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Abstract

Spurred by advancements in scale, large lan-001
guage models (LLMs) have demonstrated002
strong few-shot learning ability via in-context003
learning (ICL). However, the performance of004
ICL has been shown to be highly sensitive to005
the selection of few-shot demonstrations. Se-006
lecting the most suitable examples as context007
remains an ongoing challenge and an open008
problem. Existing literature has highlighted the009
importance of selecting examples that are di-010
verse or semantically similar to the test sample011
while ignoring the fact that the optimal selec-012
tion dimension, i.e., diversity or similarity, is013
task-specific. Based on how the test sample is014
answered, we propose Iterative Demonstration015
Selection (IDS) to leverage the merits of both016
dimensions. Using zero-shot chain-of-thought017
reasoning (Zero-shot-CoT), IDS iteratively se-018
lects examples that are diverse but still strongly019
correlated with the test sample as ICL demon-020
strations. Specifically, IDS applies Zero-shot-021
CoT to the test sample before demonstration se-022
lection. The output reasoning path is then used023
to choose demonstrations that are prepended024
to the test sample for inference. The generated025
answer is followed by its corresponding rea-026
soning path for extracting a new set of demon-027
strations in the next iteration. After several028
iterations, IDS adopts majority voting to obtain029
the final result. Through extensive experiments030
on tasks including reasoning, question answer-031
ing, and topic classification, we demonstrate032
that IDS can consistently outperform existing033
ICL demonstration selection methods.034

1 Introduction035

With the recent advancements in scaling up model036

parameters, large language models (LLMs) show-037

case promising results on a variety of few-shot038

tasks through in-context learning (ICL), where the039

model is expected to directly generate the output of040

the test sample without updating parameters. This041

is achieved by conditioning on a manually designed042

Text: LeBron James ...         Topic: Sports

Text: ChatGPT ...         Topic: Technology

Text: Lionel Messi ...               Topic: Sports

Text: OpenAI ...         Topic:

Input

Frozen LLM

Output Technology

Figure 1: Illustration of in-context learning (ICL) on
topic classification. A frozen large language model
directly generates the topic ‘Technology’ for the test
sample ‘OpenAI ...’ by taking the demonstrations and
the test sample as input.

prompt consisting of an optional task description 043

and a few demonstration examples (Brown et al., 044

2020). Fig. 1 shows an example describing how 045

LLMs perform ICL on the topic classification task. 046

Given a few text-topic pairs as demonstrations, ICL 047

combines them with the test sample as input, to the 048

LLM for inference. The output, i.e., ‘Technology’, 049

is generated by the model autoregressively without 050

any parameter updates. 051

Despite the effectiveness, the performance of 052

ICL has been shown to be highly sensitive to the 053

selection of demonstration examples (Zhao et al., 054

2021). Different sets of demonstrations can yield 055

performance ranging from nearly random to com- 056

parable with state-of-the-art models (Gao et al., 057

2021; Lu et al., 2022). To alleviate the above is- 058

sue, researchers in ICL have proposed a number 059

of methods to select a set of examples as few-shot 060

demonstrations (Rubin et al., 2022; Liu et al., 2022; 061

Li and Qiu, 2023; Wang et al., 2023b; Li et al., 062

2023a; Ma et al., 2023; An et al., 2023b). However, 063

for LLMs for which parameters or detailed output 064

distributions are not available (Sun et al., 2022), 065

it is still a common practice to randomly select 066
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examples or select examples that are semantically067

similar to the test sample as demonstrations, i.e.,068

considering diversity or similarity. While several069

approaches investigate the combination of similar-070

ity and diversity when prompting with explanations,071

exploring compositional generalization, or choos-072

ing examples for annotation (Ye et al., 2023b; An073

et al., 2023a; Su et al., 2023), it is not yet clear how074

to determine and leverage the optimal dimension075

for different tasks in ICL and how the rationale for076

answering the query benefits the balance between077

these two dimensions.078

Actually, the optimal dimension for selecting079

demonstration examples is task-specific. As we080

will show in §4, the diversity dimension is superior081

to the similarity dimension on CommonsenseQA082

while the similarity dimension outperforms the di-083

versity dimension on AGNews and BoolQ. Thus, it084

is unreasonable to claim that one dimension is con-085

sistently better than the other across different tasks.086

To fully leverage the merits of both dimensions, we087

propose Iterative Demonstration Selection (IDS)088

for ICL (Fig. 2) by utilizing how the test sample is089

answered. IDS can iteratively select demonstration090

examples that are diverse but still have a strong091

correlation with the test sample through zero-shot092

chain-of-thought reasoning (Zero-shot-CoT) (Ko-093

jima et al., 2022). Specifically, Zero-shot-CoT, e.g.,094

“Let’s think step by step.”, is first applied to the095

test sample before selecting demonstrations to ob-096

tain a reasoning path. The training examples that097

are most semantically similar to the generated rea-098

soning path are then selected as demonstrations.099

They are prepended to the test sample for inference.100

Note that IDS ensures that the generated answer101

is accompanied by the reasoning path through de-102

signed prompts. The new reasoning path is then103

used for extracting another set of demonstration104

examples by semantic similarity in the next itera-105

tion. After a few iterations, IDS adopts majority106

voting to obtain the final result. Empirical results107

on tasks spanning mathematical reasoning, com-108

monsense reasoning, logical reasoning, question109

answering, and topic classification show that IDS110

can consistently outperform previous ICL demon-111

stration selection baselines. In summary, our main112

contributions are:113

• We consider both the diversity and similarity114

dimensions of ICL demonstration selection for115

LLMs. We identify that the optimal dimension116

for selecting demonstrations is task-specific and117

propose Iterative Demonstration Selection (IDS) 118

based on how the test query is answered to fully 119

leverage the merits of both dimensions. 120

• With extensive experiments and analysis, we 121

demonstrate the effectiveness of IDS on a variety 122

of tasks. 123

2 Related Work 124

This work mainly explores how to select few-shot 125

in-context learning demonstrations for LLMs by 126

leveraging Zero-shot-CoT. In light of this, we re- 127

view four lines of research that form the basis of 128

this work: few-shot learning, in-context learning 129

basics, demonstration selection for in-context learn- 130

ing, and chain-of-thought reasoning. 131

2.1 Few-shot Learning 132

Few-shot learning aims to learn tasks with only a 133

few labeled samples, which results in a big chal- 134

lenge, i.e., over-fitting, for models as they typically 135

require large amounts of data for training. Prior 136

methods to address over-fitting mainly focused on 137

augmenting the few-shot data (Gao et al., 2020; 138

Qin and Joty, 2022), reducing the hypothesis space 139

(Triantafillou et al., 2017; Hu et al., 2018), or opti- 140

mizing the strategy for searching the best hypothe- 141

sis (Ravi and Larochelle, 2017; Finn et al., 2017). 142

More recently, LLMs have demonstrated strong 143

few-shot learning ability through in-context learn- 144

ing without any parameter updates (Brown et al., 145

2020). 146

2.2 In-context Learning 147

Brown et al. (2020) first showed that a frozen GPT- 148

3 model can achieve impressive results on a vari- 149

ety of few-shot NLP tasks through conditioning 150

on manually designed prompts consisting of task 151

descriptions and several demonstration examples. 152

Since then many efforts have been made on in- 153

context learning (ICL) (Dong et al., 2022). Chen 154

et al. (2022); Min et al. (2022a); Wei et al. (2023a) 155

demonstrated that the ICL ability of language mod- 156

els can be further improved through self-supervised 157

or supervised training. Some analytical studies at- 158

tempted to understand what factors affect ICL per- 159

formance (Zhao et al., 2021; Shin et al., 2022; Wei 160

et al., 2022a; Min et al., 2022b; Yoo et al., 2022; 161

Wei et al., 2023b) and why ICL works (Xie et al., 162

2022; Olsson et al., 2022; Li et al., 2023b; Pan et al., 163

2023; Dai et al., 2023). Other ongoing research on 164

ICL has also explored (i) demonstration designing, 165
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including demonstration selection (Liu et al., 2022;166

Rubin et al., 2022; Wang et al., 2023b), demonstra-167

tion ordering (Lu et al., 2022), and demonstration168

formatting (Wei et al., 2022b; Wang et al., 2022c;169

Zhou et al., 2023; Zhang et al., 2023a), (ii) appli-170

cations of ICL (Ding et al., 2022; Meade et al.,171

2023; Zheng et al., 2023), and (iii) ICL beyond text172

(Wang et al., 2023c; Huang et al., 2023; Zhu et al.,173

2023; Wang et al., 2023a).174

2.3 Demonstration Selection for In-context175

Learning176

The performance of ICL has been shown to be177

highly sensitive to the selection of demonstration178

examples (Zhao et al., 2021). Existing methods179

to solve this problem can be mainly divided into180

two categories. First, unsupervised methods rely181

on pre-defined metrics. Liu et al. (2022) pro-182

posed to select the closest neighbors as demon-183

strations. In contrast, Levy et al. (2022) selected184

diverse demonstrations to improve in-context com-185

positional generalization. More recent studies have186

explored leveraging the output distributions or pre-187

dictive uncertainty of language models to select188

few-shot demonstrations (Wu et al., 2022; Nguyen189

and Wong, 2023; Li and Qiu, 2023; Ma et al.,190

2023; Ling et al., 2024; Xu and Zhang, 2024) or191

self-generating demonstrations (Chen et al., 2023).192

Second, supervised methods involve model train-193

ing. Rubin et al. (2022); Ye et al. (2023a); Li et al.194

(2023a); Luo et al. (2023); Wang et al. (2024) pro-195

posed to learn to retrieve demonstration examples.196

Wang et al. (2023b) posited LMs as implicit topic197

models to facilitate demonstration selection. In ad-198

dition, some studies (Zhang et al., 2022; Scarlatos199

and Lan, 2023) attempted to select demonstrations200

based on reinforcement learning. However, it is201

still a common practice to randomly select exam-202

ples or select examples that are semantically simi-203

lar to the test sample as demonstrations for LLMs204

for which parameters or detailed output distribu-205

tions are not available (Sun et al., 2022). Several206

methods investigated the combination of diversity207

and similarity in different scenarios, e.g., prompt-208

ing with explanations (Ye et al., 2023b), choos-209

ing examples for annotation (Su et al., 2023) and210

exploring compositional generalization (An et al.,211

2023a). Nevertheless, it remains unclear to us how212

to determine and leverage the optimal dimension213

for different tasks in ICL and how the reason for214

answering the test sample benefits the balance be-215

tween the two dimensions, which motivates us to216

propose our simple but effective approach (IDS). 217

2.4 Chain-of-Thought Reasoning 218

Chain-of-thought (CoT) reasoning induces LLMs 219

to produce intermediate reasoning steps before gen- 220

erating the final answer (Wei et al., 2022b). De- 221

pending on whether there are manually designed 222

demonstrations, current CoT reasoning methods 223

mainly include Manual-CoT and Zero-shot-CoT. 224

In Manual-CoT, human-labeled reasoning paths 225

are used to perform CoT reasoning (Wei et al., 226

2022b; Zhou et al., 2022; Wang et al., 2022b; 227

Li et al., 2022; Wang et al., 2022a). In contrast, 228

LLMs leverage self-generated rationales for rea- 229

soning in Zero-shot-CoT (Kojima et al., 2022; Ze- 230

likman et al., 2022; Zhang et al., 2023a; Diao et al., 231

2023). The ongoing research on CoT reasoning 232

has also explored (i) multimodal reasoning (Zhang 233

et al., 2023b; Wu et al., 2023), (ii) distilling knowl- 234

edge from LLMs (Ho et al., 2022; Fu et al., 2023), 235

and (iii) iterative optimization (Shinn et al., 2023; 236

Madaan et al., 2023; Paul et al., 2023). 237

3 Problem Formulation 238

Given the test set Dtest and the training set Dtrain, 239

the goal of ICL demonstration selection is to find 240

an optimal subset S = {(x1, y1), ..., (xk, yk)} (k- 241

shot) of Dtrain as demonstration examples for each 242

test sample (x̂i, ŷi) to maximize the overall task 243

performance on Dtest. More formally, the optimal 244

selection method h̃ is defined as: 245

h̃ = argmax
h∈H

∣Dtest∣
∑
i=1

δLLM([h(Dtrain,x̂i,ŷi),x̂i]),ŷi (1) 246

where H is the hypothesis space for searching 247

demonstration examples, h(Dtrain, x̂i, ŷi) refers to 248

demonstrations selected for (x̂i, ŷi) using h, [, ] 249

stands for concatenation, and δa,b is the Kronecker 250

delta function: δa,b = 1 if a equals b, otherwise 251

δa,b = 0. In this work, we aim to find the optimal 252

method h̃ by leveraging Zero-shot-CoT. 253

4 What Makes Good In-Context 254

Demonstrations? 255

As demonstrated in previous work (Zhao et al., 256

2021), the overall task performance is highly sen- 257

sitive to the selection method h. Different sets 258

of demonstration examples can yield significantly 259

different performance. For example, Zhang et al. 260
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CommonsenseQA BoolQ AGNews

Similar-ICL-Consistency (Similarity) 76.0 85.0 90.0
Random-ICL-Voting (Diversity) 79.0 84.0 88.0

Table 1: Results of different methods on Common-
senseQA, BoolQ and AGNews. The optimal dimension
for selecting ICL demonstrations is task-specific.

(2022) show that the minimum and maximum ICL261

performance due to random sampling differs by262

> 30% on 4 classification tasks, which emphasizes263

the importance of selecting good demonstrations264

for LLMs.265

A natural question is: what makes good in-266

context demonstrations? For LLMs, it is still a267

common practice to select a subset S consisting of268

examples that are diverse or semantically similar269

to the test sample as demonstrations, i.e., consider-270

ing the diversity or similarity of S. To investigate271

whether one dimension is consistently better than272

the other one across different tasks, we conduct273

some pilot experiments on CommonsenseQA (Tal-274

mor et al., 2019), BoolQ (Clark et al., 2019) and275

AGNews (Zhang et al., 2015). Specifically, we ran-276

domly sample 100 examples from the original test277

set for experiments and conduct 4-shot learning278

using GPT-3.5 (gpt-3.5-turbo).279

Following Zhang et al. (2023a), we use Sentence-280

BERT (Reimers and Gurevych, 2019) to encode281

all samples. For each test sample, the Similar-282

ICL method selects the top-4 similar training data283

based on cosine similarity while the Random-ICL284

method randomly samples 4 training examples as285

few-shot demonstrations. Inspired by Wang et al.286

(2022b), we apply self-consistency with 3 decod-287

ing paths (temperature 0.7) to Similar-ICL (named288

Similar-ICL-Consistency) and run Random-ICL289

3 times before majority voting (named Random-290

ICL-Voting) to improve the robustness.291

The results of different methods on four datasets292

are reported in Table 1. We can observe that the293

diversity dimension outperforms the similarity di-294

mension on CommonsenseQA while the similarity295

dimension is superior to the diversity dimension296

on BoolQ and AGNews. Therefore, the optimal297

dimension for selecting demonstration examples is298

task-specific. Thus, it is unreasonable to claim that299

one dimension is consistently better than the other300

one in ICL demonstration selection.301

Intuitively, semantically similar examples can302

help the model correctly answer the test query303

as they might share similar input-output patterns304

with the test sample which could unleash GPT-305

3.5’s power of text generation. To further under- 306

stand why the similarity dimension underperforms 307

the diversity dimension on CommonsenseQA, we 308

present a case study in Table 2. We can see that 309

the answer of the final demonstration example 310

extracted by Similar-ICL-Consistency, i.e., ‘most 311

buildings’ is also in the options list of the test sam- 312

ple, which misleads the decision process of the 313

model, leading to a wrong answer. In addition, the 314

selected demonstrations might not include enough 315

important information as high similarity also re- 316

sults in redundancy. 317

Considering the strengths and weaknesses of 318

both dimensions, we aim to design a method that 319

can select demonstration examples that are di- 320

verse (minimizing misleading information) but still 321

strongly correlated with the test sample, which is 322

introduced in the next section. 323

5 Iterative Demonstration Selection 324

Based on the observations and considerations in 325

§4, we introduce Iterative Demonstration Selection 326

(IDS) for ICL demonstration selection by leverag- 327

ing how the test sample is answered (see Fig. 2 for 328

an illustration). Intuitively, the demonstrations that 329

are similar to the reason for answering a sample are 330

strongly correlated with this sample. Therefore, we 331

propose to incorporate zero-shot chain-of-thought 332

reasoning (Zero-shot-CoT) into IDS to iteratively 333

select demonstration examples that are diverse but 334

still have a strong correlation with the test sample. 335

Specifically, for each test sample x̂i, IDS mainly 336

consists of four steps: 337

1. We apply Zero-shot-CoT, i.e., “Let’s think step 338

by step.” to the test sample x̂i before selecting 339

demonstrations to obtain a reasoning path R. 340

2. The reasoning path R is then used to 341

select top-k (k is the number of shot) 342

most semantically similar training examples 343

{(x1, y1), ..., (xk, yk)} as few-shot demonstra- 344

tions. We use Sentence-BERT (Reimers and 345

Gurevych, 2019) to encode the reasoning path 346

R and training examples to obtain the contex- 347

tual representations and use cosine similarity to 348

measure the similarity between representations. 349

3. The selected k training examples 350

{(x1, y1), ..., (xk, yk)} are then prepended to 351

the test sample x̂i for ICL. During inference, we 352

ensure that the generated answer Â is accom- 353

panied by its corresponding reasoning path R̂ 354
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Similar-ICL-Consistency Random-ICL-Voting

Which choice is the correct answer to the question? Which choice is the correct answer to the question?

Examples:
Question: If you have cleaned off dust here it may be dif-
ficult to do your homework where? Answer Choices: (A)
desktop (B) closet (C) most buildings (D) surface of earth
(E) stove
Answer: A
Question: Where is dust likely to be under? Answer Choices:
(A) closet (B) ground (C) windowsill (D) attic (E) carpet
Answer: E
Question: Where would you find a dustbin that is being
used? Answer Choices: (A) utility closet (B) ground (C)
cupboard (D) broom closet (E) kitchen
Answer: E
Question: Dust accumulates where? Answer Choices: (A)
ceiling (B) library (C) surface of earth (D) most buildings
(E) desktop
Answer: D

Examples:
Question: She had a busy schedule, she had to run errands
and pick up the kids the second she did what? Answer
Choices: (A) make time for (B) take money (C) go outdoors
(D) leave work (E) field
Answer: D
Question: What is the worst outcome of an injury? Answer
Choices: (A) cause death (B) cause bleeding (C) falling
down (D) become infected (E) claim insurance
Answer: A
Question: Mom said that Sarah should stay in bed until she
was able to go to school again. What did mom say to Sarah
when she tried to get up? Answer Choices: (A) you’re sick
(B) were sick (C) more rest (D) rest more (E) get back under
the covers
Answer: A
Question: John got a raise, but he lost rank. Overall, it was a
good what? Answer Choices: (A) demotion (B) push down
(C) go off strike (D) lower (E) go off strike
Answer: A

The response should follow the format: Answer: {A, B, C,
D or E}

The response should follow the format: Answer: {A, B, C,
D or E}

Here is the test data. Here is the test data.
Question: John wanted to clean all of the dust out of his
place before settling down to watch his favorite shows. What
might he hardest do dust? Answer Choices: (A) closet (B)
under the bed (C) television (D) attic (E) most buildings

Question: John wanted to clean all of the dust out of his
place before settling down to watch his favorite shows. What
might he hardest do dust? Answer Choices: (A) closet (B)
under the bed (C) television (D) attic (E) most buildings

Answer: E ✗ Answer: D ✓

Table 2: Examples of Similar-ICL-Consistency (first decoding path) and Random-ICL-Voting (first run) for
constructing demonstration examples. The upper part is the input to LLMs, including few-shot demonstrations, and
the lower part is the predicted answer. Similar-ICL-Consistency gives the wrong answer ‘most buildings’ which is
actually the output of the final demonstration example, indicating that the decision process of the model is misled by
this similar sample.

through designed prompts, e.g., “The response355

should follow the format: Topic: {world, sports,356

business or technology}\nReason: {reason}”.357

Note that Zero-shot-CoT is also applied in358

this step to improve the quality of generated359

reasoning paths. After ICL, we go back to Step360

2 for iterations using the new reasoning path R̂.361

4. After q rounds of iterations between Step 2 and362

3, we adopt majority voting on all Â to obtain363

the final result Âfinal.364

Obviously, the selected demonstration examples365

are strongly correlated with the original test sample,366

i.e., achieving similarity, as they are selected by the367

generated reasoning paths (see Appendix A.4 for368

quantitative analysis of reasoning paths). And they369

can be different during iterations to achieve diver-370

sity because the reasoning paths vary in different371

iterations. Note that there is no reasoning path in372

few-shot demonstrations (as shown in the green373

part in Fig. 2). The reasoning path only exists in374

Algorithm 1 Selection process of IDS

Require: Training set Dtrain, test set Dtest, LLMθ , number of
demonstrations k, number of iterations q and answer set
Âall = ∅

1: ENCODE all samples in Dtrain using Sentence-BERT ▷
Encode training set

2: for x̂i in Dtest do
3: APPLY Zero-shot-CoT to x̂i to obtain the reasoning

path R ▷ Zero-shot-CoT
4: for j = 1, . . . , q do
5: ENCODE R using Sentence-BERT ▷ Encode

reasoning path
6: USE R to select top-k most similar examples S =

{(x1, y1), ..., (xk, yk)} from Dtrain as demonstrations ▷
KNN selection

7: (Â, R̂) = LLMθ(S, x̂i) ▷ ICL with
Zero-shot-CoT

8: R = R̂, Âall = Âall ∪ {Â} ▷ Update reasoning
path and answer set

9: end for
10: ADOPT majority voting for Âall to obtain the final

result Âfinal for the test sample x̂i ▷ Majority voting
11: end for

the output of LLMs. 375

In addition, we illustrate the whole selection 376
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What is the topic of the input? World, sports, 
business or technology?
The response should follow the format: Topic: 
{world, sports, business or technology}\nReason: 
{reason}
Input: Lionel Messi won the World Cup ...
Let's think step by step.

Task description

Frozen 
LLM

Topic: sports
Reason: The mention of Lionel Messi, a highly 
renowned soccer player ... Therefore, the topic of 
the given input is sports.

KNN 
selection

What is the topic of the input? World, sports, 
business or technology?
Examples:
Input: The 22nd World Cup was held in Qatar ... 
Topic: sports

...
Input: Denver Nuggets won the NBA Finals ...
Topic: sports
The response should follow the format: Topic: 
{world, sports, business or technology}\nReason: 
{reason}
Here is the test data.
Input:  Lionel Messi won the World Cup ...
Let's think step by step.

Training 
examples

Topic: sports
Reason: The World Cup and NBA Finals are both 
famous sporting events ... So the topic is sports.

Update reasoning path for next iteration

1

2

3

Majority 
voting

4

Output format instruction
Test sample

Zero-shot-CoT trigger
Few-shot demonstrations

Reasoning path

Figure 2: Illustration of our proposed Iterative Demonstration Selection (IDS). IDS first applies Zero-shot-CoT
to the test sample to obtain a reasoning path, which is then used to select few-shot demonstrations from training
examples through KNN. The selected demonstration examples are prepended to the test sample for ICL. To obtain
the new reasoning path for extracting another set of demonstrations in the next iteration, an instruction for output
format is inserted before the test sample. After several iterations, IDS uses majority voting to obtain the final result.

process in Alg. 1 and show the instructions and377

input formats of different types of tasks for ICL in378

Appendix A.1.379

6 Experiments380

In this section, we first describe the tasks and381

datasets, and then introduce methods compared382

in our work. Finally, we present the experimental383

results.384

6.1 Experimental Setup385

Tasks and Datasets We mainly investigate 6 dif-386

ferent datasets covering 5 representative task cate-387

gories: mathematical reasoning (GSM8K (Cobbe388

et al., 2021) and MATH (Hendrycks et al., 2021)),389

commonsense reasoning (CommonsenseQA (Tal-390

mor et al., 2019)), logical reasoning (LogiQA (Liu391

et al., 2020)), question answering (BoolQ (Clark392

et al., 2019)) and topic classification (AGNews393

(Zhang et al., 2015)). For each dataset, we ran-394

domly sample at most 10000 examples from the395

original training set as Dtrain and at most 2000 test396

examples as Dtest for evaluating the performance of397

selected demonstrations. The detailed information 398

of different datasets is shown in Appendix A.2. To 399

reduce the randomness, we run every experiment 400

five times with different random seeds (resulting in 401

different training and test samples if not using the 402

whole set) and report the average results. Without 403

specification, we use k = 4 number of demonstra- 404

tions following Wang et al. (2023b) and set the 405

number of iterations q to 3. 406

Methods Compared We mainly use GPT-3.5 407

(gpt-3.5-turbo) as the LLM and compare our IDS 408

with the following methods in the experiments for 409

selecting ICL demonstrations: 410

• Top-k-Consistency (Liu et al., 2022) selects the 411

top-k semantically similar examples from the 412

training set Dtrain as demonstrations for each test 413

sample and applies self-consistency (Wang et al., 414

2022b) with q decoding paths (temperature 0.7) 415

to match the number of iterations. Following 416

Zhang et al. (2023a), all samples are encoded by 417

Sentence-BERT (Reimers and Gurevych, 2019) 418

to obtain contextual representations for calculat- 419

ing the cosine similarity. 420
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Method BoolQ GSM8K MATH CommonsenseQA LogiQA AGNews Average

Vote-k 86.7±0.7 76.5±0.5 35.7±0.2 75.2±0.3 45.4±0.3 88.1±1.2 67.9±0.2
MMR 86.4±0.8 75.5±0.7 34.8±0.3 74.9±0.2 44.7±0.3 87.6±1.1 67.3±0.3
G-fair-Prompting 84.8±0.7 76.9±0.6 34.6±0.3 75.5±0.3 43.8±0.4 88.9±1.0 67.4±0.2
Skill-KNN 85.9±0.5 76.5±0.3 35.1±0.2 75.2±0.2 44.6±0.2 88.7±0.9 67.7±0.1
Top-k-Consistency 87.1±0.2 76.1±0.5 35.6±0.3 74.5±0.2 45.7±0.4 89.3±0.8 68.1±0.1
Random-Voting 87.3±0.6 75.6±0.4 35.4±0.1 77.0±0.2 45.1±0.3 87.0±1.6 67.9±0.2
Cluster-Voting 86.4±0.7 76.8±0.3 34.9±0.4 76.5±0.3 44.1±0.3 86.8±1.2 67.6±0.3
IDS 87.8±0.8 78.5±0.4 37.5±0.2 78.1±0.1 46.9±0.2 89.8±0.8 69.8±0.1

Table 3: Accuracy (%) of different methods on 6 datasets. Bold indicates the best result. IDS is consistently better
than all previous baselines.

Top-k-Consistency IDS Random-Voting

Average Similarity Score 0.68 0.48 0.32

Table 4: Average similarity scores between test exam-
ples and the corresponding selected demonstrations of
three methods (Top-k-Consistency, IDS and Random-
Voting).

• Random-Voting randomly selects k examples421

from Dtrain as few-shot demonstrations for every422

test sample and runs experiments q times before423

majority voting.424

• Cluster-Voting partitions Dtrain into k clusters425

and selects a representative example from each426

cluster to form demonstrations. Following Zhang427

et al. (2023a), we choose the sample closest to428

the centroid in each cluster as the representative429

example. Same as Random-Voting, after run-430

ning experiments q times, Cluster-Voting adopts431

majority voting to obtain the final result.432

Besides, we also compare IDS with several latest433

ICL demonstration selection approaches: Vote-k434

(Su et al., 2023), MMR (Ye et al., 2023b), G-fair-435

Prompting (Ma et al., 2023) and Skill-KNN (An436

et al., 2023b) (see Appendix A.3 for more details437

of baselines). Similar to Top-k-Consistency, we438

apply self-consistency to these baselines to match439

the number of iterations q. Note that we find that440

simultaneously generating answers and reasoning441

paths can improve the ICL performance in general442

even if the target task is not a reasoning task in the443

conventional sense, e.g., topic classification. There-444

fore, we apply the same prompt, e.g., “The response445

should follow the format: Topic: {world, sports,446

business or technology}\nReason: {reason}”, and447

Zero-shot-CoT to baseline methods.448

6.2 Main Results449

Table 3 shows the average performance scores450

of different methods on all investigated datasets.451

1 3 5 7 Average

66

68

70

72

A
cc

ur
ac

y 
(%

)

Top-k-Consistency IDS

Figure 3: Accuracy (%) of Top-k-Consistency and IDS
with different numbers of reasoning paths or iterations.

From the results, we can observe that 452

• Our proposed IDS consistently outperforms pre- 453

vious baselines on all datasets with a negligible 454

increase in API request cost (Zero-shot-CoT in the 455

first step), which demonstrates that our method 456

can indeed effectively and efficiently select better 457

ICL demonstration examples by incorporating the 458

reason for answering the test query. 459

• On average, IDS yields about 1.7% perfor- 460

mance boost compared with the best baseline Top- 461

k-Consistency as it can fully leverage the merits 462

of both selection dimensions (diversity and similar- 463

ity). While the performance gain on a few simple 464

benchmarks looks somewhat small (because the 465

baseline results are already pretty high, e.g., the 466

baseline performance of BoolQ and AGNews is 467

above 85%), IDS performs much better than base- 468

lines on more complex tasks. For example, IDS can 469

bring an average relative improvement of about 4% 470

on mathematical reasoning tasks compared with 471

Top-k-Consistency. 472

To delve deeper into how different dimensions 473

are leveraged in selected demonstrations, we report 474

the average similarity scores between test samples 475

and the corresponding demonstrations of different 476

methods in Table 4. Specifically, we randomly 477

select 500 test examples for each dataset and use 478

Sentence-BERT to obtain contextual representa- 479

tions for calculating similarity scores. We can see 480
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GPT-3.5 GPT-4

Top-k-Consistency 68.3 73.9
IDS 69.9 75.4

Table 5: Accuracy (%) of Top-k-Consistency and IDS
with different LLMs (GPT-3.5 and GPT-4). For GPT-4,
we randomly sample 200 test examples per dataset due
to the high cost.

that the average similarity score of IDS is between481

that of Top-k-Consistency and Random-Voting,482

indicating that it can indeed strike a balance be-483

tween two selection dimensions (see Appendix A.5484

for more analysis on the diversity of the selected485

demonstration examples).486

6.3 Analysis487

Different Numbers of Iterations Our experi-488

ments and analysis so far use q = 3 iterations. To489

verify whether the performance gain of IDS is con-490

sistent across different numbers of iterations, we491

conduct controlled experiments with q = {1, 5, 7}.492

The average results of the 6 datasets with a ran-493

domly selected seed are reported in Fig. 3. IDS494

consistently outperforms the best baseline Top-k-495

Consistency with different q (even q = 1, i.e., with-496

out voting), emphasizing the importance of ratio-497

nales in selecting demonstration examples. Inter-498

estingly, the performance of ICL does not always499

improve with the number of iterations, which might500

be because increased iterations can also lead to un-501

necessary noise; we provide an in-depth analysis502

in Appendix A.6.503

Robustness to Model Types To demonstrate the504

robustness of IDS to model types, we conduct con-505

trolled experiments with GPT-4. Specifically, we506

randomly select one seed and sample 200 test ex-507

amples per dataset for experiments due to the ex-508

pensive cost. From the average results shown in509

Table 5, we can observe that IDS still achieves510

better performance than Top-k-Consistency when511

using GPT-4 as the LLM, showing its robustness512

to different LLMs.513

Generalization to Open-source LLMs To bet-514

ter verify the generalization ability of IDS, we515

use vLLM (Kwon et al., 2023) to serve Llama-2-516

chat models (Touvron et al., 2023) for experiments517

and compare IDS with Top-k-Consistency on two518

datasets: BoolQ and GSM8K. We randomly sam-519

ple 500 test examples for experiments and report520

the results in Table 6, which demonstrates that IDS521

BoolQ GSM8K

7B 13B 70B 7B 13B 70B

Top-k-Consistency 77.1 81.3 84.2 14.6 24.8 49.6
IDS 78.5 82.2 85.4 16.6 27.1 51.4

Table 6: Accuracy (%) of different methods with Llama-
2-chat models.

Iterative Demonstration Selection Top-k-Consistency
Question: The homeowner frowned at the price 
of gas, what did he have to do later? Answer 
Choices: (A) own home (B) mail property tax 
payments (C) board windows (D) cut grass (E) 
receive mail
Iteration 1: Answer: B\nReason: ...
Iteration 2: Answer: D\nReason: ...
Iteration 3: Answer: D\nReason: ...

Question: The homeowner frowned at the price 
of gas, what did he have to do later? Answer 
Choices: (A) own home (B) mail property tax 
payments (C) board windows (D) cut grass (E) 
receive mail
Response: Answer: B\nReason: ...; Answer: 
B\nReason: ...; Answer: B\nReason: ...

Label: D Label: D

Iterative Demonstration Selection Random-Voting
Input: Texas entrepreneur wants to kick computer 
gaming up to the next level by offering players a 
chance at some real-live killing via mouse and 
modem.

Input: Texas entrepreneur wants to kick computer 
gaming up to the next level by offering players a 
chance at some real-live killing via mouse and 
modem.

Label: Technology Label: Technology

Iteration 1
Examples: 
Input: Six days a week, teens crowd the Blue 
Screen Gaming cybercafe to hunt each other 
down with assault rifles inside virtual computer 
worlds...
Topic: Technology

...
Response: Topic: Technology\nReason: ...

Iteration 2: ... Response: Topic: Technology ...
Iteration 3: ... Response: Topic: Technology ...

Iteration 1
Examples: 
Input: The Boston Celtics added a healthy Tom 
Gugliotta and deleted injured Delonte West. Tom, 
34, was activated Wednesday from the injured list 
after missing seven games ...
Topic: Sports

...
Response: Topic: Sports\nReason: ...

Iteration 2: ... Response: Topic: Business ...
Iteration 3: ... Response: Topic: Sports ...

Figure 4: Several case studies of model responses. We
color correct outputs in green, and wrong outputs in red.

can successfully generalize to open-source LLMs 522

of different sizes. 523

Case Study To further understand the advantage 524

of IDS, we show several cases in Fig. 4. As shown 525

in the upper part of the figure, IDS can iteratively 526

select more diverse demonstration examples than 527

Top-k-Consistency which may be able to correct 528

errors from previous iterations. Compared with 529

Random-Voting, IDS can find examples that share 530

more similar input-output patterns with the test 531

sample to induce the LLM to generate correct an- 532

swers (the lower part of the figure). 533

In addition, we show the results with different 534

numbers of demonstrations, the robustness of IDS 535

to different embedding models and Zero-shot-CoT 536

triggers, and the results on two additional datasets 537

in Appendix A.7 ∼ A.10, respectively. 538

7 Conclusion 539

In this work, we have introduced Iterative Demon- 540

stration Selection (IDS) that can iteratively select 541

examples that are diverse but still strongly correlate 542

with the test sample as demonstrations to improve 543

the performance of in-context learning (ICL) by 544

leveraging the rationale for answering the test sam- 545

ple. Extensive experimental results and analysis 546

show that IDS can consistently outperform previ- 547

ous ICL demonstration selection baselines. 548
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Limitations549

This work has several limitations. First, due to550

the inference cost of ChatGPT, we do not conduct551

experiments on the entire test set. Besides, we552

include 6 datasets covering 5 different task types553

in this work. A further improvement could be to554

explore more diverse types of tasks.555
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A Appendix1014

A.1 Instructions and Input Formats of1015

Different Tasks1016

We show the instructions and input formats of1017

different types of tasks for in-context learning in1018

Fig. 5.1019

A.2 Datasets Information1020

We show the detailed information of different1021

datasets in Table 7.1022

A.3 Details of Baselines1023

In this work, we compare IDS with the following1024

latest ICL demonstration selection approaches:1025

• Vote-k (Su et al., 2023) is an unsupervised,1026

graph-based selective annotation method used1027

for selecting and annotating diverse, represen-1028

tative examples. The annotated examples then1029

serve as a pool for demonstration retrieval.1030

• MMR (Ye et al., 2023b) proposes a maximal1031

marginal relevance-based approach for demon-1032

stration selection.1033

• G-fair-Prompting (Ma et al., 2023) leverages1034

greedy search to select the example with the high-1035

est fairness score at each step.1036

• Skill-KNN (An et al., 2023b) generates skill-1037

based descriptions for test queries and then uses1038

these descriptions to select similar examples as1039

demonstrations.1040

A.4 Measure of Reasoning Path Correlation 1041

We report the average similarity score between test 1042

samples and the corresponding generated reasoning 1043

paths (scorereason), the average similarity score be- 1044

tween test samples and randomly selected training 1045

examples (scorerandom), and the average similarity 1046

score between test samples and the most similar 1047

training examples (scoresimilar) in Table 8. For each 1048

dataset, we randomly select 500 test samples and 1049

use Sentence-BERT for similarity calculation. We 1050

can observe that scorereason is slightly worse than 1051

scoresimilar and much higher than scorerandom, indi- 1052

cating that the generated reasoning path is indeed 1053

strongly correlated with the test sample. 1054

A.5 Analysis on Demonstration Diversity 1055

In addition to the average similarity score between 1056

test samples and demonstrations, we further cal- 1057

culate the following metrics for IDS and Top-k- 1058

Consistency: 1059

QS = ∑
1≤i<j≤∣S∣

g(Si, Sj)/C(∣S∣, 2) (2) 1060

where S is the set of the selected demonstration 1061

examples, and g is the function of measuring simi- 1062

larity. Q calculates the average pairwise similarity 1063

score of the demonstrations, which can be used to 1064

reflect whether they are diverse from each other. As 1065

can be seen from the results in Table 9, the average 1066

pairwise similarity score of IDS is much lower than 1067

that of Top-k-Consistency, verifying the diversity 1068

of demonstration examples selected by IDS. 1069

A.6 Noise Caused by Increased Iterations 1070

As observed from Fig. 3, the performance of ICL 1071

does not always improve with the number of it- 1072

erations. We speculate that this is because too 1073

many iterations may also lead to unnecessary noise. 1074

As the number of iterations increases, the demon- 1075

strations selected in the latest iteration are more 1076

likely to have been chosen in previous iterations. 1077

Therefore, if these demonstrations result in wrong 1078

answers in previous iterations, these errors may 1079

be propagated to later iterations, i.e., unnecessary 1080

noise caused by increased iterations. To better ver- 1081

ify our hypothesis, we calculate (i) the proportion 1082

of demonstrations selected in iteration 5 or 7 that 1083

were also chosen in previous iterations (Proppre), 1084

and (ii) the proportion of demonstrations selected 1085

in iteration 5 or 7 that were chosen in previous iter- 1086

ations and resulted in wrong answers (Propwrong
pre ). 1087
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What is the topic of the input? World, sports, business or technology?
Examples:
Input: Cavs earn fourth straight win ...
Topic: Sports

...
The response should follow the format: Topic: {world, sports, business or technology}\nReason: {reason}
Here is the test data.
Input: Microsoft intros new mice, keyboards ...
Let's think step by step.

Topic Classification

Please answer the question based on the context.
Examples:
Context: Sikma was voted as one of the ...
Question: is jack sikma in the hall of fame
Answer: Yes

...
The response should follow the format: Answer: {yes or no}\nReason: {reason}
Here is the test data.
Context: Blue is a playful female puppy ...
Question: is blue off of blue's clues a girl
Let's think step by step.

Question Answering

Which choice is the correct answer to the question?
Examples:
Question: If you poke yourself ... Answer Choices: (A) have fun ...
Answer: C

...
The response should follow the format: Answer: {A, B, C, D or E}\nReason: {reason}
Here is the test data.
Question: How can I store ... Answer Choices: ...
Let's think step by step.

Commonsense Reasoning

Please solve the following mathematical problem.
Examples:
Question: Eric, Ben, and Jack have some money. Eric has $10 less than Ben ...
Answer: The answer is 50

...
The response should follow the format: {reason} The answer is {your answer}
Here is the test data.
Question: Kim raises $320 more than Alexandra, who raises $430, and Maryam raises $400 more than Sarah, who raises $300. How much money did they all raise in total?

Mathematical Reasoning

Which choice is the correct answer to the question?
Examples:
Context: Li Lin is a civil servant, but not a college graduate.
Question: Which of the following is necessarily true? Answer Choices: (A) Not all university ...
Answer: B

...
The response should follow the format: Answer: {A, B, C or D}\nReason: {reason}
Here is the test data.
Context: The people in Harbin are all northerners, and some people in Harbin are not workers.
Question: If the above proposition is true, then which answer must be true? Answer Choices: ...
Let's think step by step.

Logical Reasoning

Figure 5: Instructions and input formats of five different categories of tasks (topic classification, question answering,
commonsense reasoning, logical reasoning, and mathematical reasoning) for ICL. For Zero-shot-CoT in the first
step of IDS, there is no demonstration example and the instruction “Here is the test data.”.

BoolQ GSM8K MATH CommonsenseQA LogiQA AGNews

# Training Samples 9427 (full) 7473(full) 5000 9741 (full) 7376(full) 10000
# Test Samples 2000 1000 1000 1221 (full) 500 1000

Table 7: Deailed information of different datasets. # refers to ‘the number of’ and ‘full’ means the whole set. Note
that different random seeds do not result in different samples if the whole set is used.

scorereason scorerandom scoresimilar

Average Similarity Score 0.59 0.32 0.68

Table 8: Comparison between different average similar-
ity scores.

Top-k-Consistency IDS

Average Pairwise Similarity 0.55 0.39

Table 9: Comparison of average pairwise similarity
scores of demonstrations selected by different methods.

We can see from Table 10 that the results of the1088

7th iteration are much higher than those of the 5th1089

iteration, indicating the correctness of our claim.1090

A.7 Different Numbers of Demonstrations1091

While we use k = 4 demonstration examples for1092

all experiments, we also evaluate the effectiveness1093

of IDS with different k. We randomly choose one1094

seed for experiments and report the average results1095

of the 6 datasets in Table 11. We can see that IDS1096

consistently outperforms Top-k-Consistency with1097

Iteration 5 7

Proppre 31.9% 60.4%

Propwrong
pre 13.1% 38.7%

Table 10: Comparison between different iterations.

2 4 6 8

Top-k-Consistency 68.0 68.3 68.5 68.4
IDS 69.4 69.9 69.9 69.7

Table 11: Accuracy (%) of Top-k-Consistency and IDS
with different numbers of demonstrations k.

different numbers of demonstrations. In addition, 1098

more demonstrations do not guarantee better ICL 1099

performance, which is consistent with the observa- 1100

tion in Wang et al. (2023b). 1101

A.8 Robustness to Embedding Models 1102

Instead of using Sentence-BERT, we also ex- 1103

plore adopting the OpenAI embedding model (text- 1104

embedding-ada-002) as the encoder. Specifically, 1105

14



BoolQ CommonsenseQA GSM8K

Top-k-Consistency 86.0 75.4 75.8
IDS 87.2 78.0 77.6

Table 12: Accuracy (%) of different methods with Ope-
nAI embedding model (text-embedding-ada-002) on
three datasets.

Default Trigger1 Trigger2

IDS 70.1 70.3 70.0

Table 13: Accuracy (%) of IDS with different Zero-shot-
CoT triggers.

we conduct experiments on 3 datasets: BoolQ,1106

CommonsenseQA and GSM8K. For each dataset,1107

we randomly sample 500 test examples and com-1108

pare IDS with the baseline Top-k-Consistency. The1109

results reported in Table 12 demonstrate IDS’s ro-1110

bustness to different embedding models.1111

A.9 Robustness to Zero-shot-CoT Triggers1112

To verify the robustness of IDS to Zero-shot-CoT1113

triggers, we conduct controlled experiments with1114

two new triggers: “Let’s work this out in a step1115

by step way to be sure we have the right answer.”1116

(Trigger1) and “Let’s solve this problem step by1117

step” (Trigger2). Specifically, we randomly sam-1118

ple 500 test examples per dataset for experiments1119

and report the average results in Table 13, which1120

demonstrates that IDS is indeed robust to different1121

Zero-shot-CoT triggers.1122

A.10 Two Additional Datasets1123

To better demonstrate the generalization ability of1124

IDS, we further conduct experiments on two addi-1125

tional datasets: MNLI (natural language inference)1126

(Williams et al., 2018) and Emotion (emotion clas-1127

sification) (Saravia et al., 2018). The comparison1128

between IDS and the baseline Top-k-Consistency1129

is shown in Table 14, which verifies the strong1130

generalizability of IDS.1131

MNLI Emotion

Top-k-Consistency 65.7 58.1
IDS 67.4 60.3

Table 14: Results on two additional datasets.
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