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Abstract

We consider a sequential setting in which a single dataset of individuals is used to
perform adaptively-chosen analyses, while ensuring that the differential privacy loss
of each participant does not exceed a pre-specified privacy budget. The standard
approach to this problem relies on bounding a worst-case estimate of the privacy
loss over all individuals and all possible values of their data, for every single
analysis. Yet, in many scenarios this approach is overly conservative, especially
for “typical” data points which incur little privacy loss by participation in most of
the analyses. In this work, we give a method for tighter privacy loss accounting
based on the value of a personalized privacy loss estimate for each individual in
each analysis. To implement the accounting method we design a filter for Rényi
differential privacy. A filter is a tool that ensures that the privacy parameter of a
composed sequence of algorithms with adaptively-chosen privacy parameters does
not exceed a pre-specified budget. Our filter is simpler and tighter than the known
filter for (ε, δ)-differential privacy by Rogers et al. [29]. We apply our results to the
analysis of noisy gradient descent and show that personalized accounting can be
practical, easy to implement, and can only make the privacy-utility tradeoff tighter.

1 Introduction

Understanding how privacy of an individual degrades as the number of analyses using their data
grows is of paramount importance in privacy-preserving data analysis. This allows individuals to
participate in multiple disjoint statistical analyses, all the while knowing that their privacy cannot be
compromised by aggregating the resulting reports. Furthermore, this feature is crucial for privacy-
preserving algorithm design—instead of having to reason about the privacy properties of a complex
algorithm, it allows reasoning about the privacy of the subroutines that make up the final algorithm.

For differential privacy (DP) [13], this accounting of privacy losses is typically done using composition
theorems. Importantly, given that statistical analyses often rely on the outputs of previous analyses,
and that algorithmic subroutines feed into one another, the composition theorems need to be adaptive,
namely, allow the choice of which algorithm to run next to depend on the outputs of all previous
computations. For example, in gradient descent, the computation of the gradient depends on the value
of the current iterate, which itself is the output of the previous steps of the algorithm.

Given the central role of adaptive composition theorems in differential privacy, they have been
investigated in numerous works (e.g. [16, 23, 11, 27, 26, 4, 29, 8, 30]). While they differ in some
aspects, they also share one limitation. Namely, all of these theorems reason about the worst-case
privacy loss for each constituent algorithm in the composition. Here, “worst-case” refers to the
worst choice of individual in the dataset and worst choice of value for their data. This pessimistic
accounting implies that every algorithm is summarized via a single privacy parameter, shared among
all participants in the analysis.

In most scenarios, however, different individuals have different effects on each of the algorithms,
as measured by differential privacy. More precisely, the output of an analysis may have little to no
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dependence on the presence of some individuals. For example, if we wish to report the average
income in a neighborhood, removing an individual whose income is close to the average has virtually
no impact on the final report after noise addition. Similarly, when training a machine learning model
via gradient descent, the norm of the gradient given by a data point is often much smaller than the
maximum norm (typically determined by a clipping operation). As a result, in many cases no single
individual is likely to have the worst-case effect on all the steps of the analysis. This means that
accounting based on existing composition theorems may be unnecessarily conservative.

In this work, we present a tighter analysis of privacy loss composition by computing the associated
divergences at an individual level. In particular, to achieve a pre-specified privacy budget, we keep
track of a personalized estimate of the privacy loss divergence for each individual in the analyzed
dataset, and ensure that the respective estimate is maintained under the budget for all individuals
throughout the composition. We do so by applying each analysis only to the points that are estimated
to have sufficient leftover privacy budget.

1.1 Overview of main results

It is feasible to measure the worst-case effect of a fixed data point on a given analysis in terms of DP.
One can simply replace the supremum over all datasets in the standard definition of (removal) DP
with the supremum over datasets that include that specific data point (see Definition 2.5). However,
a meaningful application of adaptive composition with such a definition immediately runs into a
technical challenge: standard composition theorems require that the privacy parameter of each step
be fixed in advance. For individual privacy, this approach requires using the worst-case value of the
individual privacy loss over all the possible analyses at a given step. Individual privacy parameters
are much more sensitive to the choice of analysis than worst-case parameters, and thus maximizing
over all analyses is likely to negate the benefits of using individual losses in the first place.

Thus the main technical challenge in analyzing composition of individual privacy losses is that they
are themselves random variables that depend on the outputs of all previous computations. If we denote
by a1, . . . , at the output of the first t adaptively composed algorithmsA1, . . . ,At, then the individual
privacy loss of any point incurred by applying algorithm At+1 is a function of a1, . . . , at. Hence, to
tackle the problem of composing individual privacy losses we need to understand composition with
adaptively-chosen privacy parameters. We refer to this kind of composition as fully adaptive.

The setting of fully adaptive privacy composition is rather subtle and even defining privacy in terms of
the adaptively-chosen privacy parameters requires some care. This setting was first studied by Rogers
et al. [29], who introduced the notion of a privacy filter. Informally, a privacy filter is a stopping
time rule that halts a computation based on the adaptive sequence of privacy parameters and ensures
that a pre-specified privacy budget is not exceeded. Rogers et al. define a filter for approximate DP
that asymptotically behaves like the advanced composition theorem [16], but is substantially more
involved and loses a constant factor. Moreover, several of the tighter analyses of Gaussian noise
addition require composition to be done in Rényi differential privacy (RDP) [1, 26].

Our main result can be seen as a privacy filter for RDP which justifies stopping the analyses based on
the sum of privacy parameters so far even under fully adaptive composition.

Theorem 1.1. FixB ≥ 0, α ≥ 1. AssumeAt is (α, ρt)-RDP, where ρt is any function of a1, . . . , at−1.
If
∑k
t=1 ρt ≤ B holds almost surely, then the adaptive composition of A1, . . . ,Ak is (α,B)-RDP.

When ρ1, . . . , ρk are fixed, Theorem 1.1 recovers the usual composition result for RDP [26]. Our
RDP filter immediately implies a simple filter for approximate DP that is as tight as any version of
the advanced composition theorem obtained via concentrated DP [4]. These Rényi-divergence-based
analyses are known to improve on the classical rate [16] and, in particular, improve on the rate in [29].

We instantiate our general result for fully adaptive composition in the setting of individual privacy
accounting. This allows us to define an individual privacy filter, which, given a fixed privacy budget,
adaptively drops points from the analysis once their personalized privacy loss estimate exceeds
the budget. Therefore, instead of keeping track of a single running privacy loss estimate for all
individuals, we track a less conservative, personalized estimate for each individual in the dataset.
Individual privacy filtering allows for better, adaptive utilization of data points for a given budget. It
can also naturally be applied to accounting in the local DP model, whereby each user stops responding
once their local implementation of the filter indicates that their personal privacy budget is exhausted.
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Individual privacy parameters are particularly easy to compute for linear queries, as well as their
high-dimensional generalizations. We show that our technique gives an algorithm for answering a
sequence of adaptively-chosen linear queries that are sparse across time, meaning that, for any user,
the number of queries that are non-zero on that user’s data is small. Such queries arise, for example,
when a platform counts the number of users that participate in certain activities (the type of activity
being adaptive to the data collected in the previous days) and users generally participate in a small
number of activities. Formally, a special case of our result implies the following theorem.

Theorem 1.2. There exists an algorithm A that, given a dataset S = (X1, . . . , Xn) ∈ Xn, spar-
sity parameter s and privacy level κ, for any adaptively-chosen sequence of queries q1, . . . , qk
of arbitrary length k, where qi : X → {0, 1}, provides a sequence of answers a1, . . . , ak such
that: (1) A is (α, ακ)-RDP for all α ≥ 1; (2) for all t and any δ ∈ (0, 1), the probability that
|at −

∑
Xi∈St

qt(Xi)| >
√
s log(1/δ)/κ is at most δ, where St = (Xi ∈ S :

∑t
j=1 qj(Xi) ≤ s).

We note that the provided answers are guaranteed to be accurate only as long as the queries are truly
sparse, meaning

∑t
j=1 qj(Xi) ≤ s for (almost) all i ∈ [n]. This follows because the queries are

accurate on the set St, hence St needs to be similar to S for the queries to be accurate on S. The
privacy guarantee, on the other hand, holds for any sequence of queries of any length k. We describe
a more general version of this result in Section 4.2. A natural application of our general theorem is
the setting of high-dimensional linear queries generated by gradient descent. We apply our theory
to the analysis of private gradient descent [1], and show—both theoretically and empirically—that
individual accounting can be easy to implement and can only make the resulting privacy-utility
tradeoff tighter. Independently, without any individual accounting, in our empirical evaluations
we also observe that private batch gradient descent, when tuned appropriately, outperforms private
stochastic gradient descent in terms of the privacy-utility tradeoff. While we make this observation
only on MNIST, we believe this phenomenon holds more generally and is worth further investigation.

1.2 Related work

The main motivation behind our work is obtaining tighter privacy accounting methods through,
broadly speaking, “personalized” accounting of privacy losses. Existing literature in DP discusses
several related notions [22, 19, 31, 6], although typically with an incomparable objective. Ghosh and
Roth [22] discuss individual privacy in the context of selling privacy at auction and their definition
does not depend on the value of the data point but only on its index in the dataset. Cummings and
Durfee [6] rely on a similar privacy definition, investigate an associated definition of individual
sensitivity, and demonstrate a general way to preprocess an arbitrary function of a dataset into a
function that has the desired bounds on individual sensitivities.

Ebadi et al. [19] introduce personalized DP in the context of private database queries and describe a
system which drops points when their personalized privacy loss exceeds a budget. While this type of
accounting is similar to ours in spirit, their work only considers basic and non-adaptive composition.
Wang [31] considers the privacy loss of a specific data point relative to a fixed dataset and provides
techniques for evaluating this “per-instance” privacy loss for several statistical problems. Wang also
briefly discusses adaptive composition of per-instance DP as a straightforward generalization of the
usual advanced composition theorem [16], but the per-instance privacy parameters are assumed to
be fixed. As discussed above, having fixed per-instance privacy parameters, while allowing adaptive
composition, is likely to negate the benefits of personalized privacy estimates. The work of Ligett
et al. [25] tightens individuals’ personalized privacy loss by taking into account subsets of analyses
in which an individual does not participate. Our work naturally captures this setting while allowing
full adaptivity. Moreover, they consider the usual worst-case privacy loss, rather than an individual
one, and the analyses in which a user participates are determined in a data-independent way.

Our work can be seen as related to data-dependent approaches to analyses of privacy-preserving
algorithms such as smooth sensitivity [28], the propose-test-release framework [9], and ex-post
privacy guarantees [32]. Our results are complementary in that we aim to capture the dependence of
the output on the value of each individual’s data point as opposed to the “easiness” of the entire dataset.
Our approach also relies on composition to exploit the gains from individual privacy accounting.

Finally, adaptive composition of DP is a key tool for establishing statistical validity of an adaptively-
chosen sequence of analyses [18, 17, 3]. In this context, Feldman and Steinke [21] show that
individual KL-divergence losses (or RDP losses for α = 1) compose adaptively and can be used to
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derive tighter generalization results. However, this result still requires that the average of individual
KL-divergences be upper bounded by a fixed worst-case value and the analysis is limited to α = 1.

2 Preliminaries

We let S = (X1, . . . , Xn) denote the analyzed dataset, and S−i def
= (X1, . . . , Xi−1, Xi+1, . . . , Xn)

the analyzed dataset after removing point Xi. We will generally focus on algorithms that can take
as input a dataset of arbitrary size. If, instead, the algorithm requires an input of fixed size, one can
obtain the same results for algorithms that replace Xi with an arbitrary fixed element X? (e.g. 0).
Definition 2.1 ([13, 12]). A randomized algorithm A is (ε, δ)-differentially private (DP) if for all
datasets S = (X1, . . . , Xn), i ∈ [n], and measurable sets E,

Pr [A(S) ∈ E] ≤ eε Pr
[
A(S−i) ∈ E

]
+ δ, and Pr

[
A(S−i) ∈ E

]
≤ eε Pr [A(S) ∈ E] + δ.

Our analysis will rely on Rényi differential privacy (RDP), a relaxation of DP based on Rényi
divergences which often leads to tighter privacy bounds than analyzing DP directly. Formally, the
Rényi divergence of order α ∈ (1,∞) between two measures µ and ν such that µ� ν is defined as:

Dα(µ‖ν) =
1

α− 1
log

∫ (
dµ

dν

)α
dν.

The Rényi divergence of order α = 1 is defined by continuity, and recovers the KL-divergence.
Relying on a common abuse of notation, we useA(·) to refer to the output distribution of a randomized
algorithm. Thus, Dα(A(S)‖A(S−i)) denotes the divergence between the output distribution of A
on input S and the output distribution of A on input S−i. Similarly, we use a ∼ A(S) to denote
a being sampled randomly from the output distribution of A on S. We also use D↔α (µ‖ν)

def
=

max {Dα(µ‖ν), Dα(ν‖µ)} to denote the maximum of the two directions of Rényi divergence.
Definition 2.2 ([26]). A randomized algorithm A is (α, ρ)-Rényi differentially private (RDP) if for
all datasets S = (X1, . . . , Xn) and i ∈ [n], D↔α

(
A(S)‖A(S−i)

)
≤ ρ.

A related notion that we will make use of is zero-concentrated differential privacy (zCDP).
Definition 2.3 ([4]). A randomized algorithm A satisfies κ-zero-concentrated differential privacy
(zCDP) if it satisfies (α, ακ)-RDP for all α ≥ 1.

Although our guarantees will be stated in terms of RDP, the conversion to DP is immediate.
Fact 2.4 ([26]). If A is (α, ρ)-RDP, then it is also (ρ+ log(1/δ)/(α− 1), δ)-DP, for any δ ∈ (0, 1).

Our main object of study is adaptive composition. Here, for a given input dataset S and a sequence
of algorithms (At)kt=1, one sequentially computes reports at = At(a1, . . . , at−1, S) as a function of
the previous reports and the input dataset. We denote by a(t) def

= (a1, . . . , at) the sequence of the first
t reports, and by A(t)(·) def

= (A1(·),A2(A1(·), ·), . . . ,At(A1(·), . . . , ·)) the composed algorithm
which produces a(t). If At(a1, . . . , at−1, ·) is (α, ρt)-RDP for all values of a1, . . . , at−1, then the
standard adaptive composition theorem for RDP says that A(k) is (α,

∑k
t=1 ρt)-RDP [26]. This

implicitly assumes that ρ1, . . . , ρk are fixed and thus independent of the realized reports a1, . . . , ak.

Individual privacy. Our individual accounting relies on measuring the maximum possible effect of
an individual data point on a dataset statistic in terms of Rényi divergence. This measure is equivalent
to an RDP version of personalized DP [19]. For convenience we will refer to it as individual RDP. We
note, however, that, by itself, a bound on this divergence does not imply any formal privacy guarantee
for an individual, since the individual RDP parameter depends on the sensitive value of the data point.
Definition 2.5 (Individual RDP). Fix n ∈ N and a data pointX . We say that a randomized algorithm
A satisfies (α, ρ)-individual Rényi differential privacy for X if for all datasets S = (X1, . . . , Xm)
such that m ≤ n and Xi = X for some i, it holds that D↔α

(
A(S)‖A(S−i)

)
≤ ρ.

Therefore, to satisfy RDP, an algorithm needs to satisfy individual RDP for all data points X .

We give two simple examples of individual RDP computation.
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Example 2.6 (Linear queries). Let S = (X1, . . . , Xn) ∈ Xn. Suppose that A is a d-dimensional
linear query with Gaussian noise addition, A(S) =

∑
j∈[n] q(Xj) + ξ, for some q : X → Rd and

ξ ∼ N(0, σ2Id). Then, A satisfies (α, α‖q(Xi)‖22/(2σ2))-individual RDP for Xi.

Example 2.7 (Lipschitz analyses). Suppose that g : (Rd)n → Rd′ is Li-Lipschitz in coordinate i (in
`2-norm). For q : X → Rd, let A(S) = g(q(X1), . . . , q(Xn)) + ξ, ξ ∼ N(0, σ2Id′). Assume that
for some X?, q(X?) is the origin. Then, if S−i = (X1, . . . , Xi−1, X

?, Xi+1, . . . , Xn), we get that
A satisfies (α, αL2

i ‖q(Xi)‖22/(2σ2))-individual RDP for Xi.

3 Fully adaptive composition for Rényi differential privacy

Our main technical contribution is a new adaptive composition theorem for RDP, which bounds
the overall privacy loss in terms of the individual privacy losses of all data points. In what follows,
we first state a general version of our main theorem, which bounds the privacy loss in adaptive
composition in terms of a bound on the sequence of possibly adaptive privacy parameters.

We let ρt denote the RDP parameter of order α of At, conditional on the past reports. For the sake of
generality and simplicity of exposition, we introduce an abstract space S over pairs of datasets and let

ρt
def
= sup

(S,S′)∈S
D↔α

(
At(a(t−1), S)‖At(a(t−1), S′)

)
. (1)

Typically ρt will be random due to the randomness in a(t−1). In the context of individual privacy, we
will set S to be the space of all dataset pairs where either dataset is obtained by deleting Xi from the
other. In usual RDP, S will be the space of all pairs of datasets that differ in any one element.

Theorem 3.1 states that, as long as
∑k
t=1 ρt is maintained under a fixed budget, the output of adaptive

composition preserves privacy.
Theorem 3.1. Fix anyB ≥ 0, α ≥ 1, and a set of pairs of datasets S . For any sequence of algorithms
A1, . . . ,Ak, if

∑k
t=1 ρt ≤ B holds almost surely, where the sequence ρ1, . . . , ρk is defined in eq. (1),

then for all (S, S′) ∈ S the adaptive composition A(k) satisfies D↔α
(
A(k)(S)‖A(k)(S′)

)
≤ B.

The proof relies on showing that for any pair (S, S′) ∈ S, Loss(t)(a(t);S, S′, α)e−(α−1)
∑t

j=1 ρj —
where Loss(t)(a(t);S, S′, α) denotes the privacy loss incurred up to time t, formally defined in the
Appendix—is a supermartingale. A related argument is presented in [5] (see Lemma 8), who study
privacy composition when a pre-specified set of concentrated DP parameters is adaptively ordered.

We now instantiate Theorem 3.1 in the context of individual privacy. For a fixed point X , we let
S(X,n) denote the set of all dataset pairs (S, S′) such that |S| ≤ n and S′ is obtained by deleting
element X from S. More precisely, (S, S′) ∈ S(X,n) if S = (X1, . . . , Xm), where m ≤ n and
Xi = X for some i, and S′ = S−i. We use ρ(i)

t to denote the individual privacy parameter of the
t-th adaptively composed algorithm At with respect to Xi, conditional on the past reports:

ρ
(i)
t

def
= sup

(S,S′)∈S(Xi,n)

D↔α (At(a(t−1), S)‖At(a(t−1), S′)). (2)

Since ρ(i)
t is an instance of definition (1), we can state a direct corollary of Theorem 3.1. Notice that

it provides a data-specific criterion, while classical composition considers all hypothetical datasets.

Corollary 3.2. Fix any B ≥ 0, α ≥ 1. If for any input dataset S = (X1, . . . , Xn),
∑k
t=1 ρ

(i)
t ≤ B

holds almost surely for all individuals i ∈ [n], then the adaptive composition A(k) is (α,B)-RDP.

In the following section we show how Corollary 3.2 can be operationalized.

4 Rényi privacy filter

Fully adaptive composition was first studied in [29]. They defined the notion of a privacy filter, a
function that takes as input adaptively-chosen DP parameters ε1, δ1, . . . , εt, δt, as well as a global DP
budget εg, δg , and outputs CONT if the overall report after t rounds of adaptive composition with the
corresponding privacy parameters is guaranteed to satisfy (εg, δg)-DP. Otherwise, it outputs HALT.
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We show that Theorem 3.1 immediately implies a simple RDP analogue of a privacy filter. Specifically,
we show that simply adding up privacy parameters, as in the usual composition where all privacy
parameters are fixed up front, is a valid filter for RDP. First we define an RDP filter formally. This
general definition is used primarily to explain the relationship of our results to the notions and results
in [29]. Our individual privacy filtering application can be derived from Theorem 3.1 directly. As in
equation (1), we let ρt denote the possibly random RDP parameter of order α of At, conditional on
the past reports, defined over an implicit space S of pairs of datasets.

Algorithm 1 Adaptive composition with Rényi privacy filtering
input :dataset S ∈ Xn, maximum number of rounds N ∈ N, sequence of algorithms (Ak)Nk=1
Initialize k = 0
while k < N do

Compute ρk+1 = sup(S1,S2)∈S D
↔
α (Ak+1(a1, . . . , ak, S1)‖Ak+1(a1, . . . , ak, S2))

if Fα,B (ρ1, . . . , ρk+1) = HALT then
BREAK

end
Compute ak+1 = Ak+1(a1, . . . , ak, S), set k ← k + 1

end
Return A(k)(S) = (a1, . . . , ak)

Let S∞ denote the set of all positive, real-valued finite sequences.
Definition 4.1 (RDP filter). Fix α ≥ 1, B ≥ 0. We say that Fα,B : S∞ → {CONT,HALT} is
a valid Rényi privacy filter, or RDP filter for short, if for any sequence (Ak)Nk=1 and any pair of
datasets (S1, S2), Algorithm 1 with S = {(S1, S2)} satisfies D↔α

(
A(k)(S1)‖A(k)(S2)

)
≤ B.

Without loss of generality, we can assume the filter is monotone, namely that if Fα,B (ρ1, . . . , ρk) =
CONT then Fα,B (ρ′1, . . . , ρ

′
k) = CONT whenever ρ′i ≤ ρi,∀i ∈ [k]. This implies that an RDP

filter can be applied with ρk defined using an arbitrary set S instead of just a single pair of datasets.
Lemma 4.2. Fix α ≥ 1, B ≥ 0. IfFα,B : S∞ → {CONT,HALT} is a valid RDP filter, then for any
sequence (Ak)Nk=1 and any set S, Algorithm 1 has sup(S1,S2)∈S D

↔
α

(
A(k)(S1)‖A(k)(S2)

)
≤ B.

We remark that the analyst might choose an algorithm at time t that exceeds the privacy budget, which
will trigger the filter Fα,B to halt. However, the analyst can then decide to change the computation at
time t retroactively and query the filter again, which then might allow continuation. This way, one
can ensure a sequence of N computations with formal privacy guarantees, for any target number of
rounds N . In the following subsection, we present an application of RDP filters to individual privacy
loss accounting which relies on this reasoning.
Theorem 4.3. Let

Fα,B(ρ1, . . . , ρk) =

{
CONT, if

∑k
t=1 ρt ≤ B,

HALT, if
∑k
t=1 ρt > B.

Then, Fα,B is a valid Rényi privacy filter.

Remark 4.4. For algorithms that satisfy zero-concentrated DP (zCDP), the stopping rule of Theorem
4.3 suffices for controlling zCDP privacy loss as well. Namely, if At(a1, . . . , at−1, ·) is κt-zCDP,
then the halting criterion of the Rényi privacy filter with parameters (α, ακ) is

∑k
t=1 ακt ≤ ακ,

which simplifies to
∑k
t=1 κt ≤ κ. Since this stopping rule is independent of α, we conclude that

the overall output is (α, ακ)-RDP for all α ≥ 1, which is equivalent to κ-zCDP. More generally,
Theorem 4.3 extends to tracking Rényi privacy loss for any set of orders {αj}j∈I: if all filters in the
set {Fαj ,B}j∈I output CONT, then the adaptive composition satisfies (αj , B)-RDP, ∀j ∈ I.

4.1 Individual privacy accounting via a privacy filter

Now we design an individual privacy filter, which monitors individual privacy loss estimates across
all individuals and all computations, and ensures that the privacy of all individuals is preserved. The
filter guarantees privacy by adaptively dropping data points once their cumulative individual privacy
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loss estimate is about to cross a pre-specified budget. More specifically, at every step of adaptive
composition t, it determines an active set of points St ⊆ S based on cumulative estimated individual
losses, and applies At only to St.

Algorithm 2 Adaptive composition with individual privacy filtering
input :dataset S ∈ Xn, sequence of algorithms (At)kt=1
for t = 1, . . . , k do

For all Xi ∈ S, compute ρ(i)
t = sup(S1,S2)∈S(Xi,n)D

↔
α

(
At(a(t−1), S1)‖At(a(t−1), S2)

)
Determine active set St = (Xi : Fα,B(ρ

(i)
1 , . . . , ρ

(i)
t ) = CONT)

For all Xi ∈ S, set ρ(i)
t ← ρ

(i)
t 1{Xi ∈ St}

Compute at = At(a1, . . . , at−1, St)
end
Return (a1, . . . , ak)

Here, Fα,B is the filter from Theorem 4.3. Its validity implies that Algorithm 2 preserves RDP.
Theorem 4.5. Adaptive composition with individual privacy filtering (Alg. 2) satisfies (α,B)-RDP.
Remark 4.6. Algorithm 2 can naturally be applied to privacy accounting in the local DP model.
Here, each user would have a local implementation of the individual privacy filter and would stop
responding when the filter halts. This is possible because the decision to halt or continue for any
data point does not depend on the other data points other than through the sequence of reports a(t).

4.2 Answering linear queries

To illustrate the gains of individual privacy, we consider the task of answering adaptively-chosen
high-dimensional linear queries. We aim to design an algorithm that receives a sequence of queries
q1, q2, . . . , where qt : X → Rd for all t ∈ N, and upon receiving qt provides an estimate at of∑n
i=1 qt(Xi), where S = (X1, . . . , Xn) ∈ Xn. In some applications it is natural to expect that, for

a typical user, many of the queries evaluate to a very small value (having norm close to zero). For
example, in the context of continual monitoring [15, 20], a platform might collect one real-valued
indicator per user per day, and wish to make decisions based off the daily averages of these indicators
across users. Here, Xi would be a single user, and qt(Xi) = X

(i)
t would be the corresponding user’s

indicator on day t. For example, X(i)
t ∈ {0, 1} could be a binary indicator of a change of some state

for user i on day t. For simplicity, we will treat the dataset S as fixed, but our results apply to a more
general setting in which the users’ data can be updated after each query; for example, additional
points might arrive in the process of the analysis (see, e.g., [7]).

A prototypical mechanism for answering linear queries is the Gaussian mechanism, which reports
at =

∑n
i=1 qt(Xi) + ξt, where ξt ∼ N(0, σ2Id). If the range of qt is constrained (or clipped) to have

norm at most C, then the worst-case RDP loss incurred by answering qt is (α, ρt) = (α, αC2/(2σ2)).
This implies that the standard analysis—which only considers ρt—allows answering at most k0 =
b2Bσ2/(C2α)c queries in order to ensure (α,B)-RDP. As we mentioned in Example 2.6, the
Gaussian mechanism satisfies (α, ρ

(i)
t )-individual RDP for Xi, where

ρ
(i)
t = α‖qt(Xi)‖22/(2σ2).

Thus the individual privacy filter allows us to provide accurate answers to qt as long as each user’s
responses are “sparse” (more generally, have small

∑t
j=1 ‖qj(Xi)‖22). Formally, we obtain the

following generalization of Theorem 1.2.
Corollary 4.7. There exists an algorithm A that, given a norm budget Bnorm and privacy level κ,
for any adaptively-chosen sequence of queries q1, . . . , qk of arbitrary length k, where qi : X → Rd,
provides a sequence of answers a1, . . . , ak such that: (1) A is κ-zCDP, that is, (α, ακ)-RDP for
all α ≥ 1; (2) for all t and any δ ∈ (0, 1), the probability that ‖at −

∑
Xi∈St

qt(Xi)‖∞ >√
Bnorm log(d/δ)/κ is at most δ, where St = (Xi ∈ S :

∑t
j=1 ‖qj(Xi)‖22 ≤ Bnorm).

Corollary 4.7 follows from Theorem 4.5, by setting each At to be the Gaussian mechanism with
σ2 = Bnorm/(2κ). Note that, due to ρ(i)

t ≤ ρt, all points are active in St for at least the first k0
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computations, as prescribed by the usual worst-case analysis, and during those k0 steps the answers
are guaranteed to be accurate. Therefore, individual privacy provides a more fine-grained way of
quantifying privacy loss by taking into account the value of the point whose loss we aim to measure.
While k is technically allowed to be arbitrarily large, after a certain number of reports we expect few
points to remain active; we discuss stopping criteria in the following section.

4.3 Filter for (ε, δ)-differential privacy

By connections between RDP and DP [4, 26], we can translate our Rényi privacy filter into a filter for
approximate DP. We define a valid DP filter analogously to a valid RDP filter, the difference being
that it takes as input DP, rather than RDP parameters, and that it is parameterized by a global DP
budget εg ≥ 0, δg ∈ (0, 1). We denote by εt the possibly adaptive DP parameter of At,

εt
def
= sup

(S1,S2)∈S
D↔∞

(
At(a(t−1), S1)‖At(a(t−1), S2)

)
.

Here, D∞ denotes the max-divergence, obtained as the limit of Rényi divergence by taking α→∞.
We also denote a DP filter by Gεg,δg .

We focus on advanced composition of pure DP algorithms At. As shown in [29] (see Lemma 3.3
in the latest arXiv version), a DP filter for approximately DP algorithms At can be obtained by an
extension of a filter for pure DP.

Our analysis implies a simple stopping condition for a DP filter, in terms of any zCDP level which
ensures (εg, δg)-DP. For clarity, we give one particularly simple translation from zCDP to DP, however
one could in principle invoke more sophisticated analyses such as those of Bun and Steinke [4].
Theorem 4.8. Let B? be any B ≥ 0 such that B-zCDP implies (εg, δg)-DP. Then,

Gεg,δg (ε1, . . . , εk) =

{
CONT, if 1

2

∑k
t=1 ε

2
t ≤ B?,

HALT, if 1
2

∑k
t=1 ε

2
t > B?

is a valid DP filter. For example, we can take B? = (−
√

log(1/δg) +
√

log(1/δg) + εg)
2.

For example, if the privacy parameters are fixed up front and εt ≡ ε, simplifying the stopping
criterion of the above filter implies that the adaptive composition of k ε-DP algorithm satisfies
( 1

2kε
2 +
√

2k log(1/δ)ε, δ)-DP, for all δ > 0. This tightens the rate of Rogers et al. [29], whose filter
halts when

1

2
kε(eε − 1) +

√
2 (kε2 + C(εg, δg))

(
1 + 0.5 log

(
1 +

kε2

C(εg, δg)

))
log(1/δg) > εg,

where C(εg, δg) =
ε2g

28.04 log(1/δg) . The factor C(εg, δg) essentially determines the gap between our
analysis and the analysis of Rogers et al., and our filter is noticeably tighter for non-negligible values
of C(εg, δg). In addition, our filter has an arguably simpler stopping criterion.

Further improvements on the rate are possible via a more intricate conversion between zCDP and DP,
as presented in [4].

5 Private gradient descent with individual privacy accounting

A popular approach to private model training via gradient descent is to clip the norm of all gradients at
every step and add Gaussian noise to the clipped gradients [1]. Existing analyses compute the privacy
spent so far by using a uniform upper bound on the gradient norms, determined by the clipping value.
Using the individual privacy filter, we develop a less conservative version of this approach, one which
takes into account the realized norms of the gradients, rather than just their upper bound.

There are various ways to incorporate individual privacy filtering into private gradient descent (GD)
[1]. To facilitate the comparison, we present a particularly simple one. As in private GD, at every step
we clip all computed gradients and add Gaussian noise. However, after the round at which private GD
would halt, we look at the “leftover” privacy budget for all points, and utilize them until their budget
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runs out. The leftover budget is essentially the gap between the worst-case sum of squared gradient
norms (determined by the clipping value) and the sum of squared norms of the realized gradients.

Algorithm 3 Private gradient descent with filtering
input :dataset (X1, . . . , Xn), loss function `(θ;Xi), learning rate (ηt)

∞
t=1, noise scale σ > 0, clip

value C > 0, number of steps kmax ∈ N, squared norm budget Bnorm > 0
Initialize θ1 arbitrarily
for t = 1, 2, . . . , kmax do

Compute gradients gt(Xi)← ∇θ`(θt;Xi),∀i
Clip ḡt(Xi)← gt(Xi)

‖gt(Xi)‖2 ·min
{
‖gt(Xi)‖2, C,

√
Bnorm −

∑t−1
j=1 ‖ḡj(Xi)‖22

}
,∀i

Add noise g̃t ← 1
n

∑n
i=1(ḡt(Xi) +N(0, σ2C2I))

Take gradient step θt+1 ← θt − ηtg̃t
end
Return θk+1

For at least bBnorm/C
2c rounds, all gradients get clipped to have norm at most C. After that, points

adaptively get filtered out once the accumulated squared norm of their (clipped) gradients hits Bnorm.

Proposition 5.1. Algorithm 3 satisfies Bnorm

2σ2C2 -zCDP, or, equivalently,
(
α, αBnorm

2σ2C2

)
-RDP for all α ≥ 1.

When Bnorm = kC2, the guarantees of Algorithm 3 are the same as those of private GD with k
steps. However, they do not depend on the total number of steps kmax (kmax need not be equal to
k), which raises the question of how to set kmax. (Certainly kmax should be at least bBnorm/C

2c,
otherwise the privacy budget is not used up fully for any data point.) If kmax is small, we might
stop the optimization too early and thus forgo a potentially higher accuracy; if kmax is large, then a
lot of points might get filtered out and we might add high amounts of noise relative to the number
of active points. One solution is to periodically estimate the number of active points in a privacy-
preserving fashion. After round bBnorm/C

2c, the analyst can estimate the size of the active set
{i :

∑t
j=1 ‖ḡj(Xi)‖22 ≤ Bnorm} (which is a simple linear query) and use it to stop. To reduce the

privacy cost of such estimates one can use the continual monitoring technique [15] since each point is
filtered out only once. Alternatively, if one only wants to ensure that the size of the active set exceeds
a fixed threshold, one can use the sparse vector technique [14, 10] and thus incur an even smaller
privacy loss due to adaptive stopping. Another solution is to periodically check the training accuracy,
which is again a linear query, and stop once it plateaus.

5.1 Experiments

As proof of concept, we compare the performance of private GD and its generalization with filtering
(Algorithm 3) by training a convolutional neural network on MNIST [24]. We use the default
architecture in the MNIST example of the PyTorch Opacus library [33].

We remark that, in practice, it is more common to use private SGD, rather than batch GD. While
in principle it is possible to compute individual privacy parameters for SGD, random subsampling
of points requires computing gradients for all points at every step to observe gains from individual
accounting. As a result, SGD is no less computationally expensive than batch GD in the context of
individual accounting. Nevertheless, GD requires fewer steps and—importantly— we observe that
it achieves a significantly better privacy-utility tradeoff. For example, using the same architecture,
the Opacus library reports accuracy (94.63%± 0.34%) for ε = 1.16 and δ = 10−5, which is almost
the same accuracy we obtain with ε = 0.5 and δ = 10−5 (see table below). Recent large-scale
experiments on differentially private training of language models [2] similarly point to larger batches
leading to higher utility, and we believe this phenomenon likely holds in many other settings and is
worth further exploration.

All reported average accuracies and deviations are estimated over 10 trials. We fix the target DP
parameters (ε, δ), and evaluate the test accuracy. We set δ = 10−5, and vary the value of ε. In the first
set of evaluations, for every ε we tune all algorithm hyperparameters to achieve high test accuracy
with private GD. For private GD with filtering, to make the comparison as clear as possible, we adopt
the same hyperparameters. After Bnorm/C

2 steps, we query the training accuracy a fixed number

9



0 20 40 60 80 100 120 140

Step
0

10000

20000

30000

40000

50000

60000

Nu
m

be
r o

f a
ct

iv
e 

po
in

ts

 = 0.3,  =1e-5

0 50 100 150 200

Step
0

10000

20000

30000

40000

50000

60000

Nu
m

be
r o

f a
ct

iv
e 

po
in

ts

 = 0.5,  =1e-5

Figure 1: Number of active points during one run of private GD with filtering in the tuned regime, for
ε = 0.3 (left) and ε = 0.5 (right). The solid vertical line denotes step Bnorm/C

2.

of times in intervals of 5 steps and stop adaptively, when the training accuracy is observed to be the
highest. We provide the specifics of the stopping rule and other experimental details in the Appendix.

ε GD (tuned) GD (tuned) w/ filtering
0.3 (93.29± 0.49)% (93.64± 0.46)%
0.5 (94.62± 0.43)% (94.90± 0.26)%
1.0 (96.25± 0.23)% (96.25± 0.23)%

GD (suboptimal) GD (suboptimal) w/ filtering
(84.47± 3.95)% (92.25± 0.91)%
(92.07± 2.07)% (94.30± 0.58)%
(94.45± 0.45)% (95.33± 0.34)%

Overall we observe modest accuracy improvements with individual filtering in the tuned regime. The
benefits are more noticeable for small ε, while for large ε, the accuracy plateaus after Bnorm/C

2

steps and hence we do not add extra steps. In Figure 1 we plot the number of active points, i.e. those
that have not yet exhausted their privacy budget, for ε ∈ {0.3, 0.5}. Due to extensive hyperparameter
tuning in this specific application, private GD is implicitly tuned to clip the gradients in such a way
that hard-to-classify points exhaust their privacy budget. Such tuning, however, is not possible when
queries are chosen by human analysts (which is also hard to run experiments on) and in federated
settings where data is held by the clients and finding the optimal setting of hyperparameters is
typically infeasible. Therefore we examine the benefits of individual filtering in examples of such
suboptimally tuned settings. For example, we evaluate the performance when the clipping value C is
chosen to be larger than in the optimal setting (while keeping the noise level the same). Specifically,
for ε ∈ {0.3, 0.5}, we set C to be 1.5 the optimally tuned value, and for ε = 1.0 we set C to be
double the tuned value. We reduce the number of optimization steps accordingly to achieve the same
privacy guarantee. In the suboptimal regime, the benefits of individual filtering become much more
significant as a large fraction of points remain in the active pool after Bnorm/C

2 steps. Similar results
are obtained when the noise rate is not set optimally and we include the results in the Appendix.

Altogether, we view this application as a useful proof of concept: it demonstrates that individual
accounting is practical, easy to implement, and can only make the results better.
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