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Abstract—Although embodied agents have been widely studied
in multifarious tasks within abundant benchmarks, studies in
dynamic scenarios have not been sufficiently supported by large-
scale dynamic scenes. Many existing works aim at probabilistic
environments where the daily object may be moved due to human
activities, however, the scale of the dataset is usually limited
due to the cost of human annotation or manual configuration.
Toward the scalable generation of such dynamic scenes, we
introduce a framework that simulates human activities and
corresponding object dynamics with Large Language Models
(LLMs) and apply the simulated human residents to embodied
scenes. A user study that compares our generated scene dynamics
with other approaches validates that our framework successfully
produces believable and diversified data, which have a quality
comparable to human annotations. We further conduct object
goal navigation experiments under various problem settings with
representative baselines on dynamic scenes. The results verify the
potential of generated scenes to serve as navigation benchmarks
while suggesting that dynamic scenes introduce new challenges
and problems to embodied navigation. Our work contributes as an
infrastructure that may facilitate future studies on embodied AI in
dynamic environments. A visualization and online demonstration
of our framework dynamic scene generation is available at
https://huggingface.co/spaces/JW0003/DynamicSceneGeneration

I. INTRODUCTION

Beyond the static environments that have widely been
adopted in the study of Embodied AI, dynamic scenes where
the daily object may be moved according to human behaviors
have also attracted a lot of attention. The probabilistic nature
of dynamic scenes introduces more challenges, including
constructing object-based memory system [1], proactive robot
assistance [2, 3], object-goal navigation with a probabilistic
object configuration [4, 5], and navigation within environments
where exist dynamic humanoid obstacles [6].

However, most existing studies on dynamic scenes conduct
evaluation either in human-annotated environments with only
a few scenes or in simplified 2D environments, limiting the
generalizability of the results. On the other hand, although
embodied simulators have achieved fruitful success [7, 8, 9, 10],
and large-scale scenes can be generated in various ways [11, 12,
13], those approaches remain generating static scenes, where
no human activity influence and object dynamic are considered.
To support future embodied AI research in dynamic scenes and
fill in the gap of lacking large-scale dynamic scene datasets,
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we introduce a framework for generating dynamic scenes by
simulating human behaviors and configuring corresponding
object relocations with time in static scenes to obtain dynamic
scenes. Object positions in dynamic scenes will evolve with
time according to human activities, as illustrated in Figure 1.

For automatic and scalable simulating human indoor activi-
ties, we seek the aid of Large Language Models (LLMs), which
have been widely utilized in human simulation [14, 15] and
have a verified power of content generation. Our framework
first hierarchically generates human activity schedules based
on customizing persona, then generates a set of probabilities
of object relocations caused by the activities according to
the designated human persona. The simulated human avatars
are then assigned to specific static scenes, configuring the
object relocations and ending up with dynamic scenes. Trading
off between scalability and simulation quality, we keep the
human simulation agnostic to specific scene layouts, resulting
in simulated human behaviors are applicable to all scenes in the
same domain, for example, the 10,000 scenes in the ProcTHOR
dataset [11].

To evaluate our framework and the quality of generated
dynamic scenes, we create 50 characters and simulate 5-day
activities for each character in the context of the ProcTHOR
dataset. A user study confirms that the quality of our generated
data is comparable to human annotations, and even better
in comprehensiveness and diversity. To validate the potential
of dynamic scenes as a benchmark for embodied navigation
tasks, we demonstrate object-goal navigation tasks in dynamic
scenes in various problem settings with representative baselines.
The results also suggest that dynamic scenes introduce new
challenges and room for future object goal navigation tasks.

The main contributions of this paper are summarized as
follows:

• We introduce a hierarchical framework for simulating hu-
man indoor activities with LLMs and scalable generation
of dynamic scenes by configuring the object relocations
in static scenes.

• We build an extensible dynamic scene dataset based on
the ProcTHOR dataset and conduct a user study to verify
the quality of the simulated human behaviors in dynamic
scenes.

• We demonstrate several settings of object-goal navigation
tasks with corresponding baselines. Our data generation
framework and public-available data may facilitate future
studies on various tasks in the dynamic scenario.

https://huggingface.co/spaces/JW0003/DynamicSceneGeneration
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Fig. 1: An illustration of the idea of the dynamic scene, where the daily object may be moved over time according to human
activities. The relations between human activities and the objects are highlighted with the red dashed lines and the yellow
marks denote the designation place of object relocations.

II. RELATED WORK

A. Embodied Scene Datasets

Along with the widespread attention of researchers on
embodied AI, embodied simulators have been extensively
developed [7, 16, 17, 18, 19, 20]. Driven by the need for
large-scale scene datasets, ProcTHOR procedurally generates
over 10,000 houses that are applicable for 3D navigation
tasks. Previous studies validate the feasibility of generating
photorealistic scenes [12], indoor scenes [21, 22], data for
visual-language navigation tasks [13], and even physically
interactable scenes [23]. With the support of abundant data,
studies on embodied tasks such as object goal navigation have
achieved substantial progress [24, 25, 26, 27, 28].

Despite the success of static scenarios, embodied AI studies
in dynamic environments also require the support of datasets,
however, existing benchmarks are rather preliminary. [1]
uses environments with manually configured object relocation
patterns for learning and evaluating object-based memory
systems. [5] studies map-based object goal navigation on
two simulated and one real office kitchen environments under
probabilistic goal configurations. Beyond manually designing
the probabilities, [4] proposed iGridson, a 2D environment
that samples the object placement according to a scene graph
where the object relations can be extracted from large-scale 3D
datasets. A concurrent work, DOZE [6], contains 10 scenes with
moving humanoid obstacles to evaluate the agents’ collision
avoidance abilities in low-level navigation. We regard the
HOMER series [2, 3] as the most related work, which collects
fine-grained human annotations of various daily activities
with corresponding object interactions in the VirtualHome
environment [29]. However, despite the high quality of manual
annotation, the collected data is hard to generalize to new

scenes with different layouts, thus the scale of the dataset is
limited by the economic cost. To generate dynamic scenes
on a large scale, we utilize the power of LLMs to simulate
human activities and configure the object dynamics on existing
static scenes, making our framework as scalable as static scene
generation.

B. Human Activity Simulation
Modeling and synthesizing human behaviors have also been

recognized as a remarkable task in robotic research. Based
on the collected human activity data, [2] also introduces a
framework for the procedural synthesizing of new human
avatars. However, the synthetic human data are still limited in
scale and are difficult to generalize to scenes with different
layouts. Idrees et al. [30] introduces a procedural framework
for simulating human daily activity based on manually created
schedule templates, however, the requirement of human work-
load limits its applicability in generating large-scale datasets.

Fortunately, recent studies have substantiated that LLMs
are capable of simulating humans in various domains and
synthesizing data for downstream tasks [31, 32, 33]. For
instance, [14] and [34] study the capability of LLMs in
simulating human samples and replicating human subject
studies. Another thread of research validates the capabilities
of LLM-based agents to effectively mimic human-like social
behavior [35, 36] and produce meaningful results in several
application domains such as diplomacy [37] and job fair [38].
Besides, LLMs can also be used as a human user simulator
to train downstream models [39]. Beyond fidelity, benefiting
from its capability of role-playing [40, 41], utilizing LLMs
in simulating humans can also offer diversity for data. Our
work is also inspired by the generative agents [15], which
presents a believable human simulation in a sandbox simulator,



including both hierarchical schedule planning and action-level
interaction with the environment, directly substantiating the
feasibility of simulating both human behaviors and the subse-
quent environment dynamics. Nevertheless, the aforementioned
works still focus on the text domain, in which context our
work contributes a believable, economical, and extensible
framework of dynamic scene generation with LLM-based
human simulation to facilitate future embodied navigation
studies.

III. PROBLEM FORMULATION

In this work, we aim to generate dynamic scenes where the
object placements vary with time according to the influence of
human activities. Specifically in the indoor domain, a dynamic
scene S can be defined as a tuple:

S = (H,L,R,O,P, ts, te),

where H stands for the static house layout, L is the set of rooms,
R is the set of immovable receptacles, O is the set of movable
objects, P : O × [ts, te] 7→ R is the configuration of object
positions over time, ts is the start time of the dynamic scene,
and te is the end time. We further denote the dynamic scene
at time t as St = (H,L,R,O,Pt), where Pt(·) = Pt(·, t).
Embodied task can be set at any St within the constraint
ts ≤ t ≤ te.

Recall that the primary cause of scene dynamic is the
influence of human activities, thus the evolution of the
scene is defined by events, which can be represented as
e = (t

(e)
s , t

(e)
e , a(e),P(e)), where t

(e)
s and t

(e)
e stand for the

starting and ending time instant of the event, a(e) is a natural
language description for the event, and P (e) is the object
relocations caused by the event, which is a set of object-
receptacle pairs. Each dynamic scene is associated with a set of
events, denoted as E . Given a static scene with H,L,R,O and
a given time interval (ts, te), we aim to generate a reasonable
event set E and subsequently generate the object configuration
P .

IV. GENERATING DYNAMIC SCENES BY SIMULATING
HUMAN ACTIVITIES

In this section, we introduce our framework for human
resident simulation and subsequent dynamic scene generation.
As illustrated in Figure 1, our framework takes pre-defined char-
acter information and domain-specific scene prior information
as input, followed by three modules: generation of the human
activity schedules; establishment of the activity database that
models the environment evolution caused by each activity; and
a scene configuration module that applies the object relocations
to specific scenes to get the event set E . Both the generation of
the schedule and the activity database are powered by LLMs
1.

The external input data can be in pure textual form, where
the characters are defined by 8 fields, dividing into basic
information and characteristic information as shown in Figure 2

1We use gpt-4-1106-preview in the dynamic scene generation process.

(a). Character personalities can be customized by manual
designation or automatically generated as well. Learning from
the success of SOTOPIA [35], we include 50 characters that
are initialized by GPT-4 with manual filtering and adjustment
to avoid duplication and enrich the diversity. The scene prior
information offers a profile of the target simulation domain,
including the possible rooms, receptacles, objects, and possible
relations.

It is noteworthy that our framework is designed in a
modularized way where the activity schedules and the activity
database are independent of specific scenes, enabling character
to reuse in different scenes. The amount of distinct characters
determines the diversity and comprehensiveness of our dataset,
while the data can be grounded in infinite scenes.

A. Human Activity Schedule

Aiming to provide believable and personalized activity
schedules, we draw on the idea of hierarchical planning from
generative agents [15] and implement a top-down framework
for human schedule generation, which first generates a general
plan and then decompose the indoor parts into detailed activities,
as illustrated in Figure 2 (b).

The general plan is intended to reflect the characteristics of
the persona, planning the day at the hour level with personalized
sketchy description, such as doing research or preparing for a
party. At this stage, only the character information is provided.

Despite the colorful general plan, we ultimately aim at
building indoor dynamic scenes. Hence the general plan is
subsequently filtered by substituting the outside part with leave
home to force the LLM to focus on the indoor activities. The
filtered plan is then decomposed into detailed activity schedules,
where the activities are more concrete and at the minute level,
such as getting dressed and reading the newspaper. To guide
the LLM, we additionally provide an activity list as examples
and a reference for granularity. Such an activity list extends
continuously in the generation process by merging with new
activities, initializing by a predefined list of daily activities
acquired from the HOMER dataset [2].

B. Activity Database

After acquiring the human activity schedules, the natural
subsequent step is to analyze how the activities impose effects
on the environment. To this end, we build an activity database
that hierarchically models the probabilities of object relocation
caused by each activity as illustrated in Figure 2 (c), considering
the characteristics of the persona.

We assume an activity will be performed at only one location.
Given an activity a, we denote the possibility of it being
performed at locations l as p(l|a) ∈ [0, 1], with the constraint∑

l∈L p(l|a) = 1 for any activity a. The probabilities are
under comprehensive consideration of the nature of activities,
characteristics of the persona, and the available options of
locations with possible receptacles that reflect the functionality
of the locations.

Once activities are paired with specific locations, we inspect
the probabilities of objects being used or involved in each
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(c) Activity Database Generation
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Fig. 2: An overview of the dynamic scene generation framework. Given the information of characters and the scene prior, our
framework first generates the activity schedules and the corresponding activity database to simulate a resident avatar. Static
scenes can be extended to dynamic ones by sampling residents and configuring the object relocations caused by their activities.

event, and which objects are considered to be moved due to
the effect of the activities. For example, tableware may be
used for having lunch at kitchen and subsequently placed on
the dining table. Then, after tidying up the dining table at
kitchen, they may be placed back to the countertop. In this
regard, we use the probability p(o|a, l) ∈ [0, 1] to characterize
the possibility of the object o being involved in activity a at
location l.

For some object o, if the probability p(o|a, l) > 0, i.e., it
may be involved in the activity, then we use p(r|o, a, l) to
denote the probability of the human moving an object with
type o onto a receptacle r ∈ R. We assume that a used object
will be placed onto exactly one receptacle. This results in∑

r∈U p(r|o, a, l) = 1.

C. Scene Configuration

As shown in Figure 2 (d), the final step of our framework is
to ground the human activities into specific scenes to instantiate
the scene evolution by forming the event set E and calculate
the object position configuration P .

The configuration process is tightly coupled with the scene
layout. In this paper, we build dynamic scenes based on the
initial scenes provided by the ProcTHOR dataset [11], including
four types of rooms: bedroom, bathroom, living room, and
kitchen, while the number of rooms may vary in different
scenes. We start by assuming each person lives in a unique
bedroom and first sample residents according to the number of
bedrooms in the scene. With a given time interval, the event
set E can be formed by incorporating all indoor activities of
all sampled residents.

For each event in E , we sample the effect following the
hierarchical probabilistic model described earlier: first sampling
the location of the activities, followed by the objects involved
and the target receptacles for the used objects. In consideration
of realism, residents are assigned specific bedrooms and
bathrooms, i.e., they will always choose their assigned room
whenever they want to go to a bedroom or a bathroom. Since
the activity database is generated with consideration of all
possible receptacles, the relocation probabilities will be first
normalized by the existence of receptacles in the given scene.



(a) Word cloud of the persona characteristics. (b) Word cloud of the generated activities.
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Fig. 3: Visualization and statistics of our simulated human activities.
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Fig. 5: Average scores in the user study, where the error bar
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If there are multiple instances of the target receptacles in the
sampled room, we randomly pick one.

V. EVALUATION OF THE GENERATION QUALITY

A. Dataset Statistics

Our dataset of simulated human residents includes 50
distinct personas, with an average age of 35.8± 12.13 (mean
and standard deviation, same hereinafter). We generate a 5-
day schedule for each persona, from Wednesday to Sunday,
costing approximately 60k tokens for each persona. Our dataset
includes 564 activities, of which 448 activities are considered
primary after merging synonyms within the schedules of each
persona. Synonymous activities share the same environmental
effects. In this study, we select the ProcTHOR dataset [11]
as the source of static scenes. Visualization of the generated
content with statistics of our dataset is presented in Figure 3.
Aligning to the scene prior information, an event potentially in-
volves 5.50 ± 4.58 objects, where the distribution is illustrated
in Figure 3 (c). Compared to the static scenes, the placement
of objects can also be more diversified in the dynamic ones,
reflecting in the possible receptacles types of object types as
shown in Figure 4.

B. User Study Designation
Since our dataset is largely based on synthetic data, it

naturally requires an assessment of the quality of the human
simulations to ensure that the dataset can support further
research on dynamic goal navigation. To this end, we evaluate
the generated human activities schedule and corresponding
object relocations configured in dynamic scenes within the
following dimensions:

• Believability, an idea borrowed from prior works on
language agents [15, 42], indicating whether the generated
content is reasonable and true to humans.

• Comprehensiveness, measuring whether the content is
detailed enough to depict human behaviors without
omitting important activities or object usage.

• Diversity. The generated content is expected to be diversi-
fied and personalized, instead of monotonously repeating
the same routine.

Both believability and comprehensiveness are measured for
both the schedules and the object relocations at the persona
level, whereas diversity is measured at the method level, across
multiple personas.

To verify the effectiveness of our framework, we compare
it with the following baselines:



• HOMER dataset [2]. Although it captures delicate human
data in a vivid simulation, the dataset is not directly
applicable to the THOR simulators. We extract the human
schedules and extract the corresponding object relocations
from the environment variation for comparison at the text
level.

• Human annotation. Following the conventional process
of human annotation as adopted by [15], we recruit 10
college students (4 female, 6 male) to manually design a
two-day schedule and corresponding object relocations for
15 distinct personas within 5 sampled scenes (3 personas
per scene), with the same information as the input of our
framework. The schedules are reviewed by the authors to
ensure the quality.

We then conduct a user study, where 200 questionnaires
are distributed through an international survey platform, each
including the human behaviors acquired by all 3 methods in
a single scene with 3 personas. We display the scene layouts
including rooms, receptacles, and movable objects, along with
the characteristics of personas, the generated human activity
schedules, and the corresponding object relocations. For data
from the HOMER dataset, we explicitly state that the activities
are in a different scene and the persona is not specified. All
subjects are ensured to be able to understand English by an
embedded reading comprehension test. After filtering out those
who failed to pass the reading comprehension test or failed to
meet the minimum answer time requirement, a total of 166
questionnaires are collected for analysis.

C. Results

As the quantitative results presented in Figure 5, the
simulated human behaviors and the corresponding object
relocation achieve the highest overall assessment. Our generated
schedules show a comparable level of believability to human
annotations, while significantly outperforming the HOMER,
probably due to the limited choice of activity in rule-based
schedule synthesis methods. Benefiting from the hierarchi-
cal architecture, our framework can generate more detailed
activities than the baselines. Surprisingly, our method also
outperforms human annotation, we conjecture that humans
may not be motivated enough to improve the detailedness of
annotations. Not surprisingly, our framework exhibits better
quality of object relocations than humans, since it might be
hard to recognize all reasonable relocations among dozens
of objects for human annotators. To our supervise, although
the HOMER dataset models human behaviors more delicately,
users tend to give higher appraisal to our framework, possibly
being influenced by the better quality of schedules. Benefiting
from the generation capabilities of LLMs, our framework
can produce more diversified schedules based on multifarious
personas, which are not considered by the HOMER dataset.

Overall, the results verify the quality concerning believability,
comprehensiveness, and diversity of our dataset, which is
comparable to or above average human level, further supporting
the appropriateness of our dataset as a benchmark for studying
dynamic semantic goal navigation.

VI. NAVIGATION EXPERIMENTS

A. Task and Baselines

To validate our generated scenes as potential embodied
navigation benchmarks, we study the representative object goal
navigation tasks as a demonstration. Our experiments cover
various problem settings, including both map-free and map-
based navigation. Considering the characteristics of dynamic
scenes, we additionally introduce a human hint for each task,
which is generated by asking the simulated humans whether
they have recently used the target object. The hint is also
generated by LLM by providing coarse-grained human activity
schedules as human memory. To provide comprehensive results,
we include various baselines that correspond to each problem
setting.

a) Map-free Navigation.: Beyond the naive random
agent that takes random actions, we evaluate the state-of-the
art visual-based navigation models, EmbClip+Codebook and
DINOv2+Codebook [25, 28], abbreviated as EmbClip-C and
DINOv2-C hereinafter. We evaluate the publicly available
checkpoints trained on the ProcTHOR dataset without further
fine-tuning. Such a setting treats the dynamic scenes as unseen
environments.

b) Map-based Navigation.: Considering the scenario that
searching for movable daily objects in everyday life, the object-
goal navigation in seen environments also worth studying, in
which, with the aid of map constructing techniques [43, 44, 45],
the problem can be simplified to map-based navigation, where
the reachable points and positions of immovable receptacles are
assumed to be known. The problem then turns into planning
a route with estimated object distribution probabilities [5].
We first employ the one-step greedy search as a baseline
(abbreviated as OSG), which is a computationally efficient
approximation of CP-SAT introduced by [5]. We also propose a
simple baseline that chooses the next exploring point according
to the ratio of the estimated probability of finding the object to
the navigation distance, namely cost-effective greedy (CEG).

c) Object Distribution Estimation for Map-based Nav-
igation.: Planning-based algorithms require the estimation
of probabilities to find the target on each receptacle, in
this context, we include three baselines in the experiment:
(1) Uniform, where all receptacles are considered equally
possible to find the target object, and both the aforementioned
planning algorithms degenerate into simply examine the nearest
receptacles, denoted as greedy. (2) Scene prior (SP), where
we estimate the probabilities according to the occurrences
of object relationships in the 10,000 train environments in
the ProcTHOR dataset, as an approach of learning-based
commonsense reasoning. (3) Using LLM2 to analyze the
generated human hints, hierarchically extracting the relevant
event from the hints and estimate the object placement. Though
the human hints may introduce a too strong assumption,
experiments show that navigation remains challenging even in
this setting.

2We use gpt-4o-2024-05-13 throughout the navigation experiment section.



TABLE I: Results for the baseline models. The ↑ and ↓ denote larger and smaller values are preferred, respectively. Please note
that the results are not directly comparable to those reported by [28], since our experiments are conducted in more difficult
scenes and with slight different settings. Similarly, the results in map-free are not directly comparable to map-based ones.

Method Task Setting Normal Hard
Map Hint EL↓ SR(%)↑ SPL↑ EL↓ SR(%)↑ SPL↑

Random ✗ ✗ 468.7 10.14 2.90 483.5 5.02 1.3
EmbClip-C ✗ ✗ 311.8 28.57 12.02 342.8 26.77 10.9
DINOv2-C ✗ ✗ 368.8 40.95 10.69 402.2 38.58 5.7

Greedy ✓ ✗ 161.5 41.30 16.02 176.49 22.69 10.14
SP + OSG ✓ ✗ 139.5 58.94 27.73 165.09 32.53 16.22
SP + CEG ✓ ✗ 129.2 68.12 34.56 159.51 36.35 20.57
LLM + OSG ✓ ✓ 140.7 59.42 27.33 165.25 31.53 16.14
LLM + CEG ✓ ✓ 107.4 76.81 46.13 146.65 46.59 28.56

All baselines are evaluated in zero-shot generalization
settings, without fine-tuning on any dynamic scenes, while
our experiment acquiesces to using the 10k static scenes in the
training set of ProcTHOR.

B. Experimental Setup

We generate 100 scenes as the test set based on the test
environments in the ProcTHOR dataset and our generated
human activities, where half of the scenes are marked as
normal difficulty (4-7 rooms with 1-2 simulated residents)
and the others are regarded as hard ones (8-10 rooms with 3-4
simulated residents). For each scene, we sample up to 10 tasks
at two instants of the dynamic scene, with 11 object types as
potential targets. Only recently used objects will be selected
as the target, resulting in a total of 414 tasks in the normal
split and 498 tasks in the hard split, For all tasks, there exists
only one instance of the target object.

Map-free methods are evaluated in similar settings to
previous object goal navigation studies, where the agent is
allowed to run 500 steps. However, since the object types in
our dataset are not fully covered by [28], the visual-based
models are only evaluated on 232 tasks, which is a subset
of our benchmark. For map-based methods, we reduce the
number to 200. The hyperparameter αp in OSG is set to 0.5. In
consideration of planning-based methods without a stop action,
the task is considered successful if the distance between the
agent and the target object is less than 1.5m and the target
is visible to the agent. We adopted three popular navigation
metrics: episode length (EL), success rate (SR), and success
rate weighted by path length (SPL).

C. Results

We present the quantitative results in Table I. In the map-free
setting, visual-based navigation models significantly outperform
the random baseline, however, there still exists a large space
for improvement. It is noteworthy that the scenes we used
for evaluation are more difficult than the ProcTHOR dataset
in various ways, potentially suggesting further aspects of
improving the agents. In the map-based setting, we find both
probability estimation and planning are essential. All evaluated
methods significantly outperform the greedy baseline. We also

find that the CEG planner outperforms the OSG, possibly due
to our insufficient search of the hyperparameter. Moreover,
we find that even with human hints, LLM + OSG fails to
outperform SP + OSG, whereas the LLM brings a significant
boost to the CEG, indicating that the quality of probability
estimation may still require a strong planner to reflect in the
quantitative metrics.

Generally, the results show that dynamic scenes introduce
new challenges and task settings to object goal navigation.
Nevertheless, we would like to emphasize that the results
principally serve as a baseline and a demonstration of utilizing
dynamic scenes as navigation benchmarks. We believe both
the benchmark designation and navigation algorithms still have
the potential to be unleashed in future works.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we introduce a framework for simulating
human activities and analyzing corresponding object relocation
probabilities with LLMs thereby efficiently generating dynamic
scenes based on static environments. A user study of the
generated dynamic scenes validates the quality and believability
of the simulated human activities. Furthermore, the navigation
experiments exhibit the potential of the generated dynamic
scenes serving as a benchmark for embodied navigation tasks,
which introduce new challenges and task settings. We also
demonstrate the usability of the dynamic scenes by conducting
experiments with several representative baselines in various
task settings.

Generally, our framework can serve as an infrastructure
for dynamic scene generation. Nevertheless, our framework
currently focuses on object relocations in relevantly large
time scales, mostly at the hour level, and thus can be further
improved in the fineness of simulation. Besides, this paper only
performs the dynamic scene generation in the household domain
based on the ProcTHOR dataset, leaving applications on more
general domains as future work. Moreover, the navigation
benchmark and experiments conducted remain preliminary,
whereas the dynamic scenes include much more underlying
information being unused, thus there may exist a lot of room
for improvement for both the task designation and the model
development.
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