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ABSTRACT

Class distribution skews in imbalanced datasets may lead to models with predic-
tion bias towards majority classes, making fair assessment of classifiers a chal-
lenging task. Balanced Accuracy is a popular metric used to evaluate a classifier’s
prediction performance under such scenarios. However, this metric falls short
when classes vary in importance, especially when class importance is skewed dif-
ferently from class cardinality distributions. In this paper, we propose a simple
and general-purpose evaluation framework for imbalanced data classification that
is sensitive to arbitrary skews in class cardinalities and importances. Experiments
with several state-of-the-art classifiers tested on real-world datasets and bench-
marks from two different domains show that our new framework is more effective
than Balanced Accuracy – not only in evaluating and ranking model predictions,
but also in training the models themselves.

1 INTRODUCTION

For a broad range of machine learning (ML) tasks, predictive modeling in the presence of imbal-
anced datasets – those with severe distribution skews – has been a long-standing problem (He &
Garcia, 2009; Sun et al., 2009; He & Ma, 2013; Branco et al., 2016; Hilario et al., 2018; Johnson
& Khoshgoftaar, 2019). Imbalanced training datasets lead to models with prediction bias towards
majority classes, which in turn results in misclassification of the underrepresented ones. Yet, those
minority classes often are the ones that correspond to the most important events of interest (e.g.,
errors in system logs (Zhu et al., 2019), infected patients in medical diagnosis (Cohen et al., 2006),
fraud in financial transactions (Makki et al., 2019)). While there is often an inverse correlation be-
tween the class cardinalities and their importance (i.e., rare classes are more important than others),
the core problem here is the mismatch between the way these two distributions are skewed: the ith

most common class is not necessarily the ith most important class (see Figure 1a for an illustration).
In fact, rarity is one of many potential criteria that can determine the importance of a class, which
is usually positively correlated with the costs or risks involved in its misprediction. Ignoring these
criteria when dealing with imbalanced data classification may have detrimental consequences.

Consider automatic classification of messages in system event logs as an example (Zhu et al., 2019).
An event log is a temporal sequence of event messages that have transpired for a given software
system (e.g., operating systems, cyber-physical systems) over a certain period of time. Event logs
are particularly useful after a system has been deployed. These logs can provide the DevOps teams
with information and insights about errors outside of the testing environment, thereby improving
their ability to debug and improve the quality of the system. There is typically an inverse correlation
between the stability/maturity of a system and the frequency of the errors it produces in its event
log. Furthermore, the message types that appear least frequently in an event log are usually the ones
with the greatest importance. A concrete example of this was a rare anomaly in Uber’s self-driving
car that led to the death of a pedestrian, since the system flagged it as a false positive (Efrati, 2018).
If this event had not been misclassified and dismissed by the system, the pedestrian death in Arizona
may have been avoided.

A plethora of approaches have been proposed for building balanced classifiers (e.g., resampling to
balance datasets, imbalanced learning methods, prediction post-processing (Sun et al., 2009; Branco
et al., 2016)). A fundamental issue that still remains an open challenge is the lack of a generally-
accepted methodology for measuring classification performance. The traditional metrics, which are
designed to evaluate average case performance, (e.g., Accuracy) are not capable of correctly assess-
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(a) Skew in distributions (b) Example

Figure 1: Skew in distributions of Class Cardinalities or Class Importance, and the potential mis-
match between these two distributions render Accuracy and Balanced Accuracy metrics unusable in
general multi-class prediction problems.

ing the results in presence of arbitrary skew mismatches between class cardinalities and importances.
On the other hand, metrics specifically proposed for imbalanced learning are either domain-specific,
do not easily generalize beyond two classes, or can not support varying class importance (e.g., Bal-
anced Accuracy) (Japkowicz, 2013).

Let us illustrate the problem with the simple example depicted in Figure 1b. The test dataset consists
of 100 data items from 3 classes (A, B, C). The greatest majority of the items belong to class C
(70/100), but class B (20/100) has the greatest importance (0.7/1.0). In other words, Cardinality and
Importance are both non-uniform and in favor of different classes (i.e., falls in the top-right quadrant
of Figure 1a). The confusion matrix on the right-hand side shows the results from a classifier that
was run against this test dataset. Unsurprisingly, the classifier performed the best in labeling the
majority class C (60/70 correct predictions). When this result is evaluated using the traditional
Accuracy metric, neither Class Cardinality nor Class Importance is taken into account. If Balanced
Accuracy is used instead, we observe the degrading impact of the skew in Class Cardinality (0.38 <
0.65), but Class Importance is still not accounted for. This example demonstrates the need for a
new evaluation approach that is both sensitive to Cardinality and Importance skew, as well as any
arbitrary correlations between them. This is especially critical for ensuring a fair assessment of
results, when comparing across multiple classifiers or problem instances.

Our goal in this paper is to design an evaluation framework for imbalanced data classification, which
can be reliably used to measure, compare, train, and tune classifier performance in a way that is sen-
sitive to non-uniform class importance. We identify two key design principles for such a framework:

• Simplicity: It should be intuitive and easy to use and interpret.
• Generality: It should be general-purpose, i.e., (i) extensible to an arbitrary number of classes and

(ii) customizable to any application domain.

To meet the first design goal, we focus on scalar metrics such as Accuracy (as opposed to graph-
ical metrics such as ROC curves), as they are simpler, more commonly used, and scale well with
increasing numbers of classes and models. To meet the second design goal, we target the more
general n-ary classification problems (as opposed to binary), as well as providing the capability to
flexibly adjust class weights to capture non-uniform importance criteria that may vary across appli-
cation domains. Note that we primarily focus on Accuracy as our base scalar metric in this paper, as
it is seen as the de facto metric for classification problems (Sci). However, our framework is general
enough to be extended to other scalar metrics, such as Precision and Recall. Similarly, while we
deeply examine two applications (log parsing and sentiment analysis) in this work, our framework in
principle is generally applicable to any domain with imbalanced class and importance distributions.

In the rest of this paper, we first provide a brief overview of related work in Section 2. Section 3
presents our new, class-weighted evaluation framework. In Section 4, we show the practical utility of
our framework by applying it over three log parsing systems (Drain (He et al., 2017), MoLFI (Mes-
saoudi et al., 2018), Spell (Du & Li, 2016; 2018)) using four real-world benchmarks (Zhu et al.,
2019), as well as over a variety of deep learning models developed for sentiment analysis on a cus-
tomer reviews dataset from Amazon (Ni et al., 2019). Finally, we conclude the paper with a brief
discussion of future directions.
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2 RELATED WORK

Imbalanced Data Classification. Imbalanced data is prevalent in almost every domain (Cohen
et al., 2006; Batuwita & Palade, 2012; Makki et al., 2019). The growing adoption of ML models
in diverse application domains has led to a surge in imbalanced data classification research (He &
Garcia, 2009; Sun et al., 2009; He & Ma, 2013; Branco et al., 2016; Hilario et al., 2018; Johnson
& Khoshgoftaar, 2019). While the proposed techniques widely vary, they fall under four basic cat-
egories: pre-processing training data to establish balance via sampling-based techniques (e.g., (Es-
tabrooks et al., 2004; Blaszczynski & Stefanowski, 2015)), building custom learning techniques for
imbalanced training data (e.g., (Joshi et al., 2001; Castro & de Pádua Braga, 2013)), post-processing
predictions from an imbalanced model (e.g., (Maloof, 2003)), and their hybrids (e.g., (Estabrooks
& Japkowicz, 2001)). In this paper, we do not propose a new imbalanced learning technique, but
rather a general-purpose performance evaluation framework that could be used in the training and/or
testing of models for any technique. Section 4 demonstrates the practical utility of our framework
for a variety of ML models from two different application domains.
Evaluation Metrics. Traditional metrics for evaluating prediction performance such as Accuracy,
Sensitivity/Specificity (and their combination G-mean), Precision/Recall (and their combination F-
Score) were not designed with imbalanced data issues in mind (Japkowicz, 2013). Further, most
of these were originally intended for binary classification problems. To extend them to multi-class
problems, macro-averaging (i.e., arithmetic mean over individual measurements of each class) is
used. Macro-averaging treats each class equally (Branco et al., 2016). Balanced Accuracy is also
one such popular averaging-based approach. There are also probabilistic evaluation approaches
that extend Balanced Accuracy with Bayesian inference techniques for both binary and multi-class
problems (Brodersen et al., 2010; Carrillo et al., 2014). Closer to our work, Cohen et al. (2006) in-
troduced the notion of class weights, yet in the specific context of Sensitivity/Specificity for binary
classification in the medical domain. Similarly, Batuwita & Palade (2012) proposed extensions to
G-mean for the bio-informatics domain. In addition to these scalar (a.k.a., threshold) metrics, graph-
ical (a.k.a., ranking) evaluation methods such as Receiver Operating Characteristic (ROC) curves or
Precision-Recall (PR) curves (and the Area Under the Curve (AUC) for such curves) as well as their
extensions to imbalanced data / multi-class problems were also investigated (Weng & Poon, 2008;
Japkowicz, 2013). While these methods provide more detailed insights into the operational space
of classifiers as a whole, they do not easily scale well with use in problems with a large number of
classes (Branco et al., 2016).

3 CLASS-WEIGHTED EVALUATION FRAMEWORK

In this section, we present our new evaluation framework designed to measure model accuracy for
multi-class classification problems in presence of arbitrary skews among class distributions and/or
importances. Our framework builds on and extends commonly used scalar / threshold metrics such
as Accuracy. These metrics were originally designed for binary classification problems, where
there is typically more emphasis on one class (the positive class, e.g., anomalies). To adopt them
to multi-class problems where there is no such single-class emphasis, each class’ metric can be
computed separately and then an overall aggregation (i.e., arithmetic mean) can be performed. For
example, Accuracy has been extended to BalancedAccuracy by following this approach. In our
framework, we follow a similar aggregation strategy, however, we do it in a more generalized way
that allows custom class weights to capture class importance. Furthermore, these class weights
can be based on any importance criteria such as rarity, cost, risk, expected benefits, and possibly a
hybrid of multiple such criteria. Therefore, it is critical to provide a flexible formulation that allows
users or domain experts to adjust the weights as needed by their problem instance. In what follows,
we present our new class-weighted evaluation framework in a top-down fashion. Using the basic
notation summarized in Table 1, we first formulate the general framework, and then we describe
how this framework can be customized to different importance criteria scenarios by specializing the
weights in a principled manner. For ease of exposition, we first focus on Accuracy as the underlying
performance metric, and then we discuss how our approach can be adopted to other similar metrics.

3.1 WEIGHTED BALANCED ACCURACY (WBA)

Suppose we are given a test dataset with N data items in it, each of which belongs to one of C
distinct classes. Furthermore, each class i contains ni of the data items in this dataset. Thus:
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Table 1: Notation

Notation Description
N total number of data items
C total number of data item classes
M number of importance criteria
ni true number of data items in class i
pi correctly predicted number of data items in class i
fi relative frequency of class i
wi relative weight of class i
ui relative user-defined importance of class i
ri relative rarity of class i

mi,j relative weight of class i for importance criteria j
Accuracyi Accuracy of class i

N =

C∑
i=1

ni (1)

The relative frequency of each class i in the whole dataset is:

fi =
ni

N
(2)

Assume a classifier that makes a prediction about the class label of each data item in the test dataset,
and manages to correctly predict pi out of ni labels for a given class i, where pi ≤ ni. Then, the
total number of correct predictions out of all the predictions gives us the overall Accuracy of the
classifier as follows:

Accuracy =

∑C

i=1
pi

N
(3)

The classifier’s Accuracyi for a given class i (a.k.a., per-class Recall score) can be computed as:

Accuracyi =
pi
ni

(4)

BalancedAccuracy is the macro-average of these per-class Accuracy measurements over all
classes in the dataset:

BalancedAccuracy =
1

C
×

C∑
i=1

Accuracyi (5)

The formulation so far represents the state of the art in how prediction accuracy is evalu-
ated for results of multi-class classifiers in presence of imbalanced datasets (i.e., those where
fi are not even). Note that, for balanced datasets (i.e., ∀i, ni = N/C and fi = 1/C),
BalancedAccuracy = Accuracy; whereas for imbalanced datasets, BalancedAccuracy ensures
that the prediction accuracy is not inflated due to high-frequency classes’ results dominating over
the others’. BalancedAccuracy works well as long as each class is of the same importance, since it
is the simple arithmetic mean across per-class accuracy measurements of all classes (i.e., each class’
accuracy contributes evenly to the overall accuracy). As we discussed with examples in previous sec-
tions, in many real-world classification problems, this assumption does not hold. Rather, classifiers
must be rewarded higher scores for their prediction performance on more important classes. In order
to capture this requirement, we generalize BalancedAccuracy into WeightedBalancedAccuracy
by extending it with per-class importance weights wi as follows:

WeightedBalancedAccuracy =

C∑
i=1

wi ×Accuracyi (6)

The extension above enables us to capture both skews / imbalances in class cardinalities as well as
importances (i.e., the complete design space in Figure 1a). This is a general formulation that can
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support any importance criteria for weights as long as 0 ≤ wi ≤ 1 and
∑C

i=1 wi = 1. In the next
section, we present how weights can be customized for different types of importance criteria.

3.2 WEIGHT CUSTOMIZATION

In a multi-class problem, not only may the classes carry different importance weights, but also the
criteria of importance may vary from one problem or domain to another. In this section, we discuss
several types of criteria that we think are commonly seen across many application domains. Note
that this is not meant to be an exhaustive list, but it provides examples as well as templates that can
be easily tailored to different problems.

Importance criteria = User-defined. This is the most general and flexible form of importance cri-
teria. The application designer or domain expert specifies the relative weight of each class based on
some application-specific criteria. As an example, the problem might be about classifying images of
different types of objects in highway traffic and the user gives higher importance to correct recog-
nition of certain objects of interest (e.g., pedestrians, bikes, animals, etc). We express user-defined
relative weight of a class i with ui, which is simply used as wi in Equation 6.

wi = ui (7)

Importance criteria = Rarity. It is often the case that the rarer something is, the more noteworthy
or valuable it is. In multi-class problems, this corresponds to the case when importance of a class
i is inversely correlated with its relative frequency of occurrence (fi) in the dataset. For example,
in system log monitoring, log messages for more rarely occurring errors or exceptions (e.g., denial
of service attack) are typically of higher importance. Therefore, a classifier that performs well on
detecting such messages must be rewarded accordingly. In our framework, we capture rarity using
weights that are based on normalized inverse class frequencies formulated as follows:

wi = ri =
1

fi ×
∑C

j=1
1
fj

(8)

Multiple importance criteria. In some classification problems, importance of a class depends on
multiple different criteria (e.g., both rarity and a user-defined criteria). To express class weights in
such scenarios, we can leverage techniques from multi-criteria decision making and multi-objective
optimization (Triantaphyllou, 2000; Helff et al., 2016). One of the most basic methods is using
normalized weighted sums based on composite weights (Helff et al., 2016). Composite weights can
be computed either in additive or multiplicative form (Tofallis, 2014). The multiplicative approach
tends to promote weight combinations that are uniformly higher across all criteria, and as such is
found to be a more preferred approach in application scenarios similar to ours (Helff et al., 2016;
Tofallis, 2014). While we present this approach here, in principle, other approaches from multi-
criteria decision making theory could also be used together with our framework. Given M different
criteria with mi,j denoting the relative weight of class i for criteria j, we can compute the composite
weight of a class i as follows:

wi =

∏M

j=1
mi,j∑C

k=1

∏M

j=1
mk,j

(9)

For example, if we had two criteria, rarity r and user-defined u with weights ri and ui for each class
i, respectively, then the composite weight for class i would be wi =

ri×ui∑C

j=1
rj×uj

.

Partially-defined importance criteria. One commonly expected scenario (especially in those clas-
sification problems where the number of classes C can be very large) is that not all of the class
importance weights might be supplied by the user. For example, in a sentiment analysis use case,
the user supplies the weights for all the negative classes, and leaves the others unspecified. Our
framework can support such cases by automatically assigning weights to the unspecified classes.
The default approach is to distribute the remaining portion of weights evenly across all unspecified
classes: (1 - total weights specified) / (number of unspecified classes). If the user prefers an alterna-
tive approach (e.g., distribute the remainder based on rarity of the unspecified classes), this can also
be easily supported by our framework.
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3.3 METRIC CUSTOMIZATION

The class-weighted evaluation framework presented above focused on the popular Accuracy metric
as the underlying metric of prediction performance. However, our framework follows a general
structure based on the idea of weighted macro-averaging with customizable weights, which can
essentially be used with any performance metric that can be computed on the basis of a class. For
example, the macro-averaging approaches that are already being used for Precision, Recall, and
their combination F-Score could easily be extended with our customizable weighing approach by
replacing Accuracy in our formulas with one of these metrics.

4 EXPERIMENTAL ANALYSIS

In this section, we present an experimental analysis of the WBA metric for two application domains.
Our primary goal is to demonstrate the value of WBA compared to other standard metrics when
evaluating ML models over real-world imbalanced data classification problems. As we will show,
often times a traditional metric like Accuracy or BalancedAccuracy will make classifier A seem
preferable to classifier B, when in reality classifier B is superior. In addition, we also provide a brief
analysis of how WBA can positively impact, not only the testing of models, but also their training.
Further details about this experimental study (including code, data, and examples) can be found in
the supplementary material and in Appendix A.

4.1 USE CASE 1: LEARNED LOG PARSING

ML-based log parsers are tools that are designed to automatically learn the structure of event logs
generated by hardware and software systems to properly categorize them into event classes (e.g.,
different error types). In our first study, we used WBA to evaluate 3 state-of-the-art log systems:
Drain, Spell, and MoLFI (Du & Li, 2016; He et al., 2017; Messaoudi et al., 2018). We start by
providing an abbreviated description of our experimental setup.
Log Parsing Systems. Drain is a rule-based, online log parsing system that encodes the pars-
ing rules in a parse tree with fixed depth (He et al., 2017). It performs a pre-processing step for
each new log message using regular expressions created by experts with domain knowledge. Spell,
like Drain, is also rule-based; it principally uses the longest common subsequence (LCS) to find new
classes of log messages (Du & Li, 2016). It parses messages in an online fashion by creating objects
for each message type containing information about LCS. Finally, MoLFI casts the log parsing as a
multi-objective optimization problem and provides a solution based on genetic programming (Mes-
saoudi et al., 2018).
Datasets. We test each aforementioned log message classification system with four real-world
datasets taken from a public benchmark (Zhu et al., 2019). Each dataset has 2000 log instances
randomly sampled from a larger dataset. The macOS dataset contains raw log data generated by the
macOS operating system (341 log classes, 237 infrequent classes (i.e., those that have fewer occur-
rences in the dataset than the average number of messages per class), and an average class frequency
of 5). The BlueGene/L (BGL) dataset is a collection of logs from the BlueGene/L supercomputer
system (120 log classes, 101 infrequent classes, and an average class frequency of 16). The An-
droid dataset consists of logs from the Android mobile operating system (Zhu et al., 2019) (166 log
classes, 127 infrequent classes, and an average class frequency of 16). Finally, the HDFS dataset
consists of log data collected from the Hadoop Distributed File System (14 log classes, 8 infrequent
classes, and an average class frequency of 142). Overall, the first three datasets are highly skewed
in class frequencies, whereas the HDFS dataset is relatively much less skewed (see Appendix A).
Results. For Drain, Spell, and MoLFI, traditional metrics of Precision, Recall, F1-Score, and
Accuracy (named Parsing Accuracy in the original papers) were used for training and testing clas-
sification performance. None of these metrics are class-sensitive, while in log parsing, messages
have in fact varying importance across the classes. The importance criteria is rarity: the more rare
an error message is, the more important it is to correctly classify this message. To capture this,
we configure the WBA to WBArarity , which automatically assigns weights to WBA based on the
dataset classes’ inverse frequencies, as described in Section 3.2. Then we evaluate the test results
from the 3 parsers over 4 datasets using WBArarity and compare against traditional metrics in two
categories: class-insensitive and class-sensitive, as shown in Figure 2.
WBArarity vs. Class-insensitive Metrics: The class-insensitive metrics (specifically, F1-Score and
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(a) macOS (skew = 8.454) (b) BGL (skew = 8.900)

(c) Android (skew = 4.822) (d) HDFS (skew = 0.202)

Figure 2: WBA vs. class-insensitive & class-sensitive metrics for log parsing: F1-Score & Accuracy
agree in all. BA & WBA agree in (c) & (d) only. WBA disagrees with class-insensitive in all.

Accuracy) agree on how to rank the classification performance of the 3 parsers across all the datasets
(for macOS and Android, Drain > Spell > MoLFI; for BGL, Drain > MoLFI > Spell; for HDFS,
all perform similarly). Since WBArarity is sensitive to classes’ data distribution and importance
skews, it makes a completely different judgement. Furthermore, it ranks the techniques differently
for each dataset (Drain > MoLFI > Spell in macOS; Drain > Spell > MoLFI for BGL; Spell >
Drain > MoLFI for Android; and for HDFS, Spell > Drain and MoLFI). This result validates that
WBArarity provides a more sensitive tool for assessing classification performance.
WBArarity vs. Balanced Accuracy (BA): As discussed earlier, BA is class-sensitive, but only to dis-
tribution imbalance. We can observe the difference between BA and WBA in Figure 2. In macOS
and BGL, where the skew is the highest and rarity is more pronounced, the two metrics completely
disagree in how they rank the parsers. In contrast, for Android and HDFS, where the skew is lower,
there is an overall agreement, although the separation in metric values slightly differ. Of particular
importance is the difference seen in Figure 2a. We observe that the best performing model is Spell
when scored by BA, and Drain when scored by WBArarity . The reason for this difference is due to
Spell’s and Drain’s differences in their ability to correctly classify infrequent classes, i.e., those that
represent failures and errors that require the most immediate response.

4.2 USE CASE 2: SENTIMENT ANALYSIS

In social media and other user-facing domains like e-commerce sites, it is often useful to understand
the view or feelings (“sentiments”) associated with users’ behavior or preferences. In the second
part of our experimental study, we apply WBA in the context of such a sentiment analysis use case,
which involves analyzing text-based product reviews from Amazon’s e-commerce websites.

Dataset. The dataset consists of customer’s reviews and ratings, which we got from Consumer
Reviews of Amazon products (Ni et al., 2019). The task is to classify the reviews into 5 classes
(with 1 being the lowest and 5 being the highest rating a product can get in a review), where ratings
constitute the ground truth class labels. There is high class imbalance in this dataset (skew=2.140).
As shown in the Frequency column of Table 2, Class 5 with the highest customer rating clearly
dominates compared to the other classes. It is known that the distribution of customer review ratings
is typically imbalanced and generally follow a J-shaped distribution (Mudambi & Schuff, 2010;
Pavlou & Dimoka, 2006).

Sentiment Analysis Models. We compare 4 types of recurrent neural networks (RNN), all con-
sisting of an embedding layer with pre-trained word embeddings from (Pennington et al., 2014)
followed by a recurrent layer from PyTorch (Subramanian, 2018): RNN, LSTM, GRU, BiLSTM.
The hidden state output from the last time step of these are passed to a fully-connected layer with
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Table 2: Amazon per-class breakdown: Frequencies are highly skewed (skew=2.140); Accuracyi in
each model when both trained+tested with user-defined weights wi (same weights as in Figure 3a).

Class Frequency (fi) Weights (wi) LSTM RNN GRU BiLSTM
1 0.092 0.7 0.19 0.04 0.16 0.17
2 0.052 0 0 0 0 0
3 0.075 0 0 0 0 0
4 0.142 0 0 0 0 0
5 0.639 0.3 0.81 0.96 0.84 0.83

(a) WBA vs. Other Metrics (Train+Test) (b) WBA: Test vs. Train+Test

Figure 3: Amazon results

input of 256 neurons and output from 5 neurons.
Results. For this use case, we first worked with a user-defined importance criteria borrowed from
published studies suggesting that extreme review ratings (classes 1 and 5) carry more importance
(Mudambi & Schuff, 2010; Pavlou & Dimoka, 2006). Thus, we set the weights as shown in Table 2
(shown as WBA(user) or user in Figure 3).
WBA vs. Other Accuracy Metrics: First, we compare WBA(user) with Accuracy and BalancedAc-
curacy (BA) when used as a metric for both training and testing of the 4 DNN models (Figure 3a).
We make a few observations: (i) The class-insensitive Accuracy showcases the imbalance problem
in classification, as it favors the RNN model which is heavily biased by the majority class (see
Accuracyi for RNN in Table 2 where class 5 scores 0.96). (ii) The frequency-sensitive BA met-
ric finds all models perform similarly. WBA(user), in contrast, identifies LSTM as the best model.
Indeed, Table 2 confirms that LSTM performs relatively the best in predicting the most important
class, class 1 (0.19 accuracy). Overall, we find that WBA is capable of capturing importance skews,
even when the frequency skew can be high and biased towards less important classes.
Impact of WBA in Model Training: Next we explore the use of WBA not only in model evaluation,
but also in training. We focus on two models (LSTM and RNN), and apply WBA only during test-
ing vs. to both training (by modifying loss functions of DNNs to capture class importance weights)
and testing. Intuitively, if a model is trained being aware of the importance weights, then it should
also perform well when tested against the same criteria. To test this hypothesis, we repeated the
experiment for 3 alternative importance criteria: (i) rarity (w1 = 0.209, w2 = 0.368, w3 = 0.255,
w4 = 0.136, w5 = 0.030), (ii) user-defined (i.e., with weights in Table 2), and (iii) composite of
the two (w1 = 0.62, w2 = w3 = w4 = 0, w5 = 0.38). In Figure 3b, we observe: (i) Except for
rarity, WBA for both LSTM and RNN improves when integrated into model training. This verifies
our intuition, and shows that WBA is a useful metric not only for evaluation, but also for training.
(ii) When we zoom into rarity, we see that although class 2 is the most important, per-class accuracy
for class 5 is much higher for both LSTM and RNN in the Test-only case, because both models are
still trained heavily biased towards the majority class (5). (iii) Though rarity by itself is not useful in
training, when combined with user importance, it visibly improves the WBA scores. This shows that
our multi-criteria composition approach is capable of combining importance criteria as intended.

5 CONCLUSION
In this paper, we presented a simple yet general-purpose class-sensitive evaluation framework for
imbalanced data classification. Our framework is designed to improve the grading of multi-class
classifiers in domains where class importance is not evenly distributed. We provided a modular and
extensible formulation that can be easily customized to different importance criteria and metrics.
Experiments with two real-world use cases show the value of a metric based on our framework,
Weighted Balanced Accuracy (WBA), over existing metrics – in not only evaluating the classifiers’
test results more sensitively to importance criteria, but also training them so.
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A APPENDIX

In this appendix, we provide details for the experimental study, including data and code. For further
information, please see the supplementary material.

A.1 DETAILS FOR LOG PARSING EXPERIMENTS

For the three log parsing techniques used in Section 4.1 (Drain, Spell, and MoLFI), we used the
implementations provided by the LogPAI team:

https://github.com/logpai/logparser/

The four datasets used in these experiments (macOS, BGL, Android, and HDFS) came from the
benchmarking data also provided by LogPAI:

https://github.com/logpai/loghub/

(a) macOS (skew = 8.454)

(b) BGL (skew = 8.900)

(c) Android (skew = 4.822)

(d) HDFS (skew = 0.202)

Figure 4: Histograms showing the relative frequencies of log parsing classes for the four experimen-
tal datasets: All graphs have their y-axes in log scale; green bars show the infrequent classes.

In Figure 4, we show the histograms for the four log datasets together with their skew values. As
defined in the Microsoft Excel Documentation, “Skewness characterizes the degree of asymmetry
of a distribution around its mean. Positive skewness indicates a distribution with an asymmetric
tail extending toward more positive values, while negative skewness indicates a distribution with an
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asymmetric tail extending toward more negative values.” 1. In our context, skew provides a good
indication for the degree of imbalance in class cardinality distributions – the larger the skew, the
larger the degree of class imbalance.

We also provide data files with class labels (true + predicted) and weights (based on rarity as
importance criteria) used in generating the experimental data plotted in Figure 2 as part of our
WBA-Evaluator tool implementation included in the supplementary material (can be found under
the WBA-Evaluator/examples/LogParsing/ directory).

A.2 DETAILS FOR SENTIMENT ANALYSIS EXPERIMENTS

For the sentiment analysis experiments of Section 4.2, we used a sample from the Amazon Customer
Reviews dataset provided at:

https://nijianmo.github.io/amazon/index.html

Figure 5: Histogram showing the relative frequencies of the five customer rating classes for the
Amazon dataset (skew = 2.140).

In Figure 5, we show the histogram for the Amazon dataset. As described in Section 4.2, we im-
plemented 4 RNN-based classifiers to experiment with this dataset. The code for these classifiers
can be found in the supplementary material (under the AmazonReviewsClassifier/src/
directory) along with a copy of the data (under the AmazonReviewsClassifier/dataset/
directory).

We also provide the data files with class labels (true + predicted) and weights (user) used in gener-
ating the experimental data for LSTM results plotted in Figure 3 and Table 2 as an example. These
can be found in our WBA-Evaluator tool implementation included in the supplementary material
under the WBA-Evaluator/examples/Amazon/ directory.

A.3 THE WBA-EVALUATOR TOOL

In addition to details on our experimental study as described above, we also provide a copy of the
WBA-Evaluator tool that implements our customizable, class-weighted evaluation framework de-
scribed in Section 3. WBA-Evaluator is written in Python and can be found in the supplementary
material along with a README that describes how it can be used. In a nutshell, WBA-Evaluator
takes as input three files (true class labels, predicted class labels, class weights) and a number of con-
figuration parameters in the form of commandline arguments, and then it generates accuracy scores
(BA or WBA) as specified by these arguments. The WBA-Evaluator implementation comes with
two subdirectories: src/ contains the Python source code; example/ contains all the input files
(labels and weights) and scripts in the scripts/ subfolder to run these. Please see the README
file for more details. Using this tool, results reported in the paper can be reproduced.

1
https://support.microsoft.com/en-us/office/skew-function-bdf49d86-b1ef-4804-a046-28eaea69c9fa
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