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Abstract

We propose 3D-SegSync, a novel self-supervised learning (SSL) framework designed to
improve segmentation accuracy for both cardiac and neurological structures. 3D-SegSync
combines the state-of-the-art DINOv2 student-teacher model architecture with a 3D Vision-
LSTM (xLSTM) backbone, which excels at capturing spatiotemporal dependencies and
complex anatomical patterns. The SSL phase leverages large-scale unlabeled datasets to
pre-train the model, while fine-tuning on labeled data ensures excellent performance across
multiple imaging modalities, including CT and MRI. Our framework achieves state-of-
the-art results in cardiac and brain image segmentation. 3D-SegSync sets a new bench-
mark for robust, modality-agnostic medical image segmentation. Code can be found here:
https://github.com/Moona-Mazher/3D-SegSync SSL.

Keywords: Self-Supervised Learning (SSL), Whole Heart Segmentation (WHS), Ischemic
Stroke Lesion Segmentation (ISLES), CT Imaging, MRI Imaging, Cardiac Imaging, Neu-
rological Imaging, xLSTM, Multi-Modal Imaging, Traumatic Brain Injury (TBI).

1. Introduction

Medical image segmentation is critical for accurate diagnosis, treatment planning, and mon-
itoring disease progression, especially in complex 3D tasks such as cardiac and neurological
imaging. However, segmentation in these areas remains challenging due to factors like lim-
ited annotated data, modality variability, and suboptimal image quality. These difficulties
are particularly evident in cardiac and brain imaging, where anatomical complexity, patient
variability, and motion artifacts add complexity.

Challenges in Cardiac and Neurological Imaging: In cardiac imaging, accurate
segmentation of structures like ventricles, atria, myocardium, and blood vessels is essential
for diagnosing heart disease. However, the dynamic shape changes across the cardiac cycle,
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modality variability (CT vs. MRI), and motion artifacts make segmentation difficult. Ex-
isting methods, such as those by (Zhuang and Shen, 2016) and (Isensee et al., 2019), often
struggle with multi-center datasets and modality generalization.

In neurological imaging, accurate segmentation of ischemic stroke lesions is critical for
prognosis and treatment. While MRI is commonly used, the variability in brain anatomy,
lesion complexity, and imaging artifacts present substantial challenges. Models like (Menze
et al., 2015) and (Kohl et al., 2020) have demonstrated robust performance but tend to
rely on large annotated datasets and struggle with generalization across different clinical
settings and modalities.

Gaps in Existing Approaches Ineffective 3D Adaptation: (1) SSL methods like
SimCLR (Chen et al., 2020) and MoCo (He et al., 2020) have been successful in 2D tasks
but fail to capture the long-range spatial dependencies and complex volumetric data of 3D
medical images. (2) Modality-Specific Limitations: Many existing models are optimized
for specific imaging modalities (CT or MRI) and struggle to generalize across different
modalities, leading to reduced performance in multi-modal settings (Ronneberger et al.,
2015a); (Zhu et al., 2021). (3) Dependence on Labeled Data: Despite the promise of SSL,
most methods still require substantial labeled datasets for fine-tuning, which remains a
bottleneck in medical imaging due to the cost and time involved in manual annotation.

Contribution: We propose a two-stage SSL framework combining DINOv2 with a 3D
Vision-LSTM (xLSTM) backbone to capture spatiotemporal dependencies in 3D medical
datasets. The model is pretrained on large unlabeled datasets and fine-tuned on smaller
labeled datasets for specific segmentation tasks.

Innovations: We extend DINOv2 for 3D medical images using the xLSTM backbone,
enabling better capture of spatial dependencies and anatomical features. Our model gen-
eralizes across CT and MRI modalities, reducing reliance on labeled data and addressing
modality-specific biases.

Overall, Our SSL-based framework addresses the critical limitations of existing methods
in both cardiac and neurological imaging. By enhancing robustness, generalizability, and
efficiency, our approach sets a new benchmark in medical image segmentation, offering a
solution to the challenges of limited labeled data and cross-modality segmentation. This
work has the potential to improve clinical decision-making and patient outcomes.

2. Proposed Method

2.1. Dataset

Our study utilised a diverse range of datasets to develop and evaluate our proposed model.
For self-supervised learning (SSL) in whole heart segmentation, we used CT Coronary An-
giography (CTCA) (Gharleghi et al., 2022) images from the Coronary Atlas, ImageCAS
(1,000 patients) (Zeng et al., 2023), ImageTBAD (56 CT angiography images for Type-
B aortic dissection segmentation) (Radl et al., 2022), and the TotalSegmentator dataset
(1,204 CT scans) (Wasserthal et al., 2023). Additionally, the validation datasets from the
”Evaluation of Algorithms for Multi-Modality Whole Heart Segmentation” (MMWHS) chal-
lenge (Zhuang et al., 2019) and the ”Whole Heart Segmentation++” (WHS++) challenge
(Zhuang and Shen, 2016) were incorporated during SSL, while the training samples from
MMWHS and WHS++ were used for downstream segmentation tasks. Along with the
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MMWHS ans WHS++ we used HVSMR-2.0 (Pace et al., 2024) dataset for the whole heart
segmentation task. For neurological/brain imaging tasks, we leveraged ISLES datasets,
including ISLES 2022 (de la Rosa et al., 2024) (400 MRI cases) and previous versions
(ISLES 2015, 2016, 2018), alongside the ATLAS dataset (Liew et al., 2022), which evolved
from 304 cases in v1.2 to 1,271 cases in v2.0. All datasets were incorporated into the SSL
framework, enabling the model to learn generalizable feature representations. The model
was fine-tuned on ISLES 2024 for stroke lesion segmentation and further validated on Trau-
matic Brain Injury (TBI) segmentation, demonstrating its robustness across diverse medical
imaging tasks.

2.2. Proposed Framework for Heart and Brain Segmentation

Figure 1 presents the overall workflow of the proposed model for whole heart and brain
lesion segmentation. The framework comprises four primary stages:

2.2.1. Data Collection and Preprocessing

A variety of datasets, including whole heart CT and MRI scans as well as brain imaging
datasets for stroke lesion and TBI segmentation, were curated and preprocessed. This stage
involved data augmentation techniques such as flipping, scaling, and noise addition, along-
side brightness and contrast adjustments. These transformations were applied to prepare
the data for SSL and downstream tasks.

2.2.2. Introduction of a 3D Student-Teacher Model

A 3D student-teacher model, inspired by the 2D DINOv2 (Oquab et al., 2023) framework,
is designed on the xLSTM-UNet architecture for the SSL phase. In this model, the teacher
encoder’s parameters are updated through a momentum-based mechanism derived from the
student encoder’s updates, ensuring progressive improvements in feature representations.
The student encoder is optimized via backpropagation, while the teacher encoder is updated
iteratively for consistent learning. This combination of self-supervised learning, momentum
updates, and data augmentation enhances the model’s ability to deliver accurate results in
3D medical image segmentation. Detailed methodology and mathematical explanations are
provided in AppendixC.

2.2.3. Supervised Fine-Tuning for Segmentation

In the third stage, the model was fine-tuned using a limited amount of labelled data for
segmentation tasks, including whole heart and stroke lesion segmentation. During this
phase, the encoder and bottom layers are fine-tuned to optimise segmentation performance
for specific applications.

2.2.4. Evaluation and Performance Analysis

The final stage involved rigorous evaluation of the model’s performance through compre-
hensive analysis. The results were benchmarked against state-of-the-art (SOTA) models
(3D-nnUNet (Isensee et al., 2021), 3D-UNet (Ronneberger et al., 2015b), 3D-ResUNet (Li
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et al., 2023)), demonstrating the superior accuracy and robustness of the proposed approach
in both heart and brain segmentation tasks.

Figure 1: 3D-SegSync framework architecture.

3. Results

We evaluated the performance of our proposed 3D SegSync model on multiple datasets,
including three whole-heart (MMWHS, WHS++, HVSMR-2.0 (Pace et al., 2024)), and
two neurological/brain imaging (ISLES-2024 stroke and TBI), using an 80/20 training-
validation split. Results from Figure 2 show that 3D-SegSync consistently outperforms
state-of-the-art (SOTA) models, achieving higher Dice scores and lower Hausdorff Distance
95% (HD95) values across all cardiac imaging datasets, including CT and MRI. In the Dice
Coefficient plots (top row), 3D-SegSync demonstrates superior segmentation accuracy with
higher medians and a narrow interquartile range (IQR), indicating consistent performance.
Similarly, in the HD-95 plots (bottom row), 3D-SegSync achieves lower median values,
reflecting reduced segmentation error and greater reliability compared to models like 3D-
UNet and 3D-ResNet, which exhibit higher errors and variability.

3D-SegSync, leveraging multi-layer SSL pre-training, achieves significantly higher Dice
and lower HD95 scores than its variant 3D-SegSync bottom, which uses only bottom-layer
SSL features. This multi-layer approach captures richer hierarchical representations, en-
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abling superior segmentation performance with greater accuracy, lower error rates, and
enhanced stability.

Figure 2: Performance comparison of the proposed 3D-SegSync and SOTA models on Dice
and HD-95 metrics across Whole Heart segmentation datasets.

Figure 3: Dice coefficient per label for each model for performance analysis of the proposed
model with SOTA approaches on the HVSMR dataset. The labels include LV, RV, and
other anatomical structures.

In Figure 3, we presented detailed segmentation results on the HVSMR dataset to
showcase 3D-SegSync’s performance across all labels. The model excelled in segmenting
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anatomical structures like the left ventricle (LV), aorta (AO), and pulmonary artery (PA),
achieving superior Dice scores even for smaller or challenging structures. Box plots revealed
3D-SegSync’s higher median Dice Coefficient, narrow interquartile range (IQR), and consis-
tent performance, even with outliers, highlighting its robustness. This improvement stems
from advanced multi-layer SSL pre-training, enabling richer feature representation. Unlike
3D-SegSync-bottom, the full model integrates high-level context for better segmentation
accuracy and fine boundary capture, as evidenced by lower HD95 values. Further analysis
of generalization across imaging modalities and significance maps is provided in AppendixB.

Figure 4: Performance comparison of the proposed 3D-SegSync and SOTA models on Dice
and HD-95 metrics across TBI and ISLES brain lesion segmentation datasets.

Table 1: Performance analysis of 3D-SegSync with its variants and SOTA models for all
heart and brain imaging datasets.

Average DICE Coefficient

3D-SegSync 3D-SegSync Botom xLSTM-UNET 3D-nnUNet 3D-ResUNet 3D-UNet

HVSMR-2.0 0.77132 0.753696 0.766224 0.745084 0.706659 0.670413

MMWHS CT 0.941531 0.931573 0.927654 0.917473 0.891598 0.886358

MMWHS MRI 0.87167 0.86413 0.86338 0.85904 0.84187 0.83663

WHS++ CT 0.976996 0.941146 0.935651 0.927362 0.915044 0.872164

WHS++ MRI 0.887617 0.886642 0.87293 0.869232 0.851003 0.858753

TBI 0.782532 0.724659 0.686121 0.678905 0.678905 0.643323

ISLES2024 0.848296 0.804858 0.798529 0.769919 0.742434 0.702374

Average HD 95

HVSMR-2.0 17.25634 24.21755 29.22956 22.12653 68.07598 35.08616

MMWHS CT 14.39735 18.868 17.65168 19.64561 35.8839 58.16591

MMWHS MRI 29.02241 46.32272 51.50929 23.19734 42.48808 86.60793

WHS++ CT 5.281255 17.94436 21.58496 29.60166 64.24364 80.54156

WHS++ MRI 12.19138 13.17895 16.08778 16.02272 20.14479 16.35387

TBI 19.45671 23.17893 24.13334 25.31134 27.21234 28.18971

ISLES2024 29.22114 31.67891 34.72802 35.09987 39.61133 38.87633

Figure 4 compares the performance of 3D-SegSync with state-of-the-art models (3D-
SegSync-bottom, xLSTM-UNet, 3D-nnUNet, 3D-ResUNet, 3D-UNet) on the ISLES2024
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stroke and TBI datasets. 3D-SegSync outperforms all models, achieving the highest Dice
scores and lowest HD95 values.

Table 1 presents the Dice and HD95 scores across heart and brain imaging datasets,
demonstrating that 3D-SegSync outperforms all models, with 3D-SegSync-bottom coming
second. This variant fine-tunes only the bottom-layer features during segmentation training.
The results indicate that optimizing all layers of the encoder leads to better performance.
A detailed explanation of each dataset can be found in AppendixB.

Figure 5: Quantitative Performance of the Proposed and SOTA Models on the MMWHS
CT Dataset. Colour representation: Purple (AO), Yellow (RA), Red (LV), Light Blue
(Myo), Gray (PA), Blue (LA), Green (RV).

Figure 5 illustrates the quantitative performance of the proposed 3D-SegSync on the
MMWHS CT dataset. The results demonstrate that the proposed 3D-SegSync model
achieves a segmentation output that is closely aligned with the ground truth (GT) seg-
mentation map, outperforming other SOTA models across most anatomical regions of the
whole heart. Among the comparative models, 3D-ResUNet and 3D-UNet demonstrate a
higher rate of segmentation errors, especially in the pulmonary veins and aorta. The SOTA
3D-nnUNet, while performing comparatively better, exhibits noticeable errors in the right
atrium, as shown in the 3D segmentation map. These observations provide valuable insights
into the potential areas for further refinement in cardiac segmentation methods.

Figure 6: Quantitative analysis of the proposed 3D-SegSync model compared to state-of-
the-art (SOTA) models for TBI lesion segmentation.

Beyond whole-heart segmentation, we validated the efficacy of our proposed model on
the neurological/brain imaging datasets such as the TBI dataset (see Figure 4) from the
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MICCAI (Medical Image Computing and Computer Assisted Intervention) 2024 Grand
Challenge. Our model secured first place in the TBI validation and testing phases, demon-
strating its exceptional accuracy and generalisability. The leaderboard for the TBI challenge
can be accessed at https://aims-tbi.grand-challenge, where our team, DeepLearnAI, is listed
in the top position. Additionally, we tested our model on the ISLES-2024 stroke challenge
(see Figure 4), achieving first place on the leaderboard under the team name Dolphins.
The leaderboard for the ISLES challenge can be viewed at https://isles-24.grand. These
achievements on both TBI and ISLES-2024 challenges underline the superior performance
of our proposed model compared to other SOTA deep learning approaches.

Figure 6 presents a quantitative analysis of the proposed 3D-SegSync model compared
to state-of-the-art (SOTA) models for TBI lesion segmentation. It demonstrates that the
3D-SegSync model outperforms state-of-the-art models in segmentation accuracy, aligning
closely with the ground truth. In contrast, the baseline xLSTM model shows significant
limitations. The complex and heterogeneous nature of lesions in moderate to severe TBI
(msTBI) presents challenges for accurate neuroimaging analysis. 3D-SegSync effectively
addresses these challenges by capturing the intricate features of msTBI lesions, enabling
precise segmentation even in the presence of high variability.

The success of 3D-SegSync across various datasets and modalities highlights its robust-
ness and versatility. By leveraging pre-trained SSL features, the model reduces reliance on
large labeled datasets, making it highly effective in medical imaging where annotated data
is limited. These results establish 3D-SegSync as a reliable solution for diverse medical
image segmentation challenges.

Future work could involve applying SSL to larger datasets for improved generalizability,
extending 3D-SegSync to other imaging modalities (e.g., ultrasound, PET), and incorpo-
rating multi-modal data (e.g., clinical or genomic data) to improve diagnostic accuracy.
Incorporating interpretability techniques could further enhance trust in clinical applica-
tions. Addressing these areas will help 3D-SegSync evolve into a more powerful tool for
medical imaging.

4. Conclusion

We introduced 3D-SegSync, a robust 3D medical image segmentation framework designed
to address challenges like data scarcity, modality variability, and anatomical complexity. By
combining the DINOv2 teacher-student architecture with the xLSTM-UNet, 3D-SegSync
leverages self-supervised learning to extract rich, modality-independent 3D features from
large-scale unlabelled datasets. The xLSTM-UNet further enhances the model’s ability
to capture spatial and contextual relationships in 3D imaging, making it highly effective
for segmentation tasks. This fully 3D framework achieves state-of-the-art performance in
whole-heart, stroke lesion, and traumatic brain injury segmentation across CT and MRI, sig-
nificantly reducing dependence on labeled datasets. By uniting powerful 3D self-supervised
learning with efficient design, 3D-SegSync sets a new benchmark in medical imaging, offer-
ing improved scalability and clinical relevance. Future work will explore its application to
broader tasks, strengthening its cross-modality capabilities and impact.
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Appendix A. Proposed 3D-SegSync Architecture

See the Figure 7

Figure 7: Proposed 3D-SegSync model architecture.

Appendix B. Comparsions of 3D-SegSync with SOTA models

Figure 9 demonstrates 3D-SegSync’s ability to generalise across different imaging modali-
ties, out-performing SOTA models in both CT and MRI datasets for whole-heart segmen-
tation. This ability to learn modality-independent features via SSL pre-training ensures its
applicability in clinical settings where multimodal imaging is common.

Figure 8 presents significance maps, where 3D-SegSync consistently shows higher yellow
regions, indicating statistically significant improvements in Dice and HD95 metrics com-
pared to other models. 3D SegSync bottom shows fewer yellow regions in comparison with
its advance version 3D-SegSync, reflecting its weaker performance, while 3D-UNet displays
highest blue regions, indicating significantly lowest performance among all models in most
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of the datasets such as HVSMR and WHS++. We have also given the model ranks on the
all whole heart segmentation datasets in Figure 10.

Figure 8: Significance maps of the proposed 3D-SegSync and SOTA models on DICE (a)
and HD-95 (b) metrics across Whole Heart segmentation datasets.

Table 2: Performance analysis of proposed and state of the art models for HVSMR-2.0
dataset.

Model Dice Avg All HD Avg All HD95 Avg All ASSD Avg All Vol Diff Avg All

3D-SegSync 0.77132 17.25634 8.006959 2.02056 0.02273048

3D-SegSync Botom 0.753696 24.21755 10.89928 3.03842 0.024452868

xLSTM-UNET 0.766224 29.22956 11.74866 3.100872 0.026769222

3D-nnUNet 0.745084 22.12653 10.00376 2.39672 0.026893855

3D-ResUNet 0.706659 68.07598 26.91917 7.344615 0.037925875

3D-UNet 0.670413 35.08616 16.39909 4.138591 0.037455937

Table 3: Performance analysis of proposed and SOTA models using MMWHS CT dataset.

Model Dice Avg HD Avg HD95 Avg ASSD Avg Vol Diff Avg

3D-SegSync 0.941531281 14.3973592 4.197811849 0.942519917 0.006214206

3D-SegSync-Botom 0.93157309 18.8680027 3.95788033 0.964365257 0.006409229

xLSTM-UNET 0.927654749 17.6516858 5.022211073 1.014969103 0.006599423

3D-nnUNet 0.917473901 19.6456178 7.166018194 1.330353153 0.006746526

3D-ResUNet 0.891598521 35.883997 7.205884387 1.666301144 0.006330065

3D-UNet 0.886358506 58.1659145 8.820965598 2.036248398 0.008241135

Table 2 shows the segmentation results on the HVSMR-2.0 whole-heart MRI dataset
demonstrate that 3D-SegSync achieved the best overall performance, with the highest Dice
score (0.7713), the lowest ASSD (2.0206 mm), and the smallest volume difference (0.0227),
indicating accurate overlap, surface alignment, and volume estimation. 3D-SegSync Botom
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Figure 9: Cross modality performance comparison of 3D-Segsync and SOTA models for
whole-heart howsegmentation across CT and MRI datasets. (a) WHS++ dataset, where
green bars show CT and mustard bars show MRI. (b) MMWHS dataset, where orange bars
show CT and blue bars show MRI.

and xLSTM-UNET also performed well, with Dice scores of 0.7537 and 0.7662, respectively,
though both exhibited higher Hausdorff distances (HD95 of 10.8993 mm and 11.7487 mm)
and ASSD values, reflecting less precise boundary alignment. While 3D-nnUNet showed
good surface alignment (ASSD of 2.3967 mm), its lower Dice score (0.7451) and higher
HD95 (10.0038 mm) suggest moderate segmentation accuracy. In contrast, 3D-ResUNet
and 3D-UNet underperformed, with significantly lower Dice scores (0.7067 and 0.6704) and
much higher HD95 (26.9192 mm and 16.3991 mm), indicating poor boundary and surface
alignment. Overall, 3D-SegSync is the most reliable model for whole-heart segmentation in
this dataset.
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Figure 10: Blob plots illustrating the stability of rankings of whole heart segmentation
datasets based on bootstrap sampling. The median rank for each algorithm is represented
by a black cross, while the 95% bootstrap intervals across samples are depicted as black
lines.

Table 3 shows the segmentation results on the MMWHS dataset demonstrate that 3D-
SegSync achieved the best overall performance, with the highest Dice score (0.9415), the
lowest ASSD (0.9425 mm), and a minimal volume difference (0.0062), indicating excellent
overlap, surface alignment, and volume estimation. 3D-SegSync-Botom also performed
well, with a Dice score of 0.9316 and the lowest HD95 (3.9579 mm), though it showed
slightly higher ASSD (0.9644 mm). xLSTM-UNET attained a Dice score of 0.9277 but
exhibited higher HD95 (5.0222 mm) and ASSD (1.0150 mm), reflecting less precise boundary
alignment. 3D-nnUNet demonstrated moderate performance, with a Dice score of 0.9175
and higher HD95 (7.1660 mm) and ASSD (1.3304 mm). In contrast, 3D-ResUNet and
3D-UNet underperformed, with significantly lower Dice scores (0.8916 and 0.8864) and
considerably higher HD95 (7.2059 mm and 8.8210 mm) and ASSD (1.6663 mm and 2.0362
mm), indicating poor boundary and surface alignment. Overall, 3D-SegSync is the most
effective model for whole-heart segmentation in this dataset.

Tables 4, 5, and 6present the results of CT and MRI whole-heart segmentation, where
the proposed 3D-SegSync model, employing a self-supervised learning approach, consis-
tently outperformed state-of-the-art (SOTA) models across Dice and other key performance
metrics. The model demonstrated superior accuracy in overlap, boundary alignment, and
volume estimation, validating its effectiveness for both CT and MRI modalities. Addition-
ally, the model was evaluated on the WHS++ dataset, where similar performance trends
were observed, reinforcing its generalisability to different datasets.

Furthermore, the proposed 3D-SegSync was assessed against SOTA models for stroke
lesion segmentation (ISLES2024) and traumatic brain injury (TBI) lesion segmentation
tasks. In these evaluations (Tables 7 and 8), 3D-SegSync consistently delivered robust and
reliable performance, showcasing its versatility and efficacy in segmenting diverse anatomical
and pathological structures. These results highlight the potential of the self-supervised
3D-SegSync model to set a new standard in medical image segmentation across multiple
domains.
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Table 4: Performance analysis of proposed and SOTA models using MMWHS MRI dataset.

Model Dice Avg HD Avg HD95 Avg ASSD Avg Vol Diff Avg

3D-SegSync 0.87167 29.02241 6.871293 1.831784 0.008656418

3D-SegSync Botom 0.86413 46.32272 6.813768 2.231868 0.009208905

xLSTM-UNET 0.86338 51.50929 7.029732 2.266159 0.008637976

3D-nnUNet 0.85904 23.19734 7.03841 1.946138 0.010388217

3D-ResUNet 0.84187 42.48808 7.26451 2.05212 0.00868741

3D-UNet 0.83663 86.60793 17.44347 3.115857 0.009206529

Table 5: Performance analysis of proposed and SOTA models using WHS++ CT dataset.

Model Dice Avg HD Avg HD95 Avg ASSD Avg Vol Diff Avg

3D-SegSync 0.976996 5.281255 1.251489 0.301377 0.001588615

3D-SegSync Botom 0.941146 17.94436 5.572338 1.184542 0.003344029

xLSTM-UNET 0.935651 21.58496 8.052558 1.677745 0.003928403

3D-nnUNet 0.927362 29.60166 6.834203 1.301429 0.003741077

3D-ResUNet 0.915044 64.24364 13.20491 2.291552 0.004881045

3D-UNet 0.872164 80.54156 26.13814 5.87906 0.00934523

Table 6: Performance analysis of proposed and SOTA models using WHS++ MRI dataset.

Model Dice Avg HD Avg HD95 Avg ASSD Avg Vol Diff Avg

3D-SegSync 0.887617 12.19138 5.696797 1.577587 0.006581231

3D-SegSync Botom 0.886642 13.17895 5.460724 1.625685 0.006799575

xLSTM-UNET 0.87293 16.08778 7.373174 1.892255 0.007296956

3D-nnUNet 0.869232 16.02272 7.136496 1.927073 0.007132139

3D-ResUNet 0.851003 20.14479 6.741368 1.969676 0.007659463

3D-UNet 0.858753 16.35387 7.723141 2.168973 0.008124995

Table 7: Performance analysis of proposed and SOTA models using TBI MRI dataset.

Model Dice Avg HD Avg HD95 Avg ASSD Avg Vol Diff Avg

3D-SegSync 0.782532 19.45671 15.36666 2.45671 0.275341

3D-SegSync Botom 0.724659 23.17893 17.99199 3.01345 0.492328

xLSTM-UNET 0.686121 24.13334 19.92581 3.18965 0.718707

3D-nnUNet 0.678905 25.31134 17.84589 3.30567 0.739339

3D-ResUNet 0.678905 27.21234 17.84589 4.17865 0.786737

3D-UNet 0.643323 28.18971 18.62511 6.34567 0.852835
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Table 8: Performance analysis of proposed and SOTA models using ISLES2024 dataset.

Model Dice Avg HD Avg HD95 Avg ASSD Avg Vol Diff Avg

3D-SegSync 0.848296 29.22114 21.05371 2.78653 0.840097

3D-SegSync Botom 0.804858 31.67891 20.2839 1.89765 0.840068

xLSTM-UNET 0.798529 34.72802 25.56568 2.93112 0.865685

3D-nnUNet 0.769919 35.09987 27.30891 2.98765 0.887896

3D-ResUNet 0.74243459 39.61133 30.11339 4.23478 0.900569

3D-UNet 0.702374 38.87633 30.9896 6.13459 0.946751

Appendix C. Methodology & Mathematical Details of the Proposed
Framework

C.1. Methodology

The proposed framework is built on a self-supervised learning (SSL) (Mazher et al., 2024) ap-
proach designed to pre-train a 3D Vision-LSTM (xLSTM) integrated UNet model (xLSTM-
UNet) (Oquab et al., 2023; Chen et al., 2024). The methodology combines advanced deep
learning techniques to achieve enhanced performance in 3D medical image segmentation
tasks. The main diagram of proposed SSL model is shown in AppendixA.

C.1.1. Data Augmentation in the Student-Teacher Framework

Robust data augmentation plays a critical role in the SSL pipeline. Techniques such as
flipping, scaling, Gaussian noise addition, Gaussian blur, and adjustments to brightness
and contrast are applied to create diverse and informative training inputs. Two augmented
views of each input image are generated and processed through a Siamese network struc-
ture, comprising the student and teacher encoders. The teacher encoder’s outputs are
refined through centring, sharpening, and normalisation via a softmax function, producing
supervision signals for the student encoder.

The loss function ensures alignment between the student’s outputs and the teacher’s
processed outputs by minimising divergence, employing cross-entropy loss and mean squared
error (MSE) (Oquab et al., 2023). This alignment facilitates robust feature learning from
unlabelled data, enhancing the model’s generalisation capabilities.

C.1.2. xLSTM-UNet Architecture

The xLSTM-UNet model (Chen et al., 2024) integrates Vision-LSTM (xLSTM), an ad-
vanced extension of Long Short-Term Memory (LSTM) networks, into the UNet archi-
tecture. xLSTM excels at capturing long-range dependencies and contextual information,
complementing the UNet’s strength in extracting local features through its convolutional
encoder-decoder design. The encoder identifies hierarchical features from the input, while
the decoder reconstructs these features into detailed segmentation maps, enabling precise
and reliable segmentation.
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C.1.3. Self-Supervised Pre-Training and Supervised Fine-Tuning

The SSL framework focuses on pre-training the xLSTM-UNet encoder using unlabelled data
to capture meaningful spatial and contextual features. Once pre-trained, the encoder is fine-
tuned in a supervised manner using labelled datasets, optimising the decoder to generate
accurate segmentation maps. This two-stage process minimises the reliance on extensive
labelled datasets, while the xLSTM module ensures effective learning of global context and
long-range dependencies.

C.2. Mathematical Details of the Proposed Framework

The momentum teacher encoder’s parameters θt are updated based on the student encoder’s
parameters θs using a momentum-based approach:

θt = m · θt + (1−m) · θs (1)

Where θt are the parameters of the teach encoder, θs are the parameters of the student
encoder, m is the momentum coefficient typically a value close to 1.

Let x be the original input image. Two different views of the input, x1 and, x2 are
generated using strong data augmentations:

x1 = Augment(x), x2 = Augment(x) (2)

Both views are then processed through the student encoder fs and teacher encoder ft
to extract feature representations:

h1 = fs(x1; θs), h2 = fs(x2; θs) (3)

h′1 = fs(x1; θt), h′2 = fs(x2; θt) (4)

Where h1 and h2 are the feature representations from the student encoder, h′1 and h′2
are the feature representations from the teacher encoder.

The feature representations h1, h2, h
′
1 , h′2 are subjected to global average pooling to

reduce them into feature vectors:

v1 = GAP(h1), v2 = GAP(h2) (5)

v′1 = GAP(h′1), v′2 = GAP(h′2) (6)

Where v1, v2, v
′
1 and v′2 are the resulting feature vectors.

z1 = MLP(v1), z2 = MLP(v2) (7)

z′1 = MLP(v′1), z′2 = MLP(v′2) (8)

After projection, the teacher’s output is centered, sharpened, and passed through a
softmax function to produce the supervision signal:
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q′1 = Softmax

(
Center(z′1)

τ

)
(9)

q′2 = Softmax

(
Center(z′2)

τ

)
(10)

Where Center(z) subtracts the mean of the vector to have zero mean. τ is the temper-
ature parameter controlling the sharpness of the distribution. Softmax(z) normalizes the
vector into a probability distribution.

The loss function is designed to minimize the divergence between the student’s feature
vectors and the teacher’s processed outputs. A common choice is the cross-entropy loss or
mean squared error (MSE) between the student’s and teacher’s outputs:

L =
1

2

(
Loss(z1, q

′
2) + Loss(z2, q

′
1)
)

(11)

Where this loss function encourages the student encoder to produce feature representa-
tions that align closely with the teacher’s outputs, thus enabling effective learning from the
unlabeled data.

For the downstreaming segmentation training task we used the cross-entropy loss as
given in the equation below :

L(z, q′) = −
K∑
k=1

q′[k] log(Softmax(z)[k]) (12)

18


	Introduction
	Proposed Method
	Dataset
	Proposed Framework for Heart and Brain Segmentation 
	Data Collection and Preprocessing
	Introduction of a 3D Student-Teacher Model
	Supervised Fine-Tuning for Segmentation
	Evaluation and Performance Analysis


	Results
	Conclusion
	Proposed 3D-SegSync Architecture
	Comparsions of 3D-SegSync with SOTA models
	Methodology & Mathematical Details of the Proposed Framework
	Methodology
	Data Augmentation in the Student-Teacher Framework
	xLSTM-UNet Architecture
	Self-Supervised Pre-Training and Supervised Fine-Tuning

	Mathematical Details of the Proposed Framework


