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ABSTRACT

Deep latent variable models learn condensed representations of data that, hopefully,
reflect the inner workings of the studied phenomena. Unfortunately, these latent
representations are not statistically identifiable, meaning they cannot be uniquely
determined. Domain experts, therefore, need to tread carefully when interpreting
these. Current solutions limit the lack of identifiability through additional con-
straints on the latent variable model, e.g. by requiring labeled training data, or by
restricting the expressivity of the model. We change the goal: instead of identifying
the latent variables, we identify relationships between them such as meaningful
distances, angles, and volumes. We prove this is feasible under very mild model
conditions and without additional labeled data. We empirically demonstrate that our
theory results in more reliable latent distances, offering a principled path forward
in extracting trustworthy conclusions from deep latent variable models.

1 INTRODUCTION

Latent variable models express the density of observational data through a set of latent, i.e. unobserved,
variables that ideally capture the driving mechanisms of the data-generating phenomena. For example,
the latent variables of a variational autoencoder (Kingma & Welling, 2013; Rezende et al., 2014)
trained on protein data, can reveal the underlying protein evolution which can help domain experts
understand a problem of study (Riesselman et al., 2018; Ding et al., 2019; Detlefsen et al., 2022).

Unfortunately, latent variables are rarely identifiable, i.e. they cannot be uniquely estimated from
data. This lack of uniqueness prevents reliable analysis of the learned latent variables as the analysis
becomes subject to the arbitrariness of model training. Figure 1 exemplifies the issue, where two
independently trained latent representations are estimated from transcriptomic data (Tasic et al.,
2018). While clusters are similarly estimated across models, the relationships between clusters vary
significantly, preventing us from extracting intra-cluster information from the plots. This fundamental
issue has sparked the development of training heuristics to limit the issue (Kobak & Berens, 2019),
and the practice of analyzing latent variables has been both disputed (Chari & Pachter, 2023) and
defended (Lause et al., 2024). This entire discussion could have been avoided if only distances
between latent variables had been identifiable.

Identifiability guarantees have been heavily investigated. We survey key results in Secs. 2 and 6, but
the executive summary is that current approaches require significant model restrictions (e.g. linearity
assumptions), labeled data, or a combination of both. These solutions are underwhelming to practition-
ers who often lack a labeling mechanism and are keen to leverage contemporary generative models.

In this paper, we change the identifiability question to arrive at working tools that do not require
data labels and only impose minimal restrictions on the used models. Instead of identifying the latent
variables, we identify the relationship between latent variables. For example, instead of identifying
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the coordinates of the latent variables we identify pairwise distances. In our experience, this matches
the needs of domain experts who rarely assign meaning to the coordinates of latent variables. Using
differential geometry, we prove strong identifiability guarantees on pairwise distances, angles, and

more. We empirically validate our theory on two variational autoencoders.

2 BACKGROUND AND NOTATION

Deep latent variable models learn densities of
data X € D parametrized by latent variables
Z € Z,such that p(X) = [p(X|2)p(Z)dZ
(Tomczak, 2024). We consider models with
continuous latent variables, i.e., Z C R™.
Examples of this model class includes proba-
bilistic PCA (Tipping & Bishop, 1999), varia-
tional autoencoders (Kingma & Welling, 2013;
Rezende et al., 2014), normalizing flows (Tabak
& Vanden-Eijnden, 2010; Lipman et al., 2022),
diffusion models (Ho et al., 2020) and more.

Formally, a model is a tuple of random variables
(Z, X) where the latent Z drives the observa-
tions X through a measurable generator func-
tion f : Z — D, often called the decoder, and a
noise mechanism h : D xD — D that makes the

relationship stochastic through a noise term e,
Zi~ Pz, € ~Pe, Xi=h(f(Zi)e)

where Z;’s are assumed independent of ¢;. We
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Figure 1: Latent representations of transcriptomic
data (top row) changes with model retraining.
Each column corresponds to a model trained from
scratch. The latent variables are not identifiable
and change between training runs. Pairwise Eu-
clidean distances (bottom row, averaged across
cell types) also change between runs. This lack of
identifiability prevents reliable use of the latent rep-

resentations to understand the underlying biology.
d

further adopt a standard regularity assumption that 4 and P, are such that ¢, < v, h(f(Za), €q) =

h(f(Zy), €p) if and only if f(Z,) 4 f(Zy). Here < denotes equality in distribution. This assumption
ensures that the noise € does not interfere with the causal relationship between X and Z.

Statistical model. Given realizations x of X, learning the generative model means estimating its
parameters § = (f, P), which represent the decoder and the latent distribution, respectively. These
give rise to the marginal distribution of the data Py that quantifies model fit. Formally, we define
amodel M as M (F,Pz) ={PyonD |0 = (f,Pz) € F x Pz}, where F and Py are the sets of
possible generator functions and distributions on the latent space, respectively. Designing a deep
latent variable model means specifying F and P.

Latent space Observation space
Identifiability concerns the uniqueness of o, A o fa "
parametrizations. We say that two parameters < ]
6 and ¢’ are equivalent, § ~ ¢, if the result- 5 :
ing distributions Py and Py are the same. The %
induced equivalence class is denoted [0] = £ % - fb"ofa'\\\_/ —
-5} S nao” . — L6,

{0’ : Py = Py }. Informally, this class captures
the different ways in which a specific density
can be parameterized. Following Xi & Bloem-
Reddy (2023), we say that a model is strongly
identifiable if [0] is a singleton, i.e. the model
parametrization is unique, while a model is
weakly identifiable if it can be identified up to
the equivalence class [6)].

General case
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Figure 2: Indeterminancy transformations charac-
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0y = fy "o 1,

For example, probabilistic PCA (Tipping &
Bishop, 1999) only identifies the latent variables
up to an unknown rotation due to the rotational
symmetry of the Gaussian distribution. We
then write the equivalence class as [§] = {R6},
where R is any rotation matrix (Fig. 2, top).

terize the identifiability equivalence class. Top row:
Probabilistic PCA has linear decoders, so the in-
determinacy transformations are rotations. Bottom
row: In general deep latent variable models the in-
determinacy transformations are the general class
of diffeomorphisms acting on the latent space.
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Indeterminacy transformations provides means to characterizing the equivalence class of a latent
variable model M (Xi & Bloem-Reddy, 2023). Given two parametrizations of a model 6, =
(fa, Pz.o) and 6, = (fp, Pzp) with resulting marginal distributions Py, = Pp,, an indeterminacy
transformation at (6,,60) is a measurable function A,; : Z — Z such that Py, = Py, and
fao A;é = fp; c.f. bottom panel of Fig. 2. Xi & Bloem-Reddy (2023) prove that the set of all
indeterminacy transformations, denoted A (M), fully determines the equivalence class []. This result
establishes the equivalence between parameter identifiability and indeterminacy transformations of
the latent space and their associated decoders.

Identifiable task capture latent computations with identifiable outcomes (Xi & Bloem-Reddy, 2023).
Here, a task is defined by first selecting latent points z,, = s(0,x,,) € Z, and second evaluating the
task ¢(0, X, s(0,X,,)). The selection mechanism can e.g. be the inverse decoder, while a task could
be independence testing in causal discovery or measuring the distance between latent representations.

Following Proposition 3.1 from Xi & Bloem-Reddy (2023) we can state the sufficient condition for
the identifiability of a task in terms of the indeterminacy transformations.

Definition 2.1. A task (s, ¢) is identifiable at [6] if, for each A € A(M) with x,,, € D and z,, € Z:
t(0,Xm, Zn) = t(A0, X, A(z,)) and s(A0,x,,) = A(s(0, %)), (1

3 PROBLEM STATEMENT

The problem we solve in this paper is to ensure that pairwise distances, and similar quantities, become
statistically identifiable in contemporary deep generative models without impractical assumptions.
Next, we explicate our assumptions and formalize the goal, which we then solve in Sec. 4.

Following typical literature (Xi & Bloem-Reddy, 2023; Shao et al., 2018), we further impose
assumptions on the space of our decoder functions F and the latent space Z. Our decoders are
smooth functions f : Z — D such that for each f € F:

Al Z is compact. A4 All f € F have the same image. That is,
A2 f is injective. for any fo, fy € F, we have f,(Z) =

A3 The differential of f has full rank.

Assumptions A2-A4 are repeated from Xi & Bloem-Reddy, whereas we add assumption Al and
require f to be smooth. Together, these allow us to treat the image of the decoder as a smooth
manifold. Assumption Al is purely technical and can be interpreted as (after model training) we
consider a compact subset of the latent space, e.g. the range of floating point numbers. Jointly, the
assumptions may appear restrictive, but they are satisfied by contemporary models such as M-flows
(Brehmer & Cranmer, 2020), normalizing flows, and diffusion models. VAEs need not satisfy A2.
On the other hand, A3 can be empirically validated after model training (Shao et al., 2018), and
experiments (Sec. 5) show that our methodology is effective in this setting.

In this paper, we shift focus from identifiability of latent representations (or equivalently, model
parameters) and instead identify the task of measuring distances in latent space. In particular, we
seek to establish a distance measure that is invariant under the indeterminacy transformations A (M)
of a deep latent variable model and therefore identifiable.

Problem 1. Consider a deep latent variable model M (F,Pz) and A (M) its set of indeterminacy
transformations. We want to identify latent distances, i.e. find a ‘meaningful’ distance function
d: Z x Z — Ry, such that given a parametrization  and for any z1,z, € Z and forall A € A(M):

d(z1,22) = d(A(z1), A(z2)) 2

The inclusion of ‘meaningful’ in the problem definition emphasizes that solutions can be constructed
that satisfy Eq. 2 without being of particular value.

4 MAIN RESULTS

Strategy and results at a glance. In the following, we show that distances, angles, volumes, and
more, can be identified in latent variable models that satisfy the weak assumption in the previous
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section. Our proof strategy is to connect indeterminacy transformations from the identifiability
literature with charts from the differential geometry literature. Once this connection is in place, our
results easily follow. Furthermore, we use the connection to show that identifying Euclidean distances
in the latent space is either impossible or requires forcing the decoder to have zero curvature. Below
we present results and leave proofs and details to Appendices A and B.

4.1 IDENTIFIABILITY VIA GEOMETRY

We begin by focusing on the family of decoders F and analyzing the properties of their image.

Lemma 4.1. Let Z and D be two smooth manifolds and f € F, then f is a smooth embedding and
f(Z2) C Dis a submanifold in D. In particular, f : Z — f(Z2) is a diffeomorphism.

One consequence of Lemma 4.1 is that given two trained models 6, and 6, with equivalent marginal
distributions Py, = Pp,, the resulting decoder functions f,, f; act as reparametrizations of the same
manifold f,(Z) = f,(Z) = M. In particular the tuples (f; !, M) and (f; ', M) can be seen
as coordinate charts of the manifold M. This situation is the main subject of our analysis and is
illustrated in Figure 3. In what follows, we will label the latent spaces by the associated models such
that for 6, we will have Z,, and similarly for 6y.

We will go between the different charts (or latent spaces) by using generator transformations in
Definition 4.2 that push and pull along the respective decoders.

Definition 4.2. Given two model parametrizations 8, = (f,, Pz,) and 0, = (fp, Pz,) with Py, =
Py,, we define the generator transformation A,y : 2, — 2, by Agp(z) = fb_l o fu(z) forz € Z,.

Lemma 2.1 in Xi & Bloem-Reddy (2023) shows that any indeterminacy transformation A € A(M)
must be almost everywhere equal to the generator transformation. Whereas Xi & Bloem-Reddy focus
on proving this result and using it for characterizing identifiability issues in general, we use this
construction to show that it preserves the geometric properties of the manifold and, in particular, that
the geodesic distance function (formally defined in Def. 4.6) is invariant w.r.t. to the entire set A (M).

Lemma 4.3. Given two equivalent parametrizations 0, = (fa, Pz,) and 0y = (fp, Pz,) of a model
with Py, = Py,, the generator transformations A, »(z) and A;ll,(z) = Ay, q(2z) are diffeomorphisms.

From the geometric perspective, if we collect all coordinate charts of the form (f %, M) stemming
from the indeterminacy transformations in A (M) into a smooth atlas, then Lemma 4.3 tells us that
the generator transforms play the of role of smooth transition maps between them (Fig. 3).

Lemma 4.1 tells us that the image of our decoder functions is a smooth manifold. Due to the
‘Existence of Riemannian Metrics’ result by Lee (2003), it admits a Riemannian metric g that for
each point p on the manifold defines an inner product in its tangent space at p, denoted by 7, M.
The tuple (M, g) defines the Riemannian manifold structure that allows measurements on general
smooth manifolds and is the theoretical foundation for our methodology.

For general data manifolds, there is neither a unique nor a known metric g. However, given a decoder
f and a chosen metric (often Euclidean) g” in the ambient space D, we can construct the pullback
metric g/ in the latent space Z by pulling the ambient metric to the latent space through the decoder.
Definition 4.4. Let Z be a smooth manifold and (D, g7) be a Riemannian manifold. Furthermore,
let f : Z — M C D be a map satisfying assumptions A1-A3, the pullback metric f*g® on Z is:

(f*97)p(u,0) = g, (dfp (), dfy(v)) ©)

for any tangent vectors u,v € T,Z. In Eq. 3, g]?(p) means that we use ambient metric evaluated
in the tangent space 7',y M. The notation d f,(u) means that the differential map of f atp € Z

maps the vector u € T, Z to f(u) € Ty, M. We will denote the pullback metric as g/ = f*¢ for
shorter notation and let the domain of it be implicit from the definition of f.

The result of this important construction is that: (1) it allows us to construct a Riemannian metric
on M that respect the intrinsic properties of the Riemannian manifold (M, g). In this setting, the
pullback metric g/ represents some intrinsic g in the coordinates defined by Z and f; (2) we can make
all the measurements from the latent space Z using ¢/ as this construction makes the Riemannian
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manifolds (Z, g/) and (M, g) the same, from a geometric perspective. Thus, we can concentrate our
attention on (2, g¥), while being consistent with (M, g) without worrying about g.

The pullback metric merely measures the length
of a latent curve by first decoding the curve and
measuring its length according to the data space
metric. This is a quite ‘meaningful’ metric in
line with the requirements of Problem 1. When
the pullback metrics are defined by different
decoders that span the same manifold, the
generator transformations that comprise the
space of indeterminacy transformations are
isometries that preserve angles, length of curves,
surface areas, and volumes on the manifold.

Theorem 4.5. Let 0, = (fo, Pz, ) and 0y, = ( fb,
Pyz,) with Py =Py,. Let (24, g'+) and (2, g't)
be the associated Riemannian manifolds, then
the generator transformation is an isometry mak-

Figure 3: Decoders f, and f, parametrize the
same manifold M C D when 0, = (f,, Pz,)
and 0, = (fp, Pz,) give the same marginal dis-
tributions Py, = Pp,. Generator transformation
Ag.p (Def. 4.2) is the violet path. Pullback metrics
assign a local inner product to latent spaces corre-
sponding to measuring along the manifold spanned
by the decoder. The white ellipsis (left) corre-

sponds to unit circles under the pullback metric,
corresponding to a local Euclidean metric in the
observation space D. Geodesics (yellow curves)
minimize length according to the pullback metric,
corresponding to the length of the decoded curve
along the manifold.

ing (Z4,9%*) and (2y,9") isometric. This
makes Riemannian geometric properties such as
lengths of curves, angles, volumes, areas, Ricci
curvature tensor, geodesics, parallel transport,
and the exponential map identifiable.

To solve Problem 1, we use the geodesic distance and show that it is identifiable in Theorem 4.7.
Definition 4.6. Let (Z,, gf =) be a Riemannian manifold. For z1, zs € Z define the geodesic distance
as dysa (21,22) = inf, f; |Y'(t)|4¢a dt ,where 7y : [a,b] — Z, is a latent curve from z; to z,.

Figure 3 illustrates how the geodesic distance measures the length of the shortest curve (geodesic),
which is equivalent to finding the shortest curve along the manifold spanned by a decoder.

Theorem 4.7. Let 0, = (fq, Pz,) and 0, = (fy, Pz,) with Py, = Py, and let A, p, be the generator
transformation between 0, and 0. Furthermore, let (Z,,g%*) and (2, g/*) be the associated
Riemannian manifolds. Then, the geodesic distance between z, and zs is identifiable and for
71,22 € Z, we have the following: dys. (z1,22) = dys, (Aap(21), Aap(22)).

4.2 IDENTIFIABILITY OF EUCLIDEAN DISTANCES

Theorem 4.7 represents our solution to Problem 1 and came from the geometric take on identifiability.
While Sec. 6 outlines alternative approaches to the same problem, in the following we show that these
must necessarily impose implicit constraint of flatness on the models.

Proposition 4.8. Let Z = R™ be the latent space and (Z, g') the associated Riemannian manifold.
Furthermore, let g denote a metric tensor proportional to the Euclidean metric tensor g¥. Then,
(Z, g") is identifiable only if the associated f € F parametrizes a flat manifold M. Moreover; if we
require Euclidean distances in the latent space to be identifiable, then the previous statement applies,
and the associated f € F must be such that the generator transforms are isometries of R™.

4.3 MAIN TAKEAWAYS

Our results can be summarized as follows: (1) The Riemannian metric space of a deep latent variable
model is identifiable (Theorem 4.7), making distance measurements in the latent space identifiable and
solving Problem 1. (2) Riemannian geometry properties of the learned manifold, such as distances,
angles, and volumes, are identifiable (Theorem 4.5), providing a rich framework for probabilistic
data analysis. (3) Using Euclidean distances in the latent space is either non-identifiable or requires
imposing flatness constraints on the model (Proposition 4.8). (4) Any task whose identifiability
depends on the Riemannian metric is identifiable, provided the manifold’s properties allow it.

To exemplify the last point, consider the Fréchet mean that generalizes the well-known mean to
manifolds (Pennec, 2006). This is obtained by finding the point with minimal average squared

. . N 2
distance to the data, piprecher = argming, ¢z > ;= d7, (21,2;).
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highly similar, but distances still

differ significantly (Fig. 6).
As the mean is defined as an optimization problem, there might exist multiple means, which violates
the usual notion of identifiability. First, it is worth noting that the solution set is identifiable, although,
in practice, one usually only computes a single optimum. In some situations, this singleton can,
however, be identified based on properties of the manifold M. Karcher (1977) and Kendall (1990)
provide uniqueness conditions that connect the radius of the smallest geodesic ball containing the data
with the maximal curvature of the manifold. Importantly, these are, principally, testable conditions
such that it should be feasible to computationally test if a computed mean is identifiable. Identifiability
of some statistical quantities is, thus, within reach.

5 EXPERIMENTS

By Theorem 4.7, geodesic distances are identifiable while Euclidean
ones are not. Consequently, geodesic distances should be more
stable under model retraining. To test this hypothesis, we train
30 independent models and compute both Euclidean and geodesic  Figure 4: A 1atent geodesm
distances between 100 randomly chosen point pairs from the test from a M-flow model trained
set. These pairs are the same across all models and we measure the on three classes from MNIST.
variances of the distances across models. The background color indi-
cates model uncertainty.

To assess the stability of the distance measures, we compute the
coefficient of variation for each pair as CV(m,,) = 7("mor) /ju(m,,) with o and p denoting standard
deviation and the mean, respectively. This is a unitless measure of variability, where low values
indicate less variability. We use this to compare the variability of Euclidean and geodesic distances.

We consider two models and datasets. First, a smaller model that satisfies all our assumptions, and
second a larger model where we disregard the injectivity assumption. To compute geodesics we
parametrize them by a spline connecting two points in the latent space and minimize its energy.
The discussion around Definition A.23 in Appendix A covers how this leads to a geodesic. It has
been noted that taking decoder uncertainty into account is key to good performance (Arvanitidis
et al., 2018; Hauberg, 2018) and we follow the ensemble-based approach from Syrota et al. (2024),
implying that we train an ensemble of 8 decoders. Details are in Appendix C and the code to
reproduce our results is available at the project GitHub repository.

MNIST with A1-A4 satisfied. We use M-flows (Brehmer & Cranmer, 2020) to construct a VAE
with an injective decoder. For visualization, we train on a 3-class subset of MNIST with a 2D latent
space. An example geodesic curve from digit 0 to 7 from the test set is shown in Fig. 4. The geodesic
crosses class boundaries where they are well-explored by the model and offer little uncertainty.

The left panel of Fig. 6 shows a histogram of CV for the 100 point-pairs, where we see a narrower
distribution with both a lower mean and spread for geodesic distances. This demonstrates that
identifiability improves reliability.

CELEBA with A2 relaxed and A3 verified. The general VAE model works well due to its flexible
neural network decoder with arbitrary architecture that is not guaranteed to be globally injective (A2)
nor to have full-rank Jacobian (A3). We train this model on CELEBA Liu et al. (2015) where the
architecture is composed of convolutional and dense layers with ELU activation functions. The latent
space dimension is 64 and we further employ Resize-Conv layers Odena et al. (2016) to improve
image quality. We follow the approach from Shao et al. (2018) to validate that the decoder Jacobian is,
indeed, always full rank. An example geodesic is shown in Fig. 5 alongside a Euclidean counterpart,
where we do not observe a significant difference between generated images.
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Fig. 6(right) shows that the CV for geodesic distances has both lower mean and standard deviation
than Euclidean distances demonstrating that geodesic distances remain more reliable than Euclidean
ones even when the injectivity assumption may be violated.

0.30 Distance measures
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Latent space geometries have been studied in various
contexts to define more ‘meaningful’ latent interpolations
and distances (Tosi et al., 2014; Arvanitidis et al., 2018;
Beik-Mohammadi et al., 2021). While Hauberg (2018)
alludes to connections between latent space geometries and identifiability, no formal statement has
previously been made. Our work, thus, brings further mathematical justification to the algorithmic
tools developed for latent space geometries. Detlefsen et al. (2022) has previously demonstrated that
latent space geometries recover evolutionary structures from models of proteins that are invisible
under an Euclidean latent geometry. Our work adds credibility to these findings.

Causality relies on identifiability as there is little point in recovering the ‘true’ causal model if it is
not unique. The goal of causal representation learning (Scholkopf et al., 2021) is closely linked to our
quest for identifiable relations between representations. Our approach, however, is not immediately
applicable to many questions of causality as these often amount to establishing independence between
variables (Peters et al., 2017). Under the geometric lens, we do not have a canonical latent coordinate
system, which complicates splitting the latent space into independent factors.

Disentanglement can be seen as a ‘poor man’s causality’ (Detlefsen & Hauberg, 2019), where the
key generating factors are sought to be axis-aligned in the latent space. This is generally known to
be mathematically impossible (Locatello et al., 2019a), much in line with proposition 4.8. Similar
to identifiability, this difficulty has been addressed by inductive biases (Bouchacourt et al., 2018) or
(weak) data labels (Locatello et al., 2020; 2019b; Shu et al., 2019). Empirical studies, however, hint
that some key factors can be recovered in practice (Higgins et al., 2016; Dittadi et al., 2020; Suter
et al., 2019). Rolinek et al. (2019) noted that many disentanglement pipelines only work when the
variational encoder distribution is restricted to a diagonal covariance, suggesting that current successes
may be artifacts of poor Bayesian approximations. Our work suggests that disentanglement is perhaps
better achieved by looking for ‘geometric factors’, such as principal geodesics (Fletcher et al., 2004).

Relative representations consider pairwise latent Euclidean distances as a form of representation
(Moschella et al., 2022). This is well-aligned with the ideas we put forward. Empirically, Moschella
et al. (2022) reports that latent cosine similarities are sufficiently robust to be of practical value, while
Yu et al. (2024) empirically investigate geodesic distances.
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7 WEAKNESSES AND OPEN QUESTIONS

Our work provides strong identifiability guarantees for essential quantities such as pairwise distances
in contemporary generative models. However, our approach does have some pitfalls.

Observation metrics matter. Our identifiable geometric structure relies on the idea of locally
bringing the observation space metric into the latent space. This has many benefits but also raises
the question of choosing the observation space metric. This choice will directly impact the final
latent distances. Did we then replace one difficult problem (identifiability) with another (choosing
observation metric)? We argue that most data is equipped with units of measurement, which greatly
simplifies the task of picking a suitable metric in the observation space. Furthermore, being explicit
about how data is compared improves the transparency of the conducted data analysis. Finally, we
emphasize that we are not proposing to bring the Euclidean distance from observation space into the
latent space, but only to do so infinitesimally, i.e. measuring along the manifold.

Identifiability comes at a (computational) cost. Euclidean distances are cheap to compute,
unlike the geodesic distances we consider. For any geodesic distance, we must solve an iterative
optimization problem. Fortunately, this is a locally convex problem, that only requires estimating
a limited number of parameters, so the computation is feasible. Yet it remains significantly more
costly than computing a Euclidean distance. We argue that when identifiability is important, e.g. in
scientific knowledge discovery and hypothesis generation, the additional computational resources are
well-spent. Proposition 4.8 effectively tells us that we must choose between (cheap) flat decoders or
(expensive) curved ones: we cannot get the best of both worlds.

Compression matters. Our current work rests on the assumption that the latent space has a
dimension that is less than or equal to the data space dimension, i.e. dim(Z) < dim(D). This remains
the standard setting for representation learning and generative models. However, if we, e.g., want
to identify distances between the weights of overparametrized neural networks, then our strategies
would not directly apply. Early work on understanding the geometric structure of overparametrized
models (Roy et al., 2024) suggests that perhaps our approach can be adapted.

Injectivity remains an issue. Most of our assumptions are purely technical and easily satisfied
in practice. The key exception is Assumption A2 stating that the decoder f must be injective. The
decoders of contemporary models such as diffusion models and (continuous) normalizing flows
(including those trained with flow matching) are injective and the assumption is satisfied. However,
general neural networks cannot be expected to be injective, such that variational autoencoders and
similar models are not identifiable ‘out of the box’. We have demonstrated that (injective) M-flow
architectures can be used for such models, and empirically we observe that the geodesic distance
increases robustness in non-injective models. This gives hope that theoretical statements can be
made without the injectivity assumption. One such path forward may be to consider notions of weak
injectivity (Kivva et al., 2022), which is less restrictive and more easily satisfied in practice.

8 CONCLUSION

We have show that latent distances, and similar quantities, can be statistically identified in a large class
of generative models that includes contemporary models without imposing unrealistic assumptions.
This is a significant improvement over existing work that tends to impose additional restrictions on
either model or training data. Our results are significant when seeking to understand the mechanisms
that drive the true data-generating process, e.g. in scientific discovery, where reliability is essential.

Practically, it is important to note that our strategy requires no changes to how models are trained.
Our constructions are entirely post hoc, making them broadly applicable.

Our proof strategy relies on linking identifiability with geometry, which paves a way forward as
many tools exist for statistical computations on manifolds. For example, Riemannian counterparts to
averages (Karcher, 1977), covariances (Pennec, 2006), principal components (Fletcher et al., 2004),
Kalman filters (Hauberg et al., 2013), and much more. In principle, it is possible to computationally
test if these statistics are identifiable for a given model and dataset. This is, however, future work.
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IMPACT STATEMENT

This paper improves our collective understanding of which aspects of a statistical model can be
identified. As the theoretical understanding translates directly into algorithmic tools, our work has an
impact potential beyond the theoretical questions. Being able to identify relationships between latent
representations of data can aid in the process of scientific discovery as we increase the reliability of
the data analysis. Our work can also help provide robustness to interpretations of neural networks
and other statistical models, which may help in explainability efforts.
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A RIEMANNIAN GEOMETRY
This appendix covers the necessary concepts and results from differential geometry. For more full
treatment, the reader is referred to excellent sources such as the book by Lee (2003).

The notation in this appendix is self-contained and separated from the main sections of the paper.
Thus, the symbols that were used in the main body can be reused in the following but denote a
different concept. The notation is introduced as we go along and should not lead to confusion.

To gradually build up the necessary constructions bottom-up, we start from the concept of a topology
that we will morph into a Riemannian manifold by progressively adding structure.

A.1 TOPOLOGICAL CONCEPTS

A topology 7 on a set X is a collection of subsets of X, that defines which sets are open in X. This
gives rise to the notion of a neighborhood of a point p € X for an abstract set X.

Definition A.1. A topology 7 on X is a collection of subsets of P(X) satisfying the following
axioms:

l. X and @ arein 7.
2. The union of any family of subsets in 7 are in 7.

3. The intersection of any finite family of subsets in 7 are in 7.
The tuple (X, T) is called a topological space, and the elements of 7 are called open sets.

To construct a topology, we need a basis.
Definition A.2. A basis for a topology 7 on a set X is a collection B of subsets of X such that:
1. For each x € X, there is at least one B € B such that x € B.

2. If x € By N By for By, By € B, then there is a B3 € B such that x € B3 C B N Bs.

In cases where we work with subsets of X, we can use the topology of X to define a topology on the
subsets.

Definition A.3 (Subspace Topology). Let X be a topological space with topology 7 and Y C X.
The subspace topology on Y is defined as 7y = {Y NU|U € T}.

The notion of a topological leads to the construction of topological manifold that is the prerequisite
to a Riemannian manifold.

Definition A.4. Suppose M is a topological space. We say that M is a topological manifold of
dimension n or a topological n-manifold if it has the following properties:

1. M is a Hausdorff space: for every pair of distinct points p, ¢ € M, there are disjoint open
subsets U,V C M suchthatp € U andq € V.

2. M is second-countable: there exists a countable basis for the topology of M.

3. M is locally Euclidean of dimension n: each point of M has a neighborhood that is
homeomorphic to an open subset of R".

Definition A.4 specifies what we mean by a homeomorphism.
Definition A.5. Let X and Y be topological spaces, amap F': X — Y is

* continuous if the preimage of every open set in Y is open in X.

YV CY open = F_l(V) C X open

* injective if F'(x) = F(y) implies x = y.
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* surjective if for every y € Y there is an € X such that F'(z) = y.
* bijective if it is both injective and surjective.
 homeomorphism if it is bijective and both F and F~! are continuous.

If F' is a homeomorphism, then X and Y are called homeomorphic. If F', on the other hand, is not
bijective but only injective, we call F' a topological embedding.

Definition A.6. Let X and Y be topological spaces; a continuous injective map F' : X — Y is
called a topological embedding if it is a homeomorphism onto its image F'(X) C Y in the subspace

topology.
The notion of local homeomorphism defined in the following is fundamental to the construction of a
Riemannian manifold.

Definition A.7. For two topological spaces X and Y, a continuous map F' : X — Y is called a local
homeomorphism if every point p € X has a neighborhood U C X such that F'(U) is open in Y and
F restricts to a homeomorphism from U to F(U).

Definition A.4 requires the existence of a local homeomorphism from M to R" for every point
p € M defined on a neighborhood U of p. Each such local homeomorphism with the corresponding
restriction U € M is called a coordinate chart.

Definition A.8. A coordinate chart on M is a pair (U, ¢) where U is an open subset of M and
¢ : U — U is a homeomorphism from U to an open subset U = ¢(U) C R™.

It follows from the definition of a topological manifold M that every point p € M lies in the domain
of some chart. U is called coordinate domain and ¢ local coordinate map. The foundation of a smooth
manifold is a maximal smooth atlas containing coordinate charts that are smoothly compatible.

Definition A.9. Let M be a topological n-manifold. Two charts (U, ¢) and (V, 1) are called smoothly
compatible if U NV = & or their transition map

Yop tipUNV) = p(UNV)
is a diffeomorphism in case U NV # @.
In Definition A.9, note how the smoothness of the transition map can be analyzed in terms of the

smoothness of maps between open subsets of R™, namely the domains of the associated coordinate
charts.

Definition A.10. A diffeomorphism between two open subsets U and V' of R™ is a bijective map
F : U — V such that both F and F~! are continuous and differentiable.

A.2 SMOOTH MANIFOLDS

We are now in a position to define a smooth manifold.
Definition A.11. Let M be a topological manifold,

* an atlas A is a collection of charts whose domains cover M
* a smooth atlas is an atlas .4 such that any two charts in A are smoothly compatible

* a maximal smooth atlas is a smooth atlas that is not properly contained in any larger smooth
atlas

* M together with a maximal smooth atlas A is called a smooth manifold denoted by (M, .A)

In the following, we define smoothness for a map between two smooth manifolds.

Definition A.12. Let M, N be smooth manifolds, and let £ : M — N be any map. We say that
F is a smooth mayp if for every p € M, there exist smooth charts (U, ¢) containing p and (V)
containing F'(p) such that F'(U) C V and the composite map 1) o Fo ¢! is smooth from ¢(U) to
(V). This means that ¢ o Fo ¢! is a map between subsets of R” and R and we can apply the
usual real calculus.
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Since a manifold does not have the usual operations of the Euclidean vector space, one way to
construct a tangent vector space to a manifold M at a point p € M is to define it in terms of a tangent
vector to some curve v : [ — M.

Definition A.13. Let M be a smooth manifold, and let v, 72 : (—e¢,€) — M be smooth curves in

M. Suppose that 1 (0) = 72(0) = p € M, then ; and 7 are said to be equivalent if the following
holds:

deom)| _ dlpon)

dt =0 dt =0

This defines an equivalence relation on the set of all smooth curves through p, and the equivalence
classes are called tangent vectors of M at p. The tangent space 1}, M to M at p is then defined as the
set of all tangent vectors at p and does not depend on the choice of the coordinate chart ¢.

A vector space structure on the tangent space 1), M is defined by using the coordinate charts that
map between subsets of R™ and allow us to do vector addition and scalar multiplication. Lee (2003)
shows that the resulting construction is independent of the choice of the charts and that T, M is an
n-dimensional real vector space.

Considering maps between manifolds, we want to link the tangent space of one with the tangent
space of the other. This is done by defining the differential dF" of F' at a point p, which is a linear
mapping from one manifold’s tangent space to another’s.

Definition A.14. Let M and N be smooth manifolds and F' : M — N be a smooth map. For each
p € M we define a map:
de : TpM — TF(p)N

called the differential of F' at p, which is a linear map between the tangent spaces. The following
property defines the differential:
d(po7)

at |,
where ~ is smooth a curve in M through p with 4/(0) = v and ¢ is a coordinate chart around p. This
construction is independent of the choice of the chart ¢ as shown in Lee (2003).

dFy(v) =

The differential allows us to assess the rank of a map between two manifolds.

Definition A.15. Given two smooth manifolds M and N amap F' : M — N has constant rank r
at p € M if the linear map dFj, : T,M — Tr(,)N has rank r. F'is called a smooth submersion if
its differential is surjective at each point (rank ' = dim N). It is called a smooth immersion if its
differential is injective at each point (rank F' = dim M)

To define new submanifolds as images of maps, we need the concept of a smooth embedding.

Definition A.16. Let M and N be smooth manifolds, a smooth embedding of M into N is a smooth
immersion F': M — N that is also a topological embedding, i.e., a homeomorphism onto its image
F(M) C N in the subspace topology.

Theorem A.17 tells us when an injective smooth immersion is also a smooth embedding.

Theorem A.17. (Proposition 4.22 in Lee (2003)) Let M and N be smooth manifolds, and F' : M —
N is an injective smooth immersion. If any of the following holds, then F is a smooth embedding.

* Fis an open or closed map.

e Fis a proper map.

* M is compact.

* M has empty boundary and dim M = dim N

Theorem A.18 tells us that images of smooth embeddings are submanifolds with smooth properties.

Theorem A.18. (Proposition 5.2 in Lee (2003)) Suppose M and N are smooth manifolds and
F : M — N is a smooth embedding. Let S = F(M). With the subspace topology, S is a topological
manifold, and it has a unique smooth structure, making it into an embedded submanifold of N with
the property that F' is a diffeomorphism onto its image.
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A.3 RIEMANNIAN MANIFOLDS

Proposition 13.3 of Lee (2003) proves the existence of a Riemannian metric g in any smooth manifold
N, where g is a smooth, symmetric covariant 2-tensor field on M that is positive definite at each point
p € N and defines an inner product in a tangent space 7, N. The tuple (N, g) is called a Riemannian
manifold.

Often, in modeling situations, we think of Theorem A.18, that is, we imagine an embedded submani-
fold S C N in some ambient space N. In this case, we say that F' : M — N is a parametrization of
S. If there is a Riemannian metric g™ on NV, there is a way to measure lengths of vectors in a tangent
space to a point on S using g’V as it is embedded in this larger vector space that has a metric. We can
use this to construct a metric on S by pulling g%V by F.

Definition A.19. Foramap F': M — F(M) =S C N between manifolds M and S, and a metric
g~ on N, the pullback metric f*¢” on M is defined as:
(F*g™)p(u,0) = g7 () (AF (u), dF (v)) @)

for any tangent vectors u,v € T, M.

Given two Riemannian manifolds, we can check if they are isometric by using the pullback metric.
Definition A.20. Given Riemannian manifolds (M, g™) and (N, ¢"), a smooth map F : M — N
is called an isometry if F' is a diffeomorphism such that:

Frgh =gM )
In which case we say (M, g™) and (N, g'V) are isometric

A series of results in Lee (2003) Chapters 13,15,16 show that if two manifolds are isometric through
a diffeomorphism F, then F' preserves lengths of curves, distances, angles, volumes, and other
geometric properties between manifolds.

Definition A.21. Given a Riemannian manifold (M, g) we can define the following:

* length or norm of a tangent vector v € T}, M is defined to be

1/2

|'U|g = <U7U>g = gp(vvv)l/Q-

* angle between two nonzero tangent vectors v, w € T, M is the unique 6 € [0, 7] satisfying

<’U, w>g

cosf = .
vlglwlg

* tangent vectors v, w € T, M are said to be orthogonal if (v, w), = 0. This means either one
or both vectors are zero, or the angle between them is /2.

* given a smooth curve 7 : [a,b] — M we can define the length of ~ to be:

b
L) = [ (o),
and the energy of y to be:

b
B, =5 [ WO

Proposition 13.25 of Lee (2003) shows that given a curve v : [a,b] — M and a reparametrization
u : [c,d] — [a,b] that is a diffeomorphism, the length of the curve ¥ = 7 o u, Ly(¥) is equal to

Lg(7)-

The notion of the length of a curve given in Definition A.21 allows us to consider the Riemannian
distance from p to ¢ (p,¢ € M) denoted by d,(p, ¢) and defined to be the infimum of L, over
all piecewise smooth curve segments from p to g. A shortest curve is not unique since L, (7) is
reparametrization invariant, and a set of curves is locally minimizing L, (). One useful parametriza-
tion is by arc-length s, which ensures that we move along the curve at a constant speed.
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Definition A.22 (Arc-length parametrization). A curve v : [a, b] — M is said to be parametrized by
arc-length if the length of the curve between any two points ¢; and ¢, is equal to the difference in the
parameter values to — t1. Formally, v is parametrized by arc-length if:

(), =1
forall ¢ € [a, b].

Curves + that are locally minimizing L,(+y) and are parametrized by arc-length are called geodesics
defined in Definition A.23.

Definition A.23. Given a Riemannian manifold (M, g) and x,y € M with z # y, a geodesic curve
on between x and y on M is formally defined as a curve v : I — M that locally minimizes the
energy functional

I 2
By0) =5 [ Wl
over all smooth curves v : [a,b] — M connecting two given points

v(a) = x and y(b) = y, where g is the Riemannian metric tensor on M.

As discussed by, e.g., Hauberg (2024) it is a standard result that a minimizer of the energy functional
will necessarily be arc-length parametrized and minimize the length functional.

We can consider the Fréchet mean and variance of a set of points on a manifold.

Definition A.24. Let (M, d,) be a Riemannian metric space and let {x; ...zx} € M be points on
the manifold. For any point p € M, Fréchet variance is defined to be:

N
W(p) = dg (p,wi)

Karcher means are the points m € M that locally minimize U:

N
— : 2
m = arg min E dy (p, i)
peEM Gy

If there exists a unique m € M that globally minimizes W, then it is a Fréchet mean.
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B PROOFS

Theorem B.1. (Lemma 4.1 in the main text)

Let Z and D be two smooth manifolds and f € F, then [ is a smooth embedding and f(Z) C Disa
submanifold in D. In particular, f : Z — f(Z) is a diffeomorphism.

Proof. By Definition A.15 f is a smooth immersion as it is a smooth map of constant rank with
injective differential (assumptions A2-A3). Using Theorem A.17 with the fact that Z is a compact set
(assumption A1) gives us that f is a smooth embedding. Finally, Theorem A.18 gives us that f(Z) is
a submanifold of D and f is a diffeomorphism on its image. O

Theorem B.2. (Lemma 4.3 in the main text) Let f,, fy € F and consider the generator transform
Agy 1 Z4 — 2y defined by

Aa,b(z) = fzjl © fa(z>
Then A, (z) and A;i(z) = Ap.a(2) = f ' o fu(2) are diffeomorphisms.

Proof. The result follows from Theorem B.1 with the fact that f,, f; € F have the same image due
to assumption A4. O

Theorem B.3. (Theorem 4.5 in the main text)

Let 04 = (fa,Pz,) and 0, = (fy, Pz,) with Py, = Py,and let (Z,,g%*) and (2, g/*) be the
associated Riemannian manifolds, then the generator transform is an isometry and it holds that:
(Aa,b)* gfb — gfa (6)

Thus, making (24, g’*) and (Zy, g/*) isometric. This makes Riemannian geometric properties such
as lengths of curves, angles, volumes, areas, Ricci curvature tensor, geodesics, parallel transport,
and the exponential map identifiable.

Proof. We first show that the generator transform is an isometry. Let us recall that by definition of
the pullback we have:

93¢ (u,0) = g5, () (A fo.p(w), dfy 5 (v))
for u, v € T,,Z; and where d fy, ,(v) denotes the differential of the map f;, at a point p € Z; evaluated
on the vector v € T}, 2. Using this, we will check Eq. 6 directly:

* _fp _ D
((Aa,b) gf )p (y,w) = gbefb’IOfa(p) (df@fb*lofa(p) (y), dfb7f;10fa(p) (w)>

=97 @A(foo £ 0 fa)p(), d(fo 0 fy " © fa)p(w))

= gz(p) (dfa,p(y)a dfa,p(w))
— gfa

)

fory,w € T, 2Z,.

Since we have shown that the generator transform is an isometry, we can conclude that (Z,, g/*) and
(2, g'*) are isometric and thus their Riemannian metric properties are identical O’Neill (1997)[Chap-
ters 6 and 7]. To connect to identifibility, we express any of the properties as a task of the form
described in Section 2 and use the isometry result above to conclude that the output will be same. We
will show an example of this and prove the claim for the goedesic distance function (Theorem 4.7 in
the main text) below. L]

Theorem B.4. (Theorem 4.7 in the main text)

Let 0, = (fa, Pz,) and 0y = (fv, Pz,) with Py, = Pp,and let A, be the generator transform
between the parameters. Furthermore, let (24, 97*) and (2, g’) be the associated connected
Riemannian manifolds. Then, the geodesic distance between z1 and zs is identifiable and it holds
that:

dgsa(21,22) = dyr, (Aap(21), Aap(22)) (8
for some z1,zo € Z, be two points in the latent space that correspond to some x1,Xs € M on the
manifold.
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Proof. We need to check Definition 2.1 to show that the task of measuring distances in the latent
space is identifiable using the geodesic distance function.

Let x1,x2 € D be the observed data points and consider the inverse of the decoders as our selection
function given x;:

28 = 5(00,%1) = f, ' (x1) and 5(A0,%x;) = s(0p,%1) = f, ' (x1) = 2} )
in a similar way we obtain z§ and z5. Define the task of measuring distances on the manifold as:
t(@a, {Xlﬂ XQ} ) {Z(lla Zg}) = dgfa (Z(llf Z(QL)

(10)
t(0p, {x1,%x2}, {Zlia Zg}) =dgs, (2),25)

To check the selection function, take with A € A(M) and some x; € D. Then,

2y = 5(0y,%1) = f; " (x1)
=fy o fao fut(x1)
= Aap(5(04,%1))
= A(5(04,%1))
= Aap(fy ' (x1))
= Aap(z7)

where we have used that A is almost everywhere equal to the generator transform A, ; due to Xi &
Bloem-Reddy.

(11)

To check the task function, let us recall that:

b
(a8 28) = int [ 3/ (0)] ot (12)
a

where v : [¢,d] — Z, is a curve in Z, connecting z{ and z§ such that v(c) = z{ and y(d) = z3.

As a geodesic is not unique, multiple curves result in the infimum in Eq. 12. Let 7, be one
solution, then it is by Definition A.23 a geodesic curve. By Theorem 4.5 we have that (Z,, gf+)
and (2, gf v) are isometric, which means that A, ; maps geodesics to geodesics O’Neill (1997),

then ~, : [¢,d] — Z constructed from v, by Aq 5(7,) is a geodesic in Z;, and thus a solution for
dgfb (Aap(z1), Aap(25)) = dgfb (Zlfv Zg)~ O

Proposition B.5. Let Z = R™ be the latent space and (Z, g¥) the associated Riemannian manifold.
Furthermore, let g¥» denote a metric tensor that is proportional to the Euclidean metric tensor g* :

PI1 Ifwe choose gF» as our metric in the latent space then (Z,g*») is only identifiable if the
associated f € F parametrize a flat manifold M.

P2 [fwe choose the Euclidean distance to be identifiable,then P1 applies and the associated
f € F are such that the generator transforms are isometries of R", i.e. translations,
rotations, or reflections.

Proof. Distance measures proportional to the Euclidean distance measure are characterized by the
pullback metric g/ being constant everywhere. If g/ is constant everywhere, its directional derivatives
vanish and the curvature is zero. The second point follows from Theorem 4.5 and standard linear
algebra, e.g. Friedberg et al. (2014). O

C COMPUTING GEODESICS

A geodesic between a and b is defined to be a curve «(t) defined on some interval (usually [0, 1])
such that v(0) = a and (1) = b minimizing the length functional defined in Definition A.21. In
our work, we choose to parametrize a geodesic by a cubic spline Schoenberg (1946) and optimize
the energy functional defined in Definition A.21 with respect to the free parameters using gradient
methods.
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C.1 GEDOESIC PARAMETRIZED BY A CUBIC SPLINE

Having settled on a cubic spline as a parametrization of a geodesic, we will now describe the
construction of the spline and use it to derive the free parameters of the resulting curve that we can
use when minimizing the energy of that curve.

A cubic spline is a piecewise function with pieces that are cubic polynomials. The points where the
pieces meet are called the knots, h, and we want to construct a continuous spline with continuous first
and second derivatives. Individual components are polynomials, so we only need to constrain their
behavior at the knots to satisfy the requirements. Suppose the knots are known, and we are using
the splines to interpolate a set of points. In that case, these constraints and boundary constraints will
usually give a system of linear equations that can be solved to find the coefficients of the polynomials.
In our setting, however, we are using splines to define a path between two points, and the knots are
the unknown parameters of the problem, as well as the coefficients of the polynomials. Furthermore,
given that a, b € R™, we will look to parametrize a geodesic curve y(t) = (y1(t), ..., (t)) € R"
and thus we will have n splines, one for each dimension. In the following, we will describe how
such a construction works for one dimension and invite the reader to conceptually repeat this for n
dimensions.

Following the idea of Hauberg (2024), we will start by connecting two points in the latent space
(a,b € R) by a straight line [ : [0,1] — R defined as I(¢) = a + t(b — a) and then find a cubic
spline that will start and end in O to parametrize a deviation from the line. The result will be a curve
~(t) = I(t) + S(¢) that will connect the two points on the manifold.

The spline S(t) is defined as a piecewise function with n cubic polynomials with coefficients
a;, bi, ci,d; € R, each defined on an interval [h;, h;11] where h; are the knots with hg = 0 and
h,, = 1 set to be the endpoints.

Sy(t) ift € [ho, b

SQ(t) ift € [hl, hz]
St) =X . ) (13)

Sn (t) ift e [hn—h hn]

where each .S;(t) is a cubic polynomial:
Si(t) = a; + bi(t) + ¢;(t)* + d;(t)*  fort € [hi_1, hy (14)
In the following, let £ = (a1, b1,c1,d1, ..., an, by, cn,dy,) be a vector of all coefficients of the

polynomials in our spline and £[7, j] be a subvector of ¢ containing the coefficients of the i-th and
7-th polynomial.

Boundary conditions mean that we need our first polynomial to start in (0, 0) and the last polynomial
to end in (1,0). This gives us two equations:

S1(0)=a; =0 and S,(1)=an+b,+d,+c,=0 (15)

which we translate into the following matrix equation of the coefficients £ and a 2 x 4n matrix B:

where

5" = [{ (16)
0
B 0

0000
1111] (17

The continuity conditions are met when the values at the knots are the same for the two meeting
polynomials. This can be expressed as:

[t oo o0
=1lo 00 0

Sl(hz) = SZ+1(h2) 4 Sl(hz) — SH»l(hz) =0 fort=1,... ,n—1 (18)
and for each knot we can write this as a dot product of the coefficients €[4, + 1] and a vector ¢!:
=1 hi B} B} -1 —h; —h? —hj] (19)
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such that the condition at a knot ¢ becomes:

A¢lii+ 1T =0 (20)

The conditions of first and second derivatives being continuous can be expressed in a similar way.

S;(hy) = S;_H(hz) = S;(hz) — ;+1(h7) = 0 fori = 1,...,?7,7 1

21

and we can write these conditions as dot products of the coefficients £[i, i + 1] and vectors ¢} and c?:

¢i=1[0 1 2n; 3h 0 —1 —2h; —3h] (22)

=0 0 2 6h; 0 0 —2 —6h (23)
such that the conditions at a knot 7 become:
ciéliyi+ 17 =0

. (24)

Aeliyi+ 17 =0
Having defined the smoothness constraints for a given knot i we can construct matrices C°, C'*, C
each with dimensions (n — 1) x 4n where each row ¢ corresponds to the respective constraint at the
knot ¢ with 4 - (i — 1) zeros before the constraint and 4 - (n — 1 — %) zeros after the constraint. E.g.
for n = 4 the C° matrix would look as follows:

4000 0 0O0O0 O
cC'=10 0 0 0 3 000 O
0000 0 0O0 0 ¢
where each ¢! is a row vector as defined in Eq. 19.
Now, the final system of equations can be written as:
B
CO
o1& =0 (25)
02
N——’
=A

resulting in 4n — 2 equations for 4n unknowns. To solve this system of equations in an interpolation
setting, we usually impose two additional constraints to get a square system of equations. These
constraints can be that the second derivative is zero at the endpoints or that the second derivatives at
the first and last knots are equal. The former is known in the literature as a natural spline and the
latter as not-a-knot spline Kress (2012).

Getting back to our original task of finding free parameters of the curve that we can optimize its
energy with respect to, we note that given that we have 4n coefficients, the actual number of free
parameters is considerably smaller due to the constraints. The problem in Eq. 25 is known as the
problem of finding the Null Space of the row space of matrix A. A basis for such null space, denoted
by AN (A), can be found by computing the Singular Value Decomposition (SVD) Klema & Laub
(1980) of A. If A is of rank 7, then SVD of A is given by A = ULV ' where U and V are orthogonal
matrices with dimensions ((4n — 2) X 4n) each and X is a (4n x 4n) diagonal matrix with r nonzero
singular values in the diagonal. The null space of A is then given by the columns of V7' corresponding
to the zero singular values. Treating N'(A) =: N as a (4n X (n — r)) matrix, we have arrived at a set
of n — r free parameters w that we can optimize with respect to. To recover the full set of coefficients
&, we can use the following equation:

¢E=Nw (26)

and evaluate the spline at the desired points to get the curve (t).
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C.2 OPTIMIZING THE SPLINE TO FIND A GEODESIC

In the previous subsection, we have reduced the infinite set of functions in which we are looking
for a geodesic to another but considerably smaller, infinite set of splines. The next step is to use
optimization to find the spline that minimizes the energy defined in Definition A.21. Calculating the
energy requires computing an integral, which is, in practice, approximated by a sum over a discretized
interval.

In the following treatment we assume that D = R”™ and let fy : Z — R" be a decoder parametrized
by f and « : [0, 1] — Z be a spline in the latent space, then the approximation of the energy of ~ is
given by:

B6) =5 [ Wl

1
~ 3 [ 1S satona .
~ 57 2B ~ OG- = B6)

where {%;};"*, is a sequence of n; points in the interval [0, 1]. Combining this with the discussion in
the previous section, we can now define the optimization problem as simply:

min - B(7) (28)

where we use w = {w; }521 to de note the parameters of the £ different splines given the dimension-
ality of the latent space Z € R¥ and remind the reader that 7., (¢) = (72, (¢), ..., (¢)) € Z.

Using optimization to learn the manifold will result in different approximations depending on the
initialization of the parameters and the optimization algorithm used. Considering the problem in light
of the first line of Eq. 27, we can see that the Riemannian metric becomes the stochastic term. In this
sense, the manifold is stochastic, and the resulting distances between points will be affected by this
stochasticity.

Following (Syrota et al., 2024), having access to an ensemble of decoders allows us, in principle,
to make the optimization problem in Eq. 28 aware of the uncertainty involved. The methodology
effectively uses Monte Carlo methods to compute the energy with respect to the uncorrelated
posterior over parameters. This posterior approximated by an ensemble. The following equation is
the optimization problem we solve and makes the idea explicit:

15, (o) = fa, o)) 29)

1
N 9Ar ;

where A; = t; — t;_1 is the step size in the discretization of the interval [0, 1] and is assumed to be
constant. The decoders fék and fékj are sampled uniformely and independently from the ensemble.
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