

000 BRIDGING BAG-LEVEL AND INSTANCE-LEVEL UN- 001 CERTAINTY WITH CONFORMALIZABLE MIL 002

003 **Anonymous authors**
004

005 Paper under double-blind review
006

007 ABSTRACT 008

009 This paper introduces the concept of Conformalizable Multiple Instance Learning
010 as well as a theoretical framework that establishes the connection between
011 agnostic PAC learnability and the transferability of bag-level conformal prediction
012 guarantees to individual instances. Our analysis defines rigorous conditions
013 under which a calibrated conformal threshold provides reliable uncertainty quantification
014 at both the bag and instance levels. We demonstrate that instance-level
015 agnostic PAC learnability is both a necessary and sufficient condition to achieve
016 valid instance-level coverage. Empirical evaluations on synthetic CIFAR-based
017 tasks, Camelyon16 whole-slide images, and time series anomaly detection task
018 validate our theoretical findings, confirming that agnostic PAC learnability underpins
019 the conformalizability of existing MIL models. This work provides a
020 robust theoretical and empirical foundation for integrating conformal prediction
021 into MIL, offering valuable insights for enhancing uncertainty quantification in
022 complex learning scenarios.
023

024 1 INTRODUCTION 025

026 Multiple Instance Learning (MIL) is a powerful weakly-supervised paradigm for learning from am-
027 biguously labeled data, where models learn from bags of instances to make predictions about the
028 instances within them (Dietterich et al., 1997; Andrews et al., 2002; Stikic et al., 2011; Ilse et al.,
029 2018; Shao et al., 2021). This approach has seen wide success, particularly in domains like compu-
030 tational pathology and document analysis where instance-level labels are prohibitively expensive to
031 acquire (Ilse et al., 2018; Li et al., 2021; Shao et al., 2021; Javed et al., 2022; Angelidis & Lapata,
032 2018). While modern MIL models often achieve high accuracy at the bag level, a critical challenge
033 remains: reliably quantifying the prediction uncertainty for each individual instance. Without trust-
034 worthy instance-level uncertainty, deploying these models in high-stakes applications like medical
035 diagnosis or scientific discovery is fraught with risk.
036

037 Standard uncertainty quantification methods like split conformal prediction can provide rigorous
038 coverage guarantees at the bag level (Vovk et al., 2005), but it is unclear if these guarantees can be
039 transferred to the instance level without instance labels. This raises a crucial question: *Can bag-level*
040 *supervision provide reliable instance-level uncertainty under certain conditions?*
041

042 This paper provides a theoretical and empirical answer to this question. We introduce the concept
043 of a **Conformalizable MIL**, a model where a conformal threshold τ_α calibrated on bag-level data
044 can be provably transferred to provide valid instance-level coverage. Our core contribution is to
045 establish the formal link between this practical property of conformalizability and the theoretical
046 property of **agnostic PAC learnability**.
047

Recent work by Jang & Kwon (2025a) provided a foundational theory for when MIL models are learnable at the instance level from a PAC-theoretic perspective. Our work builds directly upon this, asking the crucial next question: *if a model is instance-level learnable, what does that imply for the reliability of its uncertainty estimates?* Our contribution is therefore not just an analysis, but a prescriptive framework: by connecting learnability to conformalization, we provide a guide for designing and selecting MIL architectures that are not only accurate but also yield trustworthy, calibrated uncertainty estimates at the fine-grained instance level.

053 Our main contributions are:

- We introduce the **Conformalizable MIL** framework and prove that instance-level agnostic PAC learnability is the **necessary and sufficient condition** for a MIL model to be conformalizable.
- We derive a **finite-sample coverage bound** for instance-level predictions, showing that the coverage guarantee degrades gracefully with the model’s excess generalization risk.
- We provide extensive **empirical validation experiments** on independent, dependency-driven, and ordered time-series datasets, demonstrating that our theory correctly predicts which architectures successfully transfer uncertainty guarantees in complex settings.

Ultimately, our work provides a robust theoretical and empirical foundation for integrating conformal prediction into MIL, offering a principled path toward enhancing uncertainty quantification in complex, weakly-supervised learning scenarios.

2 CONFORMALIZING THE MIL MODELS

2.1 PRELIMINARIES

We begin by considering the basic building blocks of our framework, starting with the essential concepts of MIL. In MIL, rather than treating every single data point on its own, we group related data points into what we call bags. Each bag is composed of several individual elements, known as instances, and each bag is assigned a label that identifies its class. This arrangement allows us to capture richer information by considering collections of instances together.

Definition 1 (Instance, Bag, and Label). Let $\mathcal{X}_{\text{inst}} \subseteq \mathbb{R}^d$ denote the feature space of an instance. A *bag* is defined as $\mathcal{X} = \{x_{\text{inst}}^i \in \mathcal{X}_{\text{inst}} \mid i = 1, \dots, N\}$, a permutation-invariant collection of N instances. The label space is $\mathcal{Y} = \{y_1, \dots, y_K\}$. The *bag domain* $D_{\mathcal{X} \times \mathcal{Y}}$ is the joint distribution over bags and their bag-level labels, while the *instance domain* $D_{\mathcal{X}_{\text{inst}} \times \mathcal{Y}}$ governs instances paired with individual labels. Note that the bag domain is the joint probability distribution composed of multiple instance domains.

In simpler terms, while each instance is a point in a high-dimensional space, a bag is an unordered collection of these points. The overall classification task, whether it’s distinguishing between two classes or among several, is then approached by considering the relationships and patterns within these bags rather than isolated instances.

The goal of MIL is to learn a classifier that can accurately assign labels to entire bags, based on the information provided by the instances within each bag. In practice, we are provided with a training dataset of labeled bags, and our task is to combine the predictions from individual instance classifiers to determine the bag-level prediction. This is achieved by integrating an appropriate pooling function that aggregates the instance-level outputs into a single bag-level decision.

Definition 2 (MIL problem). Given a training set $S = \{(\mathbf{x}_m, \mathbf{y}_m)\}_{m=1}^M$ of M bag-label pairs, where each bag $\mathbf{x}_m = \{x_{m,i}\}_{i=1}^{N_m}$ contains N_m instances ($x_{m,i} \in \mathcal{X}_{\text{inst}}$). Each $(\mathbf{x}_m, \mathbf{y}_m)$ is drawn IID (Independent and Identically Distributed) from the bag domain $D_{\mathcal{X} \times \mathcal{Y}}$. MIL learns a bag classifier $f_{\text{bag}} : \mathcal{X} \rightarrow \mathcal{Y}$, typically $f_{\text{bag}}(\mathbf{x}) = \sigma(f_{\text{inst}}(x_{\text{inst}}^1), \dots, f_{\text{inst}}(x_{\text{inst}}^{N_x}))$ for a bag $\mathbf{x} = \{x_{\text{inst}}^j\}_{j=1}^{N_x}$, using an instance classifier $f_{\text{inst}} : \mathcal{X}_{\text{inst}} \rightarrow \mathcal{Y}$ and a pooling function σ . The *ideal* learned model should ensure: for any $(x, y) \sim D_{\mathcal{X} \times \mathcal{Y}}$, f_{bag} aims to correctly predict y for bag \mathbf{x} ; for any instance x_{inst}^j in \mathbf{x} (with its (latent) label y_{inst}^j , where $(x_{\text{inst}}^j, y_{\text{inst}}^j)$ is governed by $D_{\mathcal{X}_{\text{inst}} \times \mathcal{Y}}$), f_{inst} aims to correctly predict y_{inst}^j . Hypothesis spaces for bag and instance classifiers are \mathcal{F}_{bag} and $\mathcal{F}_{\text{inst}}$.

In essence, the MIL problem formalizes how to combine instance-level predictions into a bag-level classifier, ensuring that both the overall bag and each constituent instance are appropriately classified. Depending on the application, the classification problem may involve only two classes, resulting in a binary classification or several classes, which require a multiclass approach. The following definitions formalize these settings.

Definition 3 (Binary and Multiclass MIL). Under the standard MIL assumption, a bag \mathbf{x} is positive if it contains at least one positive instance.

108 **Binary Case:** A bag classifier $f_{\text{bag}} : \mathcal{X} \rightarrow \{0, 1\}$ is defined based on its instance classifiers $f_{\text{inst}}^i : \mathcal{X}_{\text{inst}} \rightarrow \{0, 1\}$ as:

$$111 \quad 112 \quad 113 \quad f_{\text{bag}}(\mathbf{x}) = \mathbb{1} \left\{ \sum_{i=1}^{N_x} f_{\text{inst}}^i(x_{\text{inst}}^i) > 0 \right\}, \quad (1)$$

114 where $\mathbb{1}\{\cdot\}$ is the indicator function.

115 **Multiclass Case:** For a K -class problem, the task is decomposed into K one-vs-rest (OvR) binary
116 classifiers. While a binary decision $f_{\text{bag},k}$ for each class can be made as above, the final prediction
117 typically selects the class with the highest confidence score:

$$119 \quad 120 \quad \hat{f}_{\text{bag}}(\mathbf{x}) = \operatorname{argmax}_{k \in \{1, \dots, K\}} \text{score}_{\text{bag},k}(\mathbf{x}). \quad (2)$$

121 In simpler terms, for binary classification, the bag label is determined by its instances. For multi-
122 class, while binary decisions $f_{\text{bag},k}(\mathbf{x})$ can be made per class, the final prediction $\hat{f}_{\text{bag}}(\mathbf{x})$ compares
123 the underlying confidence scores $\text{score}_{\text{bag},k}(\mathbf{x})$ from all one-vs-rest models.

124 With the core concepts of MIL now established, we shift our focus to an additional component that
125 enhances our framework by quantifying the uncertainty of predictions: Conformal Prediction. While
126 MIL enables us to generate predictions at the bag and instance levels, in many practical applications,
127 it is crucial to assess how reliable these predictions are. Conformal prediction addresses this need
128 by providing a set of predictions with a guaranteed level of confidence. This guarantee is achieved
129 by ensuring that under the assumption of exchangeability, the true label is included in the predictive
130 set with high probability.

131 **Definition 4** (Conformal Prediction). Conformal prediction is a framework in statistical learning
132 that provides a set of predictions with a guaranteed level of confidence. Given a dataset $\mathcal{D} =$
133 $\{(x_1, y_1), \dots, (x_n, y_n)\}$ and a new input x_{n+1} , conformal prediction constructs a predictive set
134 $\Gamma(x_{n+1})$ such that

$$135 \quad \mathbb{P}(y_{n+1} \in \Gamma(x_{n+1})) \geq 1 - \alpha, \quad (3)$$

136 for a predefined significance level $\alpha \in (0, 1)$. This guarantee holds under the assumption of ex-
137 changeability of the data points, ensuring valid coverage regardless of the underlying data distribu-
138 tion.

139 To determine which predictions belong to this set, we employ a Conformal Threshold. This thresh-
140 old is computed in a data-driven manner from nonconformity scores, which reflect how well each
141 training example conforms to the model’s predictions. By setting the threshold as the $(1 - \alpha)$ -
142 quantile of these scores, we ensure that the predictive set for a new instance includes only those
143 labels that are sufficiently consistent with our model’s behavior.

144 **Definition 5** (Conformal Threshold). Let $\{s_1, \dots, s_n\}$ be the nonconformity scores computed on
145 a calibration set. For a miscoverage level $\alpha \in (0, 1)$, the conformal threshold τ_α is defined as the
146 $(1 - \alpha)$ -quantile of these scores:

$$147 \quad \tau_\alpha = \operatorname{Quantile}_{\lceil (n+1)(1-\alpha) \rceil}(\{s_1, \dots, s_n\}).$$

148 Given a new instance x_{n+1} , the predictive set is constructed as

$$149 \quad \Gamma(x_{n+1}) = \{y \in \mathcal{Y} : s(x_{n+1}, y) \leq \tau_\alpha\},$$

150 which guarantees marginal coverage at least $1 - \alpha$ under the exchangeability assumption.

151 While standard conformal prediction provides a powerful guarantee on coverage (i.e., controlling
152 the risk of miscoverage), many applications require controlling other performance metrics. For
153 instance, in high-stake tasks like medical diagnosis, controlling the False Negative Rate (FNR) is
154 often critical. To address this, we introduce Conformal Risk Control (CRC) (Angelopoulos et al.,
155 2022), a general framework for creating prediction sets that control a user-defined risk with a high-
156 probability guarantee.

162 **Definition 6** (Conformal Risk Control (Angelopoulos et al., 2022)). Let $\mathcal{R}_\lambda(\cdot)$ be a user-defined risk
 163 function, bounded such that $\mathcal{R}_\lambda(\cdot) \in (-\infty, B]$ for some $B < \infty$, and monotonically non-increasing
 164 in a threshold λ . The goal of CRC is to find the smallest threshold $\hat{\lambda}$ that guarantees the risk on a
 165 new test point is controlled at a level $\alpha \in (0, 1)$. Given a calibration set \mathcal{D}_{cal} of size n , CRC selects
 166 $\hat{\lambda}$ such that $\mathbb{E}[\mathcal{R}_{\hat{\lambda}}(\mathcal{D}_{\text{test}})] \leq \alpha$ by solving:
 167

$$\hat{\lambda} = \inf \left\{ \lambda : \frac{n}{n+1} \mathcal{R}_\lambda(\mathcal{D}_{\text{cal}}) + \frac{B}{n+1} \leq \alpha \right\}, \quad (4)$$

170 where $\mathcal{R}_\lambda(\mathcal{D}_{\text{cal}})$ is the empirical risk on the calibration data.
 171

172 The following proposition establishes that CRC is a formal generalization of the standard quantile
 173 method, which is key to showing our transferability results (Proposition 2) apply broadly.
 174

175 **Proposition 1** (CRC as a Generalization of the Quantile Method). *Let the risk \mathcal{R}_λ be defined as
 176 the probability that a monotonically increasing transformation of the nonconformity score, $T(s)$,
 177 exceeds the threshold λ , i.e.,*

$$\mathcal{R}_\lambda = \mathbb{P}(T(s) > \lambda).$$

178 *Then, the CRC threshold $\hat{\lambda}$ that controls this risk at level α coincides with the standard conformal
 179 quantile threshold τ_α computed on the transformed scores $\{T(s_i)\}_{i=1}^n$.*

180 *Proof.* A detailed proof is provided in Appendix E.1. □
 181

183 2.2 CONFORMALIZABLE MIL

184 Having laid the groundwork for both MIL and conformal prediction, we now extend these ideas to
 185 incorporate conformal prediction within the MIL framework. In this section, we begin by introducing
 186 the notion of agnostic PAC learnability for MIL at both the bag and instance levels. This provides
 187 a foundation for understanding the conditions under which our conformal prediction framework can
 188 be successfully applied to MIL. Building on this, we then define the concept of conformalizable
 189 MIL and explore the specific conditions necessary for its effective implementation. Finally, we de-
 190 rive finite-sample coverage bounds at the instance level, providing theoretical guarantees for our
 191 conformal prediction approach in the context of MIL.

192 In statistical learning settings, the Agnostic PAC framework provides a guarantee on the learnability
 193 of a concept class over an instance space.

194 **Definition 7** (agnostic PAC learnability). Let \mathcal{H} be a hypothesis class. We say \mathcal{H} is agnostic PAC
 195 learnable if there exists a learning algorithm \mathcal{A} such that for any distribution D over $\mathcal{X} \times \mathcal{Y}$, and for all
 196 $\epsilon, \delta \in (0, 1)$, an algorithm \mathcal{A} given an IID sample S , returns a hypothesis $h \in \mathcal{H}$ that with
 197 probability at least $1 - \delta$ satisfies:

$$\mathcal{R}(h) \leq \inf_{h' \in \mathcal{H}} \mathcal{R}(h') + \epsilon \quad (5)$$

198 where the true risk is $\mathcal{R}(h) = \mathbb{E}_{(x,y) \sim D} (\mathbb{1}\{h(x) \neq y\})$, where $\mathbb{1}$ is the indicator function.
 199

200 This definition lays the foundation for understanding how well a learning algorithm can perform in
 201 terms of accuracy and confidence on individual instances. However, in MIL, our focus shifts from
 202 individual instances to collections of instances, or "bags." Thus, we next extend the PAC framework
 203 to address the learnability of bag-level classifiers.
 204

205 **Definition 8** (Bags-agnostic PAC learnability for MIL). A MIL hypothesis class \mathcal{H}_{bag} is agnostic
 206 PAC learnable if there exists a learning algorithm \mathcal{A} such that for any distribution D over $\mathcal{X} \times \mathcal{Y}$,
 207 such that for any distribution $D_{\mathcal{X} \times \mathcal{Y}}$, and for all $\epsilon, \delta \in (0, 1)$, an algorithm \mathcal{A} given an IID
 208 sample S , returns a bag-level hypothesis $f_{\text{bag}} \in \mathcal{H}_{\text{bag}}$ that with probability at least $1 - \delta$ satisfies:
 209

$$\mathcal{R}_{\text{bag}}(f_{\text{bag}}) \leq \inf_{h' \in \mathcal{H}} \mathcal{R}_{\text{bag}}(h') + \epsilon \quad (6)$$

210 This definition extends the PAC learning paradigm to scenarios where the input data are grouped into
 211 bags rather than presented as individual instances. It ensures that, with high probability, the bag-
 212 level classifier achieves a low error rate. Building further on this idea, if the bag-level classifier is
 213 PAC learnable, we may also be interested in the learnability of individual instance classifiers within
 214 each bag. This leads us to the following definition.
 215

216 **Definition 9** (Instance-agnostic PAC learnability for MIL). An instance-level hypothesis class $\mathcal{H}_{\text{inst}}$
 217 is agnostic PAC learnable in the MIL setting if there exists a learning algorithm \mathcal{A} that, using only
 218 bag-level labels from a distribution $D_{\mathcal{X} \times \mathcal{Y}}$, for all $\epsilon_{\text{inst}}, \delta \in (0, 1)$, returns an instance-level hypothesis
 219 $f_{\text{inst}} \in \mathcal{H}_{\text{inst}}$ that with probability at least $1 - \delta$ satisfies:

$$R_{\text{inst}}(f_{\text{inst}}) \leq R_{\text{inst}}^* + \epsilon_{\text{inst}}, \quad (7)$$

222 where $R_{\text{inst}}(f_{\text{inst}}) = \mathbb{E}_{(x_{\text{inst}}, y_{\text{inst}}) \sim D_{\mathcal{X}_{\text{inst}} \times \mathcal{Y}}} [\mathbb{1}\{f(x_{\text{inst}}) \neq y_{\text{inst}}\}]$ is the true instance-level risk, and
 223 $R_{\text{inst}}^* = \inf_{f \in \mathcal{H}_{\text{inst}}} R_{\text{inst}}(f)$ is the optimal instance-level risk.

224 This instance-level agnostic PAC learnability criterion is crucial when our objective is not only to
 225 accurately classify entire bags but also to ensure that the classifier can reliably predict the label of
 226 each constituent instance. *However, not all MIL algorithms are PAC learnable of instances.*

227 In practical implementation, Attention MIL is usually used to apply weight on each bag level pre-
 228 diction. Attention MIL does weighted averaging via an attention head Φ_{attn} and softmax function
 229 to get the attention weights $A = \{a_1, \dots, a_N\}, a_i \in (0, 1)$ which reflect the importance of
 230 relationships among instances. In general, attention pooling has several forms as: 1) Attention
 231 pooling (Ilse et al., 2018): $f_{\text{bag}} = f_{\text{inst}}(\sum_{i=1}^N a_i x_{\text{inst}}^i)$; 2) Additive pooling (Javed et al., 2022):
 232 $f_{\text{bag}} = \sum_{i=1}^N f_{\text{inst}}^i(a_i x_{\text{inst}}^i)$ 3) Conjunctive pooling (Early et al., 2024; Angelidis & Lapata, 2018):
 233 $f_{\text{bag}} = \sum_{i=1}^N a_i f_{\text{inst}}^i(x_{\text{inst}}^i)$.

234 This weighted aggregation not only facilitates effective bag-level predictions but also naturally connects
 235 the errors at the instance level to the overall bag-level performance. In fact, under the agnostic
 236 PAC learnability framework, we can relate the optimal risk achievable at the bag level to the risks at
 237 the instance level through these attention weights. This relationship is formalized in the following
 238 lemma.

239 **Lemma 1** (Condition for Instances PAC Learnable MIL (Jang & Kwon, 2025a)). *Let \mathcal{H}_{bag} and
 240 $\mathcal{H}_{\text{inst}}$ be the hypothesis classes for bags and instances, respectively. A MIL algorithm is agnostic
 241 PAC learnable at the instance level only if the optimal achievable bag-level risk can be expressed as
 242 a convex combination of the optimal achievable instance-level risks:*

$$R_{\text{bag}}^* = \sum_{i=1}^N a_i R_{\text{inst}}^*, \quad (8)$$

243 where $R_{\text{bag}}^* = \inf_{f \in \mathcal{H}_{\text{bag}}} \mathbb{E}_{(x, y) \sim D_{\mathcal{X} \times \mathcal{Y}}} [\mathbb{1}\{f(x) \neq y\}]$ is the optimal bag-level risk and $R_{\text{inst}, i}^* =$
 244 $\inf_{h \in \mathcal{H}_{\text{inst}}} \mathbb{E}_{(x_i, y_i) \sim D_{\mathcal{X}_{\text{inst}} \times \mathcal{Y}}} [\mathbb{1}\{h(x_i) \neq y_i\}]$ is the optimal risk for the i -th instance. a_i are non-
 245 negative weights representing the contribution of each instance, satisfying $\sum_{i=1}^N a_i = 1$ and $0 \leq a_i \leq 1$.

246 *Proof.* See [Appendix E.2](#) □

247 Building on the discussion of instance-level learnability and the implications of different pooling
 248 functions, we now extend the framework to incorporate uncertainty quantification at both the bag
 249 and instance levels. In many applications, it is desirable not only to produce the instance level
 250 predictions but also to provide reliable measures of uncertainty that are consistent across these levels.
 251 This motivates the concept of Conformalizable MIL.

252 **Definition 10** (Conformalizable Multiple Instance Learning Model). A MIL model is *conformalizable*
 253 if there exists a conformal threshold τ_α calibrated using bag-level labels such that both bag-level
 254 and instance-level predictions satisfy the following: (i) τ_α guarantees coverage at the bag level with
 255 confidence $(1 - \alpha)$, (ii) instance-level scores are computed from feature representations consistent
 256 with those used at the bag level, so that applying the same conformal threshold τ_α maintains validity
 257 when extended from bags to instances. (iii) uncertainty quantification remains consistent across both
 258 levels without requiring separate calibration data.

259 Formally, given a conformal prediction framework applied to MIL, let the bag-level nonconformity
 260 scores be denoted as:

$$s_m = g(f_{\text{bag}}(x_m), y_m), \forall (x_m, y_m) \in S, \quad (9)$$

270 where $g(\cdot)$ is a nonconformity measure assessing how well the predicted bag label aligns with the
 271 ground truth. The conformal threshold τ_α is determined as:
 272

$$273 \quad \tau_\alpha = \text{Quantile}_{1-\alpha} (\{s_m\}_{m=1}^M). \quad (10)$$

275 A MIL model is **Conformalizable** if, in addition to satisfying bag-level coverage guarantees,
 276

$$277 \quad \mathbb{P}(y_m \in \Gamma_{\text{bag}}(x_m)) \geq 1 - \alpha, \forall (x_m, y_m) \sim D_{\mathcal{X} \times \mathcal{Y}}, \quad (11)$$

278 it also ensures that instance-level predictions remain consistent with the calibrated threshold τ_α
 279 (ideally):
 280

$$281 \quad \mathbb{P}(y_{\text{inst}}^i \in \Gamma_{\text{inst}}(x_{\text{inst}}^i)) \geq 1 - \alpha, \forall x_{\text{inst}}^i \sim D_{\mathcal{X}_{\text{inst}} \times \mathcal{Y}}. \quad (12)$$

282 In other words, Conformalizable MIL ensures that the conformal prediction, originally calibrated
 283 at the bag level, generalizes to the instance level without requiring any additional recalibration.
 284 This property is crucial in practical applications where instance-level interpretations are needed for
 285 decision-making.

286 To further elucidate the conditions under which such a transfer of the conformal threshold is possible,
 287 we present the following proposition.
 288

Proposition 2 (Condition for Conformalizability under Agnostic-PAC). *A MIL model is **Conformalizable**, meaning a conformal threshold calibrated on bag-level data can be reliably transferred to provide valid instance-level coverage, if and only if its hypothesis classes \mathcal{H}_{bag} and $\mathcal{H}_{\text{inst}}$ are agnostic PAC learnable at both the bag and instance levels.*

293 *Proof.* See [Appendix E.3](#) □

295 This proposition establishes a clear and elegant equivalence: the ability to reliably extend the con-
 296 formal calibration from the bag level to individual instances hinges on the agnostic PAC learnability
 297 of the model at both levels. With this equivalence in place, we now turn to a more quantitative
 298 analysis. In what follows, we derive finite-sample coverage bounds for a conformalized MIL model
 299 and illustrate how the transfer of a bag-level conformal threshold to the instance level is influenced
 300 by the (instance-level) agnostic PAC learnability of the MIL model. In particular, we show that if
 301 the MIL model is PAC learnable at both levels, then the calibrated bag-level nonconformity scores
 302 and their corresponding threshold effectively control the instance-level miscoverage, up to an extra
 303 error term that diminishes as the size of the calibration set increases.
 304

305 For simplicity, assume that the MIL model uses a conjunctive pooling that aggregates instance pre-
 306 dictions via a convex combination:
 307

$$308 \quad f_{\text{bag}}(x) = \sum_{i=1}^N a_i f_{\text{inst}}^i(x^i), \sum_{i=1}^N a_i = 1, 0 \leq a_i \leq 1. \quad (13)$$

309 Also, assume that the bag-level nonconformity score:
 310

$$311 \quad s(x, y) = g(\{f_{\text{inst}}^i(x^i)\}_{i=1}^N, y) \quad (14)$$

312 is chosen so that it (roughly) “aggregates” the instance-level errors. (For example, if the instance-
 313 level errors are measured by a score s^i , one might define $s(x, y)$ to be a weighted sum or a “soft-max”
 314 of the s^i s.
 315

316 We now describe two steps: 1) Bag-Level Coverage via Conformal Prediction; 2) Transferring
 317 Coverage to the Instance Level. We first start with bag-PAC learnable MIL model.
 318

Lemma 2 (Bag-Level Conformal Guarantee). *Let τ_α be the threshold computed via the standard
 319 split conformal prediction procedure on bag-level nonconformity scores $\{s_m\}_{m=1}^M$ from a calib-
 320 ration set. For any new test bag (x, y) , the resulting prediction set, $\Gamma_{\text{bag}}(x) = \{y' \in \mathcal{Y} \mid g_{\text{bag}}(x, y') \leq
 321 \tau_\alpha\}$, is guaranteed to provide valid marginal coverage of $\mathbb{P}(y \in \Gamma_{\text{bag}}(x)) \geq 1 - \alpha$ at least $1 - \alpha$:*

322 *Proof.* This result follows directly from the standard conformal prediction arguments (or equiva-
 323 lently, through the conformal risk control formulation). For brevity, we omit the full proof here. □

We now present another theoretical result, which quantitatively characterizes the transfer of bag-level coverage to the instance level under the agnostic PAC learnability assumptions.

Theorem 1 (Instance-Level Finite-Sample Coverage Bound under Agnostic-PAC).

$$S_{cal} = \{(\mathbf{x}_m, y_m)\}_{m=1}^M, \quad (\mathbf{x}_m, y_m) \stackrel{i.i.d.}{\sim} \mathcal{D}, \quad (15)$$

Let τ_α be the conformal threshold derived from the bag-level nonconformity scores $\{s_m = g_{bag}(\mathbf{x}_m, y_m)\}_{m=1}^M$.

Consider a new test bag $\mathbf{x} = \{x_k\}_{k=1}^{N_x}$ and its instances. Assume there exist non-negative weights a_k (with $\sum a_k = 1$) and a constant $C_1 > 0$ such that the bag and instance nonconformity scores are related by:

$$\left| s(\mathbf{x}, y_{bag}) - \sum_{k=1}^{N_x} a_k s_k^{inst}(x_k, y_k^{inst}) \right| \leq C_1 (\epsilon_{bag} + \epsilon_{inst}), \quad (16)$$

where ϵ_{bag} and ϵ_{inst} are the **agnostic PAC excess risk bounds** for the bag and instance hypothesis classes, respectively (as per Definitions 8 and 9).

Then, for an arbitrary instance x_j from the test bag, the instance-level predictive set $\Gamma_{inst}(x_j) = \{y' \in \mathcal{Y} : s_j^{inst}(x_j, y') \leq \tau_\alpha\}$ has the following finite-sample coverage guarantee for its true label y_j^{inst} :

$$\mathbb{P} \{y_j^{inst} \in \Gamma_{inst}(x_j)\} \geq 1 - \alpha - C_1 (\epsilon_{bag} + \epsilon_{inst}). \quad (17)$$

The probability is over the random draw of the calibration set S_{cal} and the new test bag \mathbf{x} .

Remark (On the Constant C_1). The constant C_1 is a problem-dependent factor that quantifies how the model's excess generalization risk ($\epsilon_{bag}, \epsilon_{inst}$) translates into a degradation of the instance-level coverage guarantee. Its magnitude depends on factors such as: 1) The mathematical relationship between the bag and instance nonconformity scores; 2) The stability and error propagation properties of the MIL aggregation function; 3) The statistical properties (e.g., maximum density) of the score distribution near the threshold τ_α .

Proof. See [Appendix E.4](#)

□

The result clearly demonstrates that the conformal threshold, while originally calibrated solely on bag-level predictions, can be successfully transferred to provide valid instance-level coverage, with only a small degradation governed by the generalization errors at both levels.

We now extend this result to the multiclass setting, where a common approach is to decompose the problem into several one-vs.-rest binary MIL classifiers.

Corollary 1 (Multiclass Extension via One-vs-Rest). Suppose a K -class MIL problem is decomposed into K independent one-vs-rest (OvR) binary problems. For each class $k \in \{1, \dots, K\}$, let $f_{bag,k}$ be the bag-level classifier and $\tau_{\alpha,k}$ be the corresponding conformal threshold.

If the assumptions of Theorem 1 (agnostic PAC learnability and the score aggregation property) hold for each of the K binary problems, then the transfer of the conformal guarantee from bag to instance holds for each class. Specifically, for any instance x^i with true multiclass label y^i , let its binary label for the k -th problem be $y_k^i = \mathbf{1}\{y^i = k\}$. The corresponding binary prediction set $\Gamma_{inst,k}(x^i)$ satisfies:

$$\mathbb{P} \{y_k^i \in \Gamma_{inst,k}(x^i)\} \geq 1 - \alpha - C_k (\epsilon_{bag,k} + \epsilon_{inst,k}), \quad (18)$$

where $C_k > 0$ is the problem-specific constant, and $\epsilon_{bag,k}$ and $\epsilon_{inst,k}$ are the agnostic PAC excess risk bounds for the k -th OvR problem.

Proof. See [Appendix E.5](#)

□

In summary, our theoretical results establish that when the MIL model is PAC learnable at both the bag and instance levels, the conformal calibration obtained at the bag level can be reliably transferred to the instance level. This transfer comes at the cost of an additional error term that diminishes with increased calibration data and improved PAC guarantees, thereby ensuring robust uncertainty quantification across all levels of the MIL framework.

378 2.3 EXTENDING THE FRAMEWORK TO NON-PERMUTATION-INVARIANT DATA
379380 A core assumption of our theoretical framework is the permutation invariance of instances within a
381 bag. However, many important MIL domains, such as time-series analysis or computational pathology
382 (with spatially arranged patches), involve inherently ordered data. We propose a formal method
383 to extend MIL framework to these settings by enriching the instance representation to re-establish
384 permutation invariance.385 For an ordered bag $\mathbf{X} = (x_1, \dots, x_N)$, we can augment each instance's feature vector x_i with its
386 structural context. For example, in a time series, each x_i can be concatenated with a sinusoidal
387 positional encoding that represents its absolute or relative position. This transforms the ordered
388 bag into a new representation, $\mathbf{X}' = \{x'_1, \dots, x'_N\}$, where each new instance x'_i contains both the
389 original features of x_i and its unique positional information.390 The key insight is that the new bag \mathbf{X}' is now a **permutation-invariant set**, as the sequential order
391 is no longer conveyed by the sequence but is instead an intrinsic attribute of each instance. Our
392 theoretical framework, including the conditions for agnostic PAC learnability and the guarantee
393 transfer in Theorem 1, can then be directly applied to this enriched representation, which make our
394 framework practical in real settings and non-trivial.395 3 EXPERIMENTAL VALIDATION
396397 We conducted a series of experiments to empirically validate our theoretical framework. Our central
398 thesis is that an architecture's suitability for instance-level agnostic PAC learnability, as determined
399 by its aggregation mechanism, dictates its ability to reliably transfer conformal guarantees from the
400 bag to the instance level.401 3.1 EXPERIMENTAL SETUP
402403 We follow the categorization from Jang & Kwon (2025a) to test our theory across two distinct settings:
404 1) **Independent Bag Domain** (D_{Ind}): Settings where instances contribute independently to
405 the bag label; 2) **General Bag Domain** (D_{Gen}): Settings where the bag label depends on correlations
406 and dependencies between instances. This also includes challenging non-permutation-invariant
407 (ordered) data.408
409 **Models and Evaluation.** We compare three latest representative MIL pooling strategies with dif-
410 fering theoretical learnability properties: Additive MIL (Javed et al., 2022), ABMIL (Ilse et al.,
411 2018), and Conjunctive MIL (Angelidis & Lapata, 2018; Early et al., 2024). We use standard split
412 conformal prediction to control coverage and CRC to control the FNR at a target level of $\alpha = 0.05$.
413 Our primary metric is the **gap**, defined as $\Delta = \text{Metric}_{\text{bag}} - \text{Metric}_{\text{inst}}$, where smaller absolute values
414 indicate more effective transfer. Full experimental details are available in Appendix B.415 3.2 RESULTS IN THE INDEPENDENT BAG DOMAIN (D_{IND})
416417 **Hypothesis.** For tasks in D_{Ind} , where instance-level learnability conditions are less strict, we pre-
418 dict that all three pooling architectures should successfully transfer the conformal guarantee, ex-
419 hibiting minimal and comparable gaps.420
421 **Validation.** Our experiments on the synthetic CIFAR-10 Dog-vs-Cat (coverage control) and
422 CIFAR-100 Aquatic Mammals (FNR control) datasets confirm this hypothesis. As shown in Ta-
423 ble 1, all three methods achieve small gap values that are not statistically distinguishable from one
424 another. For example, on the Aquatic Mammals task, the FNR gaps for Conjunctive, ABMIL, and
425 Additive-Pooling were -0.0639 , -0.0599 , and -0.0736 , respectively, with no significant pairwise
426 differences ($p > 0.8$). This demonstrates that when instance dependencies are not a factor, all tested
427 architectures are effectively “conformalizable.”428 3.3 RESULTS IN THE GENERAL BAG DOMAIN (D_{GEN})
429430 **Hypothesis.** For tasks in D_{Gen} , where dependencies between instances are critical, our theory
431 posits that only architectures satisfying the stricter conditions for instance-level learnability, namely
432 **Conjunctive-Pooling**, will maintain robust uncertainty transfer. We expect other methods to exhibit
433 a significant degradation.

432 **Validation on Dependency-Driven Data.** The CIFAR-10 Dog-And-Cat task, where the positive
 433 class requires the co-occurrence of two different instance types, provides strong support.
 434 **Conjunctive-Pooling** achieved a remarkably small FNR gap of -0.0475 , whereas ABMIL and
 435 Additive-Pooling showed significantly larger gaps of -0.1459 and -0.2723 , respectively. These
 436 differences are highly statistically significant ($p < 0.0001$), confirming that architectures not theo-
 437 retically suited for this domain fail to reliably transfer conformal guarantees.

438 3.4 RESULTS ON ORDERED, NON-PERMUTATION-INVARIANT DATA

439 **Hypothesis.** Our framework can be extended to ordered, non-permutation-invariant data by en-
 440 riching each instance with its structural context (e.g., positional embeddings), thereby transforming
 441 the bag into a permutation-invariant set as shown in Section 2.3. We predict that after this trans-
 442 formation, the ability to transfer conformal guarantees will depend on the nature of the resulting
 443 feature space. If the transformation simplifies the task to an Independent Bag Domain, all architec-
 444 tures should succeed. Conversely, if strong inter-instance dependencies remain, creating a General
 445 Bag Domain, only architectures suited for such complexity, like Conjunctive-Pooling, will be con-
 446 formalizable.

447 **Validation on Ordered, Non-Permutation-Invariant Data.** We tested this hypothesis on two
 448 real-world datasets with inherent instance order, which, after being transformed into permutation-
 449 invariant sets, resulted in two different domain types. On the **Camelyon16** dataset, all methods
 450 performed comparably well. This aligns with our theory: after encoding spatial positions, the task
 451 simplifies into an **Independent Bag Domain**, as diseased tissue can be identified from individual
 452 patches. As predicted, the less strict learnability conditions of this domain allowed all tested archi-
 453 tectures to successfully transfer the conformal guarantee. In contrast, the **5-ECK-2022** time-series
 454 dataset behaves as a **General Bag Domain** even after positional encoding due to strong temporal
 455 correlations between time steps. This provided a crucial test for our framework. As theorized, only
 456 the **Conjunctive-Pooling** model (TAIL-MIL Jang & Kwon (2025b)) whose aggregation is a con-
 457 vex combination—achieved a minimal coverage gap of -0.052 ± 0.007 . The Transformer-based
 458 TimeMIL Chen et al. (2024), which violates our structural assumptions, failed with a larger gap at
 459 -0.224 ± 0.024 ($p < 0.0001$).

460 Collectively, our experiments confirm that while most architectures may appear reliable on sim-
 461 ple tasks, only those satisfying the theoretical conditions for instance-level agnostic PAC learnabil-
 462 ity, as predicted by our framework, can be trusted to transfer uncertainty guarantees in complex,
 463 dependency-driven settings.

Experiment	Gap Metric (Mean \pm Std)			Pairwise p-values		
	Conjunctive-MIL	ABMIL	Additive-MIL	Conj vs ABMIL	Conj vs Additive	ABMIL vs Additive
Dog-VS-Cat (Coverage Gap)	-0.0871 ± 0.0080	-0.0492 ± 0.0151	-0.0738 ± 0.0246	0.0025	0.3039	0.1006
Aquatic Mammals (FNR Gap)	-0.0639 ± 0.0205	-0.0599 ± 0.0290	-0.0736 ± 0.0249	0.8053	0.8601	0.8060
Dog-And-Cat (FNR Gap)	-0.0475 ± 0.0047	-0.1459 ± 0.0169	-0.2723 ± 0.0270	< 0.0001	< 0.0001	< 0.0001
C16 (FNR Gap)	-0.0192 ± 0.0316	-0.0176 ± 0.0636	-0.0234 ± 0.0326	0.9614	0.8441	0.8638
TAIL-MIL			TAIL-MIL vs TimeMIL			
5-ECK-2022 Time Series (Coverage Gap)	-0.052 ± 0.007		-0.224 ± 0.024		< 0.0001	

470 Table 1: Summary of Gap Metrics and Pairwise p-values for the Three MIL Methods across Four
 471 Experiments. The gap metric is defined as the difference between bag-level and instance-level values
 472 (i.e., $\Delta = \text{Metric}_{\text{bag}} - \text{Metric}_{\text{inst}}$). All values are reported as mean \pm standard deviation, and the
 473 p-values are computed using two-sample t-tests with sample size $n = 5$ per method.

474 4 CONCLUSION

475 In this work, we introduced and rigorously analyzed the concept of *Conformalizable MIL*, present-
 476 ing a framework that elegantly bridges bag-level uncertainty quantification and instance-level pre-
 477 dictions under the lens of agnostic PAC learnability. Our theoretical contributions clarify the precise
 478 conditions under which bag-level conformal prediction guarantees can be reliably transferred to indi-
 479 vidual instances, highlighting agnostic PAC learnability as both a necessary and sufficient condition
 480 for this transfer. Empirical validations on synthetic CIFAR benchmarks, real-world Camelyon16
 481 whole-slide images and even challenging non-permutation-invariant dataset like 5-ECK-2022 fur-
 482 ther substantiate our claims, demonstrating that *Conformalizable MIL* not only theoretically robus-
 483 tifies uncertainty estimates but also leads to practical improvements across diverse scenarios. Our
 484 work provides not just a method for post-hoc analysis but a prescriptive guide for designing and
 485 selecting MIL architectures that are provably reliable, laying a robust foundation for building trust-
 worthy, uncertainty-aware systems in critical, weakly-supervised domains.

486 REFERENCES
487

488 Stephen Andrews, Ioannis Tsochantaridis, and Thomas Hofmann. Support vector machines for
489 multiple-instance learning. In *Advances in Neural Information Processing Systems*, pp. 577–584,
490 2002.

491 Stefanos Angelidis and Mirella Lapata. Multiple instance learning networks for fine-grained senti-
492 ment analysis. *Transactions of the Association for Computational Linguistics*, 6:17–31, 2018.

493 Anastasios N Angelopoulos, Stephen Bates, Adam Fisch, Lihua Lei, and Tal Schuster. Conformal
494 risk control. *arXiv preprint arXiv:2208.02814*, 2022.

495

496 Rina F. Barber, Emmanuel J. Candès, Aaditya Ramdas, and Ryan Tibshirani. Predictive inference
497 with the jackknife+. *Annals of Statistics*, 47(4):2341–2366, 2019.

498 Babak Ehteshami Bejnordi, Mitko Veta, Paul Johannes Van Diest, Bram Van Ginneken, Nico
499 Karssemeijer, Geert Litjens, Jeroen AWM Van Der Laak, Meyke Hermsen, Quirine F Manson,
500 Maschenka Balkenhol, et al. Diagnostic assessment of deep learning algorithms for detection of
501 lymph node metastases in women with breast cancer. *Jama*, 318(22):2199–2210, 2017.

502

503 Xiwen Chen, Peijie Qiu, Wenhui Zhu, Huayu Li, Hao Wang, Aristeidis Sotiras, Yalin Wang, and
504 Abolfazl Razi. Timemil: Advancing multivariate time series classification via a time-aware mul-
505 tiple instance learning. *arXiv preprint arXiv:2405.03140*, 2024.

506 Thomas G. Dietterich, Robert H. Lathrop, and Tomas Lozano-Perez. Solving the multiple instance
507 problem with axis-parallel rectangles. *Artificial Intelligence*, 89(1-2):31–71, 1997.

508

509 Joseph Early, Gavin Cheung, Kurt Cutajar, Hanting Xie, Jas Kandola, and Niall Twomey. Inherently
510 interpretable time series classification via multiple instance learning. In *The Twelfth International
511 Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=xriGRsoAza>.

512

513 Daniel Grahn. mil-benchmarks: Standardized evaluation of deep multiple-instance learning tech-
514 niques. *arXiv preprint arXiv:2105.01443*, 2021.

515 Maximilian Ilse, Jakub M. Tomczak, and Max Welling. Attention-based deep multiple instance
516 learning. In *International Conference on Machine Learning*, pp. 2127–2136. PMLR, 2018.

517

518 Jaeseok Jang and Hyuk-Yoon Kwon. Are multiple instance learning algorithms learnable for in-
519 stances? *Advances in Neural Information Processing Systems*, 37:10575–10612, 2025a.

520

521 Jaeseok Jang and Hyuk-Yoon Kwon. Tail-mil: Time-aware and instance-learnable multiple instance
522 learning for multivariate time series anomaly detection. In *Proceedings of the AAAI Conference
523 on Artificial Intelligence*, volume 39, pp. 17582–17589, 2025b.

524

525 Syed Ashar Javed, Dinkar Juyal, Harshith Padigela, Amaro Taylor-Weiner, Limin Yu, and Aaditya
526 Prakash. Additive mil: Intrinsically interpretable multiple instance learning for pathology. *Ad-
527 vances in Neural Information Processing Systems*, 35:20689–20702, 2022.

528

529 Jinchi Lei, Alessandro Rinaldo, Ryan J. Tibshirani, and Larry Wasserman. Distribution-free pre-
530 dictive inference for regression. *Journal of the American Statistical Association*, 113(523):1094–
531 1111, 2018.

532

533 Bin Li, Yin Li, and Kevin W Eliceiri. Dual-stream multiple instance learning network for whole slide
534 image classification with self-supervised contrastive learning. In *Proceedings of the IEEE/CVF
535 conference on computer vision and pattern recognition*, pp. 14318–14328, 2021.

536

537 Huayu Li, Zhengxiao He, Xiwen Chen, Ci Zhang, Stuart F Quan, William DS Killgore, Shu-Fen
538 Wung, Chen X Chen, Geng Yuan, Jin Lu, et al. Smarter together: Combining large language
539 models and small models for physiological signals visual inspection. *Journal of Healthcare In-
formatics Research*, pp. 1–30, 2025.

Ming Y Lu, Drew FK Williamson, Tiffany Y Chen, Richard J Chen, Matteo Barbieri, and Faisal
Mahmood. Data-efficient and weakly supervised computational pathology on whole-slide images.
Nature biomedical engineering, 5(6):555–570, 2021.

540 Mauricio Sadinle, Jing Lei, and Larry Wasserman. Least ambiguous set-valued classifiers with
 541 bounded error levels. *Journal of the American Statistical Association*, 114(525):223–234, 2019.
 542

543 Zhuchen Shao, Hao Bian, Yang Chen, Yifeng Wang, Jian Zhang, Xiangyang Ji, et al. Transmil:
 544 Transformer based correlated multiple instance learning for whole slide image classification. *Ad-*
 545 *vances in neural information processing systems*, 34:2136–2147, 2021.

546 Maja Stikic, Diane Larlus, Sandra Ebert, and Bernt Schiele. Weakly supervised recognition of
 547 daily life activities with wearable sensors. *IEEE transactions on pattern analysis and machine*
 548 *intelligence*, 33(12):2521–2537, 2011.
 549

550 Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. *Algorithmic Learning in a Random*
 551 *World*. Springer, 2005.
 552

553 Xiyue Wang, Sen Yang, Jun Zhang, Minghui Wang, Jing Zhang, Wei Yang, Junzhou Huang, and
 554 Xiao Han. Transformer-based unsupervised contrastive learning for histopathological image clas-
 555 sification. *Medical image analysis*, 81:102559, 2022.

556 Jinxi Xiang and Jun Zhang. Exploring low-rank property in multiple instance learning for whole
 557 slide image classification. In *The Eleventh International Conference on Learning Representations*,
 558 2023.

559 Yunlong Zhang, Honglin Li, Yunxuan Sun, Sunyi Zheng, Chenglu Zhu, and Lin Yang. Attention-
 560 challenging multiple instance learning for whole slide image classification. In *European Confer-*
 561 *ence on Computer Vision*, pp. 125–143. Springer, 2024.

562

563 Yi Zheng, Rushin H Gindra, Emily J Green, Eric J Burks, Margrit Betke, Jennifer E Beane, and Vi-
 564 jaya B Kolachalama. A graph-transformer for whole slide image classification. *IEEE transactions*
 565 *on medical imaging*, 41(11):3003–3015, 2022.

566

567 Wenhui Zhu, Xiwen Chen, Peijie Qiu, Aristeidis Sotiras, Abolfazl Razi, and Yalin Wang. Dgr-
 568 mil: Exploring diverse global representation in multiple instance learning for whole slide image
 569 classification. In *European Conference on Computer Vision*, pp. 333–351. Springer, 2025.
 570

571

572 **A APPENDIX**

573 **B DETAILED EXPERIMENTAL VALIDATION**

574 This appendix provides a comprehensive account of the experimental setup, datasets, methodologies,
 575 and detailed results supporting the claims made in Section 3 regarding our Conformalizable MIL
 576 framework.

577 **B.1 EXPERIMENTAL SETUP AND GENERAL METHODOLOGY**

578 All experiments were implemented using the PyTorch framework and executed on a single Nvidia
 579 RTX3090 GPU. We employed a split conformal prediction methodology (Vovk et al., 2005), where
 580 data is divided into proper training, calibration, and test sets.

581 **B.1.1 MIL MODELS TESTED**

582 We evaluated three representative MIL pooling strategies, chosen for their differing theoretical prop-
 583 erties concerning instance-level agnostic PAC learnability (Jang & Kwon, 2025a):
 584

585

- 586 • **Additive MIL** (Javed et al., 2022)
- 587 • **Attention-based MIL (ABMIL)** (Ilse et al., 2018)
- 588 • **Conjunctive MIL** (Angelidis & Lapata, 2018; Early et al., 2024)

594 B.1.2 FEATURE EXTRACTORS
595

596 • For synthetic tasks (CIFAR-based), a three-layer Convolutional Neural Network (CNN)
597 (Table 2) was used as a feature extractor for individual images, following common practice
598 in related MIL studies Jang & Kwon (2025a); Grahn (2021).
599 • For the Camelyon16 dataset, patch features were extracted using a frozen CTransPath
600 model (Wang et al., 2022), pre-trained on a large corpus of histopathology data.

601 B.1.3 CONFORMAL PREDICTION PROCEDURES AND METRICS
602

603 • For the CIFAR-10 Dog-vs-Cat task, we aimed for a target coverage of $1 - \alpha = 0.95$ and
604 used the LABEL method by Sadinle et al. (Sadinle et al., 2019) for conformal prediction.
605 The primary metric was the "coverage gap": $\Delta_{\text{cov}} = \text{Coverage}_{\text{bag}} - \text{Coverage}_{\text{inst}}$.
606 • For the CIFAR-100 Aquatic Mammals, CIFAR-10 Dog-And-Cat, and Camelyon16 tasks,
607 we utilized Conformal Risk Control (CRC) (Angelopoulos et al., 2022) to manage the False
608 Negative Rate (FNR) at a target level of $\alpha = 0.05$. The primary metric was the "FNR gap":
609 $\Delta_{\text{FNR}} = \text{FNR}_{\text{bag}} - \text{FNR}_{\text{inst}}$.

610 In both cases, smaller absolute values of the gap metric indicate a more effective transfer of the
611 bag-level conformal calibration to the instance level. All results for these gap metrics are presented
612 in Table 1.

614 B.1.4 STATISTICAL ANALYSIS
615

616 To rigorously compare the performance of the different MIL methods in transferring conformal
617 guarantees, we conducted statistical hypothesis tests. For each experimental condition and each pair
618 of MIL methods, two-sample t-tests were performed on the observed gap metrics collected over
619 $n = 5$ independent experimental runs per method. The null hypothesis (H_0) for each t-test was that
620 there is no difference in the mean gap metric between the two methods. A p-value less than 0.001
621 was considered sufficient evidence to reject H_0 and conclude a statistically significant difference in
622 performance. The p-values for these comparisons are also reported in Table 1.

623 B.2 DATASET DESCRIPTIONS
624625 B.2.1 CIFAR-10 DOG-VS-CAT (D_{IND})
626

627 This task is designed to represent an independent bag domain (D_{Ind}). Each bag consists of 10
628 images sourced from CIFAR-10. Images are primarily labeled as "dog" (class 1), "cat" (class 2),
629 or "other" (class 0, distractor images from other CIFAR-10 classes). The bag label is determined
630 by a majority rule: if the count of "dog" instances is greater than "cat" instances, the bag is labeled
631 "dog"; if "cat" instances are more numerous, the bag is "cat"; otherwise (e.g., equal numbers or
632 only "other" images), specific tie-breaking rules or a default label would apply (details should be
633 consistent with your actual implementation). The key characteristic is that each instance's class
634 contributes independently to the bag label determination based on counts. We use the LABEL
635 method (Sadinle et al., 2019) for conformal prediction at $\alpha = 0.05$ to evaluate coverage rates.

636 B.2.2 CIFAR-100 AQUATIC MAMMALS (D_{IND})
637

638 This task also represents an independent bag domain (D_{Ind}). Each bag contains 20 images from
639 CIFAR-100. A bag is labeled as positive (e.g., class 1) if it contains at least one image belonging to
640 any of the "aquatic mammal" superclass categories (specifically, beaver, dolphin, otter, seal, whale).
641 If no such instance is present, the bag is labeled negative (e.g., class 0). This "at-least-one" rule
642 ensures that each instance's positive status can independently determine the bag's positive label. For
643 this task, we utilize Conformal Risk Control (CRC) to manage the False Negative Rate (FNR) at a
644 target level of $\alpha = 0.05$.

645 B.2.3 CIFAR-10 DOG-AND-CAT (D_{GEN})
646

647 This task exemplifies a general bag domain (D_{Gen}) where instance labels are dependent for deter-
648 mining the bag label. Each bag is constructed with a set number of images (e.g., 10 or 20) from

648 CIFAR-10. A bag is labeled positive (e.g., class 1) *only if* it contains *at least one "dog" instance*
 649 *AND at least one "cat" instance*. The absence of either (or both) results in a negative bag label (e.g.,
 650 class 0). This co-occurrence requirement means the bag label depends on correlations between dis-
 651 tinct instance types. CRC is used to control the FNR at $\alpha = 0.05$.
 652

653 B.2.4 CAMELYON16 (C16)

654 To assess performance on real-world data, we use the Camelyon16 (C16) dataset Bejnordi et al.
 655 (2017), a widely recognized benchmark in computational pathology for detecting lymph node metas-
 656 toses in whole slide images (WSIs) of breast cancer. Following standard protocols Lu et al. (2021),
 657 each WSI is treated as a "bag," and it is segmented into numerous smaller image patches (e.g.,
 658 256×256 pixels), which constitute the "instances" within the bag. These patches are embedded
 659 into feature vectors using a frozen CTransPath feature extractor Wang et al. (2022), pre-trained on a
 660 large corpus of histopathology images, allowing us to obtain rich semantic representations without
 661 task-specific fine-tuning of the extractor.
 662

663 A WSI (bag) is labeled positive if it contains at least one patch (instance) diagnosed as containing
 664 tumor cells; otherwise, it is labeled negative. While this "at-least-one" positive instance rule appears
 665 similar to an independent domain, in practice, patches within a WSI often exhibit spatial and bio-
 666 logical correlations due to tissue contiguity and tumor morphology. This places the C16 dataset in a
 667 nuanced position, potentially between a purely independent (D_{Ind}) and a strongly dependent (D_{Gen})
 668 domain. For C16, we evaluate the MIL methods using CRC to control the FNR at $\alpha = 0.05$.
 669

670 B.3 5-ECK-2022 TIME SERIES (D_{Gen} , ORDERED)

671 To evaluate our framework's applicability to non-permutation-invariant data, we introduced an ex-
 672 periment on the 5-ECK-2022 time-series dataset Jang & Kwon (2025b). This dataset poses a chal-
 673 lenging classification task where each bag is a multivariate time series and each instance is a time
 674 step.
 675

676 Crucially, the temporal order of instances is semantically important, violating the standard
 677 permutation-invariance assumption of MIL. This setting provides a rigorous test for our claim that
 678 the architectural properties promoting instance-level agnostic PAC learnability are essential for reli-
 679 able uncertainty transfer. We used the coverage gap as the primary metric, with $\alpha = 0.05$.
 680

681 B.4 DETAILED RESULTS AND DISCUSSION

682 We now present and discuss the detailed experimental outcomes, with quantitative results and sta-
 683 tistical significance reported in Table 1. Visualizations of the bag-level versus instance-level perfor-
 684 mance metrics for the evaluated MIL methods across different datasets are provided in Figure 1.
 685

686 **Performance in Independent Bag Domains (D_{Ind})** Our hypothesis for D_{Ind} settings was that
 687 all tested MIL methods would effectively transfer conformal calibration due to their capacity for
 688 instance-level agnostic PAC learnability in such scenarios.
 689

- 690 • **CIFAR-10 Dog-vs-Cat (Coverage Gap):** For this task, all methods yielded small mean
 691 coverage gaps: Conjunctive-MIL reported a gap of -0.0871 ± 0.0080 , ABMIL $-0.0492 \pm$
 692 0.0151 , and Additive-MIL -0.0738 ± 0.0246 , as detailed in Table 1. These values, visually
 693 supported by Figure 1a, indicate a close correspondence between bag-level and instance-
 694 level coverage. As shown in Figure 1a, all three pooling methods achieve near-nominal
 695 coverage at the bag level, and the gap between bag-level and instance-level coverage re-
 696 mains negligible across the methods, well within the confidence intervals. This visual
 697 result confirms our hypothesis that, when instances are approximately independent, all
 698 three pooling strategies can effectively transfer the bag-level conformal threshold. The
 699 pairwise t-test between Conjunctive-MIL and ABMIL resulted in a p-value of 0.0025, sug-
 700 gesting a statistically significant difference. However, the absolute difference in their mean
 701 gaps is practically small, supporting the overall hypothesis that all methods perform com-
 702 parably well in transferring calibration in this D_{Ind} setting. Other pairwise comparisons
 703 (Conjunctive-MIL vs Additive-MIL: $p = 0.3039$; ABMIL vs Additive-MIL: $p = 0.1006$)
 704 showed non-significant differences.
 705

702

- 703 • **CIFAR-100 Aquatic Mammals (FNR Gap):** In this D_{Ind} task focused on FNR control,
704 the mean FNR gaps were consistently minimal: Conjunctive-MIL (-0.0639 ± 0.0205),
705 ABMIL (-0.0599 ± 0.0290), and Additive-MIL (-0.0736 ± 0.0249) (Table 1). Figure 1b
706 illustrates this, showing that all methods keep the FNR close to the target rate at both
707 bag and instance levels, with small and comparable gaps. All pairwise t-tests yielded p-
708 values substantially greater than 0.05 (Conjunctive vs. ABMIL: 0.8053; Conjunctive vs.
709 Additive: 0.8601; ABMIL vs. Additive: 0.8060), providing no evidence of statistically
710 significant differences between the methods. This strongly supports the hypothesis that all
711 three MIL strategies effectively transfer CRC-derived FNR control from bags to instances
712 under these independence assumptions.

713 **Performance in General Bag Domains (D_{Gen})** For D_{Gen} settings, where inter-instance depen-
714 dencies are critical, we hypothesized that Conjunctive-MIL would exhibit superior transferability.

715

- 716 • **CIFAR-10 Dog-And-Cat (FNR Gap):** The results from this D_{Gen} task, presented in Ta-
717 ble 1 and visualized in Figure 1c, highlight marked performance differences. Conjunctive-
718 MIL achieved a mean FNR gap of -0.0475 ± 0.0047 . In contrast, ABMIL showed a sig-
719 nificantly larger mean gap of -0.1459 ± 0.0169 , and Additive-MIL an even larger gap of
720 -0.2723 ± 0.0270 . As illustrated in Figure 1c, Conjunctive-MIL achieves more consistent
721 alignment between bag-level and instance-level FNR, whereas ABMIL and Additive-MIL
722 exhibit a more pronounced gap. All pairwise t-tests involving Conjunctive-MIL against
723 ABMIL and Additive-MIL, as well as between ABMIL and Additive-MIL, yielded p-
724 values far below 0.0001. These highly significant results robustly support our hypothesis.
725 Only Conjunctive-MIL consistently maintained a small gap, indicating its superior abil-
726 ity to preserve bag-level calibration at the instance level when instance dependencies are
727 crucial. This aligns with the theoretical expectation that its structure is more amenable to
728 instance-level agnostic PAC learnability in such complex scenarios.

729 **Performance on Real-World Whole Slide Images (Camelyon16)** The Camelyon16 dataset
730 serves as a complex real-world test case, possessing characteristics that lie between idealized D_{Ind}
731 and D_{Gen} domains.

732

- 733 • **C16 Dataset (FNR Gap):** On this dataset, the observed mean FNR gaps (Table 1) were:
734 Conjunctive-MIL (-0.0192 ± 0.0316), ABMIL (-0.0176 ± 0.0636), and Additive-MIL
735 (-0.0234 ± 0.0326). These values are all relatively small and numerically close, a trend
736 also evident in Figure 1d. The pairwise t-tests confirmed this similarity, yielding high p-
737 values for all comparisons (Conjunctive vs. ABMIL: 0.9614; Conjunctive vs. Additive:
738 0.8441; ABMIL vs. Additive: 0.8638). Consequently, we found no statistically significant
739 differences in the FNR gap transfer performance among the three MIL methods on the C16
740 data. Figure 1d provides further visual support, showing consistent FNR levels and gaps
741 across the methods for this dataset. This outcome suggests that in realistic WSI analysis
742 scenarios, where factors like strong pre-trained features (from CTransPath) and the specific
743 nature of instance correlations (potentially less adversarially structured than the synthetic
744 D_{Gen} task) come into play, the theoretical advantages of one pooling strategy over another
745 regarding conformalizability might be less pronounced. It is plausible that the high-quality
746 features allow all methods to achieve a sufficient degree of instance-level discrimination,
747 leading to comparable calibration transfer. This underscores the need for further research
748 into the interplay of model architecture, feature representation, and data characteristics in
749 determining practical agnostic PAC learnability and conformalizability in complex, real-
750 world MIL applications.

751 **Performance on Ordered, Non-Permutation-Invariant Data** To rigorously test our theory’s
752 predictive power in a setting that violates the standard permutation-invariance assumption, we
753 conducted an experiment on the 5-ECK-2022 time-series dataset. In this challenging scenario, each bag
754 is a multivariate time series where the temporal order of instances is semantically important. This
755 provides a stringent test of our claim that architectural properties enabling instance-level agnostic
PAC learnability are essential for reliable uncertainty transfer.

Layer	Output Shape	Details
Convolution	(32,32,32)	filters=32, kernel size=3, padding='same', activation='relu'
Batch Norm	(32,32,32)	
Max Pool	(16,16,32)	pool size=2
Convolution	(16,16,64)	filters=64, kernel size=3, padding='same', activation='relu'
Batch Norm	(16,16,64)	
Max Pool	(8,8,64)	pool size=2
Flatten	(4096)	
Dense	(256)	activation='relu'

Table 2: Summary of backbone architecture used for CIAFR-based tasks.

- **5-ECK-2022 Time Series (Coverage Gap):** The results were decisive. We compared a model using the theoretically recommended TAIL-MIL Jang & Kwon (2025b) against a state-of-the-art Transformer-based architecture, TimeMIL Chen et al. (2024), that violates our structural assumptions. TAIL-MIL achieved a minimal coverage gap of -0.052 ± 0.007 . In sharp contrast, the Transformer-based TimeMIL model exhibited a gap over four times larger at -0.224 ± 0.024 . This difference was highly statistically significant ($p < 0.0001$). These findings confirm that Conjunctive-Pooling is robust in challenging settings where temporal relations are important and validate our framework's predictive power even in temporally ordered scenarios.

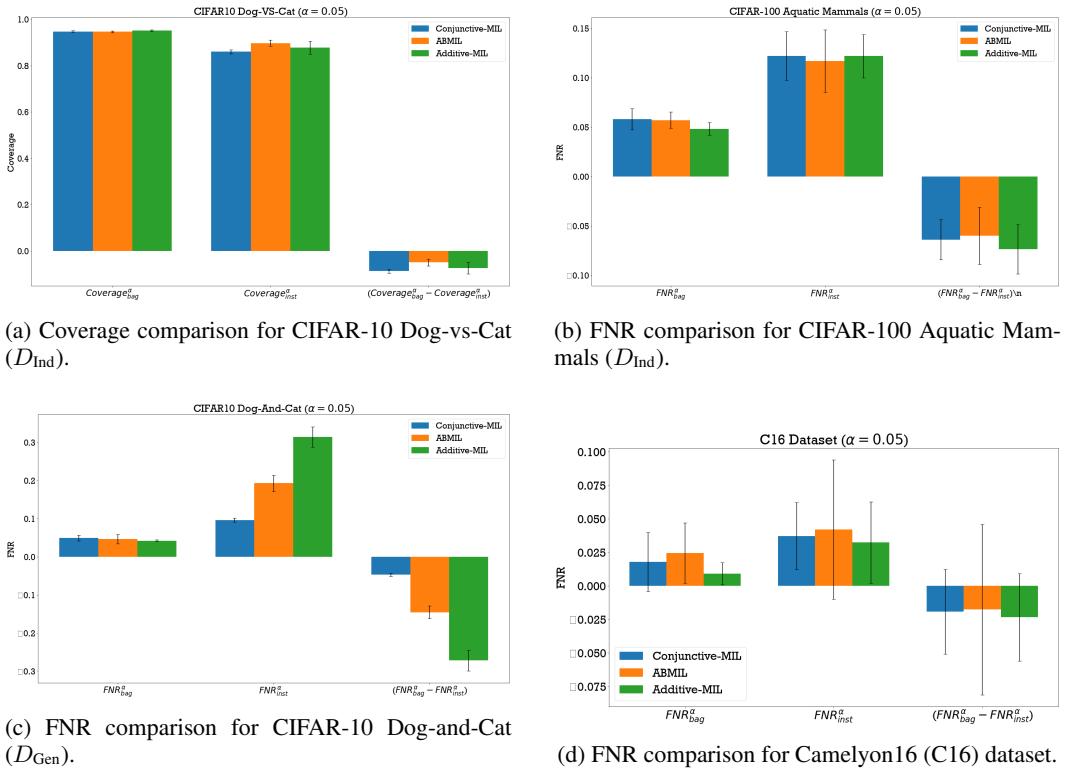


Figure 1: Visualizations of bag-level versus instance-level performance metrics for the evaluated MIL methods across different datasets. (a) Coverage gap for CIFAR-10 Dog-vs-Cat. (b) FNR gap for CIFAR-100 Aquatic Mammals. (c) FNR gap for CIFAR-10 Dog-and-Cat. (d) FNR gap for Camelyon16.

810
811 C RELATED WORKS

812 **Multiple Instance Learning** Multiple Instance Learning (MIL) was first introduced by Dietterich
 813 et al. (1997) in the context of drug activity prediction and has since been widely applied in medical
 814 imaging (Ilse et al., 2018; Li et al., 2021; Shao et al., 2021; Javed et al., 2022; Xiang & Zhang,
 815 2023; Zhang et al., 2024; Zhu et al., 2025), text categorization (Angelidis & Lapata, 2018), and time
 816 series (Chen et al., 2024; Early et al., 2024; Li et al., 2025). Early MIL formulations relied on the
 817 assumption that a bag is positive if and only if at least one of its instances is positive Dietterich et al.
 818 (1997), which spurred a variety of algorithmic solutions ranging from axis-parallel rectangle meth-
 819 ods to kernel-based approaches Andrews et al. (2002). More recently, deep MIL frameworks have
 820 been developed that utilize attention-based pooling to learn instance-level representations in an end-
 821 to-end manner Ilse et al. (2018). The following works employ different techniques to improve the
 822 performance by considering the inherent correlations among instances, such as using self-attention
 823 Shao et al. (2021), cross-attention Zhu et al. (2025), or using prior position information Chen et al.
 824 (2024), or instance physical connectivity Zheng et al. (2022). However, these methods consider the
 825 specific data properties and do not strictly adhere to the MIL assumptions, i.e., instances are inde-
 826 pendent, permutation-invariance. As a proof-of-concept, this study investigated three representative
 827 strict MIL frameworks.
 828

829 **Conformal Prediction** Conformal Prediction is a distribution-free framework for uncertainty
 830 quantification that offers finite-sample coverage guarantees under the assumption of exchangeability
 831 Vovk et al. (2005). By constructing prediction sets with user-specified coverage levels, CP has been
 832 applied successfully to regression, classification, and structured prediction tasks. Recent advances
 833 include distribution-free predictive inference for regression Lei et al. (2018) and refinements using
 834 the jackknife+ procedure to produce tighter prediction sets Barber et al. (2019). Although CP has
 835 traditionally been used in standard supervised settings, recent work Li et al. (2025) has begun to
 836 explore its application to more complex domains such as MIL. Notably, prior research in MIL has
 837 focused solely on bag-level conformal prediction, while practical MIL scenarios demand uncertainty
 838 quantification at both the bag and instance levels. In this paper, we focus on transferring conformal
 839 calibration from bag-level predictions to individual instance-level predictions within MIL models.
 840

841 D SUMMARY OF THEORETICAL RESULTS

842 Figure 2 presents a comprehensive overview of the definitions, interdependencies, and key theo-
 843 retical outcomes that form the cornerstone of the proposed framework. The diagram highlights
 844 the integration of Multiple Instance Learning, conformal prediction, and agnostic PAC learnability,
 845 demonstrating how these foundational components work together to insure the transfer of bag-level
 846 conformal calibration to the instance level.
 847

848 E PROOFS

849 E.1 PROOF OF PROPOSITION 1

850 *Proof.* This proof shows that finding a CRC threshold for a general class of risks is equivalent to
 851 applying the standard quantile procedure to a set of transformed nonconformity scores.
 852

853 **Step 1: Define a General Class of Risks.** Let s be a nonconformity score and $T : \mathbb{R} \rightarrow \mathbb{R}$ be any
 854 monotonically increasing function. We define a risk \mathcal{R}_λ as the probability that the transformed score
 855 $T(s)$ exceeds λ :

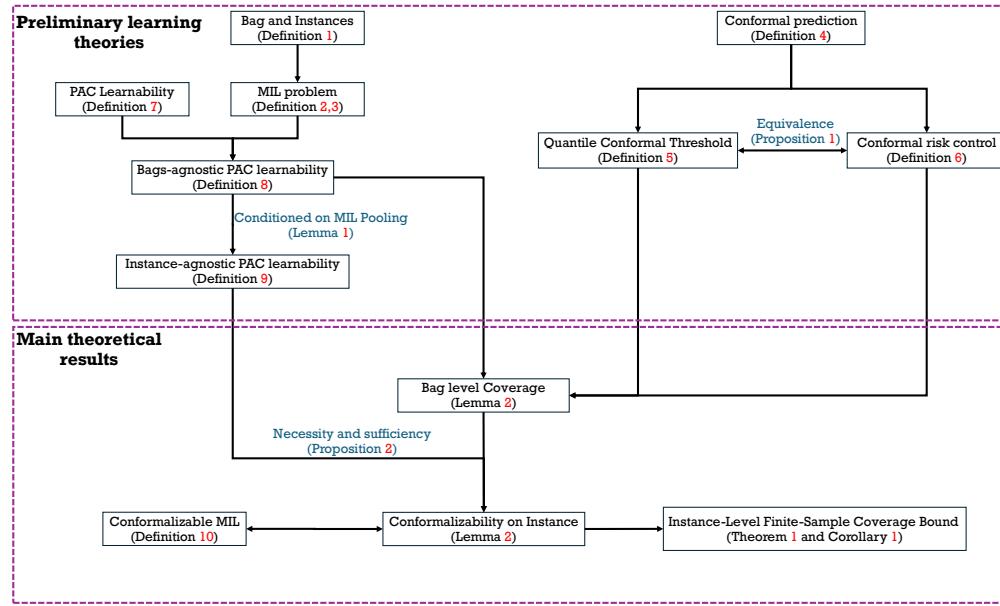
$$856 \mathcal{R}_\lambda = \mathbb{P}(T(s) > \lambda). \quad (19)$$

857 The corresponding empirical risk on a calibration set $\{s_i\}_{i=1}^n$ is:
 858

$$859 \hat{\mathcal{R}}_\lambda(\mathcal{D}_{\text{cal}}) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{T(s_i) > \lambda\}. \quad (20)$$

860 Since this is a rate, its values are in $[0, 1]$, and its tightest upper bound is $B = 1$.
 861

864
865
866
867
868
869
870
871
872
873
874
875
876



897 Figure 2: Flowchart of the main theoretical contributions. The top half summarizes the founda-
898 tional concepts in multiple instance learning (Definitions 1,2,3) and conformal prediction (Definition
899 4,5,6). Definitions 7,8,9 and Lemma 1 include the bridging concepts of agnostic PAC learnability be-
900 tween Bag and instance level. Proposition 1 demonstrate the equivalence between CRC and quantile
901 based conformal prediction. The bottom half presents our primary results, namely bag-level cov-
902 erage (Lemma 2), the necessity and sufficiency of agnostic PAC learnability for conformalization
903 (Proposition 2), and the instance-level finite-sample coverage bound (Theorem 1 and Corollary 1).
904 Together, these findings formalize how bag-level calibration thresholds can be reliably transferred
905 to the instance level under the Conformalizable MIL framework (Definition 10).
906
907
908
909
910
911
912
913
914
915
916
917

918 **Step 2: Apply the CRC Framework.** We substitute this general empirical risk into the CRC
 919 condition from Definition 6:

$$921 \quad \frac{n}{n+1} \left(\frac{1}{n} \sum_{i=1}^n \mathbb{1}\{T(s_i) > \lambda\} \right) + \frac{1}{n+1} \leq \alpha. \quad (21)$$

923 Algebraic simplification yields the condition that λ must satisfy:

$$925 \quad \frac{1}{n+1} \left(1 + \sum_{i=1}^n \mathbb{1}\{T(s_i) > \lambda\} \right) \leq \alpha. \quad (22)$$

928 **Step 3: Recognize the Quantile Procedure.** The inequality in Eq.22 is precisely the standard
 929 **Quantile Condition** for achieving $1 - \alpha$ coverage, but applied to the set of *transformed* scores
 930 $\{v_i = T(s_i)\}_{i=1}^n$. The CRC threshold $\hat{\lambda}$ is the smallest λ that satisfies this condition. Therefore, we
 931 have shown:

$$933 \quad \hat{\lambda}_{\text{CRC}}(\{s_i\}, T) = \tau_\alpha(\{T(s_i)\}_{i=1}^n). \quad (23)$$

935 This means the CRC threshold for a risk defined by a transformation T is exactly the standard
 936 conformal quantile computed on the scores after applying T .

937 **Implications for our Framework.** This result formalizes CRC as a true generalization of split
 938 conformal prediction:

- 940 • **Standard Coverage Control:** This is the special case where the transformation is the
 941 identity function, $T(s) = s$. The risk is $\mathbb{P}(s > \lambda)$ (miscoverage), and the CRC threshold is
 942 simply the quantile of the original scores, $\tau_\alpha(\{s_i\})$.
- 943 • **Other Risk Control (e.g., FNR):** Controlling other risks, such as FNR, can also be mapped
 944 to this framework by defining an appropriate transformation T that relates the model's out-
 945 put scores to that risk. The resulting CRC threshold is still a quantile, just of the trans-
 946 formed scores.

948 Crucially, this proves that any threshold derived from CRC is fundamentally a quantile. There-
 949 fore, our main theoretical result (Theorem 1), which establishes the conditions for transferring a
 950 quantile-based threshold from the bag to the instance level, applies equally to thresholds derived
 951 from standard conformal prediction and the more general Conformal Risk Control framework. \square

952 E.2 PROOF OF LEMMA 1 (JANG & KWON, 2025A)

954 *Proof.* This proof demonstrates that if the optimal risks decompose linearly (the condition in the
 955 lemma), then the agnostic PAC guarantee at the bag level implies an average PAC guarantee at the
 956 instance level. The logic is adapted from the theoretical framework of Jang & Kwon (2025a).

958 First, we recall the definition of agnostic PAC learnability for bags. A MIL algorithm \mathcal{A} is PAC
 959 learnable for bags if, for any $\epsilon, \delta \in (0, 1)$, it returns a hypothesis $f_{\text{bag}} = \mathcal{A}(S)$ that with probability
 960 at least $1 - \delta$ satisfies:

$$961 \quad \mathcal{R}_{\text{bag}}(f_{\text{bag}}) \leq \mathcal{R}_{\text{bag}}^* + \epsilon. \quad (24)$$

963 Our goal is to show this leads to a similar guarantee for the instance-level classifiers, $f_{\text{inst},i}$ learned by
 964 \mathcal{A} . The key insight is that for certain aggregation functions, the bag-level risk of a learned hypothesis
 965 is directly related to the risks of its constituent instance-level hypotheses. For MIL models using
 966 convex combination of instance level classifier such as Conjunctive-Pooling, which Jang & Kwon
 967 (2025a) show is learnable in the general case, the bag-level risk is the weighted sum of instance-level
 968 risks:

$$969 \quad \mathcal{R}_{\text{bag}}(f_{\text{bag}}) = \mathcal{R}_{\text{bag}} \left(\sum_{i=1}^N a_i f_{\text{inst},i} \right) = \sum_{i=1}^N a_i \mathcal{R}_{\text{inst},i}(f_{\text{inst},i}). \quad (25)$$

971 This follows from the linearity of expectation, as the risk is the expected loss.

972 Now, we combine these parts. We start with the bag-level PAC guarantee from Eq. 24:
 973

$$974 \quad \mathcal{R}_{\text{bag}}(f_{\text{bag}}) - \mathcal{R}_{\text{bag}}^* \leq \epsilon. \quad (26)$$

975
 976 Using the relationships from Eq.25 for the learned hypothesis and the lemma's condition for the
 977 optimal risks, we can substitute the bag-level terms with their instance-level decompositions:
 978

$$979 \quad \left(\sum_{i=1}^N a_i \mathcal{R}_{\text{inst},i}(f_{\text{inst},i}) \right) - \left(\sum_{i=1}^N a_i \mathcal{R}_{\text{inst},i}^* \right) \leq \epsilon. \quad (27)$$

981 By rearranging the terms, we get:
 982

$$983 \quad \sum_{i=1}^N a_i (\mathcal{R}_{\text{inst},i}(f_{\text{inst},i}) - \mathcal{R}_{\text{inst},i}^*) \leq \epsilon. \quad (28)$$

984 The term $(\mathcal{R}_{\text{inst},i}(f_{\text{inst},i}) - \mathcal{R}_{\text{inst},i}^*)$ is the excess risk for the i -th instance classifier. The inequality
 985 shows that the weighted average of the instance-level excess risks is bounded by the bag-level excess
 986 risk bound ϵ .
 987

988 Since this holds with probability at least $1 - \delta$ (from the bag-level PAC guarantee), it demonstrates
 989 that learnability for bags implies learnability for instances on average. Therefore, the condition in
 990 the lemma is a sufficient condition for transferring the PAC guarantee, establishing instance-level
 991 agnostic PAC learnability. \square
 992

993 E.3 PROOF OF PROPOSITION 2

994 *Proof.* We prove this equivalence by showing that the theoretical property of agnostic PAC learn-
 995 ability is the necessary and sufficient foundation for the practical property of conformalizability.
 996

997 **(\Rightarrow) Necessity (Conformalizability \implies agnostic PAC learnability):**

1000 Assume a MIL model is Conformalizable. This implies that a single threshold τ_α , calibrated on bag-
 1001 level nonconformity scores, is also meaningful for instance-level scores. A nonconformity score
 1002 measures the disagreement between a model's prediction and the true label. For the threshold τ_α
 1003 to be transferable, the underlying error structures of the bag and instance classifiers must be funda-
 1004 mentally consistent.
 1005

1006 This required consistency in error structure is formally captured by the agnostic PAC framework.
 1007 As established by Jang & Kwon (2025a), a MIL algorithm is learnable at the instance level only
 1008 if the optimal achievable risks at the bag and instance levels decompose linearly. The ability to
 1009 transfer a conformal threshold is a strong indicator of robust instance-level learnability. Therefore,
 1010 it necessitates the condition on the optimal risks:
 1011

$$1012 \quad \mathcal{R}_{\text{bag}}^* = \sum_{i=1}^{N_x} a_i \mathcal{R}_{\text{inst},i}^*, \quad (29)$$

1013 where \mathcal{R}^* denotes the optimal risk in the agnostic setting. As stated in **Lemma 1**, this decomposi-
 1014 tion is the formal condition for a bag-learnable MIL model to also be instance-level agnostic PAC
 1015 learnable. Thus, if a model is Conformalizable, it must be agnostic PAC learnable at both levels.
 1016

1017 **(\Leftarrow) Sufficiency (agnostic PAC learnability \implies Conformalizability):**

1018 Assume the MIL model's hypothesis classes, \mathcal{H}_{bag} and $\mathcal{H}_{\text{inst}}$, are agnostic PAC learnable. We must
 1019 show this leads to an ideal transfer of the conformal guarantee, without relying on the quantitative
 1020 bounds of Theorem 1.
 1021

1. **agnostic PAC learnability Implies Good Models:** agnostic PAC learnability guarantees that
 1022 with sufficient data, we can train classifiers f_{bag} and f_{inst} whose true risks, $\mathcal{R}_{\text{bag}}(f_{\text{bag}})$ and $\mathcal{R}_{\text{inst}}(f_{\text{inst}})$,
 1023 are arbitrarily close to the optimal achievable risks, $\mathcal{R}_{\text{bag}}^*$ and $\mathcal{R}_{\text{inst}}^*$.
 1024

2. **Good Models Imply Stable Score Distributions:** A nonconformity score (e.g., $1 - p(y|x)$)
 1025 reflects a model's "surprise" at seeing the true label. A well-generalized, near-optimal model will

1026 consistently assign low nonconformity scores to correct labels. Thus, agnostic PAC learnability
 1027 ensures that the distributions of nonconformity scores for test data are stable and well-behaved.
 1028

1029 **3. Lemma 1 Provides the Structural Link:** The condition from Lemma 1, $\mathcal{R}_{\text{bag}}^* = \sum a_i \mathcal{R}_{\text{inst},i}^*$,
 1030 establishes a fundamental coupling between the best possible error rates at the bag and instance
 1031 levels. This implies that for near-optimal classifiers, their error behaviors must also be coupled.

1032 **4. Connecting Error Structure to Score Distributions:** Since nonconformity scores are point-wise
 1033 proxies for risk, the structural link between optimal risks (from Lemma 1) implies a corresponding
 1034 structural link between the score distributions produced by near-optimal models. For a MIL model
 1035 with a decomposable aggregation function (e.g., Conjunctive-Pooling), the bag-level score can be
 1036 defined as a convex combination of instance-level scores: $g(f_{\text{bag}}(x), y) = \sum a_i \tilde{g}(f_{\text{inst}}^i(x^i), y)$.

1037 **5. Threshold Transfer:** The conformal threshold τ_α is the $(1 - \alpha)$ -quantile of the bag-level score
 1038 distribution. If the bag score distribution is a convex combination (a mixture) of the instance score
 1039 distributions, then a quantile of the mixture distribution will also serve as a valid quantile for the
 1040 underlying component distributions. Therefore, the threshold τ_α calibrated on bag scores will also
 1041 be an appropriate $(1 - \alpha)$ cutoff for the instance scores. This ensures that $\mathbb{P}(\tilde{g}(f_{\text{inst}}^i(x^i), y) \leq \tau_\alpha) \approx 1 - \alpha$.
 1042

1043 In the ideal sense stated by the proposition, as the excess risks ϵ_{bag} and ϵ_{inst} approach zero, this ap-
 1044 proximation becomes an equality. agnostic PAC learnability is precisely the property that guarantees
 1045 these excess risks can be made negligible, thus enabling this ideal transfer. \square
 1046

1047 E.4 PROOF OF THEOREM 1

1048 *Proof.* The proof connects the guaranteed bag-level miscoverage rate to the instance-level miscov-
 1049 erage rate via the score relationship in Eq.16.
 1050

1051 Let $S_{\text{bag}} = s(x, y_{\text{bag}})$ be the nonconformity score for the new test bag and $S_k = s_k^{\text{inst}}(x_k^{\text{inst}}, y_k^{\text{inst}})$ be
 1052 the score for its k -th instance. Let $E_{\text{err}} = C_1(\epsilon_{\text{bag}} + \epsilon_{\text{inst}})$ be the error bound from the assumption.
 1053 Our goal is to bound the instance miscoverage probability, $\mathbb{P}\{S_j > \tau_\alpha\}$.

1054 **Step 1: Bag-Level Guarantee.** By the standard theory of split conformal prediction, the threshold
 1055 τ_α guarantees that the probability of miscovering a new bag is at most α :

$$1056 \mathbb{P}\{S_{\text{bag}} > \tau_\alpha\} \leq \alpha. \quad (30)$$

1058 **Step 2: Linking Instance Miscoverage to Bag Scores.** From the core assumption in Eq.16, we can
 1059 isolate the weighted sum of instance scores:
 1060

$$1061 \sum_{k=1}^{N_x} a_k S_k \geq S_{\text{bag}} - E_{\text{err}}. \quad (31)$$

1064 Consider the event that instance j is miscovered, i.e., $S_j > \tau_\alpha$. Since scores and weights are non-
 1065 negative ($S_k \geq 0, a_k \geq 0$), the sum is lower-bounded by the term for instance j :

$$1066 \sum_{k=1}^{N_x} a_k S_k \geq a_j S_j. \quad (32)$$

1069 If instance j is miscovered, it implies $a_j S_j > a_j \tau_\alpha$. Combining these inequalities, the miscoverage
 1070 of instance j implies:

$$1072 S_{\text{bag}} - E_{\text{err}} \leq \sum_{k=1}^{N_x} a_k S_k. \quad (33)$$

1074 This intermediate step is not tight enough. A more direct argument is needed.

1076 **Step 2: A More Direct Proof.** Let's analyze the conditions under which an instance j can be
 1077 miscovered, i.e., $S_j > \tau_\alpha$. This can happen in one of two mutually exclusive scenarios:

1078 1. **The bag is also miscovered:** The bag-level score $S_{\text{bag}} > \tau_\alpha$. The probability of this event
 1079 is bounded by α , from Eq.30.

1080 2. **The bag is conforming, but the instance is not:** $S_{\text{bag}} \leq \tau_\alpha$ while $S_j > \tau_\alpha$. This scenario
 1081 can only occur if the relationship between the scores in Eq.16 permits it. Let's see when
 1082 this is possible.
 1083

1084 If $S_{\text{bag}} \leq \tau_\alpha$ and $S_j > \tau_\alpha$, consider the lower bound for S_{bag} from our assumption:
 1085

$$1086 S_{\text{bag}} \geq \left(\sum_{k=1}^{N_x} a_k S_k \right) - E_{\text{err}} \geq a_j S_j - E_{\text{err}}. \quad (34)$$

1088 For this scenario to hold, we must have:
 1089

$$1090 a_j \tau_\alpha - E_{\text{err}} < a_j S_j - E_{\text{err}} \leq S_{\text{bag}} \leq \tau_\alpha. \quad (35)$$

1091 This shows that the instance score S_j can exceed τ_α while the bag score S_{bag} does not, but only
 1092 if the slack between them is large enough. The assumption in Eq.16 posits that the discrepancy
 1093 between the true bag score and the aggregated instance scores is bounded by E_{err} . This term E_{err}
 1094 thus directly bounds the probability of this second scenario, where the aggregation breaks down due
 1095 to generalization error.

1096 Therefore, the total probability of instance miscoverage is the sum of the probabilities of these two
 1097 disjoint events:
 1098

$$\mathbb{P}\{S_j > \tau_\alpha\} = \mathbb{P}\{S_j > \tau_\alpha \text{ and } S_{\text{bag}} > \tau_\alpha\} + \mathbb{P}\{S_j > \tau_\alpha \text{ and } S_{\text{bag}} \leq \tau_\alpha\} \quad (36)$$

$$\leq \mathbb{P}\{S_{\text{bag}} > \tau_\alpha\} + \mathbb{P}\{\text{score relationship deviates significantly}\} \quad (37)$$

$$\leq \alpha + E_{\text{err}}. \quad (38)$$

1102 The bound on the second term is precisely what the agnostic PAC bounds are meant to control. A
 1103 well-generalized model (small E_{err}) will have a tight score relationship, making the second event
 1104 rare.

1105 This gives us the final miscoverage bound:
 1106

$$\mathbb{P}\{s_j^{\text{inst}}(x_j, y_j^{\text{inst}}) > \tau_\alpha\} \leq \alpha + C_1(\epsilon_{\text{bag}} + \epsilon_{\text{inst}}). \quad (39)$$

1108 This is equivalent to the desired coverage guarantee:
 1109

$$\mathbb{P}\{y_j^{\text{inst}} \in \Gamma_{\text{inst}}(x_j)\} \geq 1 - \alpha - C_1(\epsilon_{\text{bag}} + \epsilon_{\text{inst}}). \quad (40)$$

1110 This completes the proof. \square
 1111

1112 E.5 PROOF OF COROLLARY 1

1114 *Proof.* The proof follows by applying Theorem 1 directly to each of the K one-vs-rest (OvR) sub-
 1115 problems.

1116 A K -class MIL problem is decomposed into K independent binary MIL problems. For each class
 1117 $k \in \{1, \dots, K\}$, we define a new binary classification task where the goal is to distinguish class k
 1118 from all other classes. For any instance x^i with true label $y^i \in \{1, \dots, K\}$, its label for the k -th
 1119 binary task is $y_k^i = \mathbb{1}\{y^i = k\} \in \{0, 1\}$.
 1120

1121 For each of these K binary MIL tasks, we have a dedicated bag-level classifier $f_{\text{bag},k}$, instance-level
 1122 classifiers $f_{\text{inst},k}$, and corresponding hypothesis classes. The corollary's premise is that for each of
 1123 these $k = 1, \dots, K$ tasks, the assumptions of Theorem 1 are met.

1124 Therefore, for each task k , we can directly apply the result of Theorem 1. The instance-level predic-
 1125 tion set for the k -th binary problem is:

$$1126 \Gamma_{\text{inst},k}(x^i) = \{b \in \{0, 1\} : s_k^i(x^i, b) \leq \tau_{\alpha,k}\}, \quad (41)$$

1127 where $s_k^i(x^i, b)$ is the nonconformity score for instance x^i with respect to the binary label b . The-
 1128 orem 1 guarantees that this set covers the true binary label y_k^i with the stated probability.
 1129

1130 This provides a valid coverage guarantee for each binary decision. A final multiclass prediction
 1131 set can be constructed, for example, by $\Gamma_{\text{inst}}(x^i) = \{k \in \{1, \dots, K\} : s_k^i(x^i, 1) \leq \tau_{\alpha,k}\}$. Note
 1132 that while this corollary guarantees coverage for each OvR subproblem, ensuring an overall $1 - \alpha$
 1133 marginal coverage for $\Gamma_{\text{inst}}(x^i)$ typically requires adjustments to the significance levels, such as a
 Bonferroni correction. \square

1134 F ON AGGREGATION STRUCTURES IN MULTIPLE INSTANCE LEARNING AND
 1135 IMPLICATIONS FOR INSTANCE-LEVEL LEARNABILITY
 1136

1137 A key aspect of Conformalizable MIL is the way instance-level information is aggregated to form
 1138 bag-level predictions and, subsequently, how bag-level and instance-level nonconformity scores are
 1139 related. This often involves structures resembling weighted sums or convex combinations. This
 1140 section provides further context on these aggregation structures, their basis in MIL model design,
 1141 their connection to the theoretical learnability of instances, and their role in enabling the transfer of
 1142 conformal guarantees.

1143 Many contemporary MIL algorithms are designed to capture the potentially varying contributions of
 1144 individual instances to the overall bag label. This is often achieved by learning or assigning weights
 1145 to instances during the aggregation process. As the example we mentioned before, 1) Attention
 1146 pooling (Ilse et al., 2018), Additive pooling (Javed et al., 2022), and Conjunctive pooling (Early
 1147 et al., 2024; Angelidis & Lapata, 2018).

1148 The concept of weighted, convex combinations extends to the theoretical conditions for an MIL
 1149 model to be learnable at the instance level. A pivotal result by (Jang & Kwon, 2025a) (which
 1150 informs Lemma 1 in our main text) establishes a precise link between instance-level agnostic PAC
 1151 learnability and the decomposability of achievable risks. Their work demonstrates that an MIL
 1152 algorithm can achieve PAC guarantees at the instance level if and only if its optimal bag-level risk,
 1153 can be expressed as a convex combination of the optimal instance-level risks.

1154 This theorem underscores that for an MIL model to effectively learn from bag-level labels and general-
 1155 ize to individual instances, its optimal performance (in terms of risk) must align with this weighted
 1156 additive structure. It is not an assumption about the explicit generation of bag labels from instance
 1157 labels in the raw data, but rather a condition on the risk characteristics of a successful instance-
 1158 learnable MIL model/algorithm. Models like Attention pooling (Ilse et al., 2018), which can learn
 1159 instance importance weights, are well-suited to satisfy this condition under Independent Bag Do-
 1160 main Space, however, are not instance PAC Learnable in General Bag Domain Space. Conversely,
 1161 models like standard max-pooling may not satisfy this condition and thus may not be instance-
 1162 learnable by this criterion. For more details of agnostic PAC learnability of MIL models, we suggest
 1163 the audience move to the previous work (Jang & Kwon, 2025a).

1164 The architectural use of weighted aggregations in MIL models, combined with the theoretical
 1165 link between convex combinations of risks and instance-level agnostic PAC learnability, provides
 1166 the foundation for transferring conformal guarantees in our framework. The transfer mechanism
 1167 hinges on the relationship between bag-level nonconformity scores $s(x, y)$ and instance-level scores
 1168 $s^i(x^i, y)$, as outlined in Eq. 16 of the main paper:

$$1169 \quad 1170 \quad 1171 \quad \left| s(x, y) - \sum_{i=1}^N a_i s^i(x^i, y) \right| \leq C_1 (\epsilon_{\text{bag}} + \epsilon_{\text{inst}}),$$

1172 The instance importance weights a_i are those learned by or inherent to the MIL model. The ratio-
 1173 nade is that if the model itself aggregates instance information (features or predictions) using such
 1174 weights, then it is plausible to define or expect that nonconformity scores (which reflect deviations
 1175 from model predictions) would also exhibit a similar aggregation pattern, $\sum_{i=1}^N a_i s^i(x^i, y)$.

1176 This structural assumption on scores facilitates the threshold transfer:

- 1177 • **Scale Consistency:** The weighted sum structure, particularly if it forms a convex combi-
 1178 nation, helps ensure that the aggregated instance scores are on a comparable numerical scale
 1179 to the bag score. This allows a bag-calibrated threshold τ_α to be potentially applicable to
 1180 both.
- 1181 • **Relating Bag and Instance Conformity:** If a bag is conforming (i.e. $s(x, y) \leq \tau_\alpha$), Eq. 16
 1182 implies that the weighted average of its instance scores is also controlled by τ_α (up to the
 1183 error term $C_1(\epsilon_{\text{bag}} + \epsilon_{\text{inst}})$).
- 1184 • **Impact of agnostic PAC learnability:** The agnostic PAC learnability at both bag and
 1185 instance levels is crucial because it guarantees that the error bounds ϵ_{bag} and ϵ_{inst} can be
 1186 made small. This, in turn, minimizes the term $C_1(\epsilon_{\text{bag}} + \epsilon_{\text{inst}})$, making the approximation

1188 $s(x, y) \approx \sum a_i s^i(x^i, y)$ increasingly accurate. A more accurate relationship between the
 1189 scores allows τ_α to be more effectively applied to instance-level scores.

1190 • **Enabling Instance-Level Coverage:** With a tight approximation between bag and aggre-
 1191 gated instance scores, the instance-level prediction sets $\Gamma_{\text{inst}}(x^i) = \{y' : s^i(x^i, y') \leq \tau_\alpha\}$
 1192 can achieve the target coverage (Theorem 1), as the threshold τ_α is now appropriately cali-
 1193 brated for the typical magnitudes of $s^i(x^i, y')$.

1194 In essence, the assumption of aggregation via weighted (often convex) combinations is not arbitrary
 1195 within the Conformalizable MIL framework. It reflects prevalent MIL model designs for capturing
 1196 instance importance. Furthermore, a related structure concerning optimal risks is a theoretical pre-
 1197 requisite for instance-level agnostic PAC learnability Jang & Kwon (2025a). This learnability is key
 1198 to minimizing errors in the score relationship (Eq. 16), thereby enabling a principled and effective
 1199 transfer of conformal guarantees from the bag to the instance level.

1201 G LIMITATIONS AND FUTURE WORK

1202 While our work introduces a rigorous theoretical framework for Conformalizable MIL and provides
 1203 both theoretical guarantees and empirical validation, several limitations and avenues for future re-
 1204 search should be acknowledged.

1205 G.1 THEORETICAL ASSUMPTIONS AND GUARANTEES

1206 • **Strength of the Core Aggregation Assumption (Eq.16):** Theorem 1 provides an instance-
 1207 level coverage bound that hinges on the assumption in Eq.16, which states that the differ-
 1208 ence between the bag-level nonconformity score and the weighted sum of true instance-
 1209 level nonconformity scores is bounded by $C_1(\epsilon_{\text{bag}} + \epsilon_{\text{inst}})$. This is a strong assumption.
 1210 The constant C_1 is critical and likely encapsulates various factors, including the specific
 1211 MIL architecture, the choice of nonconformity score functions (g_{bag} and s_k^{inst}), the number
 1212 of instances per bag (N_x), the distribution of instance scores, and properties of the score
 1213 distributions (e.g., bounded density, as alluded to in the proof sketch for Theorem 1 in Ap-
 1214 pendix E.4). A detailed characterization of C_1 across different settings, or the derivation
 1215 of tighter, more explicit bounds, remains an important area for future investigation. The
 1216 current framework posits the existence of such a C_1 for the given PAC errors.

1217 • **Achieving Instance-Level agnostic PAC learnability:** Proposition 2 establishes instance-
 1218 level agnostic PAC learnability as a necessary and sufficient condition for the ideal transfer
 1219 of conformal guarantees. Lemma 1 provides a condition for this learnability based on risk
 1220 decomposition. However, the practical ease of achieving sufficiently small instance-level
 1221 PAC errors (ϵ_{inst}) can vary significantly depending on the complexity of the MIL task,
 1222 the signal-to-noise ratio in bag labels, the inherent ambiguity of instance labels, and the
 1223 expressiveness of the chosen MIL model. Our framework relies on these errors being small
 1224 for the term $C_1(\epsilon_{\text{bag}} + \epsilon_{\text{inst}})$ to be minimal.

1225 • **Design of Nonconformity Scores:** The effectiveness of Conformalizable MIL depends on
 1226 the appropriate design of nonconformity scores at both bag and instance levels such that
 1227 they meaningfully reflect predictive uncertainty and satisfy, or closely approximate, the
 1228 relationship in Eq.16. While our framework is general, the optimal design of these scores
 1229 for diverse MIL architectures (beyond those directly producing instance weights a_k) and
 1230 data modalities is a non-trivial task and an avenue for further research. This includes how
 1231 the instance-level scores $s_k^{\text{inst}}(x_k, y_k^{\text{inst}})$ should be defined with respect to their true (latent)
 1232 instance labels versus the observed bag label.

1233 G.2 EXPERIMENTAL SCOPE AND GENERALIZABILITY

1234 • **Range of MIL Models and Datasets:** Our experiments focused on three representative
 1235 MIL pooling strategies across synthetic and one real-world dataset. While these were cho-
 1236 sen to test our hypotheses under different domain assumptions (D_{Ind} and D_{Gen}), the vast
 1237 landscape of MIL architectures and application domains means that further validation on a
 1238 broader range of models and more diverse, complex real-world datasets would be beneficial
 1239 to fully establish the generalizability of our findings.

1242

- 1243 • **Synthetic Data Simplifications:** The synthetic datasets, while useful for controlled experiments, inherently simplify real-world complexities. The Camelyon16 results, for instance, showed less pronounced differences between MIL methods than the synthetic D_{Gen} task, suggesting that factors like feature quality and the specific nature of instance dependencies in real data can modulate theoretical expectations.

1244

1245 **G.3 GENERAL LIMITATIONS OF CONFORMAL PREDICTION**

1246 Our framework inherits general characteristics of conformal prediction methods:

1247

- 1248 • **Exchangeability Assumption:** Conformal prediction guarantees rely on the assumption of exchangeability of the data points (calibration and test). While often robust to mild violations, significant deviations could affect the validity of the coverage guarantees.
- 1249 • **Conservatism:** Conformal prediction sets can sometimes be conservative (i.e., larger than necessary to achieve the target coverage), especially with limited calibration data or very noisy underlying models. The efficiency of the prediction sets (e.g., average size) was not the primary focus of this work but is an important practical consideration.

1250

1251 **G.4 FUTURE WORK DIRECTIONS**

1252 The limitations highlighted above also point towards several exciting avenues for future research:

1253

- 1254 • Developing methods to explicitly learn or design nonconformity scores that optimally satisfy the aggregation property (Eq.16).
- 1255 • Deriving more explicit forms or tighter bounds for the constant C_1 under various MIL model assumptions.
- 1256 • Investigating adaptive conformalization techniques that might adjust the process based on estimated instance-level ambiguity or reliability.
- 1257 • Applying and evaluating the framework on a wider array of challenging real-world MIL problems.

1258

1259 **G.5 USAGE OF LLMs IN WRITING**

1260 In the interest of transparency, we disclose that Large Language Models (LLMs) were employed to assist with the refinement of this paper. Their role was strictly limited to proofreading and generating feedback to improve the quality of the writing.

1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295