
Provably Mitigating Overoptimization in RLHF: Your
SFT Loss is Implicitly an Adversarial Regularizer

Zhihan Liu1∗ Miao Lu2∗ Shenao Zhang1 Boyi Liu3

Hongyi Guo1 Yingxiang Yang3 Jose Blanchet2 Zhaoran Wang1

1Northwestern University 2Stanford University 3ByteDance Inc.
{zhihanliu2027, shenaozhang2028, hongyiguo2025}@u.northwestern.edu

{miaolu, jose.blanchet}@stanford.edu, zhaoranwang@gmail.com
{boyi.liu01, yingxiang.yang}@bytedance.com (∗Equal contributions)

Abstract
Aligning generative models with human preference via RLHF typically suffers
from overoptimization, where an imperfectly learned reward model can misguide
the generative model to output undesired responses. We investigate this problem
in a principled manner by identifying the source of the misalignment as a form
of distributional shift and uncertainty in learning human preferences. To mitigate
overoptimization, we first propose a theoretical algorithm that chooses the best
policy for an adversarially chosen reward model; one that simultaneously mini-
mizes the maximum likelihood estimation of the loss and a reward penalty term.
The penalty term is introduced to prevent the policy from choosing actions with
spurious high proxy rewards, resulting in provable sample efficiency of the algo-
rithm under a partial coverage style condition. Moving from theory to practice, the
proposed algorithm further enjoys an equivalent but surprisingly easy-to-implement
reformulation. Using the equivalence between reward models and the correspond-
ing optimal policy, the algorithm features a simple objective that combines: (i) a
preference optimization loss that directly aligns the policy with human preference,
and (ii) a supervised learning loss that explicitly imitates the policy with a (suitable)
baseline distribution. In the context of aligning large language models (LLM), this
objective fuses the direct preference optimization (DPO) loss with the supervised
fine-tuning (SFT) loss to help mitigate the overoptimization towards undesired
responses, for which we name the algorithm Regularized Preference Optimization
(RPO). Experiments of aligning LLMs demonstrate the improved performance of
RPO compared with DPO baselines. Our work sheds light on the interplay between
preference optimization and SFT in tuning LLMs with both theoretical guarantees
and empirical evidence.

1 Introduction
A key step in building state-of-the-art LLMs is Reinforcement Learning from Human Feedback
(RLHF) [10, 58], which aligns pretrained LLMs with human preferences using human assessment
data, making the model more helpful, truthful, and harmless [30, 8]. Typically, RLHF first learns a
reward model from data (pair-wise comparisons of responses) to quantify the human preferences of
LLM outputs. Then it fine-tunes the LLM to maximize the learned reward using RL techniques.

In this pipeline, a crucial challenge is reward overoptimization or reward hacking [28, 41, 19]. Since
the reward model is learned from finite data, it might not be perfectly aligned with the underlying
human preference. Optimizing the LLM towards such an imperfectly learned and potentially overfitted
reward model leads to performance degeneration and a substantial decrease in the probability of
choosing the preferred responses in the data [20, 33]. Given the importance of RLHF and the outlined
challenge, a crucial research question is: How to mitigate reward overoptimization in RLHF in a
principled and efficient manner for better alignment?

38th Workshop on Aligning Reinforcement Learning Experimentalists and Theorists (ARLET 2024).

desired
responses

undesired responses
(misguided by
estimated reward
with high uncertainty)

0.0 0.2 0.4 0.6 0.8 1.0
Training Epoch

−475

−450

−425

−400

−375

−350

−325

−300

−275

L
og

P
ro

ba
bi

lt
y

Log Probability on Chosen Responses During Training

DPO (beta)

RPO (beta)

Figure 1: Left: Reward overoptimization
due to the distributional shift and uncer-
tainty in reward. Right: Overoptimization
causes the probability of outputting pre-
ferred responses in the preference data to
decrease substantially using original DPO
proposed by [34]. Our algorithm (RPO)
significantly alleviates this decrease. See
more discussions in Section 6.

To answer the question, we model RLHF as an offline contextual bandit [30] and ascribe overopti-
mzation to distributional shifts and reward uncertainty. Intuitively, when fine-tuning an LLM, the
response (action) distribution of the tuned LLM could deviate from that of the training data. For
the out-of-distribution responses, which are dissimilar with (or not well covered by) the responses
in the data, the high inherent uncertainty of underlying human preferences could make the learned
reward model misleading for out-of-distribution responses. In this situation, reward overoptimization
can occur because the LLM is fine-tuned towards maximizing a reward model with defective out-of-
distribution prediction, giving a potential consequence that the LLM responses are favored by the
learned reward but less preferred by a human [57]. We illustrate these types of distributional shift and
reward uncertainty issues inherent to overoptimization in Figure 1.

In this paper, we propose a new RLHF algorithm to mitigate reward overoptimization. From a high
level, our theoretical algorithm seeks the best LLM for an adversarially chosen reward model that
minimizes the sum of its maximum likelihood estimation loss and its own expected reward value.
Intuitively, since the reward value is also minimized when minimizing the sum, it can automatically
prevent the misleadingly high reward caused by the uncertainty inherent in having access to finite
data. Furthermore, we show that the theoretical algorithm enjoys an easy implementation: it simply
adopts a supervised fine-tuning (SFT) loss as a regularizer during training. By explicitly regularizing
the LLM to imitate high-quality responses (e.g., preferred responses in dataset), the algorithm can
effectively mitigate the issue of overoptimization. We establish theoretical guarantees and conduct
experiments to demonstrate our findings, which we summarize next.

1.1 Our Contributions and Related Works

We summarize our contributions in three areas as follows.

A theoretical algorithm under general function approximation. Our first contribution is a new
theoretical algorithm (Algorithm 1). It features an unconstrained maximin problem, outputting the
optimal policy (LLM) against an adversarially chosen reward model that minimizes the summation
of: (a) the MLE loss for estimating the underlying reward; and (b) a reward expected value term
as a penalty that aims to prevent spuriously high reward estimation caused by data uncertainty and
insufficient coverage. Algorithm 1 is compatible with general function approximations of the reward
model, meaning that we do not impose any specific structural form to the hypothesis class of reward,
demonstrating its generality, especially in language modeling.

In this regime of reward class, we establish the finite-sample suboptimality gap of Algorithm 1 as
Õ(C2

coverage

√
NR/N) when competing with any LLM in terms of the underlying true human reward

(Theorem 5.3). Here N is the number of human comparison data, NR is the complexity of the reward
model class R, and Ccoverage characterizes the coverage of the preference dataset with respect to the
response distribution of the LLM to compete (please see Assumption 5.2 for details). This indicates
that, as long as the training data well cover the LLM π to compete, the algorithm is guaranteed to
align an LLM to output responses as good as π in terms of human reward, without suffering from
overoptimization caused by distributional shifts and inherent uncertainty in human preference.

An easy-to-implement practical objective. Moving towards practice, we show that the objective
of Algorithm 1 adopts a surprisingly simple and equivalent form for its use in practice. Specifically,
with mild regularity conditions, we prove that the maximin objective (Algorithm1) is equivalent to the
corresponding minimax objective, which is further reduced to a single minimization problem for the
reward model since its inner problem adopts a closed form solution. Inspired from recent progress in
RLHF that explores reward-model-free methods to align LLMs [34], we further re-parameterize the
reward model via its corresponding KL-regularized optimal policy. Then the minimization objective
of the reward modeling naturally translates to a target for directly aligning the LLM, which we call

2

Regularized Preference Optimization (RPO; Algorithm 2). The objective of RPO features a simple
weighted combination of two losses:

RPO objective = Preference optimization loss + Imitation (SFT) loss.

Here the Preference optimization loss coincides with the DPO [34] objective, tending to optimize the
LLM towards maximizing the underlying true reward. The Imitation (SFT) loss explicitly supervises
the LLM to mimic the responses from a proper distribution well covered by the dataset. The choice of
the distribution is guided and justified by our theory of Algorithm 1, but can also be flexibly adapted
in practice, e.g., the preferred response in the dataset, or the responses of the initial model.

We highlight that the Imitation (SFT) loss serves as an important term to mitigate overoptimization.
Even though the original DPO objective has already involved a KL regularization between the tuned
LLM and the initial LLM, is not enough to prevent overoptimization. As we elaborate in Section 4,
the KL-regularization weight of the DPO objective could only control the scale of the gradient per
training example, while the RPO objective can further modify the gradient direction. Calling back
to the theoretical Algorithm 1, such a modification of gradient direction originates from the reward
penalty in the adversarial objective for the reward model. This modification, as we expose in our
theoretical analysis, helps to mitigate overoptimization. Thus, incoporating SFT loss in RLHF gives
you a regularizer that provably mitigates overoptimization.

Empirical evaluations. Following the training setup of two series of released chat models Zephyr-
7b-beta (trained on the Ultrafeedback dataset [12] by DPO) and Zephyr-7b-gemma (trained on the
Argilla-DPO-Mix-7K dataset [3] by DPO) [43], we implement RPO for the beta series and gemma
series respectively to show that: (i) RPO is a flexible plug-in module and can be applied to different
reference models. (ii) RPO can alleviate the overoptimization issue. (iii) RPO consistently achieves
better alignment performance than DPO in in-data distribution. (iv) RPO can also achieve consistently
better performance in standard LLM benchmarks like MT-bench and AlpacaEval 2.0, which shows
its potential of mitigating overoptimization for better alignment performance, justifying our theory.

Related works. Due to space limitation, we refer the readers to Appendix A for a detailed discussion.

2 Preliminaries of RLHF

In this section, we introduce the mathematical framework of studying RLHF for aligning LLMs. We
adopt the framework of offline contextual bandits [30], where we identify the context space X as
the space of prompts and the action space A as the space of responses. An LLM, defined as a policy
π(·|·) : X 7→ ∆(A), takes a prompt x ∈ X as input and output a response a ∈ A from a ∼ π(·|x).
Preference model. Given any reward function r : X ×A 7→ R belonging to certain reward class R
that represents the “human’s ratin” of LLM responses given prompts, we consider the Bradley-Terry
model [7] of human preference. That is, given a prompt x ∈ X and two responses a1, a0 ∈ A, the
probability of a1 being preferred to a0 (denoted by y = 1, otherwise y = 0) is given by

Pr(y = 1|x, a1, a0) = exp(r(x, a1))

exp(r(x, a1)) + exp(r(x, a0))
= σ

(
r(x, a1)− r(x, a0)

)
, (2.1)

where σ(z) = 1/(1 + exp(−z)) is the sigmoid function. For simplicity of future discussion, we
explicitly write out the dependence of the preference probability Pr(·) on the reward model r ∈ R.
In the section of theory, i.e., Section 5, we specify the assumptions on the reward model class R.

Learning protocol. Typically, the RLHF pipeline starts from certain reference policy πref obtained
from pretraining. Then RLHF aligns the LLM based on certain human preference data. In this work,
we consider offline RLHF setup, where the LLM is aligned using a fixed offline preference dataset D.
It consists of N i.i.d. tuples in the form of D = {(xi, a

1
i , a

0
i , yi)}Ni=1. Here the prompt xi and the

responses a1i , a
0
i are distributed according to: (x, a1, a0) ∼ µD(·), and conditioning on (xi, a

1
i , a

0
i),

yi is distributed according to (2.1) for an underlying true (but unknown) reward model r⋆ ∈ R.

Performance metric. The target of RLHF is to align an LLM, or equivalently, to learn a policy π, so
as to maximize the expected true reward r⋆. Thus, we define the value function of any policy π as

J(π) = Ex∼d0,a∼π(·|x)
[
r⋆(x, a)

]
. (2.2)

Here we allow the prompt distribution d0(·) to be different from that of the offline dataset distribution
µD(·), but is assumed to be known. In the meanwhile, we consider the policies that share the same

3

Algorithm 1 Theoretical Algorithm: Maximin Objective

1: Input: Preference dataset D, parameters β, η > 0, reference policy πref , baseline policy πbase.
2: Output: Policy π̂ given by (3.2) with the cross-entropy loss function LD defined in (3.1)..

support as the reference policy πref [47], that is, we take a policy class Π as

Π =
{
π : X 7→ ∆(A)

∣∣∣Supp(π(·|x)) ⊆ Supp(πref(·|x)), ∀x ∈ X
}
. (2.3)

The performance gap of a learned policy π̂ ∈ Π w.r.t. any other policy π ∈ Π is measured as

Gapπ(π̂) = J(π)− J(π̂), given policy π. (2.4)

The goal is to propose a sample-efficient and also implementation-friendly algorithm to learn a
policy π̂ ∈ Π able to compete with any given policy π ∈ Π in terms of Gapπ(π̂) ≤ ε, with sample
complexity polynomial in 1/ε and logarithmic in the complexity of R.

3 A Theory-motivated Objective

Our method seeks to find the best policy π̂ against an adversarially chosen reward model r̂adv that
minimizes a weighted sum of its expected value and the maximum likelihood estimation (MLE) loss.
Intuitively, such a reward model can prevent the overoptimization issue by taking its own value into
account when minimizing the MLE loss. Since the reward value is also minimized when minimizing
the sum, this method prevents the misleadingly high reward caused by the uncertainty due to finite
data. Formally, given two hyperparameters β, η > 0 and a “baseline policy” πbase, we define

T adv
β,η (π) = min

r∈R

{
ηEx∼d0,a

1∼π(·|x),
a0∼πbase(·|x)

[
r(x, a1)−r(x, a0)−β ·KL

(
π(·|x)∥πref(·|x)

)]
+LD(r)

}
,

where the loss function LD(·) is the average negative log-likelihood function of the BT model (2.1)
(and here it becomes the cross-entropy loss) over the preference dataset D, defined as

LD(r) = −ÊD

[
yi log

(
σ
(
r(xi, a

1
i)− r(xi, a

0
i)
))
+(1− yi) log

(
σ
(
r(xi, a

0
i)− r(xi, a

1
i)
))]

.(3.1)

As we can see, T adv
β,η (π) is the minimum value of a weighted sum of the MLE loss and the expected

reward value of π, but with two important modifications that we explain in the following.

Firstly, we subtract another expected reward of certain policy πbase. This is because the BT model
(2.1) essentially only uses the reward differences to define the preference probabilities. As a result, the
data can only reveal information of the differences between the true reward r⋆ of different responses
[50]. Accordingly, we subtract such a baseline expected reward value to match this observation. The
choice of the baseline policy is discussed in the theory part (Section 5) and experiments (Section 6).

Secondly, we subtract a KL divergence between π and πref from the expected reward, weighted by the
coefficient β > 0. Such a term is for practical considerations that would be explained in Sections 4
and 5.2. We note that the KL regularized reward is commonly adopted in RLHF practice to ensure
the learned policy is not far away from the reference policy [30, 47].

Finally, the overall algorithm design (Algorithm 1) is to output the policy that maximizes T adv
β,η (π),

i.e., π̂ ∈ argmaxπ∈Π T adv
β,η (π), which gives the following theoretical target:

π̂ ∈ argmax
π∈Π

min
r∈R

{
ηEx∼d0,a

1∼π(·|x),
a0∼πbase(·|x)

[
r(x, a1)−r(x, a0)−β ·KL

(
π(·|x)∥πref(·|x)

)]
+LD(r)

}
.

(3.2)

Given the form of (3.2), we name it the maximin objective in the sequel. Upon seeing (3.2), one might
be arguing that such a theory-motivated objective seems hard to implement in practice. Nevertheless,
in the coming Section 4, we demonstrate that the maximin objective (3.2) adopts an easy-to-implement
equivalent form, allowing us to design a practical algorithm for aligning LLMs.

4

4 An Equivalent and Implementation-friendly Objective

In this section, we propose another minimax-style objective that is equivalent to the maximin objective
(3.2). Based on the minimax objective, we propose a new LLM aligning algorithm called Regularized
Preference Optimization (RPO). It draws inspirations from the reparametrization technique originated
in Direct Preference Optimization (DPO) [34] and goes beyond to further address the overoptimization
issue in offline RLHF by incorprating an SFT loss as an explicit adversarial regularizer.

An equivalent minimax objective. If the reward model class R satisfies certain regularity conditions,
which we discuss in detail in Section 5.2, the minimax theorem holds: solving the maximin objective
(3.2) is equivalent to solving a minimax target, given by

min
r∈R

max
π∈Π

{
ηEx∼d0,a

1∼π(·|x),
a0∼πbase(·|x)

[
r(x, a1)− r(x, a0)− β ·KL

(
π(·|x)∥πref(·|x)

)]
+ LD(r)

}
. (4.1)

Such a minimax formulation (4.1) is the starting point of our practical algorithm. The magic of (4.1)
is that the inner maximization problem adopts a closed form solution, which further simplifies such
an objective. To see this, note that given any reward model r ∈ R, the inner problem is equivalent to

max
π∈Π

{
Ex∼d0,a∼π(·|x)

[
r(x, a)− β ·KL

(
π(·|x)∥πref(·|x)

)]}
. (4.2)

It has been well established that the policy that maximizes the KL-regularized expected reward (4.2)
has a closed form solution. Due to its importance, we present it as the following lemma.
Lemma 4.1 (Oracle optimal KL-regularized policy). Given any reward model r ∈ R, the optimal
policy πr to the maximization problem (4.2) is given by

πr(·|x) =
1

Zr(x)
· πref(·|x) · exp

(
β−1r(x, ·)

)
, Zr(x) =

∫
a∈A

exp
(
β−1r(x, a)

)
dπref(a|x),

and correspondingly the optimal value of (4.2) is given by (4.2) = Ex∼d0
[β · log(Zr(x))].

Specifically, by Lemma 4.1, we can solve the inner maximization problem in (4.1) and obtain that

(4.1) = min
r∈R

{
ηEx∼d0,a

0∼πbase(·|x)

[
− r(x, a0) + β · log (Zr(x))

]
+ LD(r)

}
.

Furthermore, from Lemma 4.1, one immediately see that given any reward model r ∈ R, we can
reparameterize it via its corresponding optimal KL-regularized policy πr [34], that is,

r(x, ·) = β · log
(

πr(·|x)
πref(·|x)

)
+ β · log(Zr(x)). (4.3)

Taking (4.3) back into (4.1), we are able to further simplify it as

(4.1) = min
r∈R

{
ηEx∼d0,a

0∼πbase(·|x)

[
− β · log(πr(a

0|x))
]
+ LD

(
β · log

(
πr(·|·)
πref(·|·)

))}
. (4.4)

Thanks to the KL-regularization term in the original minimax objective (4.1) (or equivalently, the
maximin objective (3.2)), we have the following theorem. It theoretically shows that the policy πr̂

associated with the reward model r̂ solving (4.4) also solves the maximin target (3.2) of the theoretical
algorithm (Algorithm 1) that enjoys finite-sample convergence guarantees. (Please see Section 5.2
for a formal statement and proof of Theorem 4.2).
Theorem 4.2 (Equivalence between maximin and minimax algorithm (informal)). Under certain
regularity assumptions on R and given η, β > 0, solving the minimax objective (4.1) via (4.4), i.e.,

r̂ = argmin
r∈R

{
ηEx∼d0,a

0∼πbase(·|x)

[
− β · log(πr(a

0|x))
]
+ LD

(
β · log

(
πr(·|·)
πref(·|·)

))}
,

then the corresponding optimal KL-regularized policy πr̂ also solves the maximin objective (3.2).

Regularized Preference Optimization. Target (4.4) gives a quite simple objective to use in practice!
Since (4.4) depends on r ∈ R only through its corresponding optimal policy πr, one can formulate

5

Algorithm 2 Practical Algorithm: Regularized Preference Optimization (RPO)

1: Input: Preference dataset D, parameters β, η > 0, reference policy πref , baseline policy πbase.
2: Output: Policy πθ̂ obtained by optimizing objective (4.5).

a minimization objective over a parameterized policy πθ, i.e., the LLM to be aligned, and directly
optimize the parameters θ ∈ Θ. More formally, the new RLHF objective becomes

min
θ∈Θ

{
LRPO(θ) := ηβ · Ex∼d0,a

0∼πbase(·|x)

[
− log(πθ(a

0|x))
]

︸ ︷︷ ︸
Imitation (SFT) loss

+LD

(
β · log

(
πθ(·|·)
πref(·|·)

))
︸ ︷︷ ︸

Preference opt. loss

}
.

(4.5)

In (4.5), the second term coincides with the objective of DPO algorithm [34] which optimizes the
policy towards maximizing the underlying true reward, and the first term stands for a regularization
term weighted by η ·β which explicitly regularizes the policy to imitate the baseline policy. Therefore,
we name the resulting algorithm as Regularized Preference Optimization (RPO). We summarize it
abstractly in Algorithm 2. As for DPO, implementing RPO does not require to maintain a reward
model r. Thus it is computationally more friendly compared to reward-based algorithms.

How does RPO improve DPO? We illustrate the effect of the imitation loss by analyzing the gradient
of the RPO target LRPO(θ) in (4.5). Notice that by (4.5) we have

∇θLRPO(θ) = ηβ · Ex∼d0,a
0∼πbase(·|x)

[
−∇θ log(πθ(a

0|x))
]

︸ ︷︷ ︸
increase the alignment with the baseline policy

+ ∇θLDPO(θ)︸ ︷︷ ︸
decrease the DPO Loss

,

where the derivative of the DPO loss ∇θLDPO(θ) is given by the following,

∇θLDPO(θ)=−ÊD

[
β ·σ

(
r̂θ(x, arej)− r̂θ(x, acho)

)︸ ︷︷ ︸
gradient weight

·
(
∇θ log πθ(acho|x)−∇θ log πθ(arej|x)

)]
.

For simplicity we denote r̂θ(x, a) = β · log(πθ(x, a))/ log(π
ref(x, a)), acho for the chosen response

and arej for the rejected response. Intuitively, RPO (4.5) modifies the gradient direction of DPO to
ensure the alignment with the baseline policy πbase, and the hyper-parameter η controls the power of
alignment. In comparison, the hyper-parameter β in DPO only controls the gradient weight when
increasing the likelihood of acho and decreasing the likelihood arej. In this perspective, the hyper-
parameter β only changes the scale of the gradient instead of the direction. By introducing η, we
stabilize the training and reduce the side-effect of uncertain labels in data to prevent overoptimization.

5 Theoretical Analysis
In this section, we establish theoretical analysis for Algorithms 1 and 2. We take the space of prompts
and responses as compact subsets X ⊆ RdX and A ⊆ RdA . We take the policy class Π as (2.3).

5.1 Establishing the Sample Complexity of Maximin Objective (Algorithm 1)
Assumption 5.1 (True reward model). We assume that the true reward model r⋆ ∈ R, and for any
r ∈ R and (x, a) ∈ X ×A, it holds that r(x, a) ∈ [0, R].
Assumption 5.2 (Partial coverage coefficient [50]). Given a policy π ∈ Π, the coverage coefficient
of the offline dataset distribution µD w.r.t. reward model class R, policy π, and the baseline policy
πbase, denoted by CµD (R;π, πbase), is defined as

max

0, sup
r∈R

Ex∼d0,a1∼π(·|x),a0∼πbase(·|x)
[
(r⋆(x, a1)− r⋆(x, a0))− (r(x, a1)− r(x, a0))

]√
E(x,a1,a0)∼µD

[∣∣(r⋆(x, a1)− r⋆(x, a0))− (r(x, a1)− r(x, a0))
∣∣2]

 .

We assume that CµD (R;π, πbase) < +∞ for the policy π to compete. We remark that the quantity
CµD (R;π, πbase) is upper bounded by the density ratio ∥d0 ⊗ π ⊗ πbase/µD∥∞.

6

Assumption 5.1 is standard in sample complexity analysis [56, 50, 48]. Assumption 5.2 characterizes
how well the dataset D covers the policy π to compete. To achieve provable sample efficiency, we
only require that D covers the target policy π, a weak partial coverage style assumption for theoretical
analysis. To illustrate it, when calling back to Figure 1, the data distribution therein well covers those
nearly optimal responses under r⋆, but does not sufficiently cover the responses with low r⋆.

Under such a partial coverage data condition, however, human preference of responses a ∈ A that
are not well covered by the dataset D can be poorly estimated, misguiding the policy π̂ to behave
suboptimally if it is overoptimized (recall Figure 1). Fortunately, the following theorem shows that
Algorithm 1 provably mitigates the overoptimization issue and achieves a finite-sample convergence
of the suboptimality gap (2.4) competing with π. Proof is in Appendix C.
Theorem 5.3 (Suboptimality of Algorithm 1). Taking the policy class Π as (2.3), supposing that
Assumptions 5.1 and 5.2 hold, and assuming that the reward model class R has a finite ε-epsilon
covering number under ∥ · ∥∞-norm Nε(R, ∥ · ∥∞) < +∞ with ε = (6 · (1 + eR) ·N)−1. Setting

η = (1 + exp(R))−2 ·
√

24 log (Nε(R, ∥ · ∥∞)/δ) /N, β = 1/
√
N

in Algorithm 1. Then the output policy π̂ of Algorithm 1 satisfies that with probability at least 1− δ,

Gapπ(π̂)≤
√
6
(
1 + exp(R)

)2((
CµD (R;π, πbase)

)2
+ 1
)
ι+ 4Ex∼d0

[
KL
(
π(·|x)∥πref(·|x)

)]
4
√
N

,

where ι =
√
log (Nε(R, ∥ · ∥∞)/δ) with ε = (6 · (1 + eR) ·N)−1. Here, N denotes the number of

preference pairs in D, R denotes the upper bound of the reward models, and the partial coverage
coefficient CµD (R;π, πbase) is defined in Assumption 5.2.
Remark 5.4 (Choice of the baseline policy). As is indicated by Assumption 5.2, the least requirement
is that πbase can be covered by the offline data distribution. E.g., we can take πbase as the distribution
of the preferred responses in the data. In this case, the SFT loss in RPO explicitly regularizes the
LLM to imitate the preferred responses. We choose this type of baseline policy in our experiments.

5.2 Equivalence between Maximin and Minimax Objectives

Now we formally show that the theoretical target (maximin objective (3.2)) and the target for practical
algorithm design (minimax objective (4.1)) are equivalent under certain regularity conditions. This
can naturally extend the sample complexity of Algorithm 1 (Section 5.1) to that of minimax-based
algorithms in Section 4, providing the theoretical guarantee for our practical algorithm design (RPO).

First, for notational simplicity, we denote the optimization target we investigate in Sections 3 and 4 as

ϕ(π, r) := η · Ex∼d0,a
1∼π(·|x)

a0∼πbase(·|x)

[
r(x, a1)− r(x, a0)− β ·DKL

(
π(·|x)∥πref(·|x)

)]
+ LD(r), (5.1)

for any (π, r) ∈ Π×R. Our result relies on the following assumptions on the reward model class R.
Assumption 5.5 (Regularity of reward model class). We assume the following things on the reward
model class R: (i) the space R is a compact topological space; (ii) the function ϕ in (5.1) is
convex-like on R, that is, for any r1, r2 ∈ R and α ∈ [0, 1], there exists r3 ∈ R such that

ϕ(π, r3) ≤ α · ϕ(π, r1) + (1− α) · ϕ(π, r2), ∀π ∈ Π, (5.2)

We note if R is convex, e.g., a linear model class [56, 47, 57] or more general the Lipschitz continuous
model class R, we can directly obtain that the function ϕ(π, ·) is convex over R (since the dependence
on r ∈ R is linear terms plus a convex loss LD of r ∈ R), which implies the convex-like property
(5.2). Under Assumption 5.5, it holds that (Lemma D.1)

max
π∈Π

min
r∈R

ϕ(π, r) = min
r∈R

max
π∈Π

ϕ(π, r). (5.3)

Furthermore, thanks to the KL-divergence regularization in ϕ which intuitively makes ϕ “strongly
concave” over the policy π, (5.3) can gives us the following stronger result, proved in Appendix D.1.
Theorem 5.6 (Formal statement of Theorem 4.2). For the policy class Π defined in (2.3) and the
reward model class R satisfying Assumption 5.5, consider the following policy defined as

πr̂ ∈ argmax
π∈Π

ϕ(r̂, π), where r̂ ∈ argmin
r∈R

max
π∈Π

ϕ(π, r). (5.4)

7

Then the policy πr̂ also satisfies the maximin objective (3.2) of Algorithm 1, that is,

πr̂ ∈ argmax
π∈Π

min
r∈R

ϕ(π, r).

Theorem 5.6 shows that the optimal KL-regularized policy associated with the reward model solving
the minimax objective (3.2) also solves the maximin objective (i.e., objective (4.1) of Algorithm 1).
This further allows us to extend our theoretical guarantee of Algorithm 1 (Section 5.1) to that of
minimax-based algorithms, justifying our practical algorithm design in Section 4.

Corollary 5.7 (Suboptimality of minimax-based algorithm). Take the policy class Π in (2.3) and the
reward model class satisfying Assumption 5.5. Given any given policy π to compete, if Assumption 5.2
holds for π, then under the same choice of η and β as in Theorem 5.3, the policy πr̂ defined in (5.4)
satisfies that Gapπ(πr̂) ≤ Õ(1/

√
N) with probability at least 1− δ.

6 Experiments

Experiment setup. To show that RPO is a flexible plug-in module regardless of the reference model,
we follow the training setup for two well-studied series of released chat models with around 7 billion
parameters trained by DPO: Zephyr-7b-beta and Zephyr-7b-gemma [43] to implement RPO in
beta and gemma series. Mirrored by their training configurations, we introduce how we select the
reference model and the preference dataset for our training on these two series as follows. For the beta
series, we use mistral-7b-sft-beta as the reference model πref. mistral-7b-sft-beta is a
fine-tuned version of Mistral-7b-v0.1 on the distilled version of the UltraChat dataset [13], which
contains approximately 200k examples of multi-turn dialogues generated by GPT-3.5-TURBO. For
the training preference dataset, we use Ultrafeedback Dataset [12], which consists of approximately
60k prompts. For the gemma series, we use zephyr-7b-gemma-sft-v0.1 as our reference model
πref. zephyr-7b-gemma-sft-v0.1 is a fine-tuned version of gemma-7b on the Deita dataset [26],
which involves around 10k distilled SFT data. For the training preference dataset, we use Argilla-
DPO-Mix-7K Dataset [3], which is a mixture of multiple distilled public preference datasets. For
simplicity, we denote Ref. (beta) as the reference model, DPO (beta) as the model trained by DPO,
RPO (beta) as the model trained by RPO, all for the beta series. We use the same notations for the
gemma series.

Practical implementation. According to Algorithm 2 and as discussed in Remark 5.4, we implement
RPO by adding an SFT loss (log probability of chosen responses in the preference dataset) to the
original DPO loss. By comparing the evaluation performance on the test split of the training dataset,
we select the hyperparameter η as 0.005 for both RPO (beta) and RPO (gemma). During the training
of DPO and RPO, We keep the remaining hyperparameters including β, batch size, and learning rate
to be the same for a fair comparison. Please see Appendix E.1 for a detailed training configuration.

RPO alleviates overoptimization. As mentioned in the introduction part, DPO is observed to have a
significant and continuous decrease in log probability on chosen responses [20, 33] during training
and we regard it as the consequence of overoptimization. Implied by our theory, overoptimization
could arise when the model maximizes its own proxy reward formed on the responses less covered
by the data. Due to the overoptimization, the model tends to disprefer the chosen responses as they
are away from the maximizers of the proxy reward despite that some chosen responses are highly
preferred by humans. Consistent with our theoretical conclusion, we empirically find that RPO can
indeed alleviate overoptimization in DPO. During the training phase of both beta and gemma series,
we observe that the log probability given by the RPO-trained model is notably higher than that given
by the DPO-trained model for the chosen responses, which are shown in Fig. 1 and 2.

RPO improves the alignment ability in in-data distribution. For the in-data distribution evaluation,
we select the 200 prompts (which are not used in the selection of η) in the test split of the training
dataset to let the reference model, DPO, and RPO generate the response respectively. We choose GPT-
4 to annotate the preference in the response pairs. Though we instruct GPT-4 to give an annotation
among win, lose, and, tie (please see the full prompt in Appendix E.2), GPT-4 may still give undesired
annotations. Hence, we filter all the undesired annotations and collect 150 examples for evaluation.
We report the pairwise win rate among Ref., RPO, and DPO in Table 1 for both the beta and gemma
series. To show a more illustrative comparison between DPO and RPO, we provide the barplot to
report the number of pairwise examples annotated by GPT-4 in Fig. 3 and Fig. 4. We observe that for
both beta and gemma series, RPO has a better performance than DPO in terms of both RPO/DPO-SFT

8

and RPO-DPO win rates. The performance improvement matches our theoretical results in Corollary
5.7, which shows the credit of the alleviation of overoptimization.

Table 1: Pairwise win rate (left vs. right) among RPO-trained model, DPO-trained model, and the
reference model. Annotated by GPT-4, evaluations of beta and gemma series are made on the 150
examples of the test split of the Ultrafeedback and the Argilla-DPO-Mix-7K dataset, respectively.

Win rate (%) RPO (beta) Ref. (beta) DPO (beta) Win rate (%) RPO (gemma) Ref. (gemma) DPO (gemma)

RPO (beta) 50.0 79.0 56.0 RPO (gemma) 50.0 71.7 54.0
Ref. (beta) 21.0 50.0 22.7 Ref. (gemma) 28.3 50.0 32.7
DPO (beta) 44.0 77.3 50.0 DPO (gemma) 46.0 67.3 50.0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Training Epoch

−440

−420

−400

−380

−360

L
og

P
ro

ba
bi

lt
y

Log Probability on Chosen Responses During Training

DPO (gemma)

RPO (gemma)

Figure 2: Log probability of the
model for chosen responses during
the training of RPO (gemma) and
DPO (gemma).

Win Lose Tie
0

10

20

30

40

50

60

70

N
um

b
er

of
A

nn
ot

at
io

ns

Pairwise Annotations on RPO vs. DPO

Figure 3: Pairwise annotations
(by GPT-4) on RPO (beta) vs. DPO
(beta) on the test split of the Ultra-
feedback dataset.

Win Lose Tie
0

10

20

30

40

50

60

N
um

b
er

of
A

nn
ot

at
io

ns

Pairwise Annotations on RPO vs. DPO

Figure 4: Pairwise annotations
(by GPT-4) on RPO (gemma) vs.
DPO (gemma) on the test split of
the Argilla-DPO-Mix-7K dataset.

RPO consistently improves the benchmark performance. We further evaluate the reference model,
RPO-trained model, DPO-trained model, and the officially released DPO-trained model for both
beta and gemma series in two standard LLM chat benchmarks: MT-Bench and AlpacaEval 2.0.
MT-Bench is a multi-turn benchmark that contains 160 questions across eight different domains of
knowledge. The score for MT-Bench is evaluated by GPT-4 on a scale from 1 to 10. AlpacaEval 2.0
is a single-turn benchmark including 805 questions on different topics, mostly focused on helpfulness.
The metrics of AlpacaEval 2.0 are the win rate and Length-Control (LC) win rate compared with
GPT-4 Preview (11/06), where the annotator is also GPT-4 Preview (11/06) and LC win rate is
proposed to mitigate the length bias of GPT-4. The results are summarized in Table 2, which shows
that RPO consistently exceeds the performance of all the competitors (DPO, Reference model, and
the officially released model trained by DPO) on MT-Bench and AlpacaEval 2.0. We also provide
additional results on the pairwise win rate for these two benchmarks in Appendix E.3 to illustrate
the performance improvement. Finally, we remark that RPO is a flexible plug-in module and can
steadily improve the benchmark performance without changing the original training configuration or
accessing extra preference data. This also sheds light on the potential of mitigating overoptimization
for better alignment and generalization performance.

Table 2: Results on MT-Bench scores and AlpacaEval 2.0. zephyr-beta-7b and zephyr-gemma-7b
are the officially released models. win rates and Length-Control (LC) win rates in AlpacaEval 2.0 are
evaluated by GPT-4 compared with GPT-4.

Model Name MT-Bench AlpacaEval 2.0 Model Name MT-Bench AlpacaEval 2.0
Score LC win rate (%) win rate (%) Score LC win rate (%) win rate (%)

RPO (beta) 7.381 23.28 21.01 RPO (gemma) 7.916 15.51 13.85
Ref. (beta) 5.088 7.19 4.69 Ref. (gemma) 7.266 8.35 4.61
DPO (beta) 7.278 21.15 17.27 DPO (gemma) 7.688 15.36 13.69

zephyr-beta-7b 7.200 13.20 10.99 zephyr-gemma-7b 7.719 14.78 12.14

7 Conclusions
This work proposes a new algorithm that provably mitigates reward overoptimization in RLHF. We
establish its finite-sample convergence under a partial coverage style data condition, and provide an
equivalent practical implementation, RPO. As a flexible plug-in module, RPO exhibits consistent
improvement over the DPO baseline and effectively mitigates overoptimization. Future work includes
extending our idea of algorithm design to online (iterative) RLHF where preference data are collected
and updated iteratively during LLM fine-tuning. We give more detailed discussions in Appendix B.

9

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023. 14

[2] Anthropic. Introducing claude. https://www.anthropic.com/news/introducing-claude, 2023. 14

[3] argill. argilla-dpo-mix-7k. https://huggingface.co/datasets/argilla/dpo-mix-7k.
3, 8

[4] Mohammad Gheshlaghi Azar, Mark Rowland, Bilal Piot, Daniel Guo, Daniele Calandriello,
Michal Valko, and Rémi Munos. A general theoretical paradigm to understand learning from
human preferences. arXiv preprint arXiv:2310.12036, 2023. 14

[5] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022. 14

[6] Viktor Bengs, Róbert Busa-Fekete, Adil El Mesaoudi-Paul, and Eyke Hüllermeier. Preference-
based online learning with dueling bandits: A survey. Journal of Machine Learning Research,
22(7):1–108, 2021. 14

[7] Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the
method of paired comparisons. Biometrika, 39(3/4):324–345, 1952. 3

[8] Stephen Casper, Xander Davies, Claudia Shi, Thomas Krendl Gilbert, Jérémy Scheurer, Javier
Rando, Rachel Freedman, Tomasz Korbak, David Lindner, Pedro Freire, et al. Open problems
and fundamental limitations of reinforcement learning from human feedback. arXiv preprint
arXiv:2307.15217, 2023. 1, 14

[9] Xiaoyu Chen, Han Zhong, Zhuoran Yang, Zhaoran Wang, and Liwei Wang. Human-in-the-loop:
Provably efficient preference-based reinforcement learning with general function approximation.
In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan
Sabato, editors, Proceedings of the 39th International Conference on Machine Learning, volume
162 of Proceedings of Machine Learning Research, pages 3773–3793. PMLR, 17–23 Jul 2022.
14

[10] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017. 1, 14

[11] Thomas Coste, Usman Anwar, Robert Kirk, and David Krueger. Reward model ensembles help
mitigate overoptimization. arXiv preprint arXiv:2310.02743, 2023. 15

[12] Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan
Liu, and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback.
arXiv preprint arXiv:2310.01377, 2023. 3, 8

[13] Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu, Maosong
Sun, and Bowen Zhou. Enhancing chat language models by scaling high-quality instructional
conversations. arXiv preprint arXiv:2305.14233, 2023. 8

[14] Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
foundation model alignment. arXiv preprint arXiv:2304.06767, 2023. 14

[15] Yihan Du, Anna Winnicki, Gal Dalal, Shie Mannor, and R Srikant. Exploration-driven pol-
icy optimization in rlhf: Theoretical insights on efficient data utilization. arXiv preprint
arXiv:2402.10342, 2024. 14

10

https://huggingface.co/datasets/argilla/dpo-mix-7k

[16] Jacob Eisenstein, Chirag Nagpal, Alekh Agarwal, Ahmad Beirami, Alex D’Amour, DJ Dvi-
jotham, Adam Fisch, Katherine Heller, Stephen Pfohl, Deepak Ramachandran, et al. Helping or
herding? reward model ensembles mitigate but do not eliminate reward hacking. arXiv preprint
arXiv:2312.09244, 2023. 15

[17] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. Implementation matters in deep policy gradients: A case
study on ppo and trpo. arXiv preprint arXiv:2005.12729, 2020. 14

[18] Ky Fan. Minimax theorems. Proceedings of the National Academy of Sciences, 39(1):42–47,
1953. 21

[19] Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization.
In International Conference on Machine Learning, pages 10835–10866. PMLR, 2023. 1, 14

[20] Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without
reference model. arXiv preprint arXiv:2403.07691, 2024. 1, 8, 14

[21] Haozhe Ji, Cheng Lu, Yilin Niu, Pei Ke, Hongning Wang, Jun Zhu, Jie Tang, and Minlie
Huang. Towards efficient and exact optimization of language model alignment. arXiv preprint
arXiv:2402.00856, 2024. 14

[22] Chenliang Li, Siliang Zeng, Zeyi Liao, Jiaxiang Li, Dongyeop Kang, Alfredo Garcia, and
Mingyi Hong. Joint demonstration and preference learning improves policy alignment with
human feedback. arXiv preprint arXiv:2406.06874, 2024. 14

[23] Zihao Li, Zhuoran Yang, and Mengdi Wang. Reinforcement learning with human feedback:
Learning dynamic choices via pessimism. arXiv preprint arXiv:2305.18438, 2023. 14

[24] Xize Liang, Chao Chen, Jie Wang, Yue Wu, Zhihang Fu, Zhihao Shi, Feng Wu, and Jieping
Ye. Robust preference optimization with provable noise tolerance for llms. arXiv preprint
arXiv:2404.04102, 2024. 14

[25] Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman, Mohammad Saleh, Peter J Liu, and
Jialu Liu. Statistical rejection sampling improves preference optimization. arXiv preprint
arXiv:2309.06657, 2023. 14

[26] Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. What makes good data for
alignment? a comprehensive study of automatic data selection in instruction tuning. arXiv
preprint arXiv:2312.15685, 2023. 8

[27] Zhihan Liu, Miao Lu, Wei Xiong, Han Zhong, Hao Hu, Shenao Zhang, Sirui Zheng, Zhuoran
Yang, and Zhaoran Wang. Maximize to explore: One objective function fusing estimation,
planning, and exploration. Advances in Neural Information Processing Systems, 36, 2024. 18

[28] Eric J Michaud, Adam Gleave, and Stuart Russell. Understanding learned reward functions.
arXiv preprint arXiv:2012.05862, 2020. 1, 14

[29] Ted Moskovitz, Aaditya K Singh, DJ Strouse, Tuomas Sandholm, Ruslan Salakhutdinov, Anca D
Dragan, and Stephen McAleer. Confronting reward model overoptimization with constrained
rlhf. arXiv preprint arXiv:2310.04373, 2023. 15

[30] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in neural information processing systems,
35:27730–27744, 2022. 1, 2, 3, 4, 14

[31] Aldo Pacchiano, Aadirupa Saha, and Jonathan Lee. Dueling rl: reinforcement learning with
trajectory preferences. arXiv preprint arXiv:2111.04850, 2021. 14

[32] Arka Pal, Deep Karkhanis, Samuel Dooley, Manley Roberts, Siddartha Naidu, and Colin White.
Smaug: Fixing failure modes of preference optimisation with dpo-positive. arXiv preprint
arXiv:2402.13228, 2024. 14

11

[33] Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn. From r to q⋆: Your language model
is secretly a q-function. arXiv preprint arXiv:2404.12358, 2024. 1, 8

[34] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
Advances in Neural Information Processing Systems, 36, 2023. 2, 3, 5, 6, 14

[35] Mathieu Rita, Florian Strub, Rahma Chaabouni, Paul Michel, Emmanuel Dupoux, and Olivier
Pietquin. Countering reward over-optimization in llm with demonstration-guided reinforcement
learning. arXiv preprint arXiv:2404.19409, 2024. 15

[36] Corby Rosset, Ching-An Cheng, Arindam Mitra, Michael Santacroce, Ahmed Awadallah, and
Tengyang Xie. Direct nash optimization: Teaching language models to self-improve with
general preferences. arXiv preprint arXiv:2404.03715, 2024. 14

[37] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017. 14

[38] Fahim Tajwar, Anikait Singh, Archit Sharma, Rafael Rafailov, Jeff Schneider, Tengyang Xie,
Stefano Ermon, Chelsea Finn, and Aviral Kumar. Preference fine-tuning of llms should leverage
suboptimal, on-policy data. arXiv preprint arXiv:2404.14367, 2024. 14, 15

[39] Yunhao Tang, Zhaohan Daniel Guo, Zeyu Zheng, Daniele Calandriello, Rémi Munos, Mark
Rowland, Pierre Harvey Richemond, Michal Valko, Bernardo Ávila Pires, and Bilal Piot.
Generalized preference optimization: A unified approach to offline alignment. arXiv preprint
arXiv:2402.05749, 2024. 14

[40] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023. 14

[41] Jeremy Tien, Jerry Zhi-Yang He, Zackory Erickson, Anca D Dragan, and Daniel S Brown.
Causal confusion and reward misidentification in preference-based reward learning. arXiv
preprint arXiv:2204.06601, 2022. 1, 14

[42] Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Shengyi Huang, Kashif
Rasul, Alexander M. Rush, and Thomas Wolf. The alignment handbook. https://github.
com/huggingface/alignment-handbook, 2023. 22

[43] Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes
Belkada, Shengyi Huang, Leandro von Werra, Clémentine Fourrier, Nathan Habib, et al. Zephyr:
Direct distillation of lm alignment. arXiv preprint arXiv:2310.16944, 2023. 3, 8

[44] Peiyi Wang, Lei Li, Liang Chen, Dawei Zhu, Binghuai Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and
Zhifang Sui. Large language models are not fair evaluators. arXiv preprint arXiv:2305.17926,
2023. 23

[45] Yuanhao Wang, Qinghua Liu, and Chi Jin. Is rlhf more difficult than standard rl? a theoretical
perspective. Advances in Neural Information Processing Systems, 36, 2023. 14

[46] Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yiming Yang, and Quanquan Gu. Self-play
preference optimization for language model alignment. arXiv preprint arXiv:2405.00675, 2024.
14

[47] Wei Xiong, Hanze Dong, Chenlu Ye, Han Zhong, Nan Jiang, and Tong Zhang. Gibbs sam-
pling from human feedback: A provable kl-constrained framework for rlhf. arXiv preprint
arXiv:2312.11456, 2023. 4, 7, 14, 15

[48] Chenlu Ye, Wei Xiong, Yuheng Zhang, Nan Jiang, and Tong Zhang. A theoretical analysis of
nash learning from human feedback under general kl-regularized preference. arXiv preprint
arXiv:2402.07314, 2024. 7, 14

[49] Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten Joachims. The k-armed dueling
bandits problem. Journal of Computer and System Sciences, 78(5):1538–1556, 2012. 14

12

https://github.com/huggingface/alignment-handbook
https://github.com/huggingface/alignment-handbook

[50] Wenhao Zhan, Masatoshi Uehara, Nathan Kallus, Jason D Lee, and Wen Sun. Provable offline
preference-based reinforcement learning. In The Twelfth International Conference on Learning
Representations, 2023. 4, 6, 7, 14, 15

[51] Wenhao Zhan, Masatoshi Uehara, Wen Sun, and Jason D Lee. How to query human feedback
efficiently in rl? arXiv preprint arXiv:2305.18505, 2023. 14

[52] Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative preference optimization: From
catastrophic collapse to effective unlearning. arXiv preprint arXiv:2404.05868, 2024. 14

[53] Xiaoying Zhang, Jean-Francois Ton, Wei Shen, Hongning Wang, and Yang Liu. Overcom-
ing reward overoptimization via adversarial policy optimization with lightweight uncertainty
estimation. arXiv preprint arXiv:2403.05171, 2024. 15

[54] Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh, and Peter J Liu. Slic-
hf: Sequence likelihood calibration with human feedback. arXiv preprint arXiv:2305.10425,
2023. 14

[55] Han Zhong, Guhao Feng, Wei Xiong, Li Zhao, Di He, Jiang Bian, and Liwei Wang. Dpo meets
ppo: Reinforced token optimization for rlhf. arXiv preprint arXiv:2404.18922, 2024. 14

[56] Banghua Zhu, Jiantao Jiao, and Michael I Jordan. Principled reinforcement learning with human
feedback from pairwise or k-wise comparisons. arXiv preprint arXiv:2301.11270, 2023. 7, 14

[57] Banghua Zhu, Michael I Jordan, and Jiantao Jiao. Iterative data smoothing: Mitigating reward
overfitting and overoptimization in rlhf. arXiv preprint arXiv:2401.16335, 2024. 2, 7, 14

[58] Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei,
Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences.
arXiv preprint arXiv:1909.08593, 2019. 1, 14

13

A Related Works

In the following, we relate our work to recent lines of RLHF research on both theory and practice
sides. We also review related works on reward hacking and overoptimization in RLHF.

RLHF: algorithm design. The technique of RLHF [10, 58, 30, 5, 14] has recently demonstrated its
great importance in building the state-of-the-art LLMs, including ChatGPT [1], Gemini [40], Claude
[2]. In the RLHF pipeline therein, the LLM is fine-tuned towards maximizing a learned reward
model using the RL algorithm Proximal Policy Optimization (PPO; [37]). Meanwhile, PPO-style
algorithm is also known for its instability, sample-inefficiency, and especially, a high demand for
proper hyperparameter tuning [17]. This thus casts prohibitive computational cost to make the most
effectiveness of PPO-based RLHF methods to align LLMs, especially for the open-source community.

Given that, further research on RLHF has explored various alternatives to PPO-based methods, with
the most popular approach being the direct preference optimization method [54, 34], which skips
the reward learning phase and directly optimize the LLM to align it with the human preference. Our
practical implementation (RPO) also harnesses the wisdom of reward-LLM equivalence to avoid
explicit reward learning followed by PPO training.

Besides the original DPO algorithm [34], ever since it popularizing the direct preference learning style
method, variants of the direct preference learning approach are proposed, including but not limited to
[25, 4, 47, 39, 21, 48, 32, 20, 36, 24, 52, 38, 46, 22]. Each of them aims to address further challenges
of direct preference learning from varying perspectives. Specifically, the algorithm proposed by
[32, 20] share similar algorithmic components as RPO proposed in this work. Both work consider
SFT style regularization during preference optimization. However, theoretical understanding of how
SFT loss can help alignment remains unknown. In contrast, we provide theoretical justifications
to the SFT loss as an implicit adversarial regularizer that provably mitigates overoptimization in
preference learning.

RLHF: theoretical investigation. Initiated from the literature of dueling bandits and dueling RL
[49, 6, 31], recent success of RLHF in fine-tuning LLMs also motivates a long line of research
to investigate the theoretical foundations of RLHF under different settings [9, 56, 50, 51, 45, 23,
47, 48, 15, 55], aiming to propose provably sample-efficient algorithms to learn a human-reward-
maximizing policy from human preference signals. Our theoretical study of RLHF falls into the
paradigm of offline learning from a pre-collected preference dataset, and is mostly related to the work
of [56, 50, 23, 47, 48]. In this setup, the main challenge is to address the overoptimization issues due
to human reward uncertainty and distributional shifts when only a fixed dataset is available. In the
sequel, we compare our work with them in more detail.

Existing theoretical work on provably sample-efficient offline RLHF typically suffers from two
drawbacks: they are either restricted to the linear function approximations setting [56, 47] which is
far from the practical situations, or are generally unable to be implemented in the LLM experiments.
Typically, to encompass the pessimistic principle in the face of uncertainty, the existing literature
proposes to return the optimal policy against either an estimated reward model plus a structure-aware
reward uncertainty penalty [47] or the most pessimistic reward model inside a confidence region
[56, 50]. Both of these two types of method involve intractable components for implementation
and needs for additional algorithmic design to approximate the theoretical algorithm in practice. In
contrast, our theory works in the context of general function approximations while being friendly
to be implemented. Finally, we remark that, while our study focuses on the standard Bradley-Terry
model of human preference with general reward function approximations, the work of [48] further
considers a general human preference model. But it remains unknown how their algorithms can be
efficiently implemented in practice. It serves as an interesting direction to extend our technique to
RLHF with general reward model and device new practical algorithms.

Reward hacking and overoptimization in RLHF for LLM. As is discussed in the introduction,
the challenge of reward hacking or overoptimization may prevent the successful alignment of LLMs,
degenerating the performance of an LLM because of maximizing an imperfect, overfitted, and
misgeneralized proxy reward learned from the finite data [28, 41, 19, 8]. Efforts have been made to
mitigate this fundamental issue through the perspective of theory, e.g., [56, 47, 57], and practice, e.g.,

14

[11, 16, 29, 53, 35]. Our approach starts from the theoretical insights of handling inherent uncertainty
in learning human preference from finite data, while being suprisingly easy to implement in practice.

B Limitations and Future Works

One limitation of the current work is that we focus on the setting of offline RLHF where only a fixed
preference dataset is available. Recent RLHF research has shown great potential of using iterative
methods for LLM alignment with multiple rounds of preference data collection and tuning [47, 38].

Future works include extending our idea of theoretical algorithm design and analysis to the iterative
RLHF setup where further preference data can be collected. Also, since our practical algorithm RPO
is a plug-in module that effectively mitigates overoptimization and improves alignment performance,
it serves as an exciting direction to combine it with explorative preference data collecting mechanism
in iterative RLHF to further boost the performance of LLM alignment.

C Proofs for Sample Complexity Analysis

C.1 Further Discussions on Algorithm 1 and Theorem 5.3

We further compare our theory with two related works [47] and [50].

Remark C.1 (Comparison with [47]). Another theoretical work on RLHF [47] explicitly models the
KL-regularization between the target policy and the reference policy in the learning objective, referred
to as the KL-regularized contextual bandit. This means that their metric becomes the KL-regularized
expected reward. In contrast, here we put the KL-regularization as a component of our algorithm
design, but we still keep the metric as the expected reward (2.2). Therefore our theory in Section 5.1
directly reveals how the learned policy performs in terms of the expected reward compared to any
given target policy (which can be a stochastic policy).

Remark C.2 (Comparison with [50]). We remark that in the work of [50], they also mentioned a
maximin object similar to (3.2) for offline preference-based RL as a complementary to their theoretical
algorithm. However, the sample complexity of the maximin-style algorithm they presented is unknown,
while we provide finite sample convergence result for Algorithm 1 in Section 5. Furthermore, our
objective (3.2) features another KL-regularization term, which is essential for the proposal of our
new practical algorithm design for aligning LLM in Section 4.

C.2 Proof of Theorem 5.3

Proof of Theorem 5.3. By definition, the suboptimality gap of π̂ w.r.t. π is decomposed as following,

Gapπ(π̂)

= Ex∼d0,a∼π(·|x)
[
r⋆(x, a)

]
− Ex∼d0,a∼π̂(·|x)

[
r⋆(x, a)

]
= Ex∼d0,a1∼π(·|x),a0∼πref (·|x)

[
r⋆(x, a1)− r⋆(x, a0)− β ·KL

(
π(·|x)∥πref(·|x)

)]
− η−1 ·min

r∈R

{
η · Ex∼d0,a

1∼π̂(·|x),
a0∼πbase(·|x)

[
r(x, a1)− r(x, a0)− β ·KL

(
π̂(·|x)∥πref(·|x)

)]
+ LD(r)

}

+ η−1 ·min
r∈R

{
η · Ex∼d0,a

1∼π̂(·|x),
a0∼πbase(·|x)

[
r(x, a1)− r(x, a0)− β ·KL

(
π̂(·|x)∥πref(·|x)

)]
+ LD(r)

}

− Ex∼d0,a1∼π̂(·|x),a0∼πbase(·|x)

[
r⋆(x, a1)− r⋆(x, a0)− β ·KL

(
π̂(·|x)∥πref(·|x)

)]
+ β · Ex∼d0

[
KL
(
π(·|x)∥πref(·|x)

)
−KL

(
π̂(·|x)∥πref(·|x)

)]
:= Term (A) + Term (B) + Term (C), (C.1)

15

where in the above Term (A), Term (B), and Term (C) are abbreviations for
Term (A)

= Ex∼d0,a1∼π(·|x),a0∼πbase(·|x)

[
r⋆(x, a1)− r⋆(x, a0)− β ·KL

(
π(·|x)∥πref(·|x)

)]
− η−1 ·min

r∈R

{
η · Ex∼d0,a

1∼π̂(·|x),
a0∼πbase(·|x)

[
r(x, a1)− r(x, a0)− β ·KL

(
π̂(·|x)∥πref(·|x)

)]
+ LD(r)

}
,

and
Term (B)

= η−1 ·min
r∈R

{
η · Ex∼d0,a

1∼π̂(·|x),
a0∼πbase(·|x)

[
r(x, a1)− r(x, a0)− β ·KL

(
π̂(·|x)∥πref(·|x)

)]
+ LD(r)

}

− Ex∼d0,a1∼π̂(·|x),a0∼πbase(·|x)

[
r⋆(x, a1)− r⋆(x, a0)− β ·KL

(
π̂(·|x)∥πref(·|x)

)]
,

and

Term (C) = β · Ex∼d0

[
KL
(
π(·|x)∥πref(·|x)

)
−KL

(
π̂(·|x)∥πref(·|x)

)]
.

In the following, we analyze Term (A) and Term (B) respectively.

Upper bound Term (A). Notice that by the optimality of our choice of policy π̂ in (3.2), we have
Term (A)

= Ex∼d0,a1∼π(·|x),a0∼πbase(·|x)

[
r⋆(x, a1)− r⋆(x, a0)− β ·KL

(
π(·|x)∥πref(·|x)

)]
(C.2)

− η−1 ·min
r∈R

{
η · Ex∼d0,a

1∼π̂(·|x),
a0∼πbase(·|x)

[
r(x, a1)− r(x, a0)− β ·KL

(
π̂(·|x)∥πref(·|x)

)]
+ LD(r)

}

≤ Ex∼d0,a1∼π(·|x),a0∼πref (·|x)

[
r⋆(x, a1)− r⋆(x, a0)− β ·KL

(
π(·|x)∥πref(·|x)

)]
− η−1 ·min

r∈R

{
η · Ex∼d0,a

1∼π(·|x),
a0∼πbase(·|x)

[
r(x, a1)− r(x, a0)− β ·KL

(
π(·|x)∥πref(·|x)

)]
+ LD(r)

}

= max
r∈R

{
Ex∼d0,a1∼π(·|x),a0∼πbase(·|x)

[(
r⋆(x, a1)− r⋆(x, a0)

)
−
(
r(x, a1)− r(x, a0)

)]
− η−1 · LD(r)

}
,

where in the inequality we apply the optimality of the choice of policy π̂ in (3.2).

Upper bound Term (B). For this term, we directly consider the following bound,
Term (B)

= η−1 ·min
r∈R

{
η · Ex∼d0,a

1∼π̂(·|x),
a0∼πref (·|x)

[
r(x, a1)− r(x, a0)− β ·KL

(
π̂(·|x)∥πref(·|x)

)]
+ LD(r)

}

− Ex∼d0,a1∼π̂(·|x),a0∼πbase(·|x)

[
r⋆(x, a1)− r⋆(x, a0)− β ·KL

(
π̂(·|x)∥πref(·|x)

)]
≤ Ex∼d0,a1∼π̂(·|x),a0∼πbase(·|x)

[
r⋆(x, a1)− r⋆(x, a0)− β ·KL

(
π̂(·|x)∥πref(·|x)

)]
+ η−1 · LD(r

⋆)

− Ex∼d0,a1∼π̂(·|x),a0∼πbase(·|x)

[
r⋆(x, a1)− r⋆(x, a0)− β ·KL

(
π̂(·|x)∥πref(·|x)

)]
= η−1 · LD(r

⋆), (C.3)

16

where in the inequality we apply the fact that r⋆ ∈ R by Assumption 5.1.

Combining Term (A), Term (B), and Term (C). Now by (C.1), (C.2), and (C.3), we have that

Gapπβ(π̂) = Term (A) + Term (B) + Term (C) (C.4)

≤ max
r∈R

{
Ex∼d0,a

1∼π(·|x),
a0∼πbase(·|x)

[(
r⋆(x, a1)− r⋆(x, a0)

)
−
(
r(x, a1)− r(x, a0)

)]
+ η−1 ·

(
LD(r

⋆)− LD(r)
)}

+ β · Ex∼d0

[
KL
(
π(·|x)∥πref(·|x)

)
−KL

(
π̂(·|x)∥πref(·|x)

)]
.

In the following, we upper bound the right hand side of (C.4) via relating the MLE loss difference
term to the reward difference term through a careful analysis of the preference model. On the one
hand, we invoke Lemma C.3 to give an upper bound of the difference of the MLE loss as following,
with probability at least 1− δ over random samples and ε = (6 · (1 + eR) ·N)−1, for any reward
model r ∈ R, it holds that

LD(r
⋆)− LD(r)

≤ −2 · E(x,a1,a0)∼µD(·,·,·)

[
D2

Hellinger

(
Pr⋆(·|x, a1, a0)∥Pr(·|x, a1, a0)

)]
+

3

N
· log

(Nε(R, ∥ · ∥∞)

δ

)
,

where we recall that we use the subscript r in Pr to emphasize the dependence of the probabilistic
model on the reward model. Here Nε(R, ∥ · ∥∞) denotes the ε-covering number of the reward model
class and R is the upper bound on the reward functionss (Assumption 5.1). Now to facilitate the
calculation, we lower bound the Hellinger distance by total variation (TV) distance as

D2
Hellinger

(
Pr⋆(·|x, a1, a0)∥Pr(·|x, a1, a0)

)
≥ D2

TV

(
Pr⋆(·|x, a1, a0)∥Pr(·|x, a1, a0)

)
,

By the expression of the probability model Pr, we can further write the TV distance above as

DTV

(
Pr⋆(·|x, a1, a0)∥Pr(·|x, a1, a0)

)
=

1

2
·
∣∣∣σ(r⋆(x, a1)− r⋆(x, a0)

)
− σ

(
r(x, a1)− r(x, a0)

)∣∣∣
+

1

2
·
∣∣∣σ(r⋆(x, a0)− r⋆(x, a1)

)
− σ

(
r(x, a0)− r(x, a1)

)∣∣∣
=
∣∣∣σ(r⋆(x, a1)− r⋆(x, a0)

)
− σ

(
r(x, a1)− r(x, a0)

)∣∣∣, (C.5)

where in the second equality we use the fact that σ(−z) = 1− σ(z). Now by Lemma C.4 and the
condition that r(x, a) ∈ [0, R] for any (x, a, r) ∈ X ×A×R (Assumption 5.1), we know that∣∣∣σ(r⋆(x, a1)− r⋆(x, a0)

)
− σ

(
r(x, a1)− r(x, a0)

)∣∣∣
≥ κ ·

∣∣∣(r⋆(x, a1)− r⋆(x, a0)
)
−
(
r(x, a1)− r(x, a0)

)∣∣∣,
where κ = 1/(1 + exp(R))2. As a result, the difference of the MLE loss is upper bounded by

LD(r
⋆)− LD(r)

≤ −2κ2 · E(x,a1,a0)∼µD(·,·,·)

[∣∣∣(r⋆(x, a1)− r⋆(x, a0)
)
−
(
r(x, a1)− r(x, a0)

)∣∣∣2]
+

3

N
· log

(Nε(R, ∥ · ∥∞)

δ

)
. (C.6)

On the other hand, the reward difference term in (C.4), which is evaluated on actions from π and πbase,
can be related to the reward difference evaluated on the data distribution µD via Assumption 5.2, i.e.,

Ex∼d0,a1∼π(·|x),a0∼πbase(·|x)

[(
r⋆(x, a1)− r⋆(x, a0)

)
−
(
r(x, a1)− r(x, a0)

)]
(C.7)

17

≤ CµD (R;π, πbase)

√
E(x,a1,a0)∼µD

[∣∣∣(r⋆(x, a1)− r⋆(x, a0)
)
−
(
r(x, a1)− r(x, a0)

)∣∣∣2].
Finally, combining (C.6), (C.7), and (C.4), denoting

∆r :=

√
E(x,a1,a0)∼µD

[∣∣∣(r⋆(x, a1)− r⋆(x, a0)
)
−
(
r(x, a1)− r(x, a0)

)∣∣∣2],
we have that

Gapπ(π̂) ≤ max
r∈R

{
CµD (R;π, πbase) ·∆r − 2η−1κ2 ·∆2

r

}
+

3

ηN
· log

(Nε(R, ∥ · ∥∞)

δ

)
+ β · Ex∼d0

[
KL
(
π(·|x)∥πref(·|x)

)
−KL

(
π̂(·|x)∥πref(·|x)

)]
≤
(
CµD (R;π, πbase)

)2
η

8κ2
+

3

ηN
· log

(Nε(R, ∥ · ∥∞)

δ

)
+ β · Ex∼d0

[
KL
(
π(·|x)∥πref(·|x)

)]
,

where in the second inequality we use that fact that az − bz2 ≤ a2/(4b) for any z ∈ R and that
KL-divergence is non-negative. Consequently, with the choice of

η = 2
√
6 ·
√

log (Nε(R, ∥ · ∥∞)/δ)

N
, β =

1√
N

, κ =
1

(1 + exp(R))2
,

we conclude that with probability at least 1− δ and ε = (6 · (1 + eR) ·N)−1,

Gapπ(π̂)

≤
√
6
(
1 + exp(R)

)2 ((
CµD (R;π, πbase)

)2
+ 1
)
ι+ 4Ex∼d0

[
KL
(
π(·|x)∥πref(·|x)

)]
4
√
N

,

where we denote ι =
√
log (Nε(R, ∥ · ∥∞)/δ) with ε = (6 · (1+ eR) ·N)−1. This finishes the proof

of Theorem 5.3.

C.3 Technical Lemmas

Lemma C.3 (Uniform concentration). Consider the MLE loss (3.1) and define the approximation
error as ε = (6·(1+eR)·N)−1 where R is the upper bound on the reward functions (Assumption 5.2).
Suppose that the reward model class R has a finite ε-covering number Nε(R, ∥ · ∥∞) < ∞. Then
for any δ < 1/e it holds with probability at least 1− δ that

LD(r
⋆)− LD(r)

≤ −2 · E(x,a1,a0)∼µD(·,·,·)

[
D2

Hellinger

(
Pr⋆(·|x, a1, a0)∥Pr(·|x, a1, a0)

)]
+

3

N
· log

(Nε(R, ∥ · ∥∞)

δ

)
.

Proof of Lemma C.3. For notational simplicity, we use Cε(R, ∥ · ∥∞) to denote an ε-cover of the
reward model class R under the ∥ · ∥∞-norm. It holds that Nε(R, ∥ · ∥∞) = |Cε(R, ∥ · ∥∞)|. First
we invoke Proposition 5.3 of [27] to obtain a uniform concentration over the finite set of ε-cover
Cε(R, ∥ · ∥∞). Specifically, with probability at least 1− δ, for any r ∈ Cε(R, ∥ · ∥∞),

LD(r
⋆)− LD(r)

≤ −2 · E(x,a1,a0)∼µD(·,·,·)

[
D2

Hellinger

(
Pr⋆(·|x, a1, a0)∥Pr(·|x, a1, a0)

)]
+

2

N
· log

(Nε(R, ∥ · ∥∞)

δ

)
. (C.8)

18

Now for any reward model r ∈ R, we take a r† ∈ Cε(R, ∥ · ∥∞) satisfying ∥r− r†∥∞ ≤ ε. We have

LD(r
⋆)− LD(r)

= LD(r
⋆)− LD(r

†) + LD(r
†)− LD(r)

≤ −2 · E(x,a1,a0)∼µD(·,·,·)

[
D2

Hellinger

(
Pr⋆(·|x, a1, a0)∥Pr†(·|x, a1, a0)

)]
+

2

N
· log

(Nε(R, ∥ · ∥∞)

δ

)
+ LD(r

†)− LD(r)

≤ −2 · E(x,a1,a0)∼µD(·,·,·)

[
D2

Hellinger

(
Pr⋆(·|x, a1, a0)∥Pr(·|x, a1, a0)

)]
+

2

N
· log

(Nε(R, ∥ · ∥∞)

δ

)
+ LD(r

†)− LD(r)

+ 4 · E(x,a1,a0)∼µD(·,·,·)

[
D2

Hellinger

(
Pr†(·|x, a1, a0)∥Pr(·|x, a1, a0)

)]
, (C.9)

where in the fir inequality we use (C.8) for r† and in the second inequality we utilize the triangular
inequality for Hellinger distance. Therefore, it remains to upper bound the approximation error
induced by r†. On the one hand, by the definition of LD in (3.1), we have that

LD(r
†)− LD(r)

=
1

N

N∑
i=1

yi · log
(

σ
(
r(xi, a

1
i)− r(xi, a

0
i)
)

σ
(
r†(xi, a1i)− r†(xi, a0i)

))

+
1

N

N∑
i=1

(1− yi) · log
(

σ
(
r(xi, a

0
i)− r(xi, a

1
i)
)

σ
(
r†(xi, a0i)− r†(xi, a1i)

)) .

Use the inequality that log(x) ≤ x− 1, we can further upper bound LD(r
†)− LD(r) by

LD(r
†)− LD(r)

≤ 1

N

N∑
i=1

yi ·
σ
(
r(xi, a

1
i)− r(xi, a

0
i)
)
− σ

(
r†(xi, a

1
i)− r†(xi, a

0
i)
)

σ
(
r†(xi, a1i)− r†(xi, a0i)

)
+

1

N

N∑
i=1

(1− yi) ·
σ
(
r(xi, a

0
i)− r(xi, a

1
i)
)
− σ

(
r†(xi, a

0
i)− r†(xi, a

1
i)
)

σ
(
r†(xi, a0i)− r†(xi, a1i)

) .

Now since ∥r† − r∥∞ ≤ ε and r† ∈ [0, R], invoking Lemma C.4, we can derive that

LD(r
†)− LD(r) ≤

1

N

N∑
i=1

∣∣(r(xi, a
1
i)− r(xi, a

0
i)
)
−
(
r†(xi, a

1
i)− r†(xi, a

0
i)
)∣∣

(1 + eR)−1

+
1

N

N∑
i=1

∣∣(r(xi, a
0
i)− r(xi, a

1
i)
)
−
(
r†(xi, a

0
i)− r†(xi, a

1
i)
)∣∣

(1 + eR)−1

≤ 4 · ∥r† − r∥∞ · (1 + eR) ≤ 4ε · (1 + eR). (C.10)

On the other hand, we upper bound the hellinger distance between Pr and Pr† , for any (x, a1, a0) ∈
X ×A×A,

D2
Hellinger

(
Pr†(·|x, a1, a0)∥Pr(·|x, a1, a0)

)
≤ DTV

(
Pr†(·|x, a1, a0)∥Pr(·|x, a1, a0)

)
=
∣∣∣σ(r†(x, a1)− r†(x, a0)

)
− σ

(
r(x, a1)− r(x, a0)

)∣∣∣
≤
∣∣∣(r†(x, a1)− r†(x, a0)

)
−
(
r(x, a1)− r(x, a0)

)∣∣∣
≤ 2 · ∥r† − r∥∞ ≤ 2ε, (C.11)

19

where the first inequality uses the fact that D2
Hellinger ≤ DTV, the equality uses the same argument

as (C.5), and the second inequality applies Lemma C.4. Finally, combining (C.9), (C.10), and (C.11),
we conclude that

LD(r
⋆)− LD(r) ≤ −2 · E(x,a1,a0)∼µD(·,·,·)

[
D2

Hellinger

(
Pr⋆(·|x, a1, a0)∥Pr(·|x, a1, a0)

)]
+

2

N
· log

(Nε(R, ∥ · ∥∞)

δ

)
+ 6ε · (1 + eR).

By taking the approximation error ε = (6 · (1 + eR) · N)−1, we conclude that for δ < e−1, with
probability at least 1− δ, for any r ∈ R, it holds that

LD(r
⋆)− LD(r)

≤ −2 · E(x,a1,a0)∼µD(·,·,·)

[
D2

Hellinger

(
Pr⋆(·|x, a1, a0)∥Pr(·|x, a1, a0)

)]
+

3

N
· log

(Nε(R, ∥ · ∥∞)

δ

)
.

This completes the proof of Lemma C.3.

Lemma C.4 (Sigmoid function). For any real numbers z1, z2 ∈ [−R,R], it holds that

κ · |z1 − z2| ≤ |σ(z1)− σ(z2)| ≤ |z1 − z2|,
where the constant κ = 1/(1 + exp(R))2.

Proof of Lemma C.4. Since the sigmoid function σ(·) is differentiable, we know that for any z1, z2 ∈
[−R,R], there exists some ξ(z1, z2) ∈ [−R,R] such that

σ(z1)− σ(z2) = σ′(ξ(z1, z2)) · (z1 − z2).

Notice that σ′(z) = σ(z) · (1− σ(z)), we can obtain that

1 ≥ σ′(ξ(z1, z2)) = σ
(
ξ(z1, z2)

)
·
(
1− σ

(
ξ(z1, z2)

))
=

1

1 + exp(ξ(z1, z2))
·
(
1− 1

1 + exp(ξ(z1, z2))

)
≥ 1

1 + exp(R)
·
(
1− 1

1 + exp(−R)

)
=

1

(1 + exp(R))2
.

This completes the proof of Lemma C.4.

D Proofs for Equivalence between Maximin and Minimax Objectives

D.1 Proof of Theorem 5.6

Proof of Theorem 5.6. Consider denoting an auxiliary policy π̂ as

π̂ ∈ argmax
π∈Π

min
r∈R

ϕ(π, r). (D.1)

By the definition of r̂ and π̂, the duality gap of (r̂, π̂), defined as

Dual(r̂, π̂) := max
π∈Π

ϕ(π, r̂)−min
r∈R

ϕ(π̂, r)

is zero. This is because the following deduction,

Dual(r̂, π̂) =

(
max
π∈Π

ϕ(π, r̂)−min
r∈R

max
π∈Π

ϕ(π, r)

)
+

(
max
π∈Π

min
r∈R

ϕ(π, r)−min
r∈R

ϕ(π̂, r)

)
= 0, (D.2)

20

where in the first equality we apply Lemma D.1 that the minimax objective and the maximin objective
are equivalent, and the last equality applies the definition of r̂ and π̂ respectively. Note that we can
rewrite the duality gap as following

Dual(r̂, π̂) =

(
max
π∈Π

ϕ(π, r̂) + ϕ(π̂, r̂)

)
−
(
ϕ(π̂, r̂)−min

r∈R
ϕ(π̂, r)

)
. (D.3)

Combining (D.2) and (D.3), we can conclude that

max
π∈Π

ϕ(π, r̂) = ϕ(π̂, r̂) ⇒ π̂ ∈ argmax
π∈Π

ϕ(r̂, π). (D.4)

Now comparing what πr̂ and π̂ satisfy in (5.4) and (D.4) respectively, invoking Lemma D.3 that the
maximizer of ϕ(·, r) given any r ∈ R is unique on the support of d0, we can conclude that

πr̂(·|x) = π̂(·|x), ∀x ∈ Supp(d0). (D.5)

Therefore, by (D.1) and (D.5), and the fact that ϕ(π, r) depends on π only through its value on the
support of d0, we can conclude that

πr̂ ∈ argmax
π∈Π

min
r∈R

ϕ(π, r).

This finishes the proof of Theorem 5.6.

D.2 Auxiliary Lemmas

Lemma D.1 (Equivalence of maximin and minimax objectives). For the policy class Π defined in
(2.3) and the reward model class R satisfying Assumption 5.5, it holds that the maximin objective is
equivalent to the minimax objective, i.e.,

max
π∈Π

min
r∈R

ϕ(π, r) = min
r∈R

max
π∈Π

ϕ(π, r).

Proof of Lemma D.1. The foundation of this result is a minimax theorem given by [18] (Lemma D.2).
In our setting, the policy class Π is a nonempty set, and the reward model class R is a nonempty
compact Hausdorff space. Furthermore, by our choice of the policy class Π in (2.3), Π is a convex set.
Meanwhile, the function ϕ is a concave function of π ∈ Π since the dependence on π is linear terms
plus a negative KL term (concave). Finally, by our assumption, the function ϕ is convex-like on the
reward model class R and is also continuous on R. As a result, all the conditions of Lemma D.2 are
satisfied and the minimax theorem holds in our problem setup, finishing the proof of Lemma D.1.

Lemma D.2 (Minimax theorem [18]). Let X be a nonempty set (not necessarily topologized) and
Y be a nonempty compact topological space. Let f : X × Y 7→ R be lower semicontinuous on Y .
Suppose that f is concave-like on X and convex-like on Y , i.e., for any x1, x2 ∈ X , α ∈ [0, 1], there
exists x3 ∈ X such that

f(x3, ·) ≥ α · f(x1, ·) + (1− α) · f(x2, ·) on Y ,

and for any y1, y2 ∈ Y , β ∈ [0, 1], there exists y3 ∈ Y such that

f(·, y3) ≤ β · f(·, y1) + (1− β) · f(·, y2) on Y .

Then the following equation holds,

max
x∈X

min
y∈Y

f(x, y) = min
y∈Y

max
x∈X

f(x, y).

Lemma D.3 (Unique maximizer of ϕ). Consider the function ϕ defined as

ϕ(π, r) := η · Ex∼d0,a1∼π(·|x),a0∼πbase(·|x)

[
r(x, a1)− r(x, a0)− β ·DKL

(
π(·|x)∥πref(·|x)

)]
+ LD(r).

Then given any r ∈ R, the maximimzer of ϕ(·, r) is unique on the support of d0.

21

Proof of Lemma D.3. Given any r ∈ R, consider that

max
π∈Π

ϕ(π, r)

= η ·max
π∈Π

{
Ex∼d0,a1∼π(·|x)

[
r(x, a1)− β ·DKL

(
π(·|x)∥πref(·|x)

)]}
= η ·max

π∈Π

{
Cr − β · Ex∼d0

[
DKL

(
π(·|x)

∥∥∥∥∥ πref(·|x) · exp(β−1 · r(x, ·))∫
a′∈A dπref(a′|x) · exp(β−1 · r(x, a′))

)]}
,

where

Cr = Ex∼d0

[
β · log

(∫
a∈A

dπref(a|x) · exp
(
β−1 · r(x, a)

))]
is a constant independent of π. Therefore, the maximizer of ϕ(·, r) on the support of d0 must equal to

πr(·|x) =
πref(·|x) · exp(β−1 · r(x, ·))∫

a′∈A dπref(a′|x) · exp(β−1 · r(x, a′)) ,

which completes the proof of Lemma D.3.

E Additional Details on Experiments

E.1 Training Details

We train the gemma series models with 8 NVIDIA A6000 GPUs and the beta series models with 8
NVIDIA A100 GPUs, where they are all GPT-like models with around 7 billion parameters. It takes
around three hours to train a beta series model and five hours to train a gemma one. Our codebase is
adapted from the Alignment Handbook [42]. By comparing the validation loss on the test split (not
used for later evaluation), we select the hyperparameter η of both RPO (beta) and RPO (gemma) to
be 0.005. We list the remaining training configurations in Table 3, which are recommended by the
Alignment Handbook.

Configuration Beta Series Gemma Series

learning rate 5.0e-7 5.0e-7
learning scheduler type cosine cosine

warmup ratio 1.0 1.0
batch size 128 128

gradient accumulation 2 16
batch size per device 8 1

training epoch 1 2
β 0.01 0.05

optimizer adamw torch adamw torch
seed 42 42

precision bfloat16 bfloat16

Table 3: Training configurations for beta series and gemma series models in this paper.

E.2 Evaluation Details

GPT-4 evaluation on the test split. We use the following prompts to guide GPT-4 to annotate the
preferences among win, lose, and tie (we denote them by A, B, and C, respectively).

22

Prompts: Please act as an impartial judge and evaluate the quality of the responses provided
by two AI assistants to the user question displayed below. You should choose the assistant
that follows the user’s instructions and answers the user’s question better. Your evaluation
should consider factors such as the helpfulness, relevance, accuracy, depth, creativity, and
level of detail of their responses. Begin your evaluation by comparing the two responses and
provide a short explanation. Avoid any position biases and ensure that the order in which the
responses were presented does not influence your decision. Do not allow the length of the
responses to influence your evaluation. Do not favor certain names of the assistants. Be as
objective as possible. After providing your explanation, output your final verdict by strictly
following this format: [[A]] if assistant A is better, [[B]] if assistant B is better, and [[C]] for
a tie. [Instruction] instruction [The Start of Assistant A’s Answer] {answer A} [The End of
Assistant A’s Answer] [The Start of Assistant B’s Answer] {answer B} [The End of Assistant
B’s Answer]

Here, we replace {answer A} and {answer B} with the answers of two models. Since GPT annotation
has shown to prefer the answer in the first position [44], we randomly exchange the positions between
two answers during the evaluation to ensure a fair comparison.

Benchmark evaluation. We use the default configuration for the evaluations on MT-Bench1 and
AlpacaEval 2.02. By default, the annotator of MT-Bench is the latest version of GPT-4. The default
annotator and the competitor model are both GPT-4 (Preview 11/06). We only need to manually
import the proper chat template that formats the training dataset, which are shown as follows.

Chat Template for Beta Series: <|system|></s><|user|>
{instruction}</s>
<|assistant|>

Chat Template for Gemma Series: <bos> <|im_start|>user
{instruction}<|im_end|>
<|im_start|>assistant

E.3 Additional Results on Experiments

In this section, we provide the additional results to show the performance gain for RPO (beta) in
MT-Bench and RPO (gemma) in AlpacaEval 2.0. We report the pairwise win rates in Tables 4, 5, and
6 to analyze their performance gaps, where all the annotation configurations are the same in Table 2.
Results show that RPO still exceeds DPO in the metric of the pairwise win rates on the benchmarks
for both beta series and gemma series.

win rate (%) RPO (beta) Ref. (beta) DPO (beta)

RPO (beta) 50.00 83.75 57.81
Ref. (beta) 16.25 50.00 21.25
DPO (beta) 78.75 42.19 50.00

Table 4: Pairwise win rates (left vs. right) for beta series models on MT-Benchmark.

1https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge
2https://github.com/tatsu-lab/alpaca_eval/tree/main

23

https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge
https://github.com/tatsu-lab/alpaca_eval/tree/main

win rate (%) RPO (beta) Ref. (beta) DPO (beta)

RPO(beta) 50.00 80.13 52.02
Ref.(beta) 19.87 50.00 20.61

DPO (beta) 47.98 79.39 50.00

Table 5: Pairwise win rates (left vs. right) for gemma series models on AlpacaEval 2.0.

win rate (%) RPO (beta) Ref. (beta) DPO (beta)

RPO (beta) 50.00 64.93 51.33
Ref. (beta) 35.07 50.00 36.44
DPO (beta) 48.67 64.56 50.00

Table 6: Pairwise Length-Control (LC) win rates (left vs. right) for gemma series models on
AlpacaEval 2.0.

24

	Introduction
	Our Contributions and Related Works

	Preliminaries of RLHF
	A Theory-motivated Objective
	An Equivalent and Implementation-friendly Objective
	Theoretical Analysis
	Establishing the Sample Complexity of Maximin Objective (Algorithm 1)
	Equivalence between Maximin and Minimax Objectives

	Experiments
	Conclusions
	Related Works
	Limitations and Future Works
	Proofs for Sample Complexity Analysis
	Further Discussions on Algorithm 1 and Theorem 5.3
	Proof of Theorem 5.3
	Technical Lemmas

	Proofs for Equivalence between Maximin and Minimax Objectives
	Proof of Theorem 5.6
	Auxiliary Lemmas

	Additional Details on Experiments
	Training Details
	Evaluation Details
	Additional Results on Experiments

