Vector Arithmetic in Concept and Token Subspaces

Sheridan Feucht Byron Wallace David Bau*
Northeastern University
{feucht.s,b.wallace,d.bau}@northeastern.edu

Abstract

In order to predict the next token, LLMs must represent semantic and surface-
level information about the current word. Previous work identified two types of
attention heads that disentangle this information: (i) Concept induction heads,
which copy word meanings, and (ii) Token induction heads, which copy literal
token representations [2]. We show that these heads can be used to identify
subspaces of model activations that exhibit coherent semantic structure in Llama-2-
7b. Specifically, when we transform hidden states using the attention weights of
concept heads, we are able to more accurately perform parallelogram arithmetic
[4, 5] on the resulting hidden states, e.g., showing that Athens — Greece + China
= Beijing. This transformation allows for much higher nearest-neighbor accuracy
(80%) than direct use of raw hidden states (47%). Analogously, we show that
token heads allow for transformations that reveal surface-level word information in
hidden states, allowing for operations like coding — code + dance = dancing.

1 Introduction

Consider how an LLM might model the word boat. A boat is a type of vehicle that floats on water,
can be powered by sails or engines, and generally carries one or more people. But there are many
other important facts about this word: It is an English word that is all lowercase; it starts with the
letter ‘b’; it thymes with (and looks like) coat, and it is a singular common noun referring to a broad
category. If we wish to analyze the relationship between the word boat and the word water, we must
focus on the semantics of these words, discarding all of the other information that an LLM might
encode. On the other hand, if we are trying to find a word that rhymes with boat, its meaning may
not be particularly helpful to know.

In the original word2vec paper, Mikolov et al. [4,[5] embed words in a manner that allows for
parallelogram-like vector arithmetic: they claim that their embedding space is structured such that
man is to woman as king is to queen. However, we find that their approach is only somewhat effective
for raw Llama-2-7b hidden states [7] (Section[3). We hypothesize that these apparently poor results
observed using a naive approach may be attributed to “interference” from irrelevant information in
model activations. In other words, we posit that much of the information packed into LLM hidden
states has nothing to do with semantics, and that word2vec arithmetic is only effective if performed
in a semantic subspace of model activations.

By using the weights of concept induction heads from [2]], we isolate a lower-dimensional space of
Llama-2-7b activations for which, e.g., the representation of king - man + woman ~ queen. We also
find that we can use token induction heads to perform parallelogram arithmetic for surface-level tasks,
like identifying the first letter in a word, with much higher accuracy than using raw hidden states.
This suggests that concept and token induction heads from [2]] exhibit rich structure in their outputs,
operating in subspaces of model activations that represent different facets of words.

*Paper website at https://arithmetic.baulab.infol

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Mechanistic Inter-
pretability.


https://arithmetic.baulab.info

2 Method: Concept and Token Lens

In recent work, Feucht et al. [2] identify two types of attention heads responsible for copying text
in-context: token induction heads (first described in [1]]), which copy exact tokens, and concept
induction heads, which copy “fuzzy” word meanings. As these attention heads are responsible for
copying previous words seen in-context, their value and output weights can be naturally viewed
as transformations that extract semantic and token-level information from any given hidden state.
Feucht et al. [2] use this insight to develop a “concept lens” that visualizes semantic information in
hidden states. We repurpose their approach to derive general concept and token transformations that
reveal meaningful structure in hidden states, in the sense that arithmetic in the resultant space accords
with intuitive analogies.

Let d be Llama-2-7b’s hidden dimension and m the dimension of a single head. We rely on a key
insight from Elhage et al. [1]]: the value and output projections for a particular head h at layer [,
Vi € R and Oy 1,y € R(4™ respectively, are solely responsible for whatever information a
head writes into the residual stream. Specifically, they point out that the product of these two matrices
O(,n)Vi1,n) is alow-rank d x d matrix (at most rank m) that determines the effect of head (I, 2) on
the residual stream. In other words, multiplying a hidden state x; by this matrix extracts whatever
information within z; that this head typically contributes to the residual stream.

As described in [2], to build a concept lens L¢, € R(%4) that reads from all of the concept induction
head subspaces simultaneously, we combine the weights from the top-k concept induction heads C}.
We calculate the sum of the top-k concept OV matrices:

Le, = Z OumyVii,n- (1)
(l,h)GCk

If all attention heads in C', are in the same layer, L¢, ; is mathematically equivalent to taking the sum
of the outputs of those attention heads. However, we also allow for summation of heads across layers,
which was empirically effective in prior work [6]], possibly because transformer representations are
interchangeable in intermediate layers [3]]. We can repeat this process using the top-k token induction
heads 7}, to obtain a token lens, which reveals information about the written form of a word.

3 Parallelogram Arithmetic

3.1 Approach

We test the assertion made by Mikolov et al. [4] that embeddings should exhibit parallelogram-like
structure: in other words, we test whether man — woman = king — queen. Figures[Th and[Ip illustrate
our approach. We use data from Mikolov et al. [4] and Todd et al. [6], which consists of tuples of
words in some relation to each other. For every possible pair of tuples, we want to evaluate whether the
difference between one tuple is equal to the difference between another; i.e., for (Athens, Greece)
and (Beijing, China), we want to evaluate whether Athens — Greece = Beijing — China. In
general, we notate this as ¢ — b = a’ — b’ for a pair of tuples (a, b) and (a/, b').

To obtain embeddings for each word w, we first pass that word through the model in a clean run,
obtaining a single vector wy by taking its last token representation at a particular layer £. We then
transform this hidden state using some d x d matrix L to obtain Lw,. In the raw setting, we do
not transform wy at all, so L = I. In the concept setting, we use L = L¢,, in the token setting,
we use L = L7, , and as a baseline, we use L = L, which is the sum of all attention head OV
matrices. Finally, to see whether a; — by = a, — b), in the subspace mapped to by L, we calculate
La; — Lby + Lb, and evaluate if La; is its nearest neighbor among all possible words in this task.

Passing a word to a model on its own can be ambiguous, so we choose a prefix for each task that can
be prepended to all words in that task (Table[I). This sequence is constant across all words for which
we perform vector arithmetic. See Appendix [A]for results for all tasks with and without prefixes.

3.2 Results

Figure[I|shows nearest-neighbor accuracy for selected tasks. While all settings achieve accuracies
above random chance (represented by the dotted gray line), concept and token lenses allow for much



(c) Country Capitals Family

. Athens - Greece + China = Beijing son - daughter + mom = dad
(a) Extract Llama-2-7b hidden states s100 —m i
< 08{ — concept 8, — concept
2 token m token
506 raw raw
L. B Zoa e
C g s
3 02 ’ — —— e
1 0.0 — - X
o 5 10 15 20 2 30 0 5 10 15 20 25 30
She trgvelled to Greece Hidden Layer Hidden Layer
Present Participle Past Tense
code - coding + dancing = dance coding - coded + danced = dancing

10—
< A~

— all

Greece ~® Athens

0.8 —— concept 5 0.8 — concept N
token 2 —— token / N
0.6 h 5 0.6

~ raw g raw

China @——————3pd Beijing?
§0.4

8
502
g

Nearest Neighbor Acc.

(b) Add/subtract these transformed 3
0.0

2
hidden state vectors 0= 5 Y S 3 5 10 15 20 25 30
Hidden Layer

5
Hidden Layer

Figure 1: word2vec-style vector arithmetic is more accurate when working in subspaces from [2]
instead of using raw hidden states. (a) To extract embeddings for a word, we prefix with a constant
phrase (e.g. “She travelled to”) and save the last token representation of the word at a chosen layer /.
To extract conceptual or token information from this vector, we multiply by concept and token lenses
L, and L, respectively (Section[2). (b) Using a vector from a separate context to represent each
word, we measure whether Athens — Greece + China has Beijing as its top nearest neighbor. (c)
For semantic tasks like capital cities and gender-based family words, doing vector arithmetic in the
subspace of the top-k concept heads (red) is more effective than using raw hidden states (orange), the
top-k token heads (blue), or the sum of all attention head OV matrices (green). On the other hand, the
subspace read by the top-k token heads is most effective for grammatical tasks that involve changing
the spelling of a word (e.g., code — coding). For comparison, dotted gray lines represent random
chance, whereas dotted light blue represents Llama-2-7b’s 5-shot ICL accuracy for this task. We use
k = 80, as found in [2].

more accurate vector arithmetic. In the case of capital cities, this arithmetic is just as good as the
model’s accuracy when asked to complete the task in an ICL setting with 5 shots (light blue dotted
line). Oddly, this approach is less effective for tasks that seem simpler, like present participles of
verbs. Errors in these cases are difficult to interpret, as the incorrect nearest neighbor is often one of
the operands in the original expression.

Figure [2] shows results for 14 tasks from the original word2vec paper [4]. Concept lens is more
effective for semantic tasks, whereas token lens does well for tasks that contain surface-level word
variations (e.g., quick — quickly). Pluralizing nouns (“gram8-plural”) can be done in both concept
space and in token space (by adding ‘s’ to a word), but pluralizing verbs can only be done in token
space (“‘gram9-plural-verbs”), possibly because the latter mostly has to do with verb agreement, not
word meaning. See Appendix [A]for more tasks from Todd et al. [6].

3.3 Effective Rank of Concept and Token Subspaces

Although the OV matrix for a single attention head is at most rank m with m < d, our transformations
L¢, and Ly, are full-rank when k£ = 80, as shown empirically in Figure @a This means that our
transformations for Figure[T]do not actually project activations onto a strict concept or token subspace.
However, we hypothesize that we do not need to use all d dimensions to perform vector arithmetic
for these tasks. To test this, we set all singular values below the top-r values to zero for L¢,, L, ,
and Ly, sweeping across values of r (Figure Bb). We choose the best layer for each task from
Figure[T]and analyze whether reducing the rank of L damages performance. As Figure 3k shows,
reducing the rank of L does not damage performance for tasks from Section 3] indicating that these
transformations, in effect, project activations onto a lower-dimensional subspace.

4 Conclusion

We combine attention weights from previously-discovered components to obtain low-rank transfor-
mations that reveal token and concept information in Llama-2-7b, suggesting that understanding the
geometry of LLM activations requires a precise formulation of what information we want to analyze.



Word2Vec Dataset: With Prefixes

capital-common-countries capital-world currency city-in-state family
1.0 all 1.0 1.0 1.0 1.0
. —— concept
081 — token 08 08 08 0.8
h —— raw
5
206 0.6 0.6 06
g o X X X X
3
Z
7 04 0.4 0.4 0.4
£
g
3
Z 02 0.2 0.2 0.2
PYY N S A—— 00 00 00
0 10 20 30 0 10 20 30 0 0 10 20 30
gram1-adjective-to-adverb gram2-opposite gram3-comparative gram4-superlative gram5-present-participle
1.0 1.0 1.0 1.0 1.0
gos 08
=
]
06 0.6
@
z
7 04 0.4
£
g
3
Z 02
y
0.0
0 10 20 30 30
gramé6-nationality-adjective gram?7-past-tense gram8-plural gram9-plural-verbs 1o
1.0 1.0 1.0 1.0 :
gos 08 08 08
=
K 0.6
£ 06 0.6 0.6 -
3
304 0.4 04 04
£
g
g
Z02 0.2 0.2 0.2
0.0 0.0 0.0 0.0
0 10 20 30 0 10 20 30 0 10 20 30 00 02 04 06 08 1.0
Layer Layer Layer Layer

Figure 2: Nearest-neighbor accuracy for all word2vec tasks [4] with prefixes for each task in Table/T]
(Llama-2-7b). Dotted gray lines indicate guessing accuracy (out of all possible neighbors/words
in the dataset). Dotted light blue lines indicate 5-shot ICL accuracy for this task, i.e., the best
possible performance this model can have for this task. We do not expect high performance for the
“opposite” task due to its cyclic nature: to represent the concept of “opposite,” we need possible
— impossible = impossible — possible, which is incompatible with parallelogram arithmetic.
Targeted subspaces are more effective than using all attention heads for most tasks, except for graml1,
gram3, and gram4.

(a) Concept lens L, and token lens Ly, are not low-rank. (c) Country Capitals (£ = 20) Family (£ = 20)

—— concept

—— token /x/x—/“w

— all

°
o

—— concept
token
— all

Singular Values of L, and Ly, Singular Values of Lc,, Lz,, and Ly

°
>
o
®

— concept — al
— token 60 — concept
— token

°

°

Singular Value Index
Singular Value Indg

‘f
:
}
1

Nearest Neighbor Accuracy
° o
S s

Nearest Neighbor Accuracy
s o
S s

_ | —
0 1000 2000 3000 4000 0 1000 2000 3000 4000 8 16 32 64 128 256 512 1024 2048 4096 8 16 32 64 128 256 512 1024 2048 4096
Singular Value Singular Value Rank of OV Matrix Rank of OV Matrix

Present Participle (£ = 16) Past Tense (£ = 16)

—— concept
token
— all

o
o

(b) Take the low-rank r approximation of each lens using
SVD and apply this matrix to the best layer for each task.

—— concept
token
— all

e

o
®
o
®

°
>
°
S

°
°

°

Nearest Neighbor Accuracy
Nearest Neighbor Accuracy

e
s
o

0.
8 16 32 64 128 256 512 1024 2048 4096 8 16 32 64 128 256 512 1024 2048 4096
Rank of OV Matrix Rank of OV Matrix

Figure 3: Reducing the rank of L by taking the top-r singular components does not damage nearest-
neighbor accuracy. (a) Inspecting the singular values of our concept lens, L, , and token lens,
L, , these transformations appear to be full-rank. (b) Regardless, we take r-rank approximations of
these transformations by setting all singular values after the top-r values to zero. (c) We choose the
best layer for each task from Figure[T]and reduce the rank of every L in this way. Performance is
maintained for ranks as low as r = 256. Note that values for » = 4096 are the same as results from

Figure[T]



References

[1]

[7]

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
Chris Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021. https://transformer-circuits.pub/2021/framework/index.html.

Sheridan Feucht, Eric Todd, Byron Wallace, and David Bau. The dual-route model of induction.
In Second Conference on Language Modeling, 2025.

Vedang Lad, Jin Hwa Lee, Wes Gurnee, and Max Tegmark. The remarkable robustness of 1lms:
Stages of inference?, 2025.

Tomds Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. In Yoshua Bengio and Yann LeCun, editors, /st International
Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013,
Workshop Track Proceedings, 2013.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space
word representations. In Lucy Vanderwende, Hal Daumé III, and Katrin Kirchhoff, editors,
Proceedings of the 2013 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 746-751, Atlanta, Georgia,
June 2013. Association for Computational Linguistics.

Eric Todd, Millicent L. Li, Arnab Sen Sharma, Aaron Mueller, Byron C. Wallace, and David Bau.
Function vectors in large language models. In Proceedings of the 2024 International Conference
on Learning Representations, 2024. arXiv:2310.15213.

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Niko lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Daniel M. Bikel, Lukas
Blecher, Cris tian Cantén Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony S.
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel M. Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, R. Subramanian, Xia Tan,
Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zhengxu Yan, Iliyan
Zarov, Yuchen Zhang, Angela Fan, Melissa Hall Melanie Kambadur, Sharan Narang, Aur’elien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and
fine-tuned chat models. ArXiv, abs/2307.09288, 2023.



A Full Parallelogram Arithmetic Results

Table 1: Prefixes and examples for parallelogram datasets. Prefixes are used for all words in the
dataset, e.g., “She travelled to Athens”, “She travelled to Greece”, etc.

Task

Example

Prefix

Word2Vec Tasks (Mikolov et al., [4])

capital-common-countries

capital-world
currency
city-in-state
family

graml-adjective-to-adverb

gram?2-opposite
gram3-comparative
gram4-superlative
gram5-present-participle

gram6-nationality-adjective

gram7-past-tense
gram8-plural
gram9-plural-verbs

(Athens, Greece)
(Valletta, Malta)
(Algeria, dinar)
(Tulsa, Oklahoma)
(uncle, aunt)
(amazing, amazingly)
(likely, unlikely)
(big, bigger)
(great, greatest)
(look, looking)
(Brazil, Brazilian)
(jumping, jumped)
(cow, cows)
(search, searches)

She travelled to

She travelled to

You will have to pay in

She travelled to

Did you talk to her

Here is a random word in English:
Here is a random word in English:
Here is a random word in English:
Here is a random word in English:
Here is a random word in English:
Here is a random word in English:
Here is a random word in English:
Here is a random word in English:
Here is a random word in English:

Function Vector Tasks (Todd et al., [6])

antonym

synonym
present-past
singular-plural
word-length
capitalize-first-letter
capitalize-last-letter
capitalize-second-letter
lowercase-first-letter
lowercase-last-letter
next-capital-letter
next-item

prev-item

capitalize
country-capital
country-currency
english-french
english-german
english-spanish
landmark-country
national-parks
park-country
person-instrument
person-occupation
person-sport
product-company
sentiment

(wish, regret)

(dangerous, hazardous)
(separate, separated)

(spoon, spoons)

(7, pelican)

(R, remember)

(T, quilt)

(N, snake)

(r, RACE)

(e, OBSERVE)

(ostrich, P)

(May, June)

(twenty, nineteen)

(peach, Peach)

(Indonesia, Jakarta)
(Slovenia, Euro (EUR))
(discussed, discuté)
(officials, Beamte)
(forwards, adelante)

(Chile, Wellington Island)
(California, Sequoia National Park)
(Nepal, Bardya National Park)
(piano, Tadd Dameron)
(architect, Gunnar Birkerts)
(basketball, Kevin Durant)
(Apple, iPhone 5)

(positive, It’s a masterpiece.)

Here is a random word in English:
Here is a random word in English:
Here is a random word in English:
Here is a random word in English:
Here is a random word in English:
Here is a random word/character:
Here is a random word/character:
Here is a random word/character:
Here is a random word/character:
Here is a random word/character:
Here is a random word/character:
Here is a random word/character:
Here is a random word/character:
Here is a random word in English:
She travelled to

You will have to pay in

Voici un mot aléatoire en francais:

Hier ist ein beliebiges Wort im Deutschen:
Aqui hay una palabra arbitraria en espafol:

On vacation, we went to
On vacation, we went to
On vacation, we went to

I am a big fan of

I am a big fan of

I am a big fan of

I am a big fan of

Here’s my take on this film:




Word2Vec Dataset: Without Any Prefixes

capital-common-countries capital-world currency city-in-state family
o] — 1.0 1.0 1.0 1.0
. —— concept
8] — token / 0.8 0.8 0.8 0.8
E —— raw
£ 06 0.6 0.6 0.6 0.6
k)
z
% 04 0.4 0.4 0.4 0.4
£
8
g
Z0.2 0.2 0.2 0.2 0.2
00 L= Sz g0 A 0.0 0.0 0.0
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
gram1-adjective-to-adverb gram2-opposite gram3-comparative gram4-superlative gram5-present-participle
1.0 1.0 1.0 1.0 1.0
gos 0.8 0.8 0.8
P
2
E’ 0.6 0.6 0.6 0.6
3
z
% 0.4 0.4 0.4 0.4
£
g
S
Z 0.2 0.2 0.2 0.2
=\
0.0 0.0 0.0 0.0
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
gram6-nationality-adjective gram?7-past-tense gram8-plural gram9-plural-verbs 0
1.0 1.0 1.0 :
g 0.8 0.8 0.8 08
=
2 0.6
E’ 0.6
z
B 0.4 0.4
£
8
3
z 0.2 0.2
0.0 0.0
0 10 20 30 00 02 0.4 06 08 1.0
Layer Layer

Figure 4: Nearest-neighbor accuracy for all word2vec tasks [4] without any prefixes (i.e., feeding
each word to the model by itself with no context). Comparing with Figure [2] certain tasks like
“currency” are much less accurate; this may be because currencies like “real” are not immediately
recognizable out of context. However, accuracy is slightly better for “capital-common-countries” and
“gram6-nationality-adjective” without any prefixes.



Function Vector Tasks: With Prefix

capitalize-last-letter english-french lowercase-first-letter next-item person-sport
L 1o al 1.0 1.0 1.0 1.0
g
<os —— concept | g 08 08 08
<o . . .
g —— token
506 — raw 0.6 0.6 0.6 0.6
3
Z o4 04 04 04 04
2
go02 0.2 02 02 02
z
0.0 0.0 B I 00 ﬂ_A 0.0 0.0
0 10 20 30 4 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
sentiment antonym capitalize-second-letter english-german lowercase-last-letter
1.0 1.0 1.0 1.0 1.0
g
Tos8 0.8 0.8 0.8 0.8
]
£ 0.6 0.6 0.6 0.6 0.6
]
Z o4 04 04 04 04
4
g 02 0.2 0.2 0.2 02
z
0.0 0.0 0.0 0.0 0.0
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
park-country present-past singular-plural capitalize-first-letter country-capital
10 1.0 1.0 1.0 1.0
<os8 0.8 0.8 0.8
2
506 0.6 0.6 0.6
3
? 04 04 04 04
H —
g 02 0.2 0.2 A 0.2
z
0.0 0.0 0.0 0.0
0 10 20 30 30 0 10 20 30 0 10 20 30
english-spanish national-parks person-instrument prev-item synonym
10 1.0 1.0 1.0 1.0
<os8 0.8 0.8 0.8 0.8
2
£06 0.6 0.6 0.6 0.6
g
Z 04 04 04 04 04
2
g 02 0.2 0.2 0.2 02
z
0.0 T 00 0.0 00 0.0
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
capitalize country-currency landmark-country next-capital-letter person-occupation
.10 1.0 1.0 1.0 1.0
Tos 0.8 0.8 0.8 0.8
2
506 0.6 0.6 0.6 0.6
3
§ 04 04 04 04 04
8 —
g02 02 02 02 02
z
0.0 0.0 0.0 — 0.0 0.0
4 10 20 30 4 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
roduct-compan; word-length
P pany g 1.0 1.0 1.0
.10 1.0
g 0.8 0.8 0.8
<08 0.8 - -
5
% 06 06 06 06 06
]
Z 04 04 04 04 04
8
g 02 0.2 02 0.2 02
z
0.0 0.0 0.0 0.0 0.0
0 10 20 30 4 10 20 30 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Layer Layer Layer Layer Layer

Figure 5: Nearest-neighbor accuracy for all function vector tasks [[6] with prefixes for each task listed
in Table[T} Dotted gray lines indicate guessing accuracy (out of all possible neighbors/words in the
dataset). Dotted light blue lines indicate 5-shot ICL accuracy, i.e., the best possible performance this
model can have for this task. The failure of many of these tasks is unsurprising: some tasks are many-
to-one relations that may not be represented as parallelograms (“capitalize-first-letter”’), whereas
others may be too complex to be directly encoded in the model’s embedding space (“national-parks”).
Note: “country-currency” includes more countries (197) than the word2vec “currency” task (30).



Function Vector Tasks: Without Any Prefix

capitalize-last-letter english-french lowercase-first-letter next-item person-sport
1.0 1.0 1.0 1.0 1.0
s — all
% 0.8 — concept | gg 0.8 0.8 0.8
s —— token
£ 06 —— raw 0.6 0.6 0.6 0.6
3
é 04 0.4 0.4 0.4 0.4
H
go02 0.2 0.2 0.2 0.2
z
0.0 0.0 0.0 0.0 0.0
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
sentiment antonym capitalize-second-letter english-german lowercase-last-letter
10 1.0 1.0 1.0 1.0
g
8
< o8 0.8 0.8 0.8 0.8
5
2
%06 0.6 0.6 0.6 0.6
3
Zoa 04 0.4 04 0.4
4
g 02 0.2 0.2 0.2 0.2
z
0.0 0.0 0.0 0.0 0.0
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
park-country present-past singular-plural capitalize-first-letter country-capital
10 1.0 1.0 1.0 1.0
g
8
T o8 0.8 0.8 0.8 0.8
5
506 0.6 0.6
3
Z o4 04 04
4
2 - @, o
0.0 0.0 —— 0.0
4 10 20 30 0 10 20 30 30 0 10 20 30
english-spanish national-parks person-instrument prev-item synonym
L10 1.0 1.0 1.0 1.0
g
8
<08 0.8 0.8 0.8 0.8
5
506 0.6 0.6 0.6 0.6
3
Zoa 04 04 04 04
4
g 02 0.2 0.2 0.2 0.2
z
0.0 0.0 0.0 0.0 0.0
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
capitalize country-currency landmark-country next-capital-letter person-occupation
L 10 1.0 1.0 1.0 1.0
g
8
T o8 0.8 0.8 0.8 0.8
5
2
£06 0.6 0.6 0.6 0.6
3
; 04 0.4 0.4 0.4 0.4
4
502 /\/\ 0.2 02 02 02
z
0.0 0.0 0.0 0.0 0.0
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
roduct-compan; word-length
P pany 2l 1.0 1.0 1.0
L10 1.0
g
<08 08 0.8 0.8 0.8
3 0.6 0.6 0.6
€06 0.6 - -
S
é 04 04 0.4 0.4 0.4
4
go02 0.2 0.2 0.2 0.2
z
0.0 0.0 <1 00 0.0 0.0
0 10 20 30 0 10 20 30 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Layer Layer Layer Layer Layer

Figure 6: Nearest-neighbor accuracy for all function vector tasks [6] without any prefixes (i.e., feeding
each word to the model by itself with no context). Dotted gray lines indicate guessing accuracy (out
of all possible neighbors/words in the dataset). Dotted light blue lines indicate 5-shot ICL accuracy
for this task, i.e., the best possible performance this model can have for this task. Without prefixes,
accuracy for many tasks is lower overall.



	Introduction
	Method: Concept and Token Lens
	Parallelogram Arithmetic
	Approach
	Results
	Effective Rank of Concept and Token Subspaces

	Conclusion
	Full Parallelogram Arithmetic Results

