

Then the first level fusion features f1, the second level local
features and the second level global features are then fed into
a BS-MSFA unit 2, as shown in Fig. 6b, to capture the second
level fusion features f2. Before feeding f1 into the BS-MSFA
unit 2, f1 is processed with a fully-connected layer. The second
level fusion feature f2 is shown as in (9):

f2 = f1 c⃝FC(f1 c⃝g(f2l ) c⃝g(f2g)). (9)

The same as the above procedure, the third level fusion fea-
tures are obtained. Then the multi-scale fusion features of the
20 viewports from the restoration viewports and degradation
viewports are concatenated together and processed by a fully-
connected layer for the multi-task module outputing the final
quality score.

E. The Multi-Task Module

The multi-task module can motivate the model to focus on
the representative information. Considering that the compres-
sion types and distortion degrees have different impacts on
quality perception, we design a multi-task module to refine
the shared information and optimize the model’s performance
by the assistance of the distortion level classification task
and compression type discrimination task. For the main task,
a fully-connected layer is adopted to adjust the size and
get the final quality score. For the two auxiliary tasks, two
fully-connected layers containing 1024 nodes and 64 nodes,
respectively, are utilized.

Specifically, in our multi-task procedure, Euclidean loss
function and cross-entropy loss function are adopted to op-
timize the network. The Euclidean loss is defined as in (10):

Lq =
1

N

N∑
k=1

∥∥sk − qk
∥∥2
2
, (10)

where k denotes the k-th sample. sk is the subjective quality
score, and qk is the predicted quality score.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

The cross-entropy loss based on the distortion level classi-
fication task is defined as in (11):

Ld = −
N∑

k=1

M∑
i=1

mi
k log p̂

i
k, (11)

where mi
k is the ground-truth multi-class indicator vector. If

the k-th sample is in the i-th distortion level, then mi
k will

be one, otherwise mi
k will be zero. p̂ik denotes the predicted

probability of whether the distortion in the k-th sample is in
the i-th distortion level.

Similar to the loss for the distortion level classification, the
cross-entropy loss of the compression type discrimination task
is defined as in (12):

Lc = −
N∑

k=1

C∑
i=1

cik log r̂
i
k, (12)

where cik is the ground-truth multi-class indicator vector for
the compression type discrimination. If the distortion type of
the k-th sample is the i-th compression type, the cik will
be one, otherwise it will be zero. r̂ik denotes the predicted
probability of whether the compression type of the k-th sample
is the i-th compression type.

To learn the superior parameters for all the three tasks, the
total loss is defined as in (13):

L = Lq + 0.1Ld + 0.1Lc, (13)

where the coefficients of Lq , Ld and Lc represent the impor-
tance of the three losses and are empirically set to 1, 0.1 and
0.1, respectively, in this work.

IV. EXPERIMENTAL RESULTS

A. Experimental Settings

1) Datasets: OIQA dataset [90]: It consists of 320 dis-
torted OIs in equireclangular format based on two types
of compressions (JPEG and JPEG2000) and two types of
degradations (Gaussian blur (GB), and Gaussian noise (GN)),
and 16 reference images. The resolutions of the OIs vary
in a range from 11332× 5666 to 13320× 6660. The Mean
Opinion Score (MOS) value of each image is provided with
the dataset by conducting the subjective experiment in which
the single-stimulus (SS) method [91] is adopted.

CVIQ dataset [35]: It provides 544 images in total,
which include 528 distorted omnidirectional images based
on three different types of coding compressions (JPEG [80],
H.264/AVC [81] and H.265/HEVC [82]). The rest 16 OIs are
the reference images. All the images are in the same resolution
of 4096× 2048. Like [90], the SS method is also adopted in
the subjective experiment to get the MOS value.

OSIQA dataset [55]: It is a dataset designed for omnidi-
rectional stitching image quality assessment, which is used to
validate the generalization ability of our model. It provides
700 omnidirectional stitching images generated by stitching
the packs from different views. It includes 350 distorted OIs
based on 14 scenes with different stitching distortions. MOS
values are provided based on the extensive experiments in [55].

2) Evaluation Criteria: Three prevalent criteria which are
Pearson Linear Correlation Coefficient (PLCC), Spearman
Rank-order Correlation Coefficient (SRCC) and Root Mean
Squared Error (RMSE) are adopted to make the monotonicity
comparison and accuracy prediction. The three criteria are
formulated as in (14), (15) and (16):

PLCC =

∑N
i=1 (si − s̄)(pi − p̄)√∑N

i=1 (si − s̄)2
∑N

i=1 (pi − p̄)2
, (14)

where N denotes the number of the samples. si is the MOS of
the i-th sample, and pi is the prediction score. s̄ is the mean
value of the MOS’s, and p̄ is the mean value of the score that
the model predicted for each sample.

SRCC = 1−
6
∑N

i=1 d
2
i

N(N2 − 1)
, (15)

where di denotes the distance between the rank of the MOS
and the rank of the prediction score given by the model for
the i-th sample.

RMSE =

√√√√ 1

N

N∑
i=1

(si − pi)2, (16)

where si is the MOS of the i-th sample and pi is the prediction
score given by the model.

Among the three criteria, PLCC and RMSE are calculated
by the five-parameter nonlinear mapping [92], [93], which
aims to unify the prediction scores given by different metrics
into the same range [52].

3) Implementation Details: In implementation, the dataset
is split into a training set and a testing set following the
commonly used standard method in [94]–[97]. PyTorch frame-
work [98] is adopted to implement the proposed method and
the fine-tuning operation is implemented on both the OIQA
and the CVIQ datasets. The SGD optimization [99]–[101] is
employed with the momentum parameter set to 0.9, while
the batch size and the weight decay parameter are set to 16
and 10−4, respectively. For the two branches of the network,
we set the initial learning rates to 10−3, and the learning
rate drops with a factor of 0.9 for each epoch with the total
number of epochs is 300. The entire experiment processes
are implemented on a device with Intel(R) Core (TM) i7-
10870H CPU with 16 GB RAM, and one NVIDIA GeForce
RTX 2060 graphic card, which shows the advantage of the
proposed method on lower-level devices.

B. Performance Evaluation

In this section, three mainstream quantified experiments are
conducted to validate our method’s performance: performance
on benchmark dataset, performance on different training-
testing proportions and performance on the generalization
ability, which can give a comprehensive conclusion about the
advantage of our model. For the performance on benchamrk
dataset, we evaluate the performance on each distortion type
and overall performances on two OIQA datasets, which can
well prove the effectiveness of our model. For the performance
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TABLE I
THE PERFORMANCE COMPARISON ON THE OIQA DATASET [90]

Metrics JPEG JP2K GN GB Overall
PLCC ↑ SRCC ↑ RMSE ↓ PLCC ↑ SRCC ↑ RMSE ↓ PLCC ↑ SRCC ↑ RMSE ↓ PLCC ↑ SRCC ↑ RMSE ↓ PLCC ↑ SRCC ↑ RMSE ↓

FR

PSNR 0.758 0.731 10.245 0.781 0.768 9.379 0.958 0.931 3.654 0.529 0.506 11.268 0.492 0.497 12.528
SSIM [10] 0.803 0.934 9.355 0.802 0.936 8.985 0.904 0.886 5.467 0.768 0.925 8.500 0.856 0.880 7.436
S-PSNR [20] 0.87 0.829 7.738 0.816 0.849 8.686 0.919 0.885 5.033 0.699 0.692 9.501 0.716 0.712 10.030
CPP-PSNR [26] 0.865 0.829 7.873 0.849 0.837 7.943 0.920 0.885 5.001 0.672 0.667 9.830 0.707 0.703 10.167
WS-PSNR [44] 0.861 0.828 7.994 0.844 0.832 8.070 0.922 0.885 4.942 0.661 0.658 9.966 0.689 0.693 10.428

NR

BRISQUE [102] 0.935 0.921 8.689 0.725 0.733 11.355 0.968 0.979 4.551 0.844 0.857 9.161 0.823 0.831 9.262
DESQUE [27] 0.897 0.868 6.952 0.739 0.732 10.120 0.953 0.937 3.882 0.749 0.663 8.799 0.725 0.712 9.903
dipIQ [33] 0.829 0.789 8.783 0.916 0.918 6.030 0.955 0.943 3.772 0.932 0.898 4.816 0.701 0.691 10.259
MEON [34] 0.823 0.779 8.935 0.680 0.601 11.017 0.952 0.930 3.895 0.764 0.716 8.572 0.749 0.717 9.536
BMPRI [41] 0.918 0.909 6.210 0.185 0.166 14.768 0.961 0.949 3.534 0.356 0.354 12.248 0.431 0.338 12.984
SSP-BOIQA [8] 0.877 0.834 7.620 0.853 0.852 7.501 0.905 0.843 5.451 0.854 0.862 6.834 0.860 0.865 7.313
MC360IQA [35] 0.912 0.901 6.535 0.896 0.882 6.573 0.913 0.926 5.240 0.893 0.918 6.072 0.890 0.909 6.697
Zhou et al. [52] 0.936 0.94 5.691 0.920 0.934 5.886 0.968 0.957 3.330 0.925 0.920 4.972 0.899 0.923 6.396
MUSIQ [103] 0.963 0.928 5.105 0.962 0.937 5.302 0.945 0.931 3.588 0.976 0.953 3.208 0.962 0.948 4.522
CVRKD-IQA [104] 0.952 0.932 5.027 0.954 0.947 4.313 0.952 0.927 3.262 0.984 0.962 3.855 0.967 0.947 4.123
VGCN [22] 0.954 0.929 4.288 0.977 0.946 4.313 0.981 0.975 3.617 0.985 0.965 4.213 0.958 0.952 4.385
PICS (Pro.) [21] 0.968 0.946 3.988 0.980 0.972 4.047 0.989 0.983 3.575 0.990 0.974 3.827 0.970 0.964 3.991
Ours 0.979 0.971 3.078 0.990 0.982 3.558 0.995 0.987 1.998 0.992 0.985 2.961 0.992 0.982 2.641

TABLE II
THE PERFORMANCE COMPARISON ON THE CVIQ DATASET [35]

Metrics JPEG H.264/AVC H.265/HEVC Overall
PLCC ↑ SRCC ↑ RMSE ↓ PLCC ↑ SRCC ↑ RMSE ↓ PLCC ↑ SRCC ↑ RMSE ↓ PLCC ↑ SRCC ↑ RMSE ↓

FR

PSNR 0.889 0.766 7.824 0.784 0.783 7.674 0.746 0.745 8.000 0.786 0.757 8.692
SSIM [10] 0.852 0.929 8.946 0.941 0.940 4.177 0.918 0.917 4.763 0.897 0.885 6.230
S-PSNR [20] 0.892 0.778 7.727 0.789 0.786 7.589 0.762 0.758 7.785 0.785 0.761 8.714
CPP-PSNR [26] 0.884 0.765 7.996 0.779 0.777 7.751 0.751 0.748 7.936 0.779 0.754 8.822
WS-PSNR [44] 0.880 0.756 8.101 0.775 0.773 7.814 0.747 0.744 7.993 0.777 0.751 8.850

NR

BRISQUE [102] 0.913 0.938 5.144 0.780 0.779 7.715 0.771 0.758 8.340 0.826 0.828 7.572
DESQUE [27] 0.912 0.870 7.003 0.385 0.173 11.410 0.328 0.152 11.362 0.566 0.417 11.603
dipIQ [33] 0.928 0.793 6.353 0.620 0.635 9.695 0.361 0.326 11.216 0.706 0.623 9.960
MEON [34] 0.808 0.566 10.057 0.599 0.574 9.900 0.783 0.782 7.484 0.665 0.567 10.510
BMPRI [41] 0.776 0.498 10.767 0.533 0.520 10.459 0.846 0.840 6.412 0.627 0.621 10.962
SSP-BOIQA [8] 0.915 0.853 6.847 0.885 0.861 7.042 0.854 0.841 6.302 0.890 0.856 6.941
MC360IQA [35] 0.941 0.923 5.804 0.932 0.941 5.357 0.914 0.899 4.801 0.939 0.904 4.606
Zhou et al. [52] 0.957 0.961 5.601 0.953 0.949 3.873 0.929 0.914 4.525 0.902 0.911 6.117
MUSIQ [103] 0.975 0.968 3.156 0.965 0.945 3.982 0.920 0.933 4.566 0.960 0.952 3.992
CVRKD-IQA [104] 0.982 0.955 2.858 0.968 0.954 3.657 0.942 0.939 4.103 0.963 0.955 3.527
VGCN [22] 0.989 0.976 2.359 0.972 0.966 3.149 0.940 0.943 4.026 0.965 0.964 3.657
PICS (Pro.) [21] 0.990 0.983 2.136 0.976 0.972 2.967 0.959 0.962 3.577 0.976 0.973 3.290
Ours 0.992 0.993 1.953 0.983 0.974 2.556 0.995 0.987 3.053 0.987 0.991 2.734

on different training-testing proportions, it is designed to indi-
cate the effect of the training-testing proportion on our model.
For the performance on the generalization ability, it is applied
to validate the generalization ability and the robustness of our
model using the cross-dataset validation and omnidirectional
stitching image quality assessment (OSIQA) task.

1) Performance on Benchmark Dataset: To prove the ad-
vanced performance of our model, several classical FR IQA
models cited in most previous NR IQA works are adopted
to conduct the performance comparison, including PSNR,
SSIM [10], S-PSNR [20], CPP-PSNR [26] and WS-PSNR
[44]. Considering the reference image is not always available,
several classical and state-of-the-art NR IQA models are also
cited to make the comparison, including BRISQUE [102],
DESQUE [27], dipIQ [33], MEON [34], BMPRI [41], SSP-
BOIQA [8], MC360IQA [35], Zhou et al. [52], MUSIQ [103],
CVRKD-IQA [104], VGCN [22] and PICS (Pro.) [21], which
are also the most cited works in OIQA area. Among them,
S-PSNR [20], CPP-PSNR [26], WS-PSNR [44], SSP-BOIQA
[8], MC360IQA [35], Zhou et al. [52], VGCN [22] and PICS
(Pro.) [21] are specifically designed for OIQA. Based on the
comparison results with FR IQA models, NR IQA models and
NR OIQA models, the comprehensive performance analysis
of our model can be concluded. The experimental results of

all the metrics on the OIQA dataset and CVIQ dataset are
summarized in Table I and II, respectively. ”↑” indicates that
the higher the value is, the better the performance is, while ”↓”
indicates that the lower the value is, the better the performance
is. And the top performances are emphasized with boldface.
The results demonstrated that the latest deep learning-based
NR OIQA models without any reference information, such as
MC360IQA [35], SSP-BOIQA [8], Zhou et al. [52], VGCN
[22], and PICS [21], achieve a better overall performance than
all the FR quality metrics and some early NR OIQA models.
One of the reasons could be that FR methods mainly rely on
handcrafted features, and deep learning technology matures
gradually, which can boost the improvement of OIQA models.
Although SSIM model [10] presents a promising performance
on the whole dataset and on each distortion type, it highly
relies on the reference information without considering human
visual characteristics on OI, which limits its application.

For the NR metrics in the comparison experiment, it can be
found that BMPRI [41] with multiple pseudo reference images
(MPRIs) takes the worst overall performance among all the NR
metrics. One probable reason is the big intervals between two
degradation degrees, which may make the network puzzled
in building a clear reference standard and lead to a deficient
performance. In addition, this model yields the worst results
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TABLE III
PERFORMANCE OF OUR PROPOSED METHOD AND TWO ADVANCED METHODS (VGCN [22] AND PICS (PRO.) [21]) WITH DIFFERENT QUANTITIES OF

TRAINING SAMPLES ON OIQA DATASET AND CVIQ DATASET

Dataset Proportion VGCN PICS (Pro.) Ours
PLCC ↑ SRCC ↑ RMSE ↓ PLCC ↑ SRCC ↑ RMSE ↓ PLCC ↑ SRCC ↑ RMSE ↓

OIQA

0.8/0.2 0.958 0.952 4.385 0.970 0.964 3.991 0.992 0.982 2.641
0.7/0.3 0.868 0.870 7.254 0.896 0.893 6.483 0.909 0.910 5.755
0.6/0.4 0.802 0.793 8.739 0.817 0.806 8.664 0.844 0.842 7.864
0.5/0.5 0.725 0.721 9.918 0.753 0.737 9.315 0.792 0.779 7.839
0.4/0.6 0.673 0.652 10.826 0.682 0.654 10.634 0.721 0.699 9.497

CVIQ

0.8/0.2 0.965 0.964 3.657 0.976 0.973 3.290 0.992 0.985 2.961
0.7/0.3 0.903 0.805 5.941 0.915 0.911 5.307 0.947 0.941 4.909
0.6/0.4 0.831 0.819 7.796 0.844 0.835 7.685 0.900 0.880 6.908
0.5/0.5 0.755 0.730 9.381 0.795 0.782 8.241 0.821 0.816 6.918
0.4/0.6 0.694 0.658 10.024 0.713 0.707 9.846 0.799 0.776 8.572

on JP2K and GB distortion among all the models, since it is
impossible to design one pseudo generation model to cover all
types of distortions, and it is hard to obtain an accurate result
only relying on the pseudo quality changing information. So, a
more reasonable way to build an effective OIQA model should
be capturing the pseudo reference information from different
directions and training the network with them, which is one
of our contributions. In general, the NR models designed for
OIQA present a better performance than other NR models,
while MUSIQ [103] and CVRKD-IQA [104] yield a compet-
itive results. Although MUSIQ [103] and CVRKD-IQA [104]
are designed for the general IQA task rather than the OIQA
task, they also achieves the good performance on the OIQA
task after finetuning but still perform worse than some OIQA
methods, which indicates the importance of designing specific
architectures for the OIQA task. Among the NR models
designed for OIQA, PICS [21] achieves a better performance,
which may benefit from the rich semantic information from
the generative complementary images. However, it ignores the
importance of multi-scale fusion of the features. Our model
not only captures the quality changing information from two
opposite directions, but also interactively fuses multi-scale
local and global features, which achieves the best results not
only on the whole dataset, but also on each distortion type of
the dataset. Overall, the results above prove that our model is
reasonable, and able to be effectively applied to evaluate the
quality of OIs.

To further prove the practical effectiveness of our model,
Table II gives a performance comparison on each compression
type and the overall CVIQ dataset. It can be observed that
all the models present a better performance, and the trend
of the performances in Table II present a similar trend in
Table I. It needs to be mentioned that CVIQ dataset focuses
on the types of compression distortion, which is more useful
for image transcoding or transmission. Our model achieves
the best performance on the overall CVIQ dataset and each
distortion type, which further demonstrates the superiority and
the potential practical application of our model.

We also visualize the prediction results of samples on the
CVIQ dataset, as shown in Fig. 7. We take the promising
model, PICS (Pro.) [21], as the comparison model, and (∗%)
is the difference between MOS and the predicted scores. The
smaller the value of the difference, the better the performance.

MOS: 17.493            64.819                        32.819

Ours: 17.953 (2.63%)           64.537 (0.44%)                       32.754 (0.20%)

PICS (Pro.): 16.842 (3.72%)                                 63.022 (2.77%)                       33.028 (0.64%)

MOS: 60.654            33.410                        32.755

Ours: 60.125 (0.87%)           32.943 (1.40%)                       32.879 (0.38%)

PICS (Pro.): 62.304 (2.72%)           32.882 (1.58%)                       33.546 (2.41%)

MOS: 21.148            47.769                        43.480

Ours: 20.927 (1.05%)           48.003 (0.49%)                       42.879 (1.38%)

PICS (Pro.): 21.852 (3.33%)           47.226 (1.14%)                       42.102 (3.17%)

Fig. 7. The qualitative comparison on CVIQ dataset. MOS is the subjective
score. Ours and PICS (Pro.) [21] present the predicted scores by our model
and PICS (Pro.), respectively. The best results are presented in boldface.

As can be seen, the quality predicted by our model coincide
better with the subjective score. This in turn confirms that the
proposed model can better capture representative features for
quality assessment.

2) Performance on Different Training-Testing Proportions:
To study the effect of the training-testing proportion, experi-
ments on how the performance varies with the different dataset
proportions are conducted. The procedure is repeated five
times, and the average results are presented in Table III, and
the best performances are emphasized with boldface. It can
be seen that as the number of training samples increases, the
performances of all three metrics are improved. It needs to
be mentioned that the performance of our proposed method
is superior to VGCN [22] and PICS [21] methods on all
training-testing splits. Moreover, our method still achieves a
remarkable performance only training with half of the images.
Specifically, both the PLCC and SRCC are over 0.8, which
performs even better than some of the existing metrics with
the best proportion in Table I and II. Furthermore, it can
be concluded that our method is relatively dependent on the
quantity of the images for model training, which means an
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TABLE IV
THE RESULTS OF THE CROSS-DATASET VALIDATION

Train Test Criterion BRISQUE dipIQ MEON BMPRI MC360IQA Zhou et al. MUSIQ CVRKD-IQA VGCN PICS (Pro.) Ours

CVIQ OIQA
PLCC ↑ 0.682 0.583 0.604 0.331 0.705 0.735 0.762 0.803 0.787 0.827 0.905
SRCC ↑ 0.524 0.502 0.551 0.192 0.684 0.684 0.792 0.801 0.778 0.815 0.903
RMSE ↓ 10.870 11.747 11.399 13.576 10.178 10.178 6.447 6.325 5.437 5.124 4.440

OIQA CVIQ
PLCC ↑ 0.754 0.630 0.688 0.586 0.823 0.823 0.898 0.933 0.924 0.935 0.970
SRCC ↑ 0.689 0.587 0.624 0.548 0.814 0.814 0.901 0.902 0.928 0.931 0.972
RMSE ↓ 9.381 10.904 10.145 11.403 7.811 7.811 5.657 4.892 5.462 4.887 3.857

TABLE V
PERFORMANCE COMPARISON OF THE STATE-OF-THE-ART NR-IQA

MODELS ON OSIQA DATASET

Metrics PLCC ↑ SRCC ↑ RMSE ↓

BRISQUE [102] 0.3072 0.2450 12.296
NIQE [105] 0.3167 0.2288 12.053
CORNIA [106] 0.3404 0.2271 12.008
QAC [107] 0.5747 0.2635 9.9765
ILNIQE [108] 0.3957 0.1658 11.707
LPSI [109] 0.5789 0.2127 10.599
HOSA [110] 0.3270 0.2457 11.859
dipIQ [33] 0.2394 0.1994 499.01
BPRI [111] 0.5993 0.2656 9.9980
BPRI-LSS [111] 0.4889 0.3200 10.994
BPRI-PSS [111] 0.5085 0.2356 10.957
BPRIc [111] 0.5685 0.3171 10.270
BMPRI [41] 0.3703 0.2666 11.320
MC360IQA [35] 0.7943 0.6807 6.9597
OSIQA-NR [55] 0.8214 0.7236 6.2442

Ours 0.8670 0.7541 6.8241

application potential.
3) Performance on Generalization Ability: To validate the

generalization ability and the robustness of our method, the
cross-dataset validation is conducted. We first train the model
on one of the two datasets and then test on the other. The re-
sults of the cross-dataset validation are presented in Table IV,
and the top performances are emphasized with boldface. It can
be observed that all the results are lower than the results of
training and testing on the same datasets. The PICS (Pro.) [21]
metric presents a potential competition but is inferior to our
method. Our method achieves the highest PLCC and SRCC
and the lowest RMSE and is the only method performing
with both the PLCC and SRCC over 0.9 when the model
is trained on CVIQ dataset and tested on OIQA dataset. In
addition, it can be observed that the results of models trained
on OIQA dataset are all better than the models trained on
CVIQ dataset. One probable reason is that the OIQA dataset
includes four types of compressions and degradations, while
the CVIQ dataset includes images with only the compression
types of distortions.

To further prove the generalization ability of our method, the
omnidirectional stitching image quality assessment (OSIQA)
[55] task is conducted. Although OSIQA task is focused on
stitching OIs, it is still an OIQA task, which can be applied to
prove the generalization of our model. It needs to be mentioned
that since the OSIQA dataset does not include the reference
image, the FR results cannot be obtained. Herein, in this

TABLE VI
THE RESULTS OF THE ABLATION EXPERIMENTS

OIQA CVIQModule Status PLCC ↑ SRCC ↑ RMSE ↓ PLCC ↑ SRCC ↑ RMSE ↓

Local features ✗ 0.915 0.921 12.669 0.934 0.923 9.600
Global features ✗ 0.944 0.948 4.722 0.951 0.954 4.591
BS-MSFA ✗ 0.969 0.975 3.227 0.976 0.972 3.141
Auxiliary tasks ✗ 0.982 0.968 3.193 0.983 0.974 3.175
Global backbone ViT 0.981 0.979 4.499 0.975 0.974 3.133

All ✓ 0.992 0.982 2.641 0.987 0.991 2.734

section, we only provide NR methods for the experimental
comparison. The results are shown in Table V, and the top
performances are emphasized with boldface. It can be seen
that, even compared to the state-of-the-art in the OSIQA area,
our method achieves a remarkable performance, which proves
the potential performance in the OSIQA area. Our model
achieves the best performance on PLCC and SRCC criteria
and ranks second on RMSE. The probable reason is that the
geometry distortion in OSIQA tasks is not considered, but the
RMSE value of our model is close to the top one, which proves
the generalization ability of our method.

Overall, the results above indicate the generalization ability
of our proposed method.

C. Ablation Experiments

To verify the contribution of the local features, the global
features, the BS-MSFA module, the auxiliary tasks and the
backbone of VMamba, respectively, the ablation experiments
are conducted, and the results are presented in Table VI. The
top performances are emphasized with boldface. It can be
concluded that each component has contribution to the final
performance, while the model without the local branch yields
the worst performance, which proves that the local branch is
the most essential information for OIQA. The model without
the global features ranks second to the last, which proves that
it is reasonable to combine the local and global features. The
model without BS-MSFA module designed by using the tradi-
tional concatenating fusion way presents a worse performance
than the proposed model, which presents the significant role of
the bi-stream multi-scale feature aggregation. And the model
without the assistance of multi-task module present a lower
results than our model, which proves the positive effect of
two auxiliary tasks. We can see that the model using the ViT
as the backbone to capture the global features presents a worse
performance than our model, which means the effectiveness
of VMamba in OIQA tasks. Compared to ViT, VMamba has
an efficient zigzags method to scan an image and captures rich
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information [70], and makes VMamba a better choice as the
backbone, which is validated by the results of our ablation
experiments. All the above results prove all our contributions
and the reasonableness of our model. Overall, our proposed
model achieves a high consistency with the human perception
and can be effectively applied to evaluate the quality of OIs.

V. CONCLUSION

In this paper, a multi-task framework based on multi-scale
local and global features is proposed for OIQA. Considering
the quality degradation varying in distorted images, a bidi-
rectional pseudo reference module is utilized to capture the
rich local features from two opposite directions. Based on the
state-of-art performance of VMamba in features extraction,
we adopt it as the global feature extractor to obtain multi-
scale global information, which can complement the above
local features well. To utilize the interactive relationship be-
tween the local and global information, the multi-scale feature
aggregation module is constructed to make a hierarchically
deep fusion. Furthermore, a multi-task learning is applied
to optimize the entire model for the quality prediction. The
experimental results demonstrate that our method can effec-
tively and accurately predict the quality of an omnidirectional
image. In the future, we will extend our method to more
omnidirectional quality assessment tasks, and will develop
more effective models with advanced technology to evaluate
the quality of omnidirectional images by digging into the
relationship between human visual characteristics and high-
level semantic information.
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your hippo: State space models with generalized orthogonal basis pro-
jections,” arXiv preprint arXiv:2206.12037, 2022. [Online]. Available:
https://arxiv.org/abs/2206.12037

[67] J. Wang, W. Zhu, P. Wang, X. Yu, L. Liu, M. Omar, and R. Hamid,
“Selective structured state-spaces for long-form video understanding,”
in Proceedings of 2023 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2023, pp. 6387–6397.

[68] H. Mehta, A. Gupta, A. Cutkosky, and B. Neyshabur, “Long
range language modeling via gated state spaces,” arXiv preprint
arXiv:2206.13947, 2022. [Online]. Available: https://arxiv.org/abs/2206.
13947

[69] A. Chubarau and J. Clark, “VTAMIQ: Transformers for attention modu-
lated image quality assessment,” arXiv preprint arXiv:2110.01655, 2021.
[Online]. Available: https://arxiv.org/abs/2110.01655

[70] Y. Liu, Y. Tian, Y. Zhao, H. Yu, L. Xie, Y. Wang, Q. Ye, and Y. Liu,
“VMamba: Visual state space model,” arXiv preprint arXiv:2401.10166,
2024. [Online]. Available: https://arxiv.org/abs/2401.10166

[71] Z. Liu, H. Hu, Y. Lin, Z. Yao, Z. Xie, Y. Wei, J. Ning, Y. Cao, Z. Zhang,
L. Dong, F. Wei, and B. Guo, “Swin transformer v2: Scaling up capacity
and resolution,” in Proceedings of 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2022, pp. 11999–
12009.

[72] C.-S. Chen, G.-Y. Chen, D. Zhou, D. Jiang, and D.-S. Chen, “Res-
VMamba: Fine-grained food category visual classification using selec-
tive state space models with deep residual learning,” arXiv preprint
arXiv:2402.15761, 2024. [Online]. Available: https://arxiv.org/abs/2402.
15761

https://arxiv.org/abs/2404.18861
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2111.00396
https://arxiv.org/abs/2208.04933
https://arxiv.org/abs/2209.12951
https://arxiv.org/abs/2206.12037
https://arxiv.org/abs/2206.13947
https://arxiv.org/abs/2206.13947
https://arxiv.org/abs/2110.01655
https://arxiv.org/abs/2401.10166
https://arxiv.org/abs/2402.15761
https://arxiv.org/abs/2402.15761


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

[73] C. Du, Y. Li, and C. Xu, “Understanding robustness of visual state
space models for image classification,” arXiv preprint arXiv:2403.10935,
2024. [Online]. Available: https://arxiv.org/abs/2403.10935

[74] Y. Shi, B. Xia, X. Jin, X. Wang, T. Zhao, X. Xia, X. Xiao, and W. Yang,
“VmambaIR: Visual state space model for image restoration,” arXiv
preprint arXiv:2403.11423, 2024. [Online]. Available: https://arxiv.org/
abs/2403.11423

[75] Z. Wang, J.-Q. Zheng, C. Ma, and T. Guo, “VMambaMorph: a multi-
modality deformable image registration framework based on visual state
space model with cross-scan module,” arXiv preprint arXiv:2404.05105,
2024. [Online]. Available: https://arxiv.org/abs/2404.05105

[76] H.-Y. Ma, L. Zhang, and S. Shi, “VMambaCC: A visual state space
model for crowd counting,” arXiv preprint arXiv:2405.03978, 2024.
[Online]. Available: https://arxiv.org/abs/2405.03978

[77] X. Xie, Y. Cui, C.-I. Ieong, T. Tan, X. Zhang, X. Zheng, and Z. Yu,
“FusionMamba: Dynamic feature enhancement for multimodal image
fusion with mamba,” arXiv preprint arXiv:2404.09498, 2024. [Online].
Available: https://arxiv.org/abs/2404.09498

[78] Y. Yang, C. Ma, J. Yao, Z. Zhong, Y. Zhang, and Y. Wang, “ReMamber:
Referring image segmentation with mamba twister,” arXiv preprint
arXiv:2403.17839, 2024. [Online]. Available: https://arxiv.org/abs/2403.
17839

[79] M. V. Conde, G. Geigle, and R. Timofte, “InstructIR: High-
quality image restoration following human instructions,” arXiv preprint
arXiv:2401.16468, 2024. [Online]. Available: https://arxiv.org/abs/2401.
16468

[80] G. Wallace, “The jpeg still picture compression standard,” IEEE Trans-
actions on Consumer Electronics, vol. 38, no. 1, pp. xviii–xxxiv, 1992.

[81] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of
the h.264/avc video coding standard,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 13, no. 7, pp. 560–576, 2003.

[82] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
high efficiency video coding (hevc) standard,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1649–
1668, 2012.

[83] T. Brooks, A. Holynski, and A. A. Efros, “Instructpix2pix: Learning to
follow image editing instructions,” in Proceedings of 2023 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2023,
pp. 18392–18402.

[84] K. Zhang, J. Liang, L. Van Gool, and R. Timofte, “Designing a
practical degradation model for deep blind image super-resolution,” in
Proceedings of 2021 IEEE/CVF International Conference on Computer
Vision (ICCV), 2021, pp. 4771–4780.

[85] T. T. Huong, D. T. Ha, H. T. T. Tran, N. D. Viet, B. D. Tien, N. H.
Thanh, T. C. Thang, and P. N. Nam, “An effective foveated 360° image
assessment based on graph convolution network,” IEEE Access, vol. 10,
pp. 98165–98178, 2022.

[86] R. Zhang and A. C. S. Chung, “A fine-grain error map prediction
and segmentation quality assessment framework for whole-heart seg-
mentation,” arXiv preprint arXiv:1907.12244, 2019. [Online]. Available:
https://arxiv.org/abs/1907.12244

[87] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.

[88] X. Pei, T. Huang, and C. Xu, “EfficientVMamba: Atrous selective scan
for light weight visual mamba,” arXiv preprint arXiv:2403.09977, 2024.
[Online]. Available: https://arxiv.org/abs/2403.09977

[89] Y. Liu, J. Wu, L. Li, W. Dong, and G. Shi, “Quality assessment of ugc
videos based on decomposition and recomposition,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 33, no. 3, pp. 1043–
1054, 2023.

[90] H. Duan, G. Zhai, X. Min, Y. Zhu, Y. Fang, and X. Yang, “Perceptual
quality assessment of omnidirectional images,” in Proceedings of 2018
IEEE International Symposium on Circuits and Systems (ISCAS), 2018,
pp. 1–5.

[91] G. M. Pace, M. T. Ivancic, G. L. Edwards, B. A. Iwata, and T. J. Page,
“Assessment of stimulus preference and reinforcer value with profoundly
retarded individuals,” Journal Of Applied Behavior Analysis, vol. 18,
no. 3, pp. 249–255, 1985.

[92] L. Li, Y. Zhou, W. Lin, J. Wu, X. Zhang, and B. Chen, “No-reference
quality assessment of deblocked images,” Neurocomputing, vol. 177,
no. C, pp. 572–584, 2016.

[93] X. Min, K. Ma, K. Gu, G. Zhai, Z. Wang, and W. Lin, “Unified blind
quality assessment of compressed natural, graphic, and screen content
images,” IEEE Transactions on Image Processing, vol. 26, no. 11, pp.
5462–5474, 2017.

[94] L. Li, Y. Zhou, K. Gu, W. Lin, and S. Wang, “Quality assessment of
dibr-synthesized images by measuring local geometric distortions and
global sharpness,” IEEE Transactions on Multimedia, vol. 20, no. 4, pp.
914–926, 2018.

[95] L. Li, Y. Zhou, K. Gu, Y. Yang, and Y. Fang, “Blind realistic blur as-
sessment based on discrepancy learning,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 30, no. 11, pp. 3859–3869, 2020.

[96] C. Li, M. Xu, X. Du, and Z. Wang, “Bridge the gap between vqa and
human behavior on omnidirectional video: A large-scale dataset and a
deep learning model,” in Proceedings of the 26th ACM International
Conference on Multimedia, ser. MM ’18. New York, NY, USA: Associa-
tion for Computing Machinery, 2018, pp. 932–940.

[97] C. Li, M. Xu, L. Jiang, S. Zhang, and X. Tao, “Viewport proposal cnn
for 360° video quality assessment,” in Proceedings of 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2019,
pp. 10169–10178.

[98] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
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