
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

InArt: In-Network Aggregation with Route Selection for
Accelerating Distributed Training

Anonymous Author(s)
ABSTRACT
Deep learning has brought about a revolutionary transformation in
network applications, particularly in domains like e-commerce and
online advertising. Distributed training (DT), as a critical means
to expedite model training, has progressively emerged as a key
foundational infrastructure for such applications. However, with
the rapid advancement of hardware accelerators, the performance
bottleneck in DT has shifted from computation to communica-
tion. In-network aggregation (INA) solutions have shown promise
in alleviating the communication bottleneck. Regrettably, current
INA solutions primarily focus on improving efficiency under the
traditional PS architecture and do not fully address the commu-
nication bottleneck caused by limited PS ingress bandwidth. To
bridge this gap, we propose InArt, the first work to introduce INA
with routing selection in a multi-PS architecture. InArt employs
a multi-PS architecture to split DT tasks among multiple PSs and
selects appropriate routing schemes to fully harness INA capabili-
ties. To accommodate traffic dynamics, InArt adopts a two-phase
approach: splitting the training model among multiple parameter
servers and selecting routing paths for INA. We propose Lagrange
multiplier and randomized rounding algorithms for these phases,
respectively. We implement InArt and evaluate its performance
through experiments on physical platforms (Tofino switches) and
mininet emulation (P4 Software Switches). Experimental results
show that InArt can reduce communication time by 49% compared
with state-of-the-art solutions.

CCS CONCEPTS
• Networks→ In-network processing; • Computing method-
ologies →Machine learning.
ACM Reference Format:
Anonymous Author(s). 2024. InArt: In-Network Aggregation with Route
Selection for Accelerating Distributed Training. In The Web Conference 2024
(WWW ’24), May 13-17, 2024, Singapore. 10 pages. https://doi.org/xxxxxx

1 INTRODUCTION
Over the past decade, deep learning has become an essential com-
ponent of many web applications [1–4]. It plays a crucial role in
domains such as e-commerce [2], social media [3], and online ad-
vertising [4], enabling the development of personalized recommen-
dation systems, content analysis, and targeted advertising. The

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW ’24, May 13-17, 2024, Singapore
© 2024 Association for Computing Machinery.
ACM ISBN xxxxxx/xx/xx. . . $xx.00
https://doi.org/xxxxxx

success of deep learning solutions lies in their sophisticated models,
which contain numerous parameters and are trained on substantial
amounts of data [5, 6]. However, training such models is time-
consuming and computationally demanding. For instance, training
a BERT model with 110 million parameters on a single server takes
over 1.5 months [7]. To address this bottleneck and expedite model
training, the adoption of DT is widespread in web infrastructure
[5, 6, 8]. By harnessing the power of DT, web applications can effi-
ciently process large datasets and leverage advanced deep learning
models to deliver high-quality predictions and decision-making.

Following the typical parameter server (PS) architecture [9, 10],
a DT system usually consists of a PS and multiple workers that per-
form many rounds of iterative training. In each iteration, workers
compute local gradients and send gradients to the PS for aggrega-
tion. The above two processes are called gradient computation and
gradient aggregation, respectively [11]. On the one hand, the rapid
development of hardware accelerators (e.g., GPU and FPGA) can
significantly improve computing speed. On the other hand, con-
sidering that deep learning models employed in web applications
often possess a substantial number of parameters, (e.g., BERT [7]
with about 110 million parameters, which is widely used in online
advertising), the DT will introduce several gigabytes of data trans-
fers. As a result, the performance bottleneck of DT has shifted from
computation to communication [5, 11, 12]. For example, for training
the DT job of BERT on 10Gbps links, more than half of the DT time
is spent on communication [5].

To alleviate the communication bottleneck in DT, previous works
usually focus on gradient compression [14–16] or communication
scheduling [17–19]. However, gradient compression will inevitably
lead to training accuracy degradation, and communication schedul-
ing does not reduce the traffic volume and may still encounter the
communication bottleneck on links or/and PSs. With the advent of
programmable network hardware (e.g., programmable switches [20]
and smartNICs [21]), in-network aggregation (INA) [5, 11, 22] holds
great promise in solving the communication bottleneck. Specifically,
some gradients can be aggregated by programmable devices inside
the network. In this way, the traffic volume sent to the PS will be
reduced, thereby alleviating the inbound bandwidth bottleneck of
the PS (see details in §2.1).

Accelerating DT with INA is complicated, and only a few works
[5, 11] have made preliminary exploration in this field. SwitchML
[5] aggregates gradients on top-of-rack (ToR) programmable switches
of workers to minimize communication overheads at a single-rack
scale. ATP [11] proposes a protocol based on P4-programmable
switches to support INA for multi-tenant learning across racks.
GRID [23] addresses the selection of appropriate gradient aggre-
gation points for each worker in a DT cluster. However, these
works primarily focus on improving INA effectiveness under the
traditional PS architecture. In reality, under this architecture, as
training tasks scale up, the PS’s ingress bandwidth may not meet

1

https://doi.org/xxxxxx
https://doi.org/xxxxxx

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’24, May 13-17, 2024, Singapore Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

*

Parameter

Server(PS)
Programmable

Switch
Worker

Non-Aggregated

Gradient

Aggregated

Gradient

1 Gradient

1 Transmission Rate

W2:4/3 W3:4/3 W4:4/3 W5:4/3 W6:4/3

V2:0/6

S2:4/4S1:4/4

V1:0/6

(a) LBMM

W1:4/3

2/3
2/3

2/3
2/3

2/3 2/3 2/3 2/3 2/3
2/3

2/3
2/3

1 1
1

1 1
1

1
1

1
1 1.5

W1:2.5W1:2 W2:2 W3:2 W4:2 W5:2 W6:2

V2:4/6

S2:2/4S1:4/4

V1:6/6

(b) ATP

1
1

W2:2.5 W3:2.5 W4:2.5 W5:2.5 W6:2.5

V2:6/6

S2:4/4S1:3/4

V1:6/6

(b) InArt

1
1.5 1.5

1.5
1.5 1.51

1 1
1

1

Figure 1: A DT system consists of two PSs (i.e., 𝑆1 and 𝑆2), six workers (i.e.,𝑊1-𝑊6) and two programmable switches (i.e., 𝑉1 and
𝑉2). The switch processing capacity, PS processing capacity and link bandwidth are set to 6, 4 and 6, respectively. We use colors
to distinguish gradients sent to different PSs. Values near PSs and switches represent their loads, while those near workers
denote maximum gradient sending rates. The left plot shows the gradient communication scheme using the LBMMmethod
[13], and the maximum sending rate is 4/3. The middle plot shows the gradient communication scheme by ATP [11] with a
maximum sending rate of 2. The right plot shows that our proposed InArt can achieve a maximum sending rate of 2.5.

the demands of synchronizing parameters, especially in DT clus-
ters with numerous worker nodes. The INA scheme alone cannot
fully resolve the communication bottleneck at the PS due to the
transmission of a significant volume of gradient updates.

To tackle this challenge, we introduce a multi-PS architecture
[24–26] within the INA scheme. Notably, the multi-PS architec-
ture and INA are two complementary and mutually beneficial ap-
proaches for alleviating communication bottlenecks in DT. By em-
ploying a multi-PS architecture to split DT tasks among multiple
PSs and selecting appropriate routing schemes to fully harness the
INA capabilities, we can effectively alleviate communication bot-
tlenecks and enhance the efficiency of DT (as demonstrated in §5).
Therefore, there is an urgent need for INA solutions with route selec-
tion in multi-PS architectures. However, it is a non-trivial mission
to achieve the goal. Firstly, considering multiple PSs in a cluster for
gradient aggregation, we need to decide which PS each gradient
should be sent to, i.e., the routing destination is uncertain. Secondly,
aggregating gradients on programmable switches will change the
traffic size in forwarding, i.e., the routing traffic volume is variable.
Thirdly, performing DT will face multi-dimensional resource con-
straints, such as switch/PS processing capacity and link bandwidth.
To address these challenges, this paper proposes InArt and the main
contributions are as follows:

• Wedesign InArt, the first-of-its-kind INAworkwith routing
selection in a multi-PS architecture for accelerating DT.

• Due to traffic dynamics, we take a two-phase approach:
splitting the training model among multiple PSs and select-
ing the routing paths for INA. For the first phase, we pro-
pose a Lagrange multiplier-based algorithm, called L-InArt.
For the second phase, we design a randomized rounding-
based algorithm, named R-InArt.

• We implement InArt on both the hardware testbed (with
two Tofino hardware switches) and software emulation
(with bmv2 software P4 switches). Experimental results
show that InArt achieves superior performance compared
with state-of-the-art solutions.

2 MOTIVATION
2.1 A Motivation Example
This section illustrates the pros and cons of state-of-the-art solu-
tions through an example, which motivates our study. As shown in
Fig. 1, a DT system using a multi-PS architecture consists of two
PSs (i.e., 𝑆1 and 𝑆2), six workers (i.e.,𝑊1-𝑊6) and two programmable
switches (i.e., 𝑉1 and 𝑉2). For simplicity, the switch processing ca-
pacity, PS processing capacity and link bandwidth are set to 6, 4
and 6, respectively, and the unit is omitted. In the example, we first
need to split the model, and each PS maintains a certain partition
of the model, i.e., sub-model. Then, we need to decide at what rate
the gradients should be sent to the corresponding PS under var-
ious resource constraints. In this paper, we consider the typical
synchronous scheme, i.e., PSs will aggregate the gradients after re-
ceiving gradients from all required workers [8]. Usually, a faster
gradient sending rate means a shorter communication time. Thus,
our objective is to maximize the gradient sending rate of workers.

Let’s first consider the Load Balance Min-Min (LBMM) algorithm
[13], a classical algorithm used in multi-PS architecture without
INA. LBMM selects the link with the lightest load for load balancing
routing. As shown in Fig. 1(a), each worker sends half of the gradi-
ents to 𝑆1 for aggregation and the other half to 𝑆2 for aggregation.
In addition, since the total processing capacity of the two PSs is 8
and there are six workers, the maximum gradient sending rate of
each worker should be 4/3 (i.e., 2/3 to 𝑆1 and 2/3 to 𝑆2). Otherwise,
PSs will be overloaded.

We then consider a recent work on INA, called ATP [5]. Specif-
ically, ATP performs best-effort aggregation on the ToR switch
for each worker under the corresponding rack, and the results are
shown in Fig. 1(b). Since ATP does not involve the splitting of
the model, here we assume the model is split equally, with each
worker sending half of the gradients to 𝑆1 and the other half to 𝑆2.
In this case, gradients from𝑊1,𝑊2 to 𝑆1 are aggregated on switch
𝑉1, gradients from𝑊3,𝑊4 to 𝑆1 are directly routed to 𝑆1 without
INA, gradients from𝑊1,𝑊2,𝑊3,𝑊4 to 𝑆2 are aggregated on switch

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

InArt : In-Network Aggregation with Route Selection for Accelerating Distributed Training WWW ’24, May 13-17, 2024, Singapore

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

𝑉1, gradients from𝑊5,𝑊6 to 𝑆1 and 𝑆2 are aggregated on switch𝑉2.
Therefore, the maximum gradient sending rate of ATP is 2.

2.2 Our Intuition
A question immediately following the above discussion is can we
do better by combining the merits of LBMM and ATP? In Fig. 1(c), we
demonstrate that by selecting an appropriate partitioning scheme
among multiple PSs and implementing an optimal routing scheme
for INA, we can achieve a maximum gradient sending rate of 2.5.
This rate is 87.5% faster than LBMM and 25% faster than ATP. In this
case, gradients from𝑊1,𝑊2,𝑊3,𝑊4 to 𝑆1 are aggregated on switch
𝑉1, gradients from𝑊5 and𝑊6 to 𝑆1 are aggregated on switch 𝑉2,
gradients from𝑊1,𝑊2,𝑊3 to 𝑆2 are directly routed to 𝑆2 without
INA and gradients from𝑊4,𝑊5,𝑊6 to 𝑆2 are aggregated on 𝑆2. With
our findings, this paper aims to accelerate distributed training by
designing an efficient route selection in a multi-PS architecture for
INA, with the objective of maximizing the gradient sending rate.

3 PROBLEM DEFINITION
3.1 System Model
A typical multi-PS architecture mainly contains two components,
worker set𝑊 = {𝑤1, ...,𝑤 |𝑊 |} and PS set 𝑆 = {𝑠1, ..., 𝑠 |𝑆 |}, where
|𝑊 | and |𝑆 | are the numbers of workers and PSs, respectively.
According to the above definition, we model the DT cluster as
𝐺 = (𝑊,𝑆,𝑉 , 𝐸), where𝑉 = {𝑣1, ..., 𝑣 |𝑉 |} is the set of programming
switches (e.g., Intel Tofino switches [20]), and 𝐸 = {𝑒1, ..., 𝑒 |𝐸 |} rep-
resents the communication links among these switches, workers
and PSs. During the process of gradient aggregation, we regard
gradients with the same source (i.e.,worker) and aggregation loca-
tion (i.e., switch or PS) as a flow for simplicity. Let 𝑃𝑠,𝑤 denote a
set of feasible routing paths from worker 𝑤 to PS 𝑠 . Similarly, let
𝑃𝑣,𝑤 and 𝑃𝑠,𝑣 denote the feasible routing path set from switch 𝑣 to
worker 𝑤 and from PS 𝑠 to switch 𝑣 , respectively. Moreover, we
use𝑃 =

{
𝑃𝑠,𝑤 ∪ 𝑃𝑣,𝑤 ∪ 𝑃𝑠,𝑣 | ∀𝑤 ∈𝑊, 𝑣 ∈ 𝑉 , 𝑠 ∈ 𝑆

}
to denote the all

feasible routing path in the cluster 𝐺 .
For each switch 𝑣 ∈ 𝑉 , we use𝐶 (𝑣) to denote the total processing

capacity, and 𝑐 (𝑣) to denote the processing capacity used by back-
ground traffic. Moreover, for each PS 𝑠 ∈ 𝑆 , let 𝐵(𝑠) represent the
total ingress bandwidth, and 𝑏 (𝑠) represent the amount of ingress
bandwidth already occupied. Similarly, let 𝐵(𝑒) and 𝑏 (𝑒) denote the
total bandwidth and the bandwidth used by background traffic for
each link 𝑒 , respectively. For simplicity, we focus on accelerating
the training time of a single DT job in this paper. Actually, for a
single DT training job, the traffic of other jobs can be considered
as background traffic since different DT jobs are independent of
each other [11, 27]. Therefore, the proposed scheme can be easily
extended to multi-DT job scenarios.

3.2 Problem Definition of InArt
The key idea of InArt is to make the following three decisions.

• The proportion of the model aggregation that each PS is
responsible for. Let variable 𝑥𝑠 represent the proportion of
the model that the PS 𝑠 is responsible for aggregation.

• The locationwhere each gradient is aggregated. Let variable
𝑦𝑠,𝑤 ∈ {0, 1} denote whether gradients from worker𝑤 to

PS 𝑠 are directly aggregated on the PS 𝑠 or not. We use
variable 𝑦𝑠,𝑤𝑣 ∈ {0, 1} to represent whether gradients from
worker𝑤 to PS 𝑠 are aggregated by programmable switch
𝑣 or not.

• The routing path for each gradient. Let binary variables
𝑞
𝑠,𝑤
𝑝 , 𝑞𝑣,𝑤𝑝 and 𝑞𝑠,𝑣𝑝 denote whether gradients from worker

𝑤 to PS 𝑠 , from worker𝑤 to switch 𝑣 and from switch 𝑣 to
PS 𝑠 will be routed on path 𝑝 or not, respectively.

We further consider the following six constraints when perform-
ing INA with route selection.

• Model partition constraints: We split the model into several
sub-models and each PS is responsible for a sub-model. This
means that each sub-model must have a corresponding PS
for aggregation, represented as the equation

∑
𝑠∈𝑆 𝑥𝑠 = 1.

• INA constraints: Considering the limited number and pro-
cessing capacity of programmable switches in the cluster,
similar to [5, 11], we assume that each gradient will be
aggregated in-network once at most to balance the prob-
lem complexity and the network performance, which is
𝑦
𝑠,𝑤
𝑣 ≤ 𝑧𝑠𝑣,∀𝑠,𝑤, 𝑣 .

• Routing constraints: Each gradient must be routed from
a worker to a PS for global aggregation through a feasi-
ble path. Specifically, if gradients from worker 𝑤 to PS
𝑠 are directly aggregated by PS without INA, we have∑

𝑝∈𝑃𝑠,𝑤 𝑞
𝑠,𝑤
𝑝 = 𝑦𝑠,𝑤 ,∀𝑠,𝑤 . If gradients from worker 𝑤 to

PS 𝑠 are aggregated on the programmable switch 𝑣 , we have∑
𝑝∈𝑃𝑣,𝑤 𝑞

𝑣,𝑤
𝑝 = 𝑦

𝑠,𝑤
𝑣 ,∀𝑠,𝑤, 𝑣 , and

∑
𝑝∈𝑃𝑠,𝑣 𝑞

𝑠,𝑣
𝑝 = 𝑦

𝑠,𝑤
𝑣 ,∀𝑠,𝑤, 𝑣 .

• Switch capacity constraints: Each programmable switch can
only aggregate gradients at a limited rate due to switch
processing capacity limitations. Therefore, we have

∑
𝑠∈𝑆 𝑓 ·

𝑥𝑠 ·
∑

𝑤∈𝑊 𝑦
𝑠,𝑤
𝑣 + 𝑐 (𝑣) ≤ 𝐶 (𝑣),∀𝑣 .

• Link capacity constraints: For each link 𝑒 , its traffic load
should not exceed its bandwidth capacity 𝐶 (𝑒). Thus, we
have

∑
𝑠∈𝑆 𝑓 ·𝑥𝑠 ·

∑
𝑣∈𝑉

∑
𝑝∈𝑃 :𝑒∈𝑝

(
(𝑞𝑠,𝑣𝑝 +∑𝑤∈𝑊(𝑞𝑣,𝑤𝑝 +𝑞𝑠,𝑤𝑝)

)
+ 𝑏 (𝑒) ≤ 𝐵(𝑒),∀𝑒 .

• PS capacity constraints: For each PS 𝑠 , the forwarding rate
can’t exceed its ingress bandwidth 𝐵(𝑠). For convenience,
let binary variable 𝑧𝑠𝑣 indicates whether aggregated gra-
dients exist on switch 𝑣 that need to be sent to PS 𝑠 . Ob-
viously, we have 𝑦𝑠,𝑤𝑣 ≤ 𝑧𝑠𝑣,∀𝑠,𝑤, 𝑣 . Note that two types
of gradients are routed to the PS for global aggregation:
gradients forwarded directly by workers without network
aggregation (i.e., 𝑦𝑠,𝑤 = 1), and gradients aggregated by
programmable switches (i.e., 𝑧𝑠𝑣 = 1). Accordingly, we have
𝑓 · 𝑥𝑠 ·

(∑
𝑤∈𝑊 𝑦𝑠,𝑤 +∑

𝑣∈𝑉 𝑧𝑠𝑣
)
+ 𝑏 (𝑠) ≤ 𝐵(𝑠),∀𝑠 .

Furthermore, We adopt a synchronous approach [28] for model
updating, wherein the parameter servers (PSs) aggregate gradients
after receiving them from all required workers. This method en-
sures system stability. In this context, a faster gradient sending
rate generally leads to shorter communication times. To capture
this, we introduce variable 𝑓 to represent the gradient sending rate
of workers, with our objective being to maximize 𝑓 . Formally, we
define the problem as Eq. (1). The first equality in Eq. (1) represents
the model partition constraints. The subsequent set of equalities
denotes the INA constraints. Following that, the third to fifth sets

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’24, May 13-17, 2024, Singapore Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

of equalities describe the routing constraints. The sixth set of in-
equalities represents the switch capacity constraints. The seventh
set of inequalities represents the link capacity constraints. Finally,
the last two inequalities denote the PS capacity constraints.

max 𝑓

𝑆.𝑡 .



∑
𝑠∈𝑆

𝑥𝑠 = 1,

𝑦𝑠,𝑤 + ∑
𝑣∈𝑉

𝑦
𝑠,𝑤
𝑣 = 1, ∀𝑠, 𝑤∑

𝑝∈𝑃𝑠,𝑤
𝑞
𝑠,𝑤
𝑝 = 𝑦𝑠,𝑤 , ∀𝑠, 𝑤∑

𝑝∈𝑃𝑣,𝑤
𝑞
𝑣,𝑤
𝑝 = 𝑦

𝑠,𝑤
𝑣 , ∀𝑠, 𝑤, 𝑣∑

𝑝∈𝑃𝑠,𝑣
𝑞
𝑠,𝑣
𝑝 = 𝑦

𝑠,𝑤
𝑣 , ∀𝑠, 𝑤, 𝑣∑

𝑠∈𝑆
𝑓 · 𝑥𝑠 · ∑

𝑤∈𝑊
𝑦
𝑠,𝑤
𝑣 + 𝑐 (𝑣) ≤ 𝐶 (𝑣), ∀𝑣∑

𝑠∈𝑆
𝑓 𝑥𝑠

∑
𝑣∈𝑉

∑
𝑝∈𝑃 :𝑒∈𝑝

((𝑞𝑠,𝑣𝑝 + ∑
𝑤∈𝑊

(𝑞𝑣,𝑤𝑝 +𝑞𝑠,𝑤𝑝))+𝑏 (𝑒)≤𝐵 (𝑒), ∀𝑒

𝑦
𝑠,𝑤
𝑣 ≤ 𝑧𝑠𝑣, ∀𝑠, 𝑤, 𝑣

𝑓 · 𝑥𝑠 · (∑
𝑤∈𝑊

𝑦𝑠,𝑤 + ∑
𝑣∈𝑉

𝑧𝑠𝑣) + 𝑏 (𝑠) ≤ 𝐵 (𝑠), ∀𝑠

𝑥𝑠 ∈ [0, 1], ∀𝑠
𝑦𝑠,𝑤 , 𝑦

𝑠,𝑤
𝑣 ∈ {0, 1}, ∀𝑠, 𝑤, 𝑣

𝑧𝑠𝑣 ∈ {0, 1}, ∀𝑠, 𝑣
𝑞
𝑠,𝑤
𝑝 , 𝑞

𝑣,𝑤
𝑝 , 𝑞

𝑠,𝑣
𝑝 ∈ {0, 1}, ∀𝑠, 𝑤, 𝑣, 𝑝

𝑓 ≥ 0

(1)

In fact, it is difficult to directly solve the problem in Eq. (1). Note
that the left side of the sixth set of inequalities in Eq. (1) contains
the product of two continuous variables 𝑥𝑠 , 𝑓 and a binary variable
𝑦
𝑠,𝑤
𝑣 . In other words, InArt is a typically nonlinear mixed-integer
programming (NMIP) problem, which is NP-hard [29]. Designing
an algorithm for InArt is far from trivial and in urgent need.

4 ALGORITHM DESIGN
4.1 AlgorithmWorkflow
In a cluster, where multiple DT jobs or applications are running
simultaneously, the network traffic can undergo significant changes.
Thus, in order to adapt to traffic uncertainty/dynamics, we should
update routing paths and INA policy frequently. However, modify-
ing the model scale on the PSs during training is not feasible due
to consistency concerns.

To address this challenge, we propose a two-phase approach to
solve the InArt problem. In the first phase, conducted at longer inter-
vals such as several hours or a day, we divide the model among mul-
tiple PSs without considering route selection (§4.2). This simplifies
InArt into a nonlinear programming problem, which we solve using
the Lagrange multiplier method. In the second phase, triggered by
events such as network congestion, we focus on the selection of
routing paths for INA (§4.3). We maintain a fixed model partition
ratio and transform InArt into an integer programming problem.
To efficiently handle this, we design a randomized rounding-based
algorithm for INA with route selection.

4.2 Algorithm Design for Splitting the Model
In the first phase, wemainly split the model amongmultiple PSs and
determine the sub-model that each PS is responsible for, i.e., get the
value of variables 𝑥𝑠 ∈ [0, 1]. The procedure for this task is outlined
in Alg. 1. At first, we focus on the switch capacity constraints and

the PS capacity constraints in Eq. (1). Then, we relax the variables
𝑦𝑠,𝑤 , 𝑦

𝑠,𝑤
𝑣 and 𝑧𝑠𝑣 from integer to fractional. The problem in Eq. (1)

converts to a nonlinear programming as follows:
max 𝑓

𝑆.𝑡 .



∑
𝑠∈𝑆

𝑥𝑠 = 1,

𝑦𝑠,𝑤 + ∑
𝑣∈𝑉

𝑦
𝑠,𝑤
𝑣 = 1, ∀𝑠, 𝑤∑

𝑠∈𝑆
𝑓 · 𝑥𝑠 · ∑

𝑤∈𝑊
𝑦
𝑠,𝑤
𝑣 ≤ 𝐶 (𝑣) − 𝑐 (𝑣), ∀𝑣

𝑦
𝑠,𝑤
𝑣 ≤ 𝑧𝑠𝑣, ∀𝑠, 𝑤, 𝑣

𝑓 · 𝑥𝑠 · (∑
𝑤∈𝑊

𝑦𝑠,𝑤 + ∑
𝑣∈𝑉

𝑧𝑠𝑣) ≤ 𝐵 (𝑠) − 𝑏 (𝑠), ∀𝑠

𝑥𝑠 ∈ [0, 1], ∀𝑠
𝑦𝑠,𝑤 , 𝑦

𝑠,𝑤
𝑣 ∈ [0, 1], ∀𝑠, 𝑤, 𝑣

𝑧𝑠𝑣 ∈ [0, 1], ∀𝑠, 𝑣
𝑓 ≥ 0

(2)

Note that variables 𝑦𝑠,𝑤 , 𝑦𝑠,𝑤𝑣 and 𝑧𝑠𝑣 are integral in Eq. (1), but
fractional in Eq. (2). Since Eq. (2) is a nonlinear programming, we
design a generalized Lagrange multiplier method [30], called L-
InArt, to get the value of variables 𝑥𝑠 . Let symbol 𝑋 represents all
variables in Eq. (2), i.e., 𝑋 = {𝑥𝑠 , 𝑦𝑠,𝑤 , 𝑦𝑠,𝑤𝑣 , 𝑧𝑠𝑣}. We consider the
Lagrange function L(𝑋) of Eq. (2) as follows:

L(𝑋) =
∑︁
𝑠∈S

∑︁
𝑤∈W

𝜆𝑠,𝑤ℎ𝑠,𝑤 (𝑋) + 𝛼𝑤 (𝑋) +
∑︁
𝑣∈V

𝜌𝑣𝑝𝑣 (𝑋)

+
∑︁
𝑠∈S

𝜃𝑠𝑞𝑠 (𝑋) +
∑︁
𝑠∈S

∑︁
𝑤∈W

∑︁
𝑣∈V

𝜎𝑣,𝑠,𝑤𝑟𝑣,𝑠,𝑤 (𝑋)

− 𝑓 − 𝜏𝑠𝑥𝑠 − 𝛽𝑠,𝑤𝑦𝑠,𝑤 − 𝛿𝑠,𝑣,𝑤𝑦𝑠,𝑣,𝑤 − 𝜁𝑠,𝑣𝑧𝑠,𝑣 + 𝜂𝑠 (𝑥𝑠 − 1)
+ 𝜇𝑠,𝑤 (𝑦𝑠,𝑤 − 1) + 𝜔𝑠,𝑣,𝑤 (𝑦𝑠,𝑣,𝑤 − 1) + 𝛾𝑠,𝑣 (𝑧𝑠,𝑣 − 1) (3)

Greek variables in Eq. (3) represent the Lagrange multiplier corre-
sponding to the constraints in Eq. (2). For example, the variable 𝛼
corresponds to the first set of constraints of 𝑥𝑠 in Eq. (2). Meanwhile,
these variables should be non-negative. In addition, the functions
ℎ𝑠,𝑤 (𝑋),𝑤 (𝑋), 𝑝𝑣 (𝑋), 𝑞𝑠 (𝑋), and 𝑟𝑣,𝑠,𝑤 (𝑋) denote the first set to
the fifth set of constraints in Eq. (2), respectively. The definition of
these functions is as follows:

ℎ𝑠,𝑤 (𝑋)=𝑦𝑠,𝑤 + ∑
𝑣∈𝑉

𝑦
𝑠,𝑤
𝑣 − 1, ∀𝑠,𝑤

𝑤 (𝑋)=1 − ∑
𝑠∈S

𝑥𝑠 ,

𝑝𝑣 (𝑋)= ∑
𝑠∈𝑆

𝑓 · 𝑥𝑠 ·
∑

𝑤∈𝑊
𝑦
𝑠,𝑤
𝑣 − (𝐶 (𝑣) − 𝑐 (𝑣)) ∀𝑣

𝑞𝑠 (𝑋)= 𝑓 ·𝑥𝑠 · (
∑

𝑤∈𝑊
𝑦𝑠,𝑤+∑

𝑣∈𝑉
𝑧𝑠𝑣)−(𝐵(𝑠)−𝑏 (𝑠)), ∀𝑠

𝑟𝑣,𝑠,𝑤 (𝑋)=𝑦𝑠,𝑤𝑣 − 𝑧𝑠𝑣, ∀𝑣, 𝑠,𝑤

(4)

To determine the extreme point, we utilize the Karush-Kuhn-
Tucker (KKT) conditions [30, 31] and find the partial derivative,
which yields a set of equations for 𝑥𝑠 . Solving these equations
through Gaussian elimination [32] provides us with the values
of 𝑥𝑠 . Due to space limit, the reader can refer to [30, 33] for a
more comprehensive understanding. Once we have obtained the
calculated values of 𝑥𝑠 , we split the DT model among multiple
servers accordingly.

4.3 Algorithm Design for INA and Routing
The second phase of InArt gives the INA and routing schemes.
Since the value of 𝑥𝑠 is solved in the first phase, we introduce the

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

InArt : In-Network Aggregation with Route Selection for Accelerating Distributed Training WWW ’24, May 13-17, 2024, Singapore

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Algorithm 1: L-InArt: Lagrange Multiplier Algorithm for
InArt
1 Step 1: Relaxing the InArt problem
2 Focus on the switch capacity constraints and the PS

capacity constraints in Eq. (1)
3 Relax the variables 𝑦𝑠,𝑤 , 𝑦𝑠,𝑤𝑣 , and 𝑧𝑠𝑣 from integer to

fractional
4 Construct a nonlinear programming in Eq. (2)
5 Step 2: Deriving the extreme point of 𝑥𝑠
6 Give the Lagrange function L(𝑋) in Eq. (3)
7 Obtain an equation set for 𝑥𝑠 by take partial derivative to

the Lagrange function L(𝑋) of Eq. (3) and Eq. (4)
8 Solve these equations and split the model among multiple

PSs based on the value of 𝑥𝑠
result into Eq. (1), and simplify InArt into an integer linear program-
ming problem, which is challenging to solve in a polynomial time.
Accordingly, in this section, we propose a randomized rounding-
based algorithm for the second phase, called R-InArt. The R-InArt
algorithm is formally described in Alg. 2.

In the first step of R-InArt, we construct linear programming as
relaxation of Eq. (1). Specifically, InArt assumes that each gradient
will be routed on a feasible path and aggregated on at most one
switch. By relaxing these assumptions, each gradient is splittable,
can be routed through several feasible paths and aggregated by
multiple switches. We formulate the linear programming LP-InArt
as follows:

max 𝑓

𝑆.𝑡 .



𝑦𝑠,𝑤 + ∑
𝑣∈𝑉

𝑦
𝑠,𝑤
𝑣 = 1, ∀𝑠, 𝑤∑

𝑝∈𝑃𝑠,𝑤
𝑞
𝑠,𝑤
𝑝 = 𝑦𝑠,𝑤 , ∀𝑠, 𝑤∑

𝑝∈𝑃𝑣,𝑤
𝑞
𝑣,𝑤
𝑝 = 𝑦

𝑠,𝑤
𝑣 , ∀𝑠, 𝑤, 𝑣∑

𝑝∈𝑃𝑠,𝑣
𝑞
𝑠,𝑣
𝑝 = 𝑦

𝑠,𝑤
𝑣 , ∀𝑠, 𝑤, 𝑣∑

𝑠∈𝑆
𝑓 · 𝑥𝑠 · ∑

𝑤∈𝑊
𝑦
𝑠,𝑤
𝑣 + 𝑐 (𝑣) ≤ 𝐶 (𝑣), ∀𝑣∑

𝑠∈𝑆
𝑓 𝑥𝑠

∑
𝑣∈𝑉

∑
𝑝∈𝑃 :𝑒∈𝑝

((𝑞𝑠,𝑣𝑝 + ∑
𝑤∈𝑊

(𝑞𝑣,𝑤𝑝 +𝑞𝑠,𝑤𝑝))+𝑏 (𝑒)≤𝐵 (𝑒), ∀𝑒

𝑦
𝑠,𝑤
𝑣 ≤ 𝑧𝑠𝑣, ∀𝑠, 𝑤, 𝑣

𝑓 · 𝑥𝑠 · (∑
𝑤∈𝑊

𝑦𝑠,𝑤 + ∑
𝑣∈𝑉

𝑧𝑠𝑣) + 𝑏 (𝑠) ≤ 𝐵 (𝑠), ∀𝑠

𝑦𝑠,𝑤 , 𝑦
𝑠,𝑤
𝑣 ∈ [0, 1], ∀𝑠, 𝑤, 𝑣

𝑧𝑠𝑣 ∈ [0, 1], ∀𝑠, 𝑣
𝑞
𝑠,𝑤
𝑝 , 𝑞

𝑣,𝑤
𝑝 , 𝑞

𝑠,𝑣
𝑝 ∈ [0, 1], ∀𝑠, 𝑤, 𝑣, 𝑝

𝑓 ≥ 0

(5)

Note that variables 𝑦𝑠,𝑤 , 𝑦𝑠,𝑤𝑣 , 𝑧𝑠𝑣 , 𝑞
𝑠,𝑤
𝑝 , 𝑞𝑣,𝑤𝑝 , and 𝑞𝑠,𝑣𝑝 are integer in

Eq. (1), but fractional in Eq. (5). Since Eq. (5) is a linear programming
problem, we can use a linear programming solver (e.g., Cplex [34])
to solve it in polynomial time. Assume that the optimal solution
for Eq. (5) is denoted as {𝑦𝑠,𝑤 , 𝑦𝑠,𝑤𝑣 , 𝑧̃𝑠,𝑣, 𝑞

𝑠,𝑤
𝑝 , 𝑞

𝑣,𝑤
𝑝 , 𝑞

𝑠,𝑣
𝑝 }, and the

optimal result is denoted as 𝑓 . Since Eq. (5) is a relaxation of Eq. (1),
𝑓 is the upper-bound for Eq. (1).

In the second step of R-InArt, we give the INA scheme and
routing Path. At first, using the randomized rounding (RR) method
[35], we derive the integral solution {𝑦𝑠,𝑤 , 𝑦𝑠,𝑤𝑣 }, for ∀𝑠 ∈ 𝑆 , ∀𝑤 ∈
𝑊 , and 𝑣 ∈ 𝑉 . Specifically, if 𝑦𝑠,𝑤 = 1, it means that gradients from

Algorithm 2: R-InArt: RR-Based Algorithm for InArt
1 Step 1: Solving the relaxed problem of Eq. (1)
2 Construct the linear programming LP-InArt in Eq. (5)
3 Derive the optimal solution 𝑦𝑠,𝑤 , 𝑦𝑠,𝑤𝑣 , 𝑧̃𝑠,𝑣 , 𝑞𝑠,𝑤𝑝 , 𝑞𝑣,𝑤𝑝 , and

𝑞
𝑠,𝑣
𝑝

4 Step 2: Selecting Routing Path
5 Obtain an integer solution 𝑦𝑠,𝑤 and 𝑦𝑠,𝑤𝑣 by RR
6 for each PS 𝑠 ∈ 𝑆 do
7 for each worker𝑤 ∈𝑊 do
8 if 𝑦𝑠,𝑤 == 1 then
9 Obtain an integral solution 𝑞𝑠,𝑤𝑝 by RR

10 for each path 𝑝 ∈ 𝑃𝑠,𝑤 do
11 if 𝑞𝑠,𝑤𝑝 == 1 then
12 for each switch 𝑣 along path 𝑝 do
13 Install a flow entry on switch 𝑣

14 for each switch 𝑣 ∈ 𝑉 do
15 if 𝑦𝑠,𝑤𝑣 == 1 then
16 Set the value of 𝑧𝑠𝑣 to 1
17 Install a INA rule on switch 𝑣 for the flow

from worker𝑤 to PS 𝑠
18 Obtain an integral solution 𝑞𝑣,𝑤𝑝 by RR
19 for each path 𝑝 ∈ 𝑃𝑣,𝑤 do
20 if 𝑞𝑣,𝑤𝑝 == 1 then
21 for each 𝑣 along path 𝑝 do
22 Install a flow entry on 𝑣

23 for each switch 𝑣 ∈ 𝑉 do
24 Obtain an integral solution 𝑞𝑠,𝑣𝑝 by RR
25 for each path 𝑝 ∈ 𝑃𝑠,𝑣 do
26 if 𝑞𝑠,𝑣𝑝 == 1 then
27 for each switch 𝑣 along path 𝑝 do
28 Install a flow entry on switch 𝑣

worker𝑤 to PS 𝑠 will not be aggregated by any switches, but will
be aggregated on PS 𝑠 . If 𝑦𝑠,𝑤𝑣 = 1, it means that the gradient from
worker 𝑤 to PS 𝑠 will be aggregated on switch 𝑣 . Moreover, we
will set the value of 𝑧𝑠𝑣 as 1. Next, we give the routing path 𝑞 of
each gradient from worker𝑤 to PS 𝑠 . Then we derive the integral
solution by RR, denoted as {𝑞𝑠,𝑤𝑝 , 𝑞

𝑣,𝑤
𝑝 , 𝑞

𝑠,𝑣
𝑝 }.

Note that each gradient will be aggregated in at most one switch
for INA, and be assigned one feasible path for routing by InArt. In
the following, we take the rounding process of INA as an example
to illustrate the specific RR details of the R-InArt algorithm. Specifi-
cally, there are two switches for INA, and the optimal solution 𝑦𝑠,𝑤
and {𝑦𝑠,𝑤𝑣 } of a worker𝑤 equals to 0.1 and {0.4, 0.5}, respectively.
Then the interval [0, 1] is splitted into three parts: (0, 0.4], (0.4, 0.9],
and (0.9, 1]. We generate a random value between 0 to 1, and choose
at most one switch for INA depending on this value. If the value is
less than 0.4, R-InArt will choose the first switch as the aggregation
switch for the gradient from worker 𝑤 to PS 𝑠 . Otherwise, if the
value is larger than 0.4 and less than 0.9, then the controller will
choose the second switch as the aggregation switch for this gradi-
ent. Meanwhile, if the value is larger than 0.9, the gradient will be
aggregated on parameter servers but not aggregated in the cluster.

Approximation Performance: The approximate factors of
our algorithm are bi-criteria approximation with respect to both

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’24, May 13-17, 2024, Singapore Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

4 5 6
0

20

40

60

No. of Workers

Se
nd

in
g

Ra
te

 (
G

bp
s)

 LBMM
 ATP
 R-InArt
 InArt

(a) VGG19

4 5 6
0

20

40

60

No. of Workers

Se
nd

in
g

Ra
te

 (
G

bp
s)

 LBMM
 ATP
 R-InArt
 InArt

(b) ResNet-50

Figure 2: Gradient Sending Rate vs. No. of Workers

4 5 6
0

50

100

150

200

250

300

No. of Workers

Th
ro

ug
hp

ut
 (i

m
ag

es
/s)

 LBMM
 ATP
 R-InArt
 InArt

(a) VGG19

4 5 6
0.0K

0.4K

0.8K

1.2K

1.6K

2.0K

No. of Workers

Th
ro

ug
hp

ut
 (i

m
ag

es
/s)

 LBMM
 ATP
 R-InArt
 InArt

(b) ResNet-50

Figure 3: Training Throughput vs. No. of Workers

the objective value and resource constraints. Due to space limit,
we omit the proofs of the approximation performance analysis of
R-InArt. The reader can refer to [36–39] for the performance anal-
ysis of the randomized rounding method (RR). The approximation
factor is 𝑂 (2 log |𝑉 |/𝜑 + 2, 2 log |𝑆 |/𝜑 + 2, 2 log |𝐸 |/𝜑 + 2), which
represents the approximation factors of switch capacity constraints,
PS capacity constraints and link capacity constraints, respectively.
Here 𝜑=min{ 2· (𝐶 (𝑣)−𝑐 (𝑣))

𝑥𝑠 ·𝑓 ,
2· (𝐵 (𝑒)−𝑏 (𝑒))

𝑥𝑠 ·𝑓 ,
2· (𝐵 (𝑠)−𝑏 (𝑠))

𝑥𝑠 ·𝑓 ,∀𝑣, 𝑒, 𝑠} is a
constant value about system. In practical scenarios, these factors
are constant. We estimate 𝜑 as 10, then the approximation factor
becomes 2.78, 2.73, and 2.27, respectively.

5 EVALUATION
5.1 Performance Metrics and Benchmarks
5.1.1 Performance Metrics. We adopt the following eight perfor-
mance metrics to evaluate the improvement of our proposed InArt
for DT: (1) the gradient sending rate of workers; (2) the training
throughput; (3) the per-iteration time; (4) the communication time;
(5) the training speed; (6) the accuracy over training time; (7) the
network throughput; (8) the ingress traffic amount of PSs.

During a testbed run, we use iftop [40] to monitor the egress
bandwidth of each worker as the gradient sending rate. We measure
the number of processed samples (e.g., images) per second as the
training throughput. In addition, we record the time between two
consecutive iterations as the per-iteration time. In each iteration, we
measure the duration from a worker sending gradients to receiving
the updated model as the communication time of one iteration.
Furthermore, we record the number of iterations over a period of
time as the training speed and record the accuracy of each iteration.

During an emulation run, we measure the gradient sending rate
and the communication time. In each iteration of the emulation
experiment, we calculate the traffic volume of gradient transferred
by all the links as the network throughput. In addition, we mea-
sure the total traffic volume of gradients from the workers and
programmable switches to PSs per iteration, as the ingress traffic
amount of PSs.

5.1.2 Benchmarks. We choose three benchmarks for performance
comparison. The first benchmark splits the model in the same pro-
portion among multiple PSs (e.g., a DT architecture contains four
PSs, each maintaining 25% of the total model), and then performs
R-InArt for gradient route selection. The second benchmark is the
Load Balance Min-Min scheduling (LBMM) algorithm [13]. LBMM
is an efficient routing algorithm that without consider INA in the

cluster. For gradients from workers to PSs, LBMM chooses the rout-
ing path with the most negligible impact on routing load balanc-
ing. The third benchmark, called ATP [5], is a state-of-the-art INA
method. In ATP, gradients are aggregated on ToR programmable
switches in the cluster. Then the aggregated traffic will be routed
to the PSs from the ToR switches with the least link load. Note that
ATP does not involve model splitting, and for the purpose of fair
comparison, we assume that the model is split equally across PSs
in the following evaluations.

5.2 Testbed Evaluation
5.2.1 Testbed Settings. We use eight servers running Ubuntu 18.04
(Linux kernel version 5.4) and two Wedge100BF-32x programmable
switches with Intel Tofino chip [20] to build the testbed. The topol-
ogy of the testbed is the same as that of the example (Fig. 1) in §2.1.
Specifically, all servers have a 22-core Intel Xeon 6152 processor,
128GB RAM, and an NVIDIA GeForce RTX 3090. Each server is
equipped with a Mellanox ConnectX-6 dual-port 100Gbps NIC. Be-
sides, all the servers are connected with programmable switches
via 100Gbps links.

In terms of implementation details, similar to [11], we run Py-
Torch on each worker to carry out DT jobs. To implement INA on
the switch, we write the P4 program in P4-16 with Tofino Native
Architecture (TNA) [41]. More specifically, we pre-calculate our
solution’s model splitting and routing scheme with Pyomo [42]
and install the corresponding entries to the programmable switches
using the Barefoot Runtime Interface (BRI). We train two popular
models on the Cifar-100 dataset [43]: ResNet50 [44] with a size
of 97MB and VGG19 [45] with a size of 548MB. Specifically, the
Cifar-100 dataset contains 60000 images, 50000 for training and
10000 for testing, labeled in 100 classes. Besides, the batch size is
set as 32 for all training jobs. We run each testbed 30 times and
calculate the average value as the results.

5.2.2 Testbed Results. We run three sets of experiments to evaluate
the performance of InArt and benchmarks. In the first set of exper-
iments, we observe the gradient sending rate of workers and the
training throughput, as shown in Figs. 2-3. It is evident that InArt
can achieve the best performance among all solutions. Fig. 2 shows
that as the number of workers increases, InArt always obtains
the highest gradient sending rate. For example, given 6 workers in
VGG19, the gradient sending rate of InArt, R-InArt, ATP and LBMM
are 26.2Gbps, 23.1Gbps, 19.25Gbps and 15.4Gbps, respectively. It
means that InArt can increase the gradient sending rates by 13.4%,

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

InArt : In-Network Aggregation with Route Selection for Accelerating Distributed Training WWW ’24, May 13-17, 2024, Singapore

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

4 5 6
0.0

0.3

0.6

0.9

1.2

1.5

No. of Workers

Pe
r I

te
ra

tio
n

Ti
m

e
(s

) LBMM
 ATP
 R-InArt
 InArt

(a) VGG19

4 5 6
0.00

0.05

0.10

0.15

0.20

0.25

No. of Workers
Pe

r I
te

ra
tio

n
Ti

m
e

(s
) LBMM

 ATP
 R-InArt
 InArt

(b) ResNet-50

Figure 4: Per Iteration Time vs. No. of Workers

4 5 6
0.0

0.2

0.4

0.6

0.8

No. of Workers

Co
m

m
un

ic
at

io
n

Ti
m

e
(s

) LBMM
 ATP
 R-InArt
 InArt

(a) VGG19

4 5 6
0.00

0.05

0.10

0.15

No. of Workers

Co
m

m
un

ic
at

io
n

Ti
m

e
(s

) LBMM
 ATP
 R-InArt
 InArt

(b) ResNet-50

Figure 5: Communication Time vs. No. of Workers

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 T
im

e
(x

10
3 s)

No. of Iterations (x100)

 LBMM
 ATP
 R-InArt
 InArt

(a) VGG19

0 5 10 15 20
0

1

2

3

4

Tr
ai

ni
ng

 T
im

e
(x

10
2 s)

No. of Iterations (x100)

 LBMM
 ATP
 R-InArt
 InArt

(b) ResNet-50

Figure 6: Training Time vs. No. of Iterations

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

A
cc
ur
ac
y

Training Time (´100s)

 LBMM
 ATP
 R-InArt
 InArt

(a) VGG19

0 2 4 6 8 10
0.3

0.4

0.5

0.6

0.7

A
cc
ur
ac
y

Training Time (´100s)

 LBMM
 ATP
 R-InArt
 InArt

(b) ResNet-50

Figure 7: Accuracy over Training Time

36.5% and 72%, compared with R-InArt, ATP and LBMM, respec-
tively. In Fig. 3, InArt consistently achieves the highest training
throughput with increasing numbers of workers. Specifically, with
6 workers in VGG19, InArt achieves a throughput of 223 images/s.
Comparatively, R-InArt, ATP, and LBMM achieve throughputs of
206 images/s, 188 images/s, and 162 images/s, respectively. In other
words, InArt can improve the training throughput by 8.3%, 18.6%
and 37.7% compared with R-InArt, ATP and LBMM, respectively.
The reason is that InArt selects a proper routing path under the
INA framework and designs an appropriate model splitting scheme
to maximize the gradient sending rate of workers.

The second set of experiments measures the total time and the
communication time of one iteration. Fig. 4 shows the per-iteration
time with different numbers of workers. Note that per-iteration
time consists of the local training time and the communication
time. Our method doesn’t optimize the local training time but can
co-exist with solutions decreasing local training time if needed.
We observe that the per-iteration time increases as the number of
workers increases, while InArt always obtains the least per-iteration
time. For example, when the number of workers is 6 in VGG19, the
per-iteration times of LBMM, ATP, R-InArt and InArt are 0.97s,
0.85s, 0.78s and 0.69s, respectively. That means, InArt reduces the
per-iteration time by 29%, 19% and 12% compared with LBMM, ATP
and R-InArt, respectively. As shown in Fig. 5, InArt always has the
shortest communication time in each iteration. Given 6 workers in
VGG19, the communication time of LBMM, ATP, R-InArt and InArt
are 0.56s, 0.45s, 0.38s and 0.31s, respectively. InArt decreases the
communication time by 45%, 32% and 19%, compared with LBMM,
ATP and R-InArt, respectively. The reason is that InArt has the
highest gradient sending rate of workers (as described in Fig. 2),
thereby reducing the communication time.

Finally, we run two DT jobs at 6 workers to evaluate the per-
formance of training time and accuracy. From Figs. 6-7, we can

conclude that InArt always takes the least time to complete the
same number of iterations compared with other alternatives. It can
be observed from Fig. 6 that InArt takes the least time to complete
the DT job. For example, it takes 1380s for InArt to complete 2000
iterations of the VGG19 training job, while the number are 1541s,
1775s and 2105s when we use R-InArt, ATP and LBMM, respec-
tively. Fig. 7 shows that InArt can obtain the specified accuracy with
the least time. For instance, when the mode is VGG19, InArt first
achieves an accuracy of 0.7214 in 151s, while the time of R-InArt,
ATP and LBMM are 181s, 208s and 278s, respectively. It means that
InArt can reach the target accuracy 1.2×, 1.38× and 1.84× faster
than R-InArt, ATP and LBMM, respectively. The results show that
proper gradient routing with INA can significantly speed up the
distributed model training.

5.3 Emulation Evaluation
5.3.1 Emulation Settings. We implement a middle-scale emulation
with the classical fat-tree topology [46], which is commonly adopted
in clusters. We use the mininet tool [47] to implement the fat-
tree topology, which consists of 9 core switches, 18 aggregation
switches, 18 ToR switches, and 54 servers. We randomly selected
4 servers as PSs and the remaining servers as workers. Since we
cannot support P4 hardware switches of a certain scale, we obtain
results using bmv2 [48] software switches. Unfortunately, bmv2
software switches are not designed for line-rate packet processing
[49]. Therefore, we cannot inject Gbps traffic into bmv2 switches
for our evaluations, and shrink the experimental setup by a factor
of 1000.

These evaluations are performed under two common network
scenarios. The first is a homogeneous scenario, in which the capac-
ity of each link is 20Mbps. The second is a heterogeneous scenario,
and the link capacity is randomly generated between 10Mbps and
30Mbps. We set the processing capacity of PSs and aggregation
capacity of bmv2 switches as 20Mbps and 9Mbps, respectively. To

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’24, May 13-17, 2024, Singapore Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

ResNet-50 VGG19 LSTM

3

6

9

12

15

18

Se
nd

in
g

Ra
te

 (M
bp

s)

 LBMM
 ATP
 R-InArt
 InArt

(a) Homogeneous Network

ResNet-50 VGG19 LSTM

3

6

9

12

15

18

Se
nd

in
g

Ra
te

 (M
bp

s)

 LBMM
 ATP
 R-InArt
 InArt

(b) Heterogeneous Network

Figure 8: Gradient Sending Rate in Different Models

10 15 20 25 30 35 40 45 50

5

10

15

20

25

Se
nd

in
g

Ra
te

 (M
bp

s)

Number of Workers

 LBMM
 ATP
 R-InArt
 InArt

(a) Homogeneous Network

10 20 30 40 50

5

10

15

20

Se
nd

in
g

Ra
te

 (M
bp

s)

Number of Workers

 LBMM
 ATP
 R-InArt
 InArt

(b) Heterogeneous Network

Figure 9: Gradient Sending Rate vs. No. of Workers

ResNet-50 VGG19 LSTM

1

2

3

4

5

6

7

Co
m

m
un

ic
at

io
n

Ti
m

e
(s

) LBMM
 ATP
 R-InArt
 InArt

(a) Homogeneous Network

ResNet-50 VGG19 LSTM

1

2

3

4

5

6

7

Co
m

m
un

ic
at

io
n

Ti
m

e
(s

) LBMM
 ATP
 R-InArt
 InArt

(b) Heterogeneous Network

Figure 10: Gradient CommunicationTime inDifferentModels

10 20 30 40 50

2

4

6

8

Co
m

m
un

ic
at

io
n

Ti
m

e
(s

)

Number of Workers

 LBMM
 ATP
 R-InArt
 InArt

(a) Homogeneous Network

10 20 30 40 50

2

4

6

8

Co
m

m
un

ic
at

io
n

Ti
m

e
(s

)

Number of Workers

 LBMM
 ATP
 R-InArt
 InArt

(b) Heterogeneous Network

Figure 11: Gradient Communication Time vs. No. of Workers
implement the INA and routing, we pre-program the INA logic
of bmv2 switches and pre-install the flow table by P4 language.
The emulation tests three different models, LSTM, VGG19, and
ResNet-50. Specifically, the LSTM model is commonly used for time
series prediction, and VGG19 and ResNet-50 are widely used for
image classification. We set the gradient size in one iteration of
LSTM, VGG19 and ResNet-50 by a factor of 1000 to 1627KB, 548KB,
and 97KB, respectively [5]. To emulate the synchronous gradient
communications, we deploy tcpreplay [50] tools on each worker to
send packets at the same rate. We run each emulation 30 times and
calculate the average value as the results.

5.3.2 Emulation Results. We run three sets of experiments for
performance evaluations. The first set of experiments compares the
sending rate of workers, as shown in Figs. 8-9. From the left plot
of Fig. 8, when training LSTM jobs, the sending rate of workers
is 10.75Mbps and 4.7Mbps by InArt and ATP, respectively. In Fig.
9, as the number of workers increases, the gradient sending rate
will gradually decrease since more workers can use more network
resources in the cluster. Inspiringly, our solution can achieve a
faster sending rate than other benchmarks. From the right plot of
Fig. 9, when there are 50 workers in the network, the sending rate of
workers is 8.73Mbps and 4.44Mbps by InArt and ATP, respectively.
Based on the evaluation results, our solution improved the sending
rate by 97% compared with ATP. That is because while we perform
traffic aggregation operations on edge switches, some core switches,
and aggregation switches may also participate in INA.

The second set of experiments observes the communication time
of one iteration. In Fig. 10, we first observe the gradient commu-
nication time of three models. As the gradient size increases, the
communication time will become longer. Obviously, the communi-
cation time by InArt is much slower than that of ATP and LBMM.
From the left plot in Fig. 10, in the homogeneous scenario, the
gradient communication time of Resnet-50 is 0.068s, 0.152s, and

0.35s by InArt, ATP, and LBMM, respectively. Similarly, our solu-
tion performs better than other benchmarks in the heterogeneous
scenario. In Fig. 11, we observe the impact of the number of workers
on communication time. As the number of workers increases, the
communication time accordingly increases. However, the increas-
ing rate of InArt is much slower than that of ATP and LBMM. For
example, when there are 50 workers in the right plot of Fig. 11, the
communication time are 1.52s, 8.13s and 2.96s corresponding to our
solution, LBMM and ATP, respectively. That means our solution
reduces the communication time by 81% and 49% compared with
LBMM and ATP, respectively. That is because a faster sending rate
can effectively reduce communication time.

Our third set of experiments measures the network throughput
and the ingress traffic amount of PSs per iteration. Due to space con-
straints, we present a summary of the results, while more detailed
results can be found in §A. InArt significantly improves the network
throughput compared to state-of-the-art INA works, achieving ap-
proximately 1.6× higher throughput. Additionally, our approach
reduces the load on PSs by 53%. These improvements are attributed
to InArt’s utilization of a combined INA scheme that incorporates
submodel partitioning and route selection.

6 CONCLUSION
In this paper, we design and implement InArt, the first-of-its-kind
work on INA with route selection in a multi-PS architecture, to
accelerate distributed training. InArt utilizes a multi-PS architecture
to distribute DT tasks among multiple PSs and effectively selects
routing schemes to fully leverage the capabilities of INA. Due to
traffic dynamics, InArt takes a two-phase approach: splitting the
training model among multiple PSs and selecting the routing paths
for INA. Two algorithms have been designed for these two phases,
respectively. Experiment results show that InArt can achieve a
superior gradient sending rate and less communication time than
the state-of-the-art solutions.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

InArt : In-Network Aggregation with Route Selection for Accelerating Distributed Training WWW ’24, May 13-17, 2024, Singapore

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Yun Ma, Dongwei Xiang, Shuyu Zheng, Deyu Tian, and Xuanzhe Liu. Moving

deep learning into web browser: How far can we go? In The World Wide Web
Conference, pages 1234–1244, 2019.

[2] Rand Jawad Kadhim Almahmood and Adem Tekerek. Issues and solutions in
deep learning-enabled recommendation systems within the e-commerce field.
Applied Sciences, 12(21):11256, 2022.

[3] Saravanan Chandrasekaran, Aditya Kumar Singh Pundir, T Bheema Lingaiah,
et al. Deep learning approaches for cyberbullying detection and classification
on social media. Computational Intelligence and Neuroscience, 2022, 2022.

[4] Yanwu Yang and Panyu Zhai. Click-through rate prediction in online advertising:
A literature review. Information Processing & Management, 59(2):102853, 2022.

[5] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan Ports, and Peter
Richtarik. Scaling distributed machine learning with in-network aggregation. In
18th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 21), pages 785–808, 2021.

[6] Luo Mai, Guo Li, Marcel Wagenländer, Konstantinos Fertakis, Andrei-Octavian
Brabete, and Peter Pietzuch. {KungFu}: Making training in distributed machine
learning adaptive. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 937–954, 2020.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pages 4171–4186, 2019.

[8] Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim
Verbelen, and Jan S Rellermeyer. A survey on distributed machine learning. ACM
Computing Surveys (CSUR), 53(2):1–33, 2020.

[9] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanxiong Guo.
A unified architecture for accelerating distributed {DNN} training in heteroge-
neous {GPU/CPU} clusters. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), pages 463–479, 2020.

[10] Yuzhen Huang, Tatiana Jin, Yidi Wu, Zhenkun Cai, Xiao Yan, Fan Yang, Jinfeng Li,
Yuying Guo, and James Cheng. Flexps: Flexible parallelism control in parameter
server architecture. Proceedings of the VLDB Endowment, 11(5):566–579, 2018.

[11] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi Chen, Wenfei Wu, Aditya
Akella, and Michael M Swift. Atp: In-network aggregation for multi-tenant
learning. In NSDI, pages 741–761, 2021.

[12] Liang Luo, Jacob Nelson, Luis Ceze, Amar Phanishayee, and Arvind Krishna-
murthy. Parameter hub: a rack-scale parameter server for distributed deep neural
network training. In Proceedings of the ACM Symposium on Cloud Computing,
pages 41–54, 2018.

[13] Shyam Singh Rajput and Virendra Singh Kushwah. A genetic based improved
load balanced min-min task scheduling algorithm for load balancing in cloud
computing. In 2016 8th international conference on Computational Intelligence
and Communication Networks (CICN), pages 677–681. IEEE, 2016.

[14] Saurabh Agarwal, Hongyi Wang, Shivaram Venkataraman, and Dimitris Papail-
iopoulos. On the utility of gradient compression in distributed training systems.
arXiv preprint arXiv:2103.00543, 2021.

[15] Lusine Abrahamyan, Yiming Chen, Giannis Bekoulis, and Nikos Deligiannis.
Learned gradient compression for distributed deep learning. IEEE Transactions
on Neural Networks and Learning Systems, 2021.

[16] Chia-Yu Chen, Jiamin Ni, Songtao Lu, Xiaodong Cui, Pin-Yu Chen, Xiao
Sun, Naigang Wang, Swagath Venkataramani, Vijayalakshmi Viji Srinivasan,
Wei Zhang, et al. Scalecom: Scalable sparsified gradient compression for
communication-efficient distributed training. Advances in Neural Information
Processing Systems, 33:13551–13563, 2020.

[17] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy Campbell. Tictac: Accel-
erating distributed deep learning with communication scheduling. Proceedings
of Machine Learning and Systems, 1:418–430, 2019.

[18] Minkoo Kang, Gyeongsik Yang, Yeonho Yoo, and Chuck Yoo. Tensorexpress:
In-network communication scheduling for distributed deep learning. In 2020
IEEE 13th international conference on cloud computing (CLOUD), pages 25–27.
IEEE, 2020.

[19] Ching-Yuan Tsai, Ching-Chi Lin, Pangfeng Liu, and Jan-Jan Wu. Communication
scheduling optimization for distributed deep learning systems. In 2018 IEEE
24th International Conference on Parallel and Distributed Systems (ICPADS), pages
739–746. IEEE, 2018.

[20] Intel tofino. Accessed: June. 14, 2023.
[21] Netronome agilio smartnic. https://www.netronome.com/products/agilio-cx.

[22] Ge Chen, Gaoxiong Zeng, and Li Chen. P4com: In-network computation with
programmable switches. arXiv preprint arXiv:2107.13694, 2021.

[23] Jin Fang, Gongming Zhao, Hongli Xu, Changbo Wu, and Zhuolong Yu. Grid:
Gradient routingwith in-network aggregation for distributed training. IEEE/ACM
Transactions on Networking, 2023.

[24] Salem Alqahtani and Murat Demirbas. Performance analysis and comparison of
distributed machine learning systems. arXiv preprint arXiv:1909.02061, 2019.

[25] Suraiya Tairin, Haiying Shen, and Zeyu Zhang. Embracing uncertainty for equity
in resource allocation in ml training. In Proceedings of the 52nd International
Conference on Parallel Processing, pages 423–432, 2023.

[26] Xiao Zeng, Ming Yan, and Mi Zhang. Mercury: Efficient on-device distributed
dnn training via stochastic importance sampling. In Proceedings of the 19th ACM
Conference on Embedded Networked Sensor Systems, pages 29–41, 2021.

[27] Ruiting Zhou, Jinlong Pang, Qin Zhang, ChuanWu, Lei Jiao, Yi Zhong, and Zong-
peng Li. Online scheduling algorithm for heterogeneous distributed machine
learning jobs. IEEE Transactions on Cloud Computing, 2022.

[28] Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and Rafal Jozefowicz.
Revisiting distributed synchronous sgd. arXiv preprint arXiv:1604.00981, 2016.

[29] Jesus Lopez-Perez. Elasticities on a mixed integer programming model for
revenue optimization. In XX SIGEF Congress-Harnessing Complexity through
Fuzzy Logic, pages 153–177. Springer, 2021.

[30] Mengmou Li. Generalized lagrange multiplier method and kkt conditions with
an application to distributed optimization. IEEE Transactions on Circuits and
Systems II: Express Briefs, 66(2):252–256, 2018.

[31] Geoff Gordon and Ryan Tibshirani. Karush-kuhn-tucker conditions. Optimiza-
tion, 10(725/36):725, 2012.

[32] Joseph F Grcar. Mathematicians of gaussian elimination. Notices of the AMS,
58(6):782–792, 2011.

[33] Ankur Sinha, Tharo Soun, and Kalyanmoy Deb. Using karush-kuhn-tucker prox-
imity measure for solving bilevel optimization problems. Swarm and evolutionary
computation, 44:496–510, 2019.

[34] Ibm ilog cplex optimization studio. https://nl.mathworks.com/products/
connections/product_detail/Ibm-ilog-cplex.html.

[35] Gongming Zhao, Jiawei Liu, Yutong Zhai, Hongli Xu, and Huang He. Alleviating
the impact of abnormal events through multi-constrained vm placement. IEEE
Transactions on Parallel and Distributed Systems, 34(5):1508–1523, 2023.

[36] Haibo Wang, Hongli Xu, Liusheng Huang, Jianxin Wang, and Xuwei Yang. Load-
balancing routing in software defined networks with multiple controllers. Com-
puter Networks, 141:82–91, 2018.

[37] Jingzhou Wang, Gongming Zhao, Hongli Xu, Yutong Zhai, Qianyu Zhang,
He Huang, and Yongqiang Yang. A robust service mapping scheme for multi-
tenant clouds. IEEE/ACM Transactions on Networking, 30(3):1146–1161, 2022.

[38] Rami Cohen, Liane Lewin-Eytan, Joseph Seffi Naor, and Danny Raz. On the
effect of forwarding table size on sdn network utilization. In IEEE INFOCOM
2014-IEEE conference on computer communications, pages 1734–1742. IEEE, 2014.

[39] Huaqing Tu, Gongming Zhao, Hongli Xu, Yangming Zhao, and Yutong Zhai.
Robustness-aware real-time sfc routing update in multi-tenant clouds. In 2021
IEEE/ACM 29th International Symposium on Quality of Service (IWQOS), pages
1–6, 2021.

[40] iftop. Accessed: June. 14, 2023.
[41] Open tofino. https://github.com/barefootnetworks/Open-Tofino. Accessed: June.

14, 2023.
[42] Pyomo. https://github.com/Pyomo/pyomo.
[43] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[44] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, com-
modity data center network architecture. ACM SIGCOMM computer communica-
tion review, 38(4):63–74, 2008.

[45] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[46] Raj P Dhanya and VS Anitha. Implementation and performance evaluation of
load balanced routing in sdn based fat tree data center. In 2023 6th International
Conference on Information Systems and Computer Networks (ISCON), pages 1–6.
IEEE, 2023.

[47] An instant virtual network on your laptop. Accessed: June. 14, 2023.
[48] Behavioral model version 2 (bmv2). Accessed: June. 14, 2023.
[49] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco Canini, and Panos

Kalnis. In-network computation is a dumb idea whose time has come. In
Proceedings of the 16th ACM Workshop on Hot Topics in Networks, pages 150–156,
2017.

[50] Tcpreplay - pcap editing and replaying utilities. https://tcpreplay.appneta.com.
Accessed: June. 14, 2023.

9

https://www.netronome.com/products/agilio-cx
https://nl.mathworks.com/products/connections/product_detail/Ibm-ilog-cplex.html
https://nl.mathworks.com/products/connections/product_detail/Ibm-ilog-cplex.html
https://github.com/barefootnetworks/Open-Tofino
https://github.com/Pyomo/pyomo
https://tcpreplay.appneta.com

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’24, May 13-17, 2024, Singapore Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A ADDITIONAL EVALUATION DETAILS
A.1 Network Throughput

10 20 30 40 50

150

300

450

600

 T
hr

ou
gh

pu
t (

M
bp

s)

Number of Workers

 LBMM
 ATP
 R-InArt
 InArt

(a) Homogeneous Network

10 20 30 40 50

150

300

450

600

Th
ro

ug
hp

ut
 (M

bp
s)

Number of Workers

 LBMM
 ATP
 R-InArt
 InArt

(b) Heterogeneous Network

Figure 12: Network Throughput vs. No. of Workers

As shown in Fig. 12, the network throughput gradually increases
with the increasing number of workers, while our solution has the
highest throughput. For example, when there are 30 workers in
the left plot of Fig. 12, InArt, ATP, and LBMM achieves a network
throughput of 420, 160, and 90Mbps, respectively. This suggests that
our INA and dynamic routing approach utilizes network resources
more efficiently. Compared with ATP, InArt improves the network
throughput by about 1.6×.

A.2 Ingress Traffic amount of PS

ResNet-50 VGG19 LSTM

12

24

36

48

60

In
gr

es
s T

ra
ffi

c
 (M

B)

 LBMM
 ATP
 R-InArt
 InArt

(a) Homogeneous Network

ResNet-50 VGG19 LSTM

12

24

36

48

60

In
gr

es
s T

ra
ffi

c
 (M

B)

 LBMM
 ATP
 R-InArt
 InArt

(b) Heterogeneous Network

Figure 13: Ingress Traffic amount of PSs in Different Models.

In Fig. 13, we indicate the ingress traffic amount of PSs. As
expected that the ingress traffic amount of PSs using LBMM is much
higher than that of other benchmarks. This is because the LBMM
does not consider INA, and all the gradients will be aggregated on
PSs. Note that InArt significantly reduces the processing load on
PSs. For example, when training VGG19, the ingress traffic amount
of PSs is 3.44MB, 7.33MB, and 22MB by InArt, ATP, and LBMM,
respectively. Compared with ATP, our method reduces the load on
PSs by 53%.

10

	Abstract
	1 Introduction
	2 Motivation
	2.1 A Motivation Example
	2.2 Our Intuition

	3 Problem Definition
	3.1 System Model
	3.2 Problem Definition of InArt

	4 Algorithm Design
	4.1 Algorithm Workflow
	4.2 Algorithm Design for Splitting the Model
	4.3 Algorithm Design for INA and Routing

	5 Evaluation
	5.1 Performance Metrics and Benchmarks
	5.2 Testbed Evaluation
	5.3 Emulation Evaluation

	6 Conclusion
	References
	A Additional Evaluation Details
	A.1 Network Throughput
	A.2 Ingress Traffic amount of PS

