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Abstract

We propose 3D-SegSync, a self-supervised learning (SSL) framework designed to im-
prove segmentation accuracy for both cardiac and neurological structures. It integrates
a student-teacher model with a 3D Vision-LSTM (xLSTM) backbone to capture spatial
dependencies in volumetric data. The SSL phase utilizes large-scale unlabeled datasets for
pretraining, followed by fine-tuning on labeled data to improve segmentation across CT
and MRI scans. Experimental results demonstrate that 3D-SegSync achieves consistent
performance across different anatomical structures. Additionally, its ability to general-
ize between CT and MRI without requiring modality-specific modifications highlights its
adaptability for cardiac and neurological image segmentation. Given its strong perfor-
mance, 3D-SegSync has the potential to be extended to other medical image segmentation
tasks in the future. Code can be found here: https://github.com/Moona-Mazher/3D-
SegSync SSL.

Keywords: Self-Supervised Learning (SSL), Whole Heart Segmentation (WHS), Ischemic
Stroke Lesion Segmentation (ISLES), CT Imaging, MRI Imaging, Cardiac Imaging, Neu-
rological Imaging, xLSTM, Multi-Modal Imaging, Traumatic Brain Injury (TBI).

1. Introduction

Medical image segmentation is critical for accurate diagnosis, treatment planning, and mon-
itoring disease progression, especially in complex 3D tasks such as cardiac and neurological
imaging. However, segmentation in these areas remains challenging due to factors like lim-
ited annotated data, modality variability, and suboptimal image quality. These difficulties
are particularly evident in cardiac and brain imaging, where anatomical complexity, patient
variability, and motion artifacts add complexity.

Challenges in Cardiac and Neurological Imaging: In cardiac imaging, accurate
segmentation of structures like ventricles, atria, myocardium, and blood vessels is essential
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for diagnosing heart disease. However, the dynamic shape changes across the cardiac cycle,
modality variability (CT vs. MRI), and motion artifacts make segmentation difficult. Ex-
isting methods, such as those by (Zhuang and Shen, 2016) and (Isensee et al., 2019), often
struggle with multi-center datasets and modality generalization.

In neurological imaging, accurate segmentation of ischemic stroke lesions is critical for
prognosis and treatment. While MRI is commonly used, the variability in brain anatomy,
lesion complexity, and imaging artifacts present substantial challenges. Models like (Menze
et al., 2015) and (Kohl et al., 2020) have demonstrated robust performance but tend to
rely on large annotated datasets and struggle with generalization across different clinical
settings and modalities.

Gaps in Existing Approaches: (1) SSL methods like SimCLR (Chen et al., 2020) and
MoCo (He et al., 2020) have been successful in 2D tasks but fail to capture the long-range
spatial dependencies and complex volumetric data of 3D medical images. Recent advance-
ments have introduced 3D SSL models such as SwinMM (Wang et al., 2023), SwinSSL
(Tang et al., 2022), VoCo (Wu et al., 2024), and Hi-End-MAE (Tang et al., 2025) to handle
volumetric data of 3D medical images. However, these models still face limitations in fully
adapting to the 3D nature of medical data, particularly in accurately modeling the intricate
spatial relationships and improving segmentation performance across the entire volume of
the image. These methods often focus on learning low-level features from local patches, but
they may not explicitly model long-range dependencies between slices, which is crucial for
accurate segmentation in 3D data. (2) Modality-Specific Limitations: Many existing models
are optimized for specific imaging modalities (CT or MRI) and struggle to generalize across
different modalities, leading to reduced performance in multi-modal settings (Ronneberger
et al., 2015a); (Zhu et al., 2021). (3) Dependence on Labeled Data: Despite the promise of
SSL, most methods still require substantial labeled datasets for fine-tuning, which remains
a bottleneck in medical imaging due to the cost and time involved in manual annotation.

Contribution: Our study integrates 3D self-supervised learning (SSL) pretraining with
xLSTM for medical image segmentation, particularly for large-scale CT and MRI datasets in
cardiology and neurology. Inspired by the DINOv2 student-teacher framework, we extend its
principles from 2D to 3D by replacing Vision Transformers (ViTs) with a 3D xLSTM-based
encoder. While state-of-the-art SSL models like DINOv2, MAE, SwinMM, and SwinSSL
rely on ViTs for feature learning, our approach leverages xLSTM to capture long-range
spatial dependencies across slices, making it more effective for volumetric medical imaging.
Pretrained on large unlabeled datasets and fine-tuned on smaller labeled ones, our model
enhances segmentation accuracy and reliability in cardiology and neurology by leveraging
SSL and xLSTM for improved feature representation and anatomical structure learning.

Our SSL-based framework helps overcome key challenges in cardiac and neurological
imaging, including limited labeled data and cross-modality segmentation. By improving
feature learning and spatial dependency modeling, our approach enhances segmentation
performance and adaptability. This work has the potential to support clinical decision-
making and improve patient outcomes in the future.
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2. Proposed Method

2.1. Dataset

We curated and preprocessed whole heart CT/MRI and brain MRI datasets for self-supervised
learning (SSL) and segmentation tasks. For whole heart segmentation, we used CT Coro-
nary Angiography (CTCA) (Gharleghi et al., 2022) from the Coronary Atlas, ImageCAS
(1,000 patients) (Zeng et al., 2023), ImageTBAD (56 CT angiography images) (Radl et al.,
2022), and TotalSegmentator (1,204 CT scans) (Wasserthal et al., 2023). Unlabeled vali-
dation datasets (held by the challenge organizers to evaluate the participating teams’ per-
formance) from the MMWHS (Zhuang et al., 2019) and WHS++ (Zhuang and Shen, 2016)
challenges were included for SSL pretraining, while labeled training sets from MMWHS,
WHS++, and HVSMR-2.0 (Pace et al., 2024) were used for fine-tuning. For brain imag-
ing SSL pretraining, we leveraged ISLES datasets, including ISLES 2022 (400 MRI cases)
(de la Rosa et al., 2024) and previous versions (ISLES 2015, 2016, 2018), along with ATLAS
(Liew et al., 2022) (304 cases in v1.2, 1,271 in v2.0). The model was fine-tuned on ISLES
2024 for stroke lesion segmentation and Traumatic Brain Injury (TBI) leision segmenta-
tion. The dataset distribution followed three phases: 1. pretraining on large, unlabeled
(Cardiac: CT/MRI) (Brain: MRI) datasets for general feature learning, 2. fine-tuning with
labeled datasets for the heart (HVSMR-2.0, MMWHS-CT, WHS++CT, MMWHS-MRI,
WHS++MRI) and brain (ISLES 2024, TBI) segmentation These datasets were split into
80% for training and 20% for testing. 3. Finally, in the testing phase, we evaluated the
model on the remaining 20% of labeled data for both heart and brain segmentation tasks
to assess its performance after pretraining and fine-tuning.

2.2. Proposed Framework for SSL Pretraining and Fine-tuning

Figure 1 presents the overall workflow of the proposed model for whole heart and brain
lesion segmentation. The framework comprises three primary sections:

2.2.1. PROPOSED 3D SSL STUDENT-TEACHER MODEL

A 3D student-teacher model, inspired by the 2D DINOv2 (Oquab et al., 2023) framework,
is built on the xLSTM-UNet architecture for the SSL phase. We pretrained separate SSL
models for cardiac and brain images, fine-tuning them for segmentation tasks. The xL-
STM component captures long-range slice dependencies, ensuring spatial coherence, crucial
for accurate segmentation. Unlike a Vision Transformer (ViT), our model uses xLSTM to
model slice-to-slice relationships in 3D medical images, improving segmentation for cardiac
and brain tasks. The student encoder is optimized via backpropagation, while the teacher
encoder updates using a momentum-based EMA (Exponential Moving Average) mecha-
nism. Contrastive self-distillation helps the student match the teacher’s representations,
and a hybrid loss function KL divergence and Mean Squared Error (MSE) enhances feature
learning. Detailed methodology is provided in AppendixC.

2.2.2. The xLSTM Module

The xLSTM block integrates convolutional processing with a modified LSTM (mLSTM)
for enhanced feature extraction and sequential modeling. It starts with a convolutional
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layer, instance normalization (IN), and Leaky ReLU activation to capture spatial patterns
and stabilize training. The output is flattened, normalized, and split into two pathways:
one undergoes a linear transformation with SiLU activation, while the other undergoes a
flip operation before mLSTM processing to capture long-range dependencies. The path-
ways are merged, followed by a final linear transformation and a residual connection to
preserve information and improve gradient flow. By combining convolutional and recurrent
architectures, xLSTM extracts local spatial features while efficiently modeling sequential
dependencies. The flip mechanism enables bidirectional processing, ensuring both past and
future dependencies are captured, while normalization and residual connections enhance
stability and training efficiency.

2.2.3. Supervised Fine-Tuning for Segmentation

In this stage, the pre-trained SSL models on the cardiac and neurological images were fine-
tuned using a limited amount of labeled data for the respective segmentation tasks, including
whole heart and stroke and traumatic brain injury lesion segmentation. During this phase,
the pre-trained student encoder is fine-tuned to optimize segmentation performance for
specific applications.

Figure 1: Overview of the 3D SSL student-teacher pretraining framework and downstream
fine-tuning segmentation pipeline, incorporating the xLSTM module.
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2.3. Evaluation and Performance Analysis

For the rigorous evaluation of the 3D-SegSync performance through comprehensive analysis,
the results were benchmarked against its variant (3D-SegSync Bottom: only bottom layer
of the pretrained SSL encoder was updated) and other state-of-the-art (SOTA) models
(3D-nnUNet 3D-nnUNet (Isensee et al., 2021), 3D-UNet (Ronneberger et al., 2015b), 3D-
ResUNet (Li et al., 2023)), demonstrating the superior accuracy and robustness of the
proposed approach in both heart and brain segmentation tasks. We further extended our
comparison to the latest SSL methods that have been specifically developed for 3D medical
imaging (SwinMM, SwinSSL, Voco, and Hi-End-MAE) to provide a more comprehensive
evaluation of the benefits of our pretraining approach (see Table 2)

2.4. Training and optimization

We developed a self-supervised learning (SSL) framework in PyTorch for segmentation tasks,
optimized using the Adam optimizer (LR: 0.00001) for stable convergence. Our model is
trained with a batch size of 2 and a patch size of 96×96×96 during SSL and 128×128×128
during downstream tasks, for 1000 epochs. SSL includes data augmentation techniques such
as random cropping, flipping, color jittering, Gaussian blur, and solarization, with a loss
function using KL divergence and MSE. For downstream tasks, augmentations include flip-
ping, scaling, noise addition, brightness/contrast adjustments, and RandGaussianRotate,
RandGaussianSmooth, RandZoomd, RandAdjustContrast, RandGaussianNoise, RandShift-
Intensity, and RandCrop. The downstream loss function combines cross-entropy and Dice
loss to improve segmentation. A sliding window approach ensures smooth predictions dur-
ing inference. Training took 15 hours for SSL (with early stopping at 20 epochs) and 24
hours for downstream tasks, using an A6000 GPU with 48 GB of memory.

3. Results

We evaluated the performance of our proposed 3D SegSync model on multiple datasets,
including three whole-heart (MMWHS, WHS++, HVSMR-2.0 (Pace et al., 2024)), and two
neurological/brain imaging (ISLES-2024 stroke and TBI). Results from Figure 2 consis-
tently demonstrate that 3D-SegSync outperforms state-of-the-art (SOTA) models, achiev-
ing superior Dice scores and lower Hausdorff Distance 95% (HD95) values in all cardiac
imaging datasets including CT and MRI modalities. It highlights that 3D-SegSync utilized
multi-layer SSL pre-training and achieved significantly higher Dice scores and lower HD95
values compared to 3D-SegSync bottom, which only uses SSL features from the bottom
layer. This multi-layer feature extraction allows 3D-SegSync to capture richer, hierarchical
representations, leading to superior segmentation performance.

In Figure 3, we present detailed segmentation results on the HVSMR-2.0 dataset to
showcase 3D-SegSync’s performance across all labels. The model excels in segmenting
anatomical structures like the left ventricle (LV), aorta (AO), and pulmonary artery (PA),
achieving superior Dice scores, even for smaller structures. This highlights the model’s
ability to balance local detail with broader anatomical context. Further analysis of 3D-
SegSync’s generalization across imaging modalities and significance maps is provided in
AppendixB. This improvement stems from advanced multi-layer SSL pre-training, enabling
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3D-SegSync to learn richer feature representations. Unlike 3D-SegSync-bottom, which relies
on low-level features, the full 3D-SegSync model integrates high-level context for enhanced
segmentation accuracy and captures fine anatomical boundaries, as indicated by signifi-
cantly lower HD95 values. Figure 4 compares the performance of 3D-SegSync with state-of-
the-art models (3D-SegSync-bottom, xLSTM-UNet, 3D-nnUNet, 3D-ResUNet, 3D-UNet)
on the ISLES2024 stroke and TBI datasets. 3D-SegSync outperforms all models, achieving
the highest Dice scores and lowest HD95 values.

Figure 2: Performance comparison of the proposed 3D-SegSync and SOTA models on Dice
and HD-95 metrics across Whole Heart segmentation datasets.

Figure 3: Dice coefficient per label for each model for performance analysis of the proposed
model with SOTA approaches on the HVSMR dataset. The labels include LV, RV, and
other anatomical structures.
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Figure 4: Performance comparison of the proposed 3D-SegSync and SOTA models on Dice
and HD-95 metrics across TBI and ISLES brain lesion segmentation datasets.

Table 1: Performance analysis of 3D-SegSync with its variants and SOTA models for all
heart and brain imaging datasets.

Average Dice Coefficient (±SD)

Dataset 3D-SegSync 3D-SegSync-Bottom xLSTM-UNet 3D-muUNet 3D-ResUNet 3D-UNet

HVSMR-2.0 0.77 ± 0.02 0.75 ± 0.03 0.76 ± 0.04 0.74 ± 0.05 0.70 ± 0.05 0.67 ± 0.06

MMWHS CT 0.94 ± 0.01 0.93 ± 0.02 0.90 ± 0.03 0.91 ± 0.03 0.88 ± 0.04 0.85 ± 0.05

MMWHS MRI 0.88 ± 0.02 0.86 ± 0.03 0.85 ± 0.03 0.84 ± 0.03 0.81 ± 0.04 0.79 ± 0.05

WHIS++ CT 0.97 ± 0.01 0.94 ± 0.02 0.93 ± 0.02 0.92 ± 0.02 0.91 ± 0.03 0.87 ± 0.04

WHIS++ MRI 0.88 ± 0.02 0.87 ± 0.03 0.85 ± 0.03 0.83 ± 0.04 0.80 ± 0.04 0.78 ± 0.05

TBI 0.78 ± 0.03 0.72 ± 0.04 0.70 ± 0.04 0.68 ± 0.05 0.66 ± 0.06 0.63 ± 0.06

ISLES2024 0.84 ± 0.02 0.80 ± 0.03 0.79 ± 0.03 0.76 ± 0.04 0.74 ± 0.04 0.72 ± 0.05

Average HD (±SD)

Dataset 3D-SegSync 3D-SegSync-Bottom xLSTM-UNet 3D-muUNet 3D-ResUNet 3D-UNet

HVSMR-2.0 17.25 ± 2.4 24.21 ± 3.2 21.19 ± 2.8 22.16 ± 3.1 28.87 ± 3.7 33.17 ± 4.0

MMWHS CT 14.39 ± 1.2 18.62 ± 2.5 19.56 ± 2.6 19.14 ± 2.8 35.48 ± 4.1 38.25 ± 4.5

MMWHS MRI 29.02 ± 3.1 31.76 ± 3.6 33.41 ± 4.0 34.12 ± 4.1 38.62 ± 4.7 40.77 ± 5.1

WHIS++ CT 5.28 ± 0.8 17.94 ± 2.2 21.58 ± 2.4 29.60 ± 3.5 61.24 ± 5.2 65.11 ± 5.6

WHIS++ MRI 5.12 ± 0.9 13.17 ± 1.7 21.43 ± 2.3 25.01 ± 2.9 58.71 ± 5.0 62.88 ± 5.4

TBI 19.45 ± 2.6 23.17 ± 3.1 24.13 ± 3.4 27.20 ± 3.9 33.57 ± 4.3 36.12 ± 4.8

ISLES2024 29.22 ± 3.2 31.67 ± 3.5 34.72 ± 3.8 35.09 ± 4.0 39.61 ± 4.5 38.87 ± 4.7

Table 1 shows that 3D-SegSync outperforms all models in heart and brain imaging
datasets, with 3D-SegSync-bottom coming second. This variant fine-tunes only the bottom-
layer features, indicating that optimizing all encoder layers improves performance. For a
comprehensive comparison with the latest 3D SSL SOTA models (Hi-End-MAE, SwinSSL,
SwinMM, and Voco), Table 2 presents performance scores on the MMWHS (CT) dataset
for whole heart segmentation. 3D-SegSync achieves the highest Dice score (0.94), lowest
HD (14.39), HD95 (4.197), ASSD (0.942), and Vol Diff (0.0062), outperforming other mod-
els. Compared to SwinSSL (Dice: 0.909, HD: 19.033) and Hi-End-MAE (Dice: 0.869, HD:
23.212), our model demonstrates superior segmentation accuracy and robustness, highlight-
ing its effectiveness in cardiac medical image analysis. A further explanation of the results
of each dataset can be found in AppendixB.
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Table 2: Performance analysis of 3D-SegSync with latest SOTA 3D SSL models for
MMWHS(CT) dataset.

Model Dice (±SD) HD (±SD) HD95 (±SD) ASSD (±SD) Vol Diff (±SD) p-value (Dice)

3D-SegSync 0.94 ± 0.01 14.39 ± 1.2 4.197 ± 0.4 0.942 ± 0.1 0.0062 ± 0.0005 -

SwinMM (2023) 0.91 ± 0.03 17.33 ± 2.8 6.762 ± 1.4 1.087 ± 0.3 0.00785 ± 0.0010 0.002*

SwinSSL (2022) 0.90 ± 0.04 19.03 ± 3.1 8.011 ± 1.7 2.089 ± 0.5 0.00922 ± 0.0012 0.001*

Voco (2024) 0.92 ± 0.02 16.78 ± 2.5 6.181 ± 1.3 1.111 ± 0.3 0.00779 ± 0.0009 0.003*

Hi-End-MAE (2025) 0.86 ± 0.05 23.21 ± 3.5 10.81 ± 2.0 2.009 ± 0.6 0.00982 ± 0.0015 <0.001*

Figure 5: Quantitative Performance of the Proposed and SOTA Models on the MMWHS
CT Dataset. Colour representation: Purple (AO), Yellow (RA), Red (LV), Light Blue
(Myo), Gray (PA), Blue (LA), Green (RV).

Figure 5 illustrates the quantitative performance of the proposed 3D-SegSync on the
MMWHS CT dataset. The results demonstrate that the proposed 3D-SegSync model
achieves a segmentation output that is closely aligned with the ground truth (GT) seg-
mentation map, outperforming other SOTA models across most anatomical regions of the
whole heart. Among the comparative models, 3D-ResUNet and 3D-UNet demonstrate a
higher rate of segmentation errors, especially in the pulmonary veins and aorta. The SOTA
3D-nnUNet, while performing comparatively better, exhibits noticeable errors in the right
atrium, as shown in the 3D segmentation map. These observations provide valuable insights
into the potential areas for further refinement in cardiac segmentation methods.

Beyond whole-heart segmentation, we validated the efficacy of our proposed model on
the neurological/brain imaging datasets such as the TBI dataset (see Figure 4) from the
MICCAI (Medical Image Computing and Computer Assisted Intervention) 2024 Grand
Challenge. Our model secured first place in the TBI validation and testing phases, demon-
strating its exceptional accuracy and generalisability. The leaderboard for the TBI challenge
can be accessed at https://aims-tbi.grand-challenge, where our team, DeepLearnAI, is listed
in the top position. Additionally, we tested our model on the ISLES-2024 stroke challenge
(see Figure 4), achieving first place on the leaderboard under the team name Dolphins.
The leaderboard for the ISLES challenge can be viewed at https://isles-24.grand. These
achievements on both TBI and ISLES-2024 challenges underline the superior performance
of our proposed model compared to other SOTA deep learning approaches.
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Figure 6: Quantitative analysis of the proposed 3D-SegSync model compared to state-of-
the-art (SOTA) models for TBI lesion segmentation.

Figure 6 shows a quantitative analysis of the 3D-SegSync model for TBI lesion segmen-
tation, demonstrating its superior accuracy compared to state-of-the-art models. Unlike the
baseline xLSTM model, 3D-SegSync captures the intricate features of moderate to severe
TBI (msTBI) lesions, overcoming challenges of high variability for precise segmentation.
Its success across various datasets and modalities highlights its robustness and versatility.
By leveraging pre-trained SSL features, the model reduces dependence on large labeled
datasets, making it highly effective in medical imaging with limited annotated data. These
results position 3D-SegSync as a reliable solution for medical image segmentation.

Future work could involve applying SSL to larger datasets for improved generalizability,
extending 3D-SegSync to other imaging modalities (e.g., ultrasound, PET), and incorpo-
rating multi-modal data (e.g., clinical or genomic data) to improve diagnostic accuracy.
Incorporating interpretability techniques could further enhance trust in clinical applica-
tions. Addressing these areas will help 3D-SegSync evolve into a more powerful tool for
medical imaging.

4. Conclusion

We introduced 3D-SegSync, a robust 3D medical image segmentation framework designed
to address challenges like data scarcity, modality variability, and anatomical complexity. By
combining the DINOv2 teacher-student architecture with the xLSTM-UNet, 3D-SegSync
leverages self-supervised learning to extract rich, modality-independent 3D features from
large-scale unlabeled datasets. The xLSTM-UNet further enhances the model’s ability
to capture spatial and contextual relationships in 3D imaging, making it highly effective
for segmentation tasks. This fully 3D framework achieves state-of-the-art performance in
whole-heart, stroke lesion, and traumatic brain injury segmentation across CT and MRI, sig-
nificantly reducing dependence on labeled datasets. By uniting powerful 3D self-supervised
learning with efficient design, 3D-SegSync sets a new benchmark in medical imaging, offer-
ing improved scalability and clinical relevance. Future work will explore its application to
broader tasks, strengthening its cross-modality capabilities and impact.
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Appendix A. Proposed Framework

Figure 7: 3D-SegSync framework architecture ( 1. data curation, 2. pretraining using SSL
on unlabelled datasets on cardiac and brain images, 3. fine-tuning step for cardiac and
brain image segmentation using labeled datasets, 4. Performance analysis of 3D-Segsync
with SOTA models).
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Appendix B. Comparsions of 3D-SegSync with SOTA models

Figure 9 demonstrates 3D-SegSync’s ability to generalize across different imaging modali-
ties, outperforming SOTA models in both CT and MRI datasets for whole-heart segmen-
tation. This ability to learn modality-independent features via SSL pre-training ensures its
applicability in clinical settings where multimodal imaging is common.

Figure 8 presents significance maps, where 3D-SegSync consistently shows higher yellow
regions, indicating statistically significant improvements in Dice and HD95 metrics com-
pared to other models. 3D SegSync bottom shows fewer yellow regions in comparison with
its advance version 3D-SegSync, reflecting its weaker performance, while 3D-UNet displays
highest blue regions, indicating significantly lowest performance among all models in most
of the datasets such as HVSMR and WHS++. We have also given the model ranks on the
all whole heart segmentation datasets in Figure 10.

Table 3: Performance analysis of proposed and state of the art models for HVSMR-2.0
dataset.

Model Dice Avg All HD Avg All HD95 Avg All ASSD Avg All Vol Diff Avg All

3D-SegSync 0.77132 17.25634 8.006959 2.02056 0.02273048

3D-SegSync Botom 0.753696 24.21755 10.89928 3.03842 0.024452868

xLSTM-UNET 0.766224 29.22956 11.74866 3.100872 0.026769222

3D-nnUNet 0.745084 22.12653 10.00376 2.39672 0.026893855

3D-ResUNet 0.706659 68.07598 26.91917 7.344615 0.037925875

3D-UNet 0.670413 35.08616 16.39909 4.138591 0.037455937

Figure 8: Significance maps of the proposed 3D-SegSync and SOTA models on DICE (a)
and HD-95 (b) metrics across Whole Heart segmentation datasets.
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Figure 9: Cross modality performance comparison of 3D-Segsync and SOTA models for
whole-heart how segmentation across CT and MRI datasets. (a) WHS++ dataset, where
green bars show CT and mustard bars show MRI. (b) MMWHS dataset, where orange bars
show CT and blue bars show MRI.

Table 3 shows the segmentation results on the HVSMR-2.0 whole-heart MRI dataset
demonstrate that 3D-SegSync achieved the best overall performance, with the highest Dice
score (0.7713), the lowest ASSD (2.0206 mm), and the smallest volume difference (0.0227),
indicating accurate overlap, surface alignment, and volume estimation. 3D-SegSync Botom
and xLSTM-UNET also performed well, with Dice scores of 0.7537 and 0.7662, respectively,
though both exhibited higher Hausdorff distances (HD95 of 10.8993 mm and 11.7487 mm)
and ASSD values, reflecting less precise boundary alignment. While 3D-nnUNet showed
good surface alignment (ASSD of 2.3967 mm), its lower Dice score (0.7451) and higher
HD95 (10.0038 mm) suggest moderate segmentation accuracy. In contrast, 3D-ResUNet
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and 3D-UNet underperformed, with significantly lower Dice scores (0.7067 and 0.6704) and
much higher HD95 (26.9192 mm and 16.3991 mm), indicating poor boundary and surface
alignment. Overall, 3D-SegSync is the most reliable model for whole-heart segmentation in
this dataset.

Figure 10: Blob plots illustrating the stability of rankings of whole heart segmentation
datasets based on bootstrap sampling. The median rank for each algorithm is represented
by a black cross, while the 95% bootstrap intervals across samples are depicted as black
lines.

Table 4 shows the segmentation results on the MMWHS dataset demonstrate that 3D-
SegSync achieved the best overall performance, with the highest Dice score (0.9415), the
lowest ASSD (0.9425 mm), and a minimal volume difference (0.0062), indicating excellent
overlap, surface alignment, and volume estimation. 3D-SegSync-Botom also performed
well, with a Dice score of 0.9316 and the lowest HD95 (3.9579 mm), though it showed
slightly higher ASSD (0.9644 mm). xLSTM-UNET attained a Dice score of 0.9277 but
exhibited higher HD95 (5.0222 mm) and ASSD (1.0150 mm), reflecting less precise boundary
alignment. 3D-nnUNet demonstrated moderate performance, with a Dice score of 0.9175
and higher HD95 (7.1660 mm) and ASSD (1.3304 mm). In contrast, 3D-ResUNet and
3D-UNet underperformed, with significantly lower Dice scores (0.8916 and 0.8864) and
considerably higher HD95 (7.2059 mm and 8.8210 mm) and ASSD (1.6663 mm and 2.0362
mm), indicating poor boundary and surface alignment. Overall, 3D-SegSync is the most
effective model for whole-heart segmentation in this dataset.

Table 4: Performance analysis of proposed and SOTA models using MMWHS CT dataset.

Model Dice Avg HD Avg HD95 Avg ASSD Avg Vol Diff Avg

3D-SegSync 0.941531281 14.3973592 4.197811849 0.942519917 0.006214206

3D-SegSync-Botom 0.93157309 18.8680027 3.95788033 0.964365257 0.006409229

xLSTM-UNET 0.927654749 17.6516858 5.022211073 1.014969103 0.006599423

3D-nnUNet 0.917473901 19.6456178 7.166018194 1.330353153 0.006746526

3D-ResUNet 0.891598521 35.883997 7.205884387 1.666301144 0.006330065

3D-UNet 0.886358506 58.1659145 8.820965598 2.036248398 0.008241135

Tables 5, 6, and 7present the results of CT and MRI whole-heart segmentation, where
the proposed 3D-SegSync model, employing a self-supervised learning approach, consis-
tently outperformed state-of-the-art (SOTA) models across Dice and other key performance

16



3D Self-Supervised Learning for Medical Imaging

metrics. The model demonstrated superior accuracy in overlap, boundary alignment, and
volume estimation, validating its effectiveness for both CT and MRI modalities. Addition-
ally, the model was evaluated on the WHS++ dataset, where similar performance trends
were observed, reinforcing its generalisability to different datasets.

Furthermore, the proposed 3D-SegSync was assessed against SOTA models for stroke
lesion segmentation (ISLES2024) and traumatic brain injury (TBI) lesion segmentation
tasks. In these evaluations (Tables 8 and 9), 3D-SegSync consistently delivered robust and
reliable performance, showcasing its versatility and efficacy in segmenting diverse anatomical
and pathological structures. These results highlight the potential of the self-supervised
3D-SegSync model to set a new standard in medical image segmentation across multiple
domains.

Table 5: Performance analysis of proposed and SOTA models using MMWHS MRI dataset.

Model Dice Avg HD Avg HD95 Avg ASSD Avg Vol Diff Avg

3D-SegSync 0.87167 29.02241 6.871293 1.831784 0.008656418

3D-SegSync Botom 0.86413 46.32272 6.813768 2.231868 0.009208905

xLSTM-UNET 0.86338 51.50929 7.029732 2.266159 0.008637976

3D-nnUNet 0.85904 23.19734 7.03841 1.946138 0.010388217

3D-ResUNet 0.84187 42.48808 7.26451 2.05212 0.00868741

3D-UNet 0.83663 86.60793 17.44347 3.115857 0.009206529

Table 6: Performance analysis of proposed and SOTA models using WHS++ CT dataset.

Model Dice Avg HD Avg HD95 Avg ASSD Avg Vol Diff Avg

3D-SegSync 0.976996 5.281255 1.251489 0.301377 0.001588615

3D-SegSync Botom 0.941146 17.94436 5.572338 1.184542 0.003344029

xLSTM-UNET 0.935651 21.58496 8.052558 1.677745 0.003928403

3D-nnUNet 0.927362 29.60166 6.834203 1.301429 0.003741077

3D-ResUNet 0.915044 64.24364 13.20491 2.291552 0.004881045

3D-UNet 0.872164 80.54156 26.13814 5.87906 0.00934523

Table 7: Performance analysis of proposed and SOTA models using WHS++ MRI dataset.

Model Dice Avg HD Avg HD95 Avg ASSD Avg Vol Diff Avg

3D-SegSync 0.887617 12.19138 5.696797 1.577587 0.006581231

3D-SegSync Botom 0.886642 13.17895 5.460724 1.625685 0.006799575

xLSTM-UNET 0.87293 16.08778 7.373174 1.892255 0.007296956

3D-nnUNet 0.869232 16.02272 7.136496 1.927073 0.007132139

3D-ResUNet 0.851003 20.14479 6.741368 1.969676 0.007659463

3D-UNet 0.858753 16.35387 7.723141 2.168973 0.008124995
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Table 8: Performance analysis of proposed and SOTA models using TBI MRI dataset.

Model Dice Avg HD Avg HD95 Avg ASSD Avg Vol Diff Avg

3D-SegSync 0.782532 19.45671 15.36666 2.45671 0.275341

3D-SegSync Botom 0.724659 23.17893 17.99199 3.01345 0.492328

xLSTM-UNET 0.686121 24.13334 19.92581 3.18965 0.718707

3D-nnUNet 0.678905 25.31134 17.84589 3.30567 0.739339

3D-ResUNet 0.678905 27.21234 17.84589 4.17865 0.786737

3D-UNet 0.643323 28.18971 18.62511 6.34567 0.852835

Table 9: Performance analysis of proposed and SOTA models using ISLES2024 dataset.

Model Dice Avg HD Avg HD95 Avg ASSD Avg Vol Diff Avg

3D-SegSync 0.848296 29.22114 21.05371 2.78653 0.840097

3D-SegSync Botom 0.804858 31.67891 20.2839 1.89765 0.840068

xLSTM-UNET 0.798529 34.72802 25.56568 2.93112 0.865685

3D-nnUNet 0.769919 35.09987 27.30891 2.98765 0.887896

3D-ResUNet 0.74243459 39.61133 30.11339 4.23478 0.900569

3D-UNet 0.702374 38.87633 30.9896 6.13459 0.946751

Appendix C. Methodology & Mathematical Details of the Proposed
Framework

C.1. Methodology

The proposed framework is built on a self-supervised learning (SSL) (Mazher et al., 2024) ap-
proach designed to pre-train a 3D Vision-LSTM (xLSTM) integrated UNet model (xLSTM-
UNet) (Oquab et al., 2023; Chen et al., 2024). The methodology combines advanced deep
learning techniques to achieve enhanced performance in 3D medical image segmentation
tasks. The main diagram of proposed SSL model is shown in AppendixA.

C.1.1. Data Augmentation in the Student-Teacher Framework

Robust data augmentation plays a critical role in the SSL pipeline. Techniques such as
flipping, scaling, Gaussian noise addition, Gaussian blur, and adjustments to brightness
and contrast are applied to create diverse and informative training inputs. Two augmented
views of each input image are generated and processed through a Siamese network struc-
ture, comprising the student and teacher encoders. The teacher encoder’s outputs are
refined through centring, sharpening, and normalisation via a softmax function, producing
supervision signals for the student encoder.

The loss function ensures alignment between the student’s outputs and the teacher’s
processed outputs by minimising divergence, employing cross-entropy loss and mean squared
error (MSE) (Oquab et al., 2023). This alignment facilitates robust feature learning from
unlabelled data, enhancing the model’s generalisation capabilities.
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C.1.2. xLSTM-UNet Architecture

The xLSTM-UNet model (Chen et al., 2024) integrates Vision-LSTM (xLSTM), an ad-
vanced extension of Long Short-Term Memory (LSTM) networks, into the UNet archi-
tecture. xLSTM excels at capturing long-range dependencies and contextual information,
complementing the UNet’s strength in extracting local features through its convolutional
encoder-decoder design. The encoder identifies hierarchical features from the input, while
the decoder reconstructs these features into detailed segmentation maps, enabling precise
and reliable segmentation.

C.1.3. Self-Supervised Pre-Training and Supervised Fine-Tuning

The SSL framework focuses on pre-training the xLSTM-UNet encoder using unlabelled data
to capture meaningful spatial and contextual features. Once pre-trained, the encoder is fine-
tuned in a supervised manner using labelled datasets, optimising the decoder to generate
accurate segmentation maps. This two-stage process minimises the reliance on extensive
labelled datasets, while the xLSTM module ensures effective learning of global context and
long-range dependencies.

C.2. Mathematical Details of the Proposed Framework

The momentum teacher encoder’s parameters θt are updated based on the student encoder’s
parameters θs using a momentum-based approach:

θt = m · θt + (1−m) · θs (1)

Where θt are the parameters of the teach encoder, θs are the parameters of the student
encoder, m is the momentum coefficient typically a value close to 1.

Let x be the original input image. Two different views of the input, x1 and, x2 are
generated using strong data augmentations:

x1 = Augment(x), x2 = Augment(x) (2)

Both views are then processed through the student encoder fs and teacher encoder ft
to extract feature representations:

h1 = fs(x1; θs), h2 = fs(x2; θs) (3)

h′1 = fs(x1; θt), h′2 = fs(x2; θt) (4)

Where h1 and h2 are the feature representations from the student encoder, h′1 and h′2
are the feature representations from the teacher encoder.

The feature representations h1, h2, h
′
1 , h′2 are subjected to global average pooling to

reduce them into feature vectors:

v1 = GAP(h1), v2 = GAP(h2) (5)

v′1 = GAP(h′1), v′2 = GAP(h′2) (6)
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Where v1, v2, v
′
1 and v′2 are the resulting feature vectors.

z1 = MLP(v1), z2 = MLP(v2) (7)

z′1 = MLP(v′1), z′2 = MLP(v′2) (8)

After projection, the teacher’s output is centered, sharpened, and passed through a
softmax function to produce the supervision signal:

q′1 = Softmax

(
Center(z′1)

τ

)
(9)

q′2 = Softmax

(
Center(z′2)

τ

)
(10)

Where Center(z) subtracts the mean of the vector to have zero mean. τ is the temper-
ature parameter controlling the sharpness of the distribution. Softmax(z) normalizes the
vector into a probability distribution.

The loss function is designed to minimize the divergence between the student’s feature
vectors and the teacher’s processed outputs. A common choice is the cross-entropy loss or
mean squared error (MSE) between the student’s and teacher’s outputs:

L =
1

2

(
Loss(z1, q

′
2) + Loss(z2, q

′
1)
)

(11)

Where this loss function encourages the student encoder to produce feature representa-
tions that align closely with the teacher’s outputs, thus enabling effective learning from the
unlabeled data.

For the downstreaming segmentation training task we used the cross-entropy loss as
given in the equation below :

L(z, q′) = −
K∑
k=1

q′[k] log(Softmax(z)[k]) (12)
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