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ABSTRACT

Robust reinforcement learning (RL) under the average-reward criterion is essential
for long-term decision-making, particularly when the environment may differ
from its specification. However, a significant gap exists in understanding the
finite-sample complexity of these methods, as most existing work provides only
asymptotic guarantees. This limitation hinders their principled understanding and
practical deployment, especially in data-limited scenarios. We close this gap by
proposing Robust Halpern Iteration (RHI), a new algorithm designed for robust
Markov Decision Processes (MDPs) with transition uncertainty characterized by
£,-norm and contamination models. Our approach offers three key advantages
over previous methods: (1). Weaker Structural Assumptions: RHI only requires
the underlying robust MDP to be communicating, a less restrictive condition than
the commonly assumed ergodicity or irreducibility; (2). No Prior Knowledge:
Our algorithm operates without requiring any prior knowledge of the robust MDP;
(3). State-of-the-Art Sample Complexity: To learn an e-optimal robust policy, RHI

achieves a sample complexity of O (S ‘:3{2 ) , where S and A denote the numbers of

states and actions, and H is the robust optimal bias span. This result represents the
tightest known bound. Our work hence provides essential theoretical understanding
of sample efficiency of robust average reward RL.

1 INTRODUCTION

Reinforcement Learning (RL) seeks to find an optimal policy for an agent interacting with an
environment to maximize a cumulative reward. While RL has achieved remarkable success in
controlled settings like board games (Silver et al.| 2016} Zha et al.,[2021)) and video games (Wei et al.,
2022; [L1u et al., 2022a)), its deployment in real-world applications is often hindered by a significant
performance drop. This issue, known as the "Sim-to-Real" gap (Zhao et al., [2020; [Peng et al., 2018}
Tobin et al.| 2017), stems from mismatches between the training (simulation) and deployment (real-
world) environments. In contrast to games where these environments are identical, practical scenarios
are fraught with model discrepancies arising from modeling errors, environmental perturbations, or
even adversarial attacks (Henderson et al., 2018} Rajeswaran et al.||2016; [Zhang et al., 2018). Such
mismatches can render a learned policy highly suboptimal, severely undermining the reliability of RL
in practice. To address this critical reliability challenge, the framework of (distributionally) robust RL
was developed (Bagnell et al., 20015 Nilim & EI Ghaoui, [2004} [Iyengar, [2005)). Instead of assuming
a single, perfectly known environment model, robust RL considers an uncertainty set of plausible
transition dynamics. The objective is to find a policy that optimizes performance for the worst-case
model within this set. This "worst-case" approach yields a policy with formal performance guarantees
across all considered environmental variations, making it inherently more resilient and robust to
model mismatch and enhancing its generalizability (Pinto et al., 2017} |[Zhang et al., 2025)).

Beyond robustness, the choice of the reward criterion fundamentally shapes the RL problem. The
discounted-reward criterion, while mathematically elegant and widely studied, can be myopic due to
its exponential down-weighting of future rewards, potentially leading to poor long-term outcomes
(Schwartz, [1993; |Seijen & Sutton, [2014; [Tsitsiklis & Roy, [1997; |Abounadi et al., [2001). In contrast,
numerous real-world applications—such as queuing control, portfolio optimization, and communica-
tion networks (Kober et al.,[2013} Lu et al., 2018} (Chen et al., [2022;|Wu et al.| |2023;[Moody & Saffell,
2001; Charpentier et al., [2021}; [Masoudi, 2021} [Li & Hai,|2024)-demand policies that are evaluated



based on their long-term, steady-state performance when executed over an extended period of time.
This practical necessity underscores the importance of the average-reward criterion, which does not
discount the future reward and thus captures the long-term performance (Sigaud & Buffet, |2013). In
this paper, we focus on the intersection of these two needs: developing robust RL algorithms under
the average-reward criterion, to ensure performance of RL systems under model mismatch.

Robust RL under the average-reward criterion, however, is more challenging than its discounted-
reward counterpart and remains relatively understudied. The primary difficulties stem from its reliance
on the limiting behavior of stochastic processes, leading to analytical and algorithmic complications.
Recent work has highlighted these issues, including the non-contractive nature of the associated
Bellman operator, the high dimensionality of the solution space, and the instability of standard
iterative algorithms (Wang et al., 2023 g; (Grand-Clement et al., 2023)). Therefore, a critical gap in
the literature persists: existing studies are predominantly asymptotic or planning based, leaving the
crucial finite-sample properties of data-driven robust average-reward RL largely unexplored.

A natural strategy to obtain finite-sample results is to reduce the average-reward problem to its
discounted counterpart, thereby leveraging the rich literature on robust discounted-reward RL (Wang
et al.| 2022} [Zurek & Chen), 2023). This approach is theoretically supported by the convergence
of the robust discounted value function to the average-reward value function as the discount factor
approaches one (Wang et al.,[2023f). However, these reduction-based methods are often suboptimal
(Grand-Clément & Petrikl 2023)) or require additional prior knowledge (Roch et al., [2025). While
other recent works have proposed direct methods, they typically rely on strong structural assumptions,
such as irreducibility, which induce a contraction property (Xu et al.;,2025afb). To circumvent these
limitations, in this paper, we propose a direct approach, Robust Halpern Iteration (RHI), which
enables a practical, model-free implementation and achieves a near-optimal sample complexity. Our
contributions are summarized as follows.

Theoretical Foundation for Communicating Robust AMDPs. We relax the restrictive structural
assumptions common in prior work, such as irreducibility (Xu et al., 2025a)) and ergodicity (Chen
et al., [2025)), by analyzing robust AMDPs under the weaker communicating condition (Bertsekas|
2011). Within this more general framework, we first establish that the optimal robust average reward
is constant across all states. We then provide fundamental guarantees for the corresponding robust
Bellman equation, proving its solvability and the optimality of its solution. Crucially, we formally
derive the equivalence between solving this equation and finding an optimal robust policy, which
provides the theoretical foundation for our algorithm’s design and analysis.

A Near-Optimal, Model-Free Algorithm for Robust Average-Reward RL. We propose the
Robust Halpern Iteration (RHI), a direct algorithm that bypasses the complexities of reduction-based
approaches. Inspired by Halpern Iteration from the optimization literature (Halpern, |1967; Lieder,
2021 |Lee et al., [2025)), our method integrates two key technical innovations: (1) leveraging a quotient
space to manage the high dimensionality of the robust Bellman equation’s solution space and tackle
the double unknown variables in the equation, and (2) designing a novel estimator for the robust
average-reward Bellman operator. We provide a rigorous finite-sample analysis for RHI under both
contamination (Wang & Zou, 2021} 2022 Jiao & Lil [2024) and £,,-norm (Kumar et al., 2023} |Zhang
et al.| 2025) uncertainty models. Under our communicating assumption, we prove that RHI finds an

e-optimal policy with a sample complexity of o (S i‘fz ), where S and A are the sizes of the state

and action spaces, and H is the span of the robust optimal bias. This result establishes the tightest
near-optimal sample complexity bound for robust average-reward RL.

Empirical Validation. We validate the practical performance of RHI by conducting experiments
across three common uncertainty models: contamination, total variation (¢,,-norm), and ¢s-norm.
Our results demonstrate that RHI consistently and efficiently converges to the optimal robust average
reward, computed based on the RRVI method (Wang et al [2023g). These empirical findings
corroborate our theoretical analysis and validate the convergence of RHI in practice.

2 PRELIMINARIES AND PROBLEM FORMULATION

Discounted reward MDPs. A discounted reward Markovian decision process (DMDP) (S, A, P, r, )
is specified by: a state space S, an action space 4, a nominal (stationary) transition kernel P =



{P2e A(S),ac A,se S}ﬂ where P? is the distribution of the next state over S upon taking
action a in state s (with P¢ , denoting the probability of transitioning to s’), a reward function
r:S8 x A —|0,1], and a discount factor v € [0, 1). At each time step ¢, the agent at state s; takes
an action a;, the environment then transitions to the next state s;4; according to P(SL:, and produces a
reward signal r; = r(s;, a;) to the agent.

A stationary policy 7 : & — A(A) is a distribution over A for any given state s. The agent
follows the policy by taking an action following the distribution 7r(s). The accumulative reward of a
stationary policy 7 starting from s € S for DMDPs is measured by the discounted value function:

V'yﬂ,-P(s) £ IE‘n',P [Ztoio 'Yt'f‘t|S() = S].

Average reward MDPs. Unlike DMDPs, average reward MDPs (AMDPs) do not discount the
rewards over time and instead measure the accumulative reward by considering the behavior of the
underlying Markov process under the steady-state distribution. Specifically, the average reward (or
the gain) of a policy = starting from s € S is

. . 1 n—1

gr(s) = lgglcgfIEw,p [nz%rtwo = s] (1
t=

The bias or the relative value function for an AMDP is defined as the cumulative difference over time

between the immediate reward and the average reward:

hE(s) £ Eqp {Z(ﬁ —gp)|So = s} 2)

t=0

Distributionally robust MDPs. In distributionally robust MDPs, the transition kernel is not fixed but,
instead, belongs to a designated uncertainty set denoted as P. Following an action, the environment
undergoes a transition to the next state based on an arbitrary transition kernel P € P. In this paper,
we mainly focus on the (s, a)-rectangular uncertainty set (Nilim & El Ghaouil [2004; Iyengar, 2005}
Wiesemann et al., 2013), where P = ®S’a P, with P C A(S) defined independently over all

state-action pairs. In most studies, the uncertainty set is defined through some distribution divergence:

P ={q € A(S): D(q||PY) < R}, ()

where D is some distribution divergence like total variation, P¢ is the centroid of the uncertainty set,

referred to as the nominal kernel, and R is the radius of the uncertainty set for the given state and

action, measuring the level of uncertainties. In most studies, the nominal kernel can be viewed as the

simulation, and all training data are generated under it. In this paper, we mainly consider two widely
studied models:

Contamination model: P¢ = {(1 — R)P? + Rq : g € A(S)}, 4)

£p-norm model: Py = {q € A(S) : |l¢ — P¢|, < R}. 3)

Robust MDPs aim to optimize the worst-case performance over the uncertainty set. With the
discounted reward criterion, the robust DMDP (S, A, P, r, ) consider the robust discounted value
function of a policy 7, which is the worst-case discounted value function over all possible transition

kernels:
> A'rdSo = s]. ©)
t=0
The discounted robust value functions are shown to be the unique solution to the robust discounted
Bellman equation (Iyengar, [2005), where opa (V') = minpepa PV:

V(s) = ml(als)(r(s,a) +yops (V). ©)

a

e A :
= ]E
vp(s) = minEqp

When the long-term performance under uncertainty is concerned, we focus on the robust AMDP
(S, A, P,r). The worst-case performance is then measured by the following robust average reward:

1 n—1
T S . . . - _ _ . T
gp(s) = min hgr_l)lOI(l)f E.p - ; S0 s] min gp (s). ®)

"A(S): the (|S| — 1)-dimensional probability simplex on S.



The robust AMDP aims to find an optimal policy w.r.t. it: 7 £ arg max,cn g (s), forany s € S,

and we denote the optimal robust average reward by g1, £ max, 9p. Moreover, we define the
optimal robust bias span for the robust AMDP as

H £ maxSp(h) ©)

where h3" is the bias defined in equation [2 and Sp(h) £ max, h(s) — ming h(s) is the Span
semi-norm.

Problem formulation. We consider the standard generative model setting (Panaganti & Kalathil,
2022; |Shi et al., 2023} Xu et al.||2023)), where the learner assumes access to a simulator to generate
i.i.d. samples under any state-action pair, following the nominal kernel P. We study the sample
complexity from the nominal kernel for identifying an e-optimal policy 7 for the robust AMDP:

g;;*(s) —gp(s) <eVseS. (10)

3 COMMUNICATING RAMDPs

In this work, we consider robust AMDPs with compact uncertainty sets and satisfying the robust
communicating assumption, which can be viewed as an extension of the standard weakly communi-
cating condition in standard MDPs, e.g., (Bertsekas, 2011; ' Wan et al., 2021; /'Wan & Sutton, 2022}
Zurek & Chen, [2024; 2023} [Wang et al., [2022; Zhang & Xie| 2023)

Assumption 3.1. The uncertainty set P is compact. Moreover, for any transition kernel P € P, and

any two states s # s’ € S, there exists a stationary policy 7 and some positive integer N, such that
PW(SN = SI|S() = S) > 0.

The robust communicating assumption assumes that for any kernel P € P, any state s’ can be reached
from any other state s under some policy. Note that this policy may vary depending on the specific
state pair and transition kernel. This condition is substantially weaker than the ergodic or irreducible
assumptions made in previous robust AMDP literature (Chen et al.|(2025); [ Xu et al.|(2025bja), which
require that all states inter-communicate under any stationary policy. It also differs from the unichain
assumption (Wang et al.l |2023fg; [Roch et al., |2025)), which permits transient states but requires
all recurrent states to form a single communicating class under any stationary deterministic policy.
While neither our communicating assumption nor the unichain assumption strictly contains the other,
however, our theoretical results can be directly applied to the unichain setting.

We then characterize structures of robust AMDPs under Assumption[3.1] Specifically, we mainly
focus on the following robust Bellman equation of (Q, g) € R4 x R:

Q(S,CL) :T(S,G) _g+UPg(Qmax)y (11)
where .y : R94 — R is a mapping that maps any S A-dimensional vector @ to a S-dimensional

vector Quax € RS with entry Quax(s) = max,c4 Q(s,a). This equation plays a central part in
unichain robust AMDP studies, and we extend the results to our communicating setting.

Theorem 3.2. Consider a robust AMDP satisfying Assumption 3.1} Then it holds that:
(1). The optimal robust average reward g3, is a constant, i.e., g5 (s1) = gp(s2),Vs1 # s2;

(2). The robust Bellman equation inhas a solution (Q*, g*), and the solution g* is the optimal
robust average reward, i.e., g* = gp(s);

(3). The greedy policy ©* w.rt. Q, i.e., 7*(s) € argmax, Q(s, a), is an optimal robust policy.

Our results extend the results for unichain robust AMDPs in (Wang et al. [2023f1g). Specifically,
denote Tp 4(Q)(s,a) £ r(s,a) — g+ opa(Qmax), then the robust Bellman equation equationcan
be rewritten as Q = Tp 4(@)- As proved, the optimal policy 7* can be obtained from the solution Q*
to equation|l 1} 7*(s) € arg max, Q*(s, a), thus obtaining the optimal policy for our communicating
robust AMDP is equivalent to solving the equation Q = 7p 4= (Q).

Based on this fundamental result, we develop a sample efficient algorithm to effectively solve
equation [IT] thus finding the optimal robust policy.

2Our communicating assumption is slightly stronger than the standard weakly communicating condition,
which allows transient states to exist.



4 ROBUST HALPERN ITERATION (RHI) FOR ROBUST AMDPS

In this section, we design our data-driven robust Halpern Iteration (RHI) algorithm to solve equa-
tion[TT] We will show later that, our RHI algorithm does not require any prior information of the
robust AMDP, and achieves a near-optimal sample complexity.

As discussed in Section [2} finding the optimal policy for a robust AMDP is equivalent to solving
the corresponding robust Bellman equation li Q="Tpq4(Q)=Tp(Q) — g, where Tp(Q) =
r 4+ op(Qmax ). However, solving this equation is highly challenging. Firstly, the equation has two
unknown variables: @ and g%; Since g% is unknown, the operator Tp,g; is not readily feasible.
Moreover, different from the irreducible or ergodic cases where the operator Tp 4 is a contraction,
it is a non-expansion under our setting, invalidating the previous methods. Finally, the non-linear
structure of Tp 4 (compared to the linear structure of the non-robust operator) further results in a
complicated solution space to the Bellman equation (Wang et al., |2023g). In the following, we
address these challenges sequentially, and propose our RHI algorithm.

Curse of dual variables. To address the issue of solving an equation with two unknown variables, we
first claim that, even if we do not know the value of g7,, we can still obtain the optimal policy through
a proximal equation. Our claim is based on the following result, where we show that a near-optimal
policy can be identified by approximating the solution to the robust Bellman equation (IT)) w.r.t. the
Span semi-norm.

Lemma 4.1. Under Assumption let @ € R34 and 7 be the greedy policy w.rt. Q, i.e.,
m(s) € argmaxgea Q(s,a). Then, for every state s € S, it holds that:

0<gp —gp(s) <Sp(Tp4; (Q) — Q) = Sp(Tr(Q) - Q). (12)

The result thus implies that, to obtain the optimal policy 7*, exactly solving equation [1 1| is not
necessary; instead, it suffices to find a weaker solution @ such that 7p g (Q) — Q = ce, for some

constant ¢ € R and the all-one vector e = (1,...,1) € R4 (note that the solution @ to equation E]
also satisfies the equation with ¢ = 0). Moreover, we show that this equation, and hence finding the
optimal policy, are further equivalent to solving the proximal equation that only contains one variable:

Tr(Q) — Q = ce, for some ¢ € R, (13)

since it is sufficient to find an arbitrary solution to equation [13| for some c. Noting that the span
semi-norm is invariant to constant shifts, and inspired by previous studies of non-robust AMDPs
(Zhang et al., 2021} |[Lee et al.| 2025), we instead consider the embedded equation in the quotient
space w.r.t. identical vectors. Namely, we define a relation between two vectors v, w € RS4: v ~ w
if v — w = ce for some ¢, which can be directly verified to be an equivalence relation. We thus
construct the quotient space £ 2 R4/ ~, and the embedded equation of equation on E becomes:

[Tp(Q)] = [Q], where [] denotes the equivalence class of - . (14)

Thus, solving a robust AMDP is equivalent to solving equation[I4]in the quotient space E. Notably,
this equation only contains one variable and has a much easier structure.

Non-contraction. The second challenge is that the robust Bellman operator 7 is not a contraction,
but rather only a non-expansion, even in the quotient space E. This invalidates the previous approaches
for the discounted setting or average reward setting with stronger assumptions (Chen et al., 2025
Xu et al. [2025a3b), which utilize the Banach-Picard iteration to find the unique fixed point of the
contracted operator. To address this issue and find a solution to the non-expansion equation[I3] we
adopt the Halpern iteration (Halpern, [1967) from the stochastic approximation area. Specifically, to
solve an equation 2 = T'(x) for a non-expansion operator x, the Halpern iteration recursively updates
the algorithms through 2%+ = (1 — By 1)2° 4 Br1T(2*), which is a convex combination between
T (2*) and the initialization z°. Halpern iteration has been studied in optimization areas (Halpern,
1967; |Sabach & Shtern, [2017; Lieder, 2021} |Park & Ryu, 2022 (Contreras & Cominetti, [2023)) and
more recently in non-robust RL (Lee et al., 2025; Lee & Ryu, 2025)).

Based on the Halpern iteration, we can similarly develop our RHI algorithm in the quotient space as
[QF Y] = [(1 — Bra1)Q° + Ber1Tr(Q)]. We show in the following result that it will converge to
some solution to equation 14} and hence find an optimal policy, when the robust AMDP is known.



Theorem 4.2. Consider the exact robust Halpern iteration [Q*+'] = [(1 — Br41)Q° + Be 1 T (Q)],
with B, = kiﬂ Set % to be the greedy policy w.r.t. QF. Then,

Sp(Tp(Q%) — Q%) — 0, and g3 — g;;k — 0, as k — oo. (15)

This result hence implies the asymptotic convergence of our RHI algorithm, even if the operator may
not be a contraction. Notably, the convergence result utilizes the solvability of the robust Bellman
equation, which we derived under our weaker communicating setting.

Efficient data-driven algorithm. The above convergence of RHI can be obtained when we exactly
know the uncertainty set P. However, in the learning setting where we do not know the worst-case
kernel, we only have access to samples from the nominal kernel. This stands as the most challenging
problem in the robust RL setting, since estimating the robust Bellman operator from nominal samples
can be challenging, known as off-dynamic learning (Eysenbach et al.,|2020; Liu & Xu, [2024} |Holla,
2021)). Note that the robust Bellman operator captures the dynamics under the worst-case transition
kernel, which is generally different from the nominal kernel. To address this issue, a multi-level
Monte-Carlo (MLMC) approach was introduced in previous works (Liu et al., 2022b; Wang et al.,
2023¢g). However, MLMC generally results in an infinitely large sample complexity, and only
guarantees asymptotic convergence, hence it cannot be applied.

To effectively estimate the robust Bellman operator while maintaining a tractable sample complexity,
we propose a recursive sampling technique, inspired by (Lee et al., [2025] Jin et al.| [2024b). In
particular, we utilize the nominal samples to estimate the difference between two steps: Tp (QF) —
Tp(Q*~1). Notably, although 77 is an off-dynamic term, the difference term 7p (Q*) — Tp(Q*~1)
can be efficiently estimated under the uncertainty sets we considered, thus enabling our algorithm
design. Moreover, this sampling scheme allows us to re-use the samples from previous steps, and
hence improves sample efficiency. Based on this technique, we design a concrete sampling subroutine,
R-SAMPLE, for two types of uncertainty sets: contamination model in equation 4 and ¢,,-norm
model in equation[5] We further incorporate our R-SAMPLE sampling algorithm to propose our RHI
algorithm in Algorithm[I} In our algorithm, we utilize the sampling scheme to estimate the difference
between two steps, and then re-use the estimation 7%~! of the Bellman operator for the previous step
to construct the estimation 7% for the current step.

Algorithm 1 Robust Halpern Iteration (RHI)
Input: Q° =0 € R54, § € (0,1), co = 10-1n*(2), By =0

1:

2: a=1In(2|S||A|(n+1)/9)
3T =rh 1 =0
4: fork=0,...,ndo
50 cr=5(k+2)In*(k+2), B =k/(k+2)
6 Q*=(1-p5Q" + B TF!
7B = Qb
8:  my = max{[ac;Sp(h* — hF=1)2 /2] 1}
9:  DF = R-SAMPLE(h*, h*=1 my,) See Appendix for the algorithm
10 Tk=Tk14+ Dk
11: end for

12: m(s) € argmaxgea Q"(s,a) Vse S
13: Output: 7"

We then derive the sample complexity analysis for our RHI algorithm.

Theorem 4.3 (Performance of RHI). Consider a robust AMDP defined by contamination or {,-norm,
satisfying Assumption 3.1] (or the unichain assumption (Wang et al| [2023g))). Set the step sizes
cr = 5(k +2)In®(k 4 2) and By, = k/(k + 2). Then, with probability at least 1 — §, the output
policy ©™ is e-optimal:

9 —9p (s) <e, (16)
as long as the total iteration number n exceeds %, resulting in a total sample complexity of
~ ((SAH?
o ( 5 ) . a7
€



Our result is the first finite sample complexity guarantee for robust AMDPs under communicating
assumptions, without any prior knowledge requirement. Hence, it underscores the sample efficiency
and applicability of our algorithm. Our complexity result represents the state-of-the-art in robust
average reward RL (see Section[5.1]for a detailed comparison with prior works).

We note that the minimax optimal sample complexity for non-robust AMDPs is () (S ;42H ) (Wang
et al,[2022)), where H is the non-robust optimal span. Noting that non-robust AMDPs are special
cases of robust ones, our sample complexity result matches this minimax optimal complexity in all
terms except for H, and is thus near-optimal. We also highlight that, the minimax optimal complexity
for non-robust AMDPs is achievable only with prior knowledge of H or other MDP parameters
(Zurek & Chen), |2023; |Sapronov & Yudinl 2024} Wang et al.,|2023b;c); and when there is no such
knowledge, non-robust algorithms also are sub-optimal (Jin et al.,[2024a} Lee et al., 2025)). We leave
it as future research to investigate the minimax lower bound for robust AMDPs, if it is achievable

without any prior knowledge, and if it can be extended to other uncertainty sets.

Remark 4.4. Implementing our RHI algorithm does not require any prior knowledge, except that the
total iteration number, n, depends on H. Although it is common in sample complexity analysis to
have an iteration number that depends on unknown underlying parameters, e.g., (Li et al.||2021a,b}:
Wang et al.| 2024d), its concrete and practical implementations can still be challenging. To address
this issue, we further modify Algorithm[I| to employ a doubling trick (Auer et al)} [1995] [Besson
& Kaufmann| |2018; |Lee et al.| |2025)), and propose our Parameter-Free RHI (PF-RHI) algorithm.
PF-RHI is completely independent of H, while maintaining the same sample complexity. We defer the
discussion to Appendix|[E}

5 RELATED WORK

5.1 COMPARISONS WITH PRIOR RESULTS

In this section, we first compare with the most related works on finite sample complexity analysis of
robust average-reward RL, including (Grand-Clément & Petrik, 2024; Roch et al., 2025} [ Xu et al.,
2025bza; |Chen et al., 2025). The comparison is summarized in Table

In (Grand-Clément & Petrik, [2024; Roch et al., [2025; |Chen et al.| [2025)), reduction-based methods are
developed. In these works, a robust discounted reward RL with some specific discount factor (referred
to as a reduction factor) is constructed, and its optimal robust policy is shown to be near-optimal
under average reward. Thus, the sample complexity of robust average reward RL is then equivalent
to that of the corresponding discounted RL with the reduction factor. In (Grand-Clément & Petrikl
2024)), an upper bound on the reduction factor is derived as v < 1 — SS(’W when the nominal

kernels are rational, i.e., P? = ng ,/ms o with ng 4, ms o € N, and m is the smallest denominator
among all kernel entries. However, coupling this bound with existing sample-complexity results for
robust DMDPs yields exponential sample complexity for robust AMDPs. In (Chen et al., [2025)), the
reduction factor is set to a sample-number dependent value, and the corresponding sample complexity
is derived. However, their results require stronger assumptions on the AMDP structure (uniformly
ergodic) and the radius of the uncertainty set (the radius has to be small), limiting the applicability.
More recently, a reduction factor v = 1— = is developed in (Roch et al., 2025) and sample complexity
that matches ours is derived under the unichain setting. However, this reduction factor depends on
the robust optimal span H, requiring its knowledge even before learning. In practice, access to such
knowledge is infeasible, and even its estimation can be challenging and inefficient (Zurek & Chen,
2023} [Tuynman et al., [2024).

Another line of work (Xu et al.l 2025bga) utilizes the truncated multi-level Monte-Carlo method
developed in (Wang et al., |2024b)) to directly find the optimal policy. However, both works assume
the underlying robust AMDP is irreducible, under which the robust Bellman operator becomes a
~-contraction w.r.t. the Span, and the sample complexity can be derived. Their method relies heavily
on the contraction (which does not hold in our setting), and so cannot be applied.

Hence, compared to these prior works, our method enjoys three major advantages: (1). We require
the weakest AMDP structure, communicating—all prior work imposes stronger structures; (2). We do
not require any prior knowledge of the robust AMDP (like H in (Roch et al.,2025)); (3). We enjoy
the tightest sample complexity (noting that H < t,,, i.e., the mixing time (Wang et al., 2022; |Roch
et al.,[2025))). Thus, our RHI method represents the state-of-the-art in robust average reward RL.



Algorithm Structure TGt | Complexity
(Grand-Clément & Petrikl, [2024]) PeQ N/A Exponential
L Chen et al.7(2025) Uniformly ergodic KL o (i’:‘izn )
Xu et al. (2025b) Irreducible & aperiodic TV o ((ﬁ ‘ﬁu)
Xu et al.7(2025a) Irreducible & aperiodic TV 0 (%)
Roch et ai. (2025) Unichain TV @) (S ‘23{2)
Our; Communicating/unichain lp o (%;"2)

Table 1: Comparison with prior results. ¢,,, denotes the robust mixing time; v in (Xu et al., [2025ajb)
is the contraction coefficient under the irreducibility assumption.

5.2 OTHER RELATED WORK

Robust RL with average reward. Studies on robust RL with average reward are relatively limited.
Early research focused on dynamic programming (DP) methods in robust AMDPs. These inves-
tigations, initiated by (Tewari & Bartlett, |2007) for specific finite-interval uncertainty sets, were
subsequently extended to more general uncertainty models in works such as (Wang et al., [2023f;
Grand-Clement et al., 2023; Wang & Si,[2025)). These foundational studies were instrumental in
revealing the fundamental structure of robust AMDPs and illustrating their connections to robust
DMDPs. As an alternative method, (Chatterjee et al.| [2023) recently proposed a game-theoretic
approach for finding the optimal policy. Building on the understanding of robust AMDP structures,
the focus also extends to learning algorithms, where (Wang et al.l 2023 g)) introduced a model-free
algorithm with asymptotic convergence guarantees. However, all of these aforementioned approaches
focus on asymptotic convergence only, leaving finite-sample complexity analyses largely unaddressed.

Robust RL with discounted rewards. Robust DMDPs were first studied in foundational works such
as (Iyengar, 2005} [Nilim & EI Ghaoui, 2004; Bagnell et al., [2001; Wiesemann et al., 2013} |Lim et al.,
2013). These initial investigations typically assumed a fully known uncertainty set and developed
solutions based on robust DP. Since then, extensive theoretical research has significantly adapted
and extended these concepts to various learning paradigms where the uncertainty set or the nominal
model might be unknown or learned from data. Prominent research directions include analyses in
settings with generative models (Yang et al.| 2022; [Panaganti & Kalathil, [2022; |Xu et al.} 2023} Shi
et al.,[2023} [Zhou et al.| [2021; Wang et al.,[2023d; Liang et al.| 2023} [Liu et al., |2022b; Wang et al.,
2023e;[2024b; 2023a); [Kumar et al. 2023} |Derman et al., |2021), investigations into offline learning
from fixed datasets (Shi & Chil [2022; |Liu & Xul, 2024; Wang et al., 2024ajc)), and developments
within online learning frameworks involving exploration (Wang & Zou, [2021}; |Lu et al., 2024} |Ghosh
et al.|2025; He et al., [2025). A key focus across these diverse settings is often to provide rigorous
finite-sample complexity guarantees or convergence rates, characterized under different assumptions
regarding the structure of the uncertainty set and the nature of data access.

Non-robust RL with average reward. The study of non-robust AMDPs originated with foundational
model-based DP techniques, such as Policy Iteration and Value Iteration, which assume a known
model (Puterman, 2014; Bertsekas|, [2011). Subsequently, research shifted towards model-free RL
algorithms. These include adaptations of Q-learning and SARSA, like RVI Q-learning (Abounadi
et al.,2001; 'Wan et al.|, [2021; /Wan & Sutton, [2022)), designed to learn optimal policies directly from
interaction data without requiring explicit model knowledge (Dewanto et al., [2020).

Beyond asymptotic convergence, sample complexity for achieving near-optimal policies in (non-
robust) AMDPs is extensively studied. A significant body of work is based on the reduction frame-
work, which transforms the AMDP into a DMDP using a carefully chosen discount factor. However,
selecting an appropriate discount factor typically requires prior knowledge of crucial MDP parame-
ters, such as the span of the bias function (Zurek & Chenl 2023} |Wang et al., [2022; Zurek & Chen,
2024;|Sapronov & Yudinl 2024; Jin & Sidford, |2021) or various mixing time constants (Wang et al.,
2023bjic). Notable progress has been made under such assumptions, for instance, (Zurek & Chen,
2023}, |Sapronov & Yudin, 2024)) demonstrate that if the bias span is known and used to set the



reduction factor, the resulting sample complexity matches the minimax optimal rate for weakly
communicating MDPs (Wang et al.,[2022)). Alongside reduction-based methods, direct approaches
that do not involve conversion to DMDPs, but still require prior knowledge, have also been recently
developed (Zhang & Xiel 2023} |Li et al.l |2024). Recognizing that the prerequisite of prior knowledge
can be restrictive and impractical, and that estimating these parameters accurately is challenging
(Tuynman et al., |2024)), another line of research investigates AMDPs without prior knowledge,
achieving sub-optimal sample complexity (Lee et al.| [2025} Jin et al., 20244} |[Lee & Ryu, 2025;
Tuynman et al., 2024)).

Extending these diverse frameworks and insights to robust AMDPs is, however, particularly chal-
lenging. This difficulty stems from the greater complexity inherent in the robust average-reward
paradigm, including issues such as the non-linearity of the robust Bellman operator and a more
intricate, high-dimensional solution space for the robust Bellman equation (Wang et al.}[2023g).

6 EXPERIMENT RESULTS

We conduct experiments to validate our theoretical results and evaluate the empirical performance of
RHI. We consider the Garnet problem (Archibald et al., [1995) G(20,15) with 20 states and 15 actions,
where nominal transition kernels are randomly generated. We consider three uncertainty sets: the
contamination model, the /,,-norm model (total variation), and the />-norm model.

After each iteration of our RHI algorithm, we derive the greedy policy based on the current Q-value
estimates from RHI. The robust average reward of this derived policy is then calculated using the
RRVI algorithm from (Wang et al.,|2023g) and recorded. For comparison, we establish a baseline
consisting of the optimal robust average reward, also computed via the RRVI algorithm. Each
experimental configuration is repeated for 10 independent runs. All of our experiments require
minimal compute resources and are implemented using Google Colab. We present the mean robust
average reward across these runs where the shaded region in Figure[I]is the standard deviation.

As depicted in Figure[I] the experimental results demonstrate that our RHI algorithm effectively
converges to the optimal robust average reward, thereby corroborating our theoretical findings.
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Figure 1: Performance of RHI.

7 CONCLUSION

Robust reinforcement learning under the average-reward criterion suffers from the significant chal-
lenge of developing efficient algorithms with finite-sample guarantees, thus hindering its application
in data-limited environments. This generally resulted from complexity of the problem setting and the
limitations of prior approaches, which often relied on stronger structural assumptions, or required
impractical prior knowledge. Therefore, we introduced Robust Halpern Iteration (RHI), a novel
model-free algorithm for finding near-optimal policies in robust AMDPs. Key advantages of RHI
are its ability to bypass the need for prior knowledge of specific MDP parameters or strong AMDP
structures, which are common prerequisites for prior methods. We theoretically established that

RHI achieves a sample complexity of o (S g{2> to find an e-optimal policy, under the contami-

nation/unichain conditions and ¢,-norm/contamination uncertainty sets. Our result is near-optimal,
enhancing the applicability of average-reward robust RL in those data-intensive and real-world
applications.
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A PRELIMINARIES AND PROOF ORGANIZATION

To facilitate the analysis and understanding of our work, we specify the notations as follows.

System Characteristics. We consider a robust AMDP (S, A, P, r) centered around the nominal
kernel P with the following properties:

* The uncertainty set P = ®s€ S.acA P¢ is S A-rectangular (Nilim & El Ghaouil 2004;
Iyengar, [2005; [Wiesemann et al., 2013), where P? C A(S) is defined independently
V(s,a) € S x A.

* Each P¢ is simultaneously compact and convex.

* The robust system is communicating, meaning that for any arbitrary transition kernel P € P
and s1,82 € S s.t. $1 # Sg, there exists some stationary policy 7 and integer N s.t.
PW(SN = 82|S() = 81) > 0.

 The learner in the robust system has access to a generative model or simulator (Panaganti &
Kalathil| |2022} |Shi et al., 2023; [Xu et al.| 2023)) to generate i.i.d. samples for any state-action
pair under the nominal kernel P.

Additional notation.

* We define a stationary policy as 7 : S — A(.A), and subsequently define the finite set of all
stationary policies as II such that 7 € II.

* Since the worst-case robust average reward under the time varying model is equivalent to
the one under the stationary model (Wang et al., 2023f), we therefore focus on this time
invariant model. For a given stationary policy, = € II, satisfying equation[§] we define the
set of minimizing (worst-case) transition kernels as 27 L£PecpP: 98 = g%}, where

. T—1
g (s) 2 liminfr e E;p [% Yoo TtlSo = s].
* We use r to denote the S A-dimensional vector, whose (s, a)-th entry is 7(s,a). We use

P? ., to denote the transition probability from s to s’ under the action a of some transition
kernel P.

* Given a policy 7, a reward r and a transition kernel P, we denote the induced reward and
state-transition kernel by r, € RS and P,, € RS%5;

r7(s) = Zw(a|s)r(s, a),(P™)s s = ZW(CL|S)PZ’S/. (18)

a a

* For a vector V € RS, we use PV to denote an S A-dimensional vector as

(PV)s.0 = PSV. (19)
Specifically, for @) € RS54, Qmax € R¥, and
(P(Qmax))s,a = PY(Qmax) = ZPS o max{Q(s', )} (20)

» For an uncertainty set P, we denote the robust Bellman operator 7p(Q) : RS54 — RS54 as

T’P(Q)('S? a) = T(Sv a’) + opg (Qmax)- 21

B PROOF OF THEOREM

Theorem B.1. (Restatement of Theorem Consider a robust AMDP satisfying Assumption
Then it holds that:

(1). The optimal robust average reward g3, is a constant, i.e., g5 (s1) = gp(s2),Vs1 # sa;

(2). The robust Bellman equation inhas a solution (Q*, g*), and the solution g* is the optimal
robust average reward, i.e., g* = gp(s);

(3). The greedy policy ™ w.rt. Q, i.e., w(s) € arg max, Q(s,a), is an optimal robust policy.
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Proof. Proof of (1). Note that Assumption [3.1]implies that for any P € P, the non-robust MDP
(S, A, P, r) is weakly accessibility (Zurek & Chen| 2023)), thus the optimal average reward g}, is a
constant (Bertsekas, [2011)).

We then apply Theorem 3.5 from (Grand-Clement et al.l 2023), which shows that the optimal robust
average gain, g, is the value of the zero-sum stochastic game between the agent and the environment,
and the following saddle-point equilibrium exists:

5 =sup inf g5 = inf supgg. 22
gp = sup Inl gp = Inf sup gp (22)

Since for a fixed P, sup,. g§ = g is a constant, thus the RHS of equation[22]is also a constant, as the
infimum over a set of scalar constants is itself a scalar constant. This hence proves that the optimal
robust gain g is a constant, independent of the initial state.

Proof of (2). As g7, is a constant under our setting, it satisfies the initial-state-independent condition
in (Wang & Si,[2025)), thus part (2) can be directly obtained by applying the results in (Wang & Si,
2025).

Proof of (3). Since (Q*,g*) is a solution to the robust Bellman equation equation the pair

(h*,g*), where h*(s) = max, Q*(s, a) satisfies the following equation:

h*(s)+g* = Zw(a|s)(r(s, a) + apa(h”)).

a

Let P, € P be the worst-case transition kernel for policy 7. Then it holds that

We(s)+g" =Y mlals)(r(s,a) + opa(h*)) = Y m(als)(r(s,a) + (Pr)i(h")),

i.e.,
W =ry,—g 4+ (Pz)"h". (23)
Multiplying this inequality by ((P,)™)* and taking a sum further implies that
n—1 ™ T\n *
* ko ((Pr) )Fry ((Px)™)" = Dh '

g = + (24)
n n
We then take lim inf on both sides, and it implies that
n—1 T\k
P‘IT s
g* = liminf k=0 (P=)")"r = gp, (25)
n—00 n

since (P* — I)h* is bounded and finite. Since (2) implies that g* = 9p, thus g = g%, and the
greedy policy 7 is optimal.

We hence complete the proof. O

C SAMPLING ALGORITHM

In this section, we present a method to approximate the robust Bellman operator T% =~ T»(Q*) by
sampling from the nominal kernel P. Our method is based on the concrete closed-form of the support
function op(+) over the two considered uncertainty sets.

(,-norm sets. When the uncertainty set is defined through the £,-norm as in equation 5} it is shown
that the robust Bellman operator has the following closed-form solution in (Kumar et al.| 2023)):

%(Qk) =T+ P( ﬁlax) - RH( ﬁlax)? (26)

with some penalty function « that is independent from P. We defer the constructions of x to Re-

mark [D.2
Contamination set. With contamination set in equation[z_f], it holds that (Wang & Zou, [2021):

%(Qk) =T+ (1 - R)P( fnax) + Rmsin(Qﬁlax)' (27)
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Note that for both uncertainty sets, the difference 7p(Q1) — 7p(Q2) further can be derived, which
facilitates our estimation. To re-use the pre-collected samples to enhance sample efficiency, we
further develop our difference-based algorithm.

Specifically, for the £,-norm case, let h* = Q¥ and h*~1 = QF~L and we set the difference terms
d* = ¥ — h*=1 and K* = k(h*) — k(R¥~1). Then it holds that
Tp(Q%) = Tp(Q*1) = Pd" + K*. (28)

Hence it suffices to estimate Pd* in our algorithm. We present our robust sampling algorithm
(R-SAMPLE) as follows.

Algorithm 2 R-SAMPLE(h* h*—1 m)

1: Input: h*, hF=1 m
2: for (s,a) € S x Ado
3:  if £,-norm uncertainty set then

4: Compute d* = h¥ — h*~1 and K* = k(h*) — k(h*F1)

5: D¥(s,a) = L 327 d¥(s;) — RK*(s,a) with s; ~ P

6: endif

7. if Contamination uncertainty set then

8: Compute d* = h¥ — h¥~1 and K* = min,(h*) — min,(h¥~1)
9: D¥(s,a) = =R d¥(s;) + RK*(s,a) with s; % P2

10:  endif

11: end for

12: Output: D"

D PROOFS FOR RHI

D.1 ANALYSIS OF RHI

Lemma D.1 (Restatement of Lemma . Under Assumption let Q € R4 and  be the greedy
policy wrt. Q, i.e., w(s) € argmaxqea Q(s,a). Then for every state s € S, it holds that:

0 <gp —gp(s) <Sp(Tp,g:(Q) — Q) = Sp(Tp(Q) — Q).

Proof. Denote h(s) £ Qmax(s) = max, Q(s, a). Since 7 is greedy w.r.t Q, it follows that h(s) =
Q(s,m(s)) for all s € S. We first denote the worst-case transition kernel of h over P by P, and its
induced kernel by P, i.e.,

(Pwh) (8) = mlI% )ES/NP[h(SI)} = O-Pfr(s)(h)7 Vs € S. (29)
Pepyt °

The robust average reward under Assumption [3.1} g7, exists and is the average reward under the
worst-case kernel P, thus it holds that

9p =9p, =P, (30)

where 1, = r(s,7(s)) and P2 is the Cesaro limit of P, (Puterman||[2014). Note that it holds that
P>° = P2°P,. (Puterman| [2014), thus applying this fact to equation [30[yields that

9p =P (rz + Pzh —h). €1y

We further note that the (s', 7(s’))-th entry of (7p(Q) — @) is in fact (r(s") + (Prh)(s") — h(s')),
thus it holds that

(Tr(Q) — Q)(s',d") < (Tp(Q) = Q)(s',7(5)) = (rx(s) + (P=h)(s) — h(s")),

min
s’€S,a’e A
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and by multiplying by P2° recursively and equation [31| we have that

i (Tp, (Q) = Q)(s',a') < P (e + (Pah) = h) = g (32)

On the other hand, denote the optimal robust policy as 7* and its associated optimal average reward
as gp. Let P« € P be the corresponding worst-case transition kernel. Similar to equations 30|31}
we have that,

9p = gh., = PErme = PR(rne 4+ Prch — h), (33)
We introduce an auxiliary function b’ € RY as h'(s') £ Q(s',7*(s")) for all s’ € S. By definition

of h and 1/, we have h/(s") < h(s’) which implies that —h(s’) < —h’(s’). Substituting this in
equation [33]implies that for all s € S,

gp(s) = P (rr=(s') + (Pr=h)(s") — h(s))
< PR (ree(s') + (Pr=h)(s') — B(s")). (34)

Now we note that (7= (s")+ (Pr«h)(s") —h'(s")) is exactly the (s', 7*(s"))-th entry of (7p(Q) — Q),
then it holds that

gp(s) = P (rr=(s) + (Px-h)
)

S
< P> . o . AN N
<P max  (r(s'a) + (Prh)(s) = H(5)

=max(Tp(Q) - Q)(s',a) (35)

Thus together with equation [32} it implies that
97 — 9p(s) < max(Tp(Q) = Q)(s', ') — min(Tp(Q) — Q)(s',a") = Sp(Tr(Q) ~ Q). (36)
It hence completes the proof by noting that Sp(7p 4= (Q) — Q) = Sp(Tp(Q) — Q) since g5, is a
constant per Theorem 3.2} O

Remark D.2. Let F; , C S be a subset of forbidden states, namely when the system is at state s € S
and taking action a € A, it is unfeasible for the system to transition to certain other states. Formally,
by denoting the nominal kernel as P we have

P(s'|s,a) = P(s'|s,a) =0, YP & P,Vs € F,,.

We can then rewrite our kernel noise in equation 3 as
P = {P| IPll, = R,Y _P(s) = 0,P(s") = 0,Vs" € F}

Under consideration of the {,-norm model in equation b|it can be shown
k(h,s,a) (P, h)

= miﬂr{g [lu —wl||,, whereu(s) =h(s)l(s ¢ Fsa),
we

= min
[IPllp=R,>_ . P(s/)=0,P(s")=0,Vs" €F,qa

= Fip(u).
For a concrete example within the context of our empirical results for the £, (total variation) model
in Figure[ID| we have
maxg¢p, , h(s) —minggp, , h(s)
5 .

Koo(h, s,a) =

This construction of k is what allows us to directly apply Theorem 8 from (Kumar et al.}2023) by
considering the {y,-ball of transition kernels ||P — P||, < R for all P € P and the nominal kernel
P as turning into a penalty on the next state’s value function. Adding this penalty during sampling

in Algorithm 2] allows us to effectively sample from the worst-case kernel with only access to the
nominal environment.
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We then present the proofs for our Robust Halpern Iteration for ¢,,-normed Robust AMDPs. The
proof for contamination models can be derived similarly and is hence omitted.

Proposition D.3. Let ¢, > 0 with 22:020 c,?l < 1 and T*,Q" the iterates generated by
RHI(Q°,n,¢,8). Then, with probability at least 1 — § we have that |[T* — Tp(QF)||s < € si-
multaneously for all k = 0,1, ... n.

Proof. We fix an (s, a)-pair in our analysis, denote Y* £ D’ — Pd’ — K* and X* £ Zf:o Y.
Recall that d* = h* — h*~!, then it holds that for all (s,a) € S x A and any 4,

ope(h') — opa(h'™') = Pd' — Rk(h') + Re(h'™1), (37)
where the Rk(-) is the penalty term from (Kumar et al., [2023), which we discuss further in Re-

mark [D.2]

Since h~! = 0 by the initialization of RHI, we have the robust Bellman operator as
Tr(Q%)(s,a) = r(s,a) + ope (h*) = r(s,a) — Ru(h*,s,a) + Y P(s|s,a)h(s)).  (38)
s’eS
We further denote that K* = Rk(h?) — Rk(hi~1), and from equation 28/ we have that

k
Tp(QY) =r+> K" (39)

i=0
We then consider the estimation error. Recall that 7% (s, a) = T*~1(s,a) + D*(s,a), thus

Tk(sv a) - %2 (Qk)(sv a)

=T (s,a) - Tpa (QFY(s,a) + D*(s,a) — Pd* — K*

=T""1(s,a) — Tp(Q* 1) (s,a) + YF*(s,a)

= X*(s,0), (40)
due to our initialization.

We then estimate P(||X%(s,a)||.c > ¢), ¥(s,a) by adapting the arguments of the Azuma-
Hoeffding inequality as in (Lee et al., 2025). We consider the filtration 7* = o({D}*_,). Since
h¥. d*, and my, are Fj,_;-measurable and the relation between the robust and non-robust Bellman
operators (Kumar et al.,[2023), it follows that E[Y* (s, a)|Fj_1] = 0 for all (s, a) during sampling.
Thus the sequence {X*(s,a)}r>o is a F*-martingale. Using Markov’s inequality and the tower
property of conditional expectation yields that for every (s,a) € S x Aand A > 0,

P(X*(s,a) > €) < e *E[exp(AX*(s,a))]
=e MR [exp()\Xk_l(&a))E[exp()\Yk(&a))|.7-'k_1]]. 41)
Moreover, since K¢ is deterministic and independent from P, it holds that Yk =
mik (Z;n’“ d’“(si‘;)) — Pd*(s,a). Now since d’“(si‘;) € [ming d*(s’), maxy d*(s')] and

E[Y*(s,a)|Fr_1] = 0, Hoeffding’s inequality yields that

E[exp(\Y*(s,a))|Fx_1] = ﬁ E [eXp(/\yjk)|]-'k—1}

j=1
1
< exp( Sp( )7 /my ). @)
where V' = L (d’“(si’j)) — 7i-Pd"(s,a), and the last inequality is due to the fact that |Y}| <
Sp(d")
my

Combining equation [41|and equation 42{along with mj, > ac,Sp(d¥)? /€2, it can be derived that

k
Elexp(AX*(s,a))] < expGA?e? > et /oz>. (43)
1=0
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Combining this with 377 ¢; " < %, we have P(X*(s,a) > €) < exp(—Xe + 1A%e?/a). Taking
A = 2a/e we can obtain
)

P(X*(5,0) 2 €) < exp(~a) = grorre 5.

Synonymously, we can find the same bound for P(X*(s,a) < —e¢) s.t. P(|X*(s,a)| > ¢)
5/(|S|)Al(n + 1)). The proof is hence completed by taking the union bound over all (s,a) € S x
and over all iterations k.

O xIA

We then derive our analysis under the event specified, i.e.,
[T%(s,a) = Tpa(Q")||oo <€ Vk=0,1,...,n,and (s,a) € S x A, (44)
which holds with probability (1 — ) by Proposition[D.3]

Moreover, we note that from our R-SAMPLE algorithm, it holds that Sp(D*) < Sp(d*). Combining
this fact with the nonexpansivity of the max operator implies that

Sp(T" — T*~') = Sp(D*) < Sp(d*) = Sp(h* — h*~") <Sp(Q* — Q" ). (45)

We first provide two lemmas.

Lemma D.4. Let Q* be a solution to the robust Bellman equation Q* = Tp(Q*). Under the event
in equationd4| it holds that

SP(Q — Q) <Sp(Q Q)+ 2k, VE=01,...n. (46)

Proof. By the update rule of RHI, at iteration k, it holds that Q¥ = (1 — 3,)Q° + B, T*~! with
Br = kL-Q—Q We thus have that

Sp(Q" — Q%) < (1 - B1)Sp(Q° — Q) + BiSp(TF ' — Q)

fi 0 _ * L k—1 _ x
= SR(@ - @) + ST - Q). @

Using the invariance of Sp(+) by the addition of constants and the nonexpansivity of 7, we can then
apply the triangle inequality along with the fact that Sp(-) < 2|| - || and the bound in equation [44]to
obtain,

Sp(T* ™" = Q") = Sp(T* ! = Tp(Q")) < 2¢+Sp(Q" " — Q). (48)
We can then plug this back into equation 47|to get
2 k
k _ * < 0 _ y* k=1 _ %
SP(Q" = Q") < =5SP(Q° = Q") + == (2 +Sp(Q"" — Q).

Set 0y, = (k+1)(k +2)Sp(Q* — Q*), then we have 0, < 0y(k + 1) + 2€k(k + 1) + 0 _1. Through
induction we can get that,

.
(i+1)+2¢ Y i(i+1)+ 6o

i=1 =1

- 90%@ F1)(k+2)+ %ek(k +1)(k+2).

M=

O < 6o

Dividing both sides by (k + 1)(k + 2) hence completes the proof. O

Lemma D.S. Under the event in equation We denote py, = 28p(Q° — Q*) + %6]{5, then for all
k=1,2,...,n, we have

9 k
k k—
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Proof. We have shown two equations:

k 2 k—1_, ,

k 0 k—1 k—1 0 -
T TrF ==, 49
@ = k+2Q kE+2 @ k+1Q+k+1 “49)
‘We then subtract them and have that
2 k-1
k—1 _ Tk=1 _ 0 X S (7Rl k=2 50
Q" =" = ey Q)+ ) (50)

By Sp(QF — Q*) < Sp(Q° — Q*) + 2¢k (from Lemma|D.4)) and equation 48| we then have that
Sp(T*! = Q%) < Sp(T*! - Q") +Sp(Q* — Q)
< Pri2.
Substituting this into equation[50] and using equation 3] yields

2

k — _
e Tty L ]

Sp(Q" - Q") <

We further set 0, = k(k + 1)Sp(Q* — Q¥ 1), and it holds that

~ 2k

_ k=1 k-2
O k+2pk+2+k¢(k 1)Sp(Q Q")

< 2k +6
S k+2pk+2 E—1
< 2pp12 + 0k

k
<2 Z Pi+t2-
i=1

Dividing both sides by k(k + 1) implies that

k
2
k k—1 .
Q" ~ Q) <y e (51)

which completes the proof. O

Theorem D.6 (Restatement of Theorem |4.2) u Consider the exact robust Halpern iteration [Q*+1] =
[(1 = Brr1)Q° + Brr1Tp(Q)), with By, = k+2 Set % to be the greedy policy w.r.t. QF. Then,

Sp(Tp(Q%) — Q%) — 0, and g3 — g”k — 0, as k — oo. (52)

Proof. By Lemma we have that g3, — ggk < Sp(Tp(QF) — QF), thus it suffices to show that
Sp(T7(Q*) — Q%) — 0.

We derive our analy51s under the event in Proposition [D.3] that with probability at least (1 — ), we
have that ||T% — Tp(QF)||c < eforall (s,a) € S x Aand for all k = 0,1,...,n

For ease of reading, we drop the brackets from the equwalence class notations. Our RHI updates as

QF = (1 —Br)Q° + BT+ ! = ﬁ@o + kT—QTk in the quotient space, which implies that for

each (s,a) € S x A, we have the following decomposition
_ 2 0 k k k—1 k k—1\ _ k-1
= 5 (@) = Q") 4175 (@) = (@) 4475 (Tr(@ ) — 147,
Term 1 Term 2 Term 3

We then bound the three terms.
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Term 1:
Recall that p, = 2Sp(Q° — Q*) + Zek. From the invariance of Sp(-) by additive constants, the
triangle inequality, the nonexpansivity of 7p(-) under the span seminorm, and Lemma it yields

Sp(7p(Q") — Q°) < Sp(Q* — Q") +Sp(Q* — Q°)
< pr, VY(s,a)eS x A

Term 2:
This term can be bounded through a similar approach to Lemma[D.3]as

Sp(7p(Q") = Tr(Q"1)) = Sp(Qk - Q’H)

k—l—l sz_l,_Q, (s,a) € S x A.

Term 3:
From Proposition[D.3| we have that

Sp(Tp(QF 1) =T+ 1) <e, V(s,a) €S x A.
We then combine all three terms in equation equation[53] and we have that

* k
gp —gp (s)

Lemma [41] )
< Sp(7p(Q") - QY (54
equation[53] 9 k 2 K k
< i —(2
= k+2pk+k+2[kz(kz+1);p+2}+k+2(6) (53)
(@ 4 0 dek & o I
< - Q* . 2 2
AR R DO C A MR )| B
(56)
®) 4 ek 4k 2e(k? 4 5k)
< 8 0_ x* S 0_ x* e ST 2
S P @ - e T s P ) s
(57)
4(1 + 2k) o 4(3k? + 8k + 3)
T Sp(Q° - Q) 4 58
8Sp(Q° — Q")
< ———— - +4
< D) + 4e, (59)
where inequality () is from the definition of py, inequality (b) is from Sp(+) < 2| - [|o-
The proof is thus completed by letting kK — oo and € — 0. O

Theorem D.7 (Restatement of Theorem[4.3]- Performance of RHI). Consider a robust AMDP defined
by contamination or {p-norm, satisfying Assumption Set the step sizes ¢, = 5(k + 2) lnz(k +2)
and By, = k/(k + 2). Then, with probability at least 1 — 0, the output policy 7™ is e-optimal:

gp — 95 (s) <e, (60)

as long as the total iteration number n exceeds *, resulting in the total sample complexity of
€

2
@(SAZ{ ) 61)

€
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Proof. Using the fact that Sp(d*) < Sp(Q* — Q*~1) in equation[45]and Lemma|D.5} we can derive

k 2 :
Sp(d*) < o D pie
i=1

SRETD
4 . 2(k+5)
mSP(Q -Q")+ me
< mSP(QO Q") + 2e.

Since in RHI, in each step k, we sample my, samples for each (s, a)-pair, thus the total sample
complexity is SA|>"}_, my. Note that

my, = max{ [ac;Sp(d¥)?/e*],1} < 1+ aciSp(d¥)? /e, (62)

thus we have that
n

Z i

k=

(n+1) 2chSp dk

10a, 5 - 2( 48p(Q° - Q) 2
< (n+1) + —5 n*(2)Sp( ka+21 k+2)<T+2e)
<(n+1)+ lln Z 400‘ n(k +2)Sp(Q° — Q") + 400 Y _(k + 2) In*(k + 2)
k= k=1
< O(aSp(QO)Q/e +aln®*(n +2)Sp(Q° — Q*)?/é® + an?In*(n + 2)), (63)

where the penultimate line uses (a +b)? < 2a? + 2b% and ﬁﬁ < g, and the final equality by integral
estimation of the sums. Recalling that & = In(2|S||A|(n+1)/6), L = In (W) log®(n+2),
Q" = 0, and since n > H /¢, Sp(Q*) < H, it holds that

S AH?
", (64)

SA\ka<O(
k=0

€

which completes the proof. O

E PF-RHI: A PARAMETER-FREE VARIANT OF RHI

In this section, we present a fully implementable framework for our Robust Halpern Iteration (RHI)
algorithm for diverse and unknown problem settings.

As we mention in Remark 4.4 our RHI algorithm does not require any prior knowledge of the
underlying robust AMDP, yet the total number of iterations necessary to generate an e-optimal policy
is dependent on H. In practice, such an iteration number may need to be pre-set, and it may be
infeasible to set for RHI.

In order to bridge this theoretical finite sample complexity result with the nuances of practical
application for varying size problem settings, we now extend our RHI algorithm to a more general
and implementable framework: PF-RHI, presented in Algorithm [3] Notably, our PF-RHI do not
require any knowledge of H (even the iteration number); and we will show that it finds an e-optimal
SAH? )

policy with identical total sample complexity results as RHI, O(

Note that in our PF-RHI, in each episode i, we run the RHI for n; steps, and output Q™ and T":.
PF-RHI will terminate if the span Sp(7™ — Q™) is small enough. Hence we do not specify iteration
number, and thus no knowledge of H is needed.
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Algorithm 3 Implementable Robust Halpern Iteration (PF-RHI)

1: Input Q° € R¥*4, >0, 6 € (0,1), i =0

2: repeat

3: Setni:2i, (SZZ(S/CZ

4 Seto; =In(2|S||A|(n; +1)/6:), Q° =0, T~ =7, h™' =0, ¢g =10 -In*(2), By =0
5 fork=0,...,n;do

6: cr =5k +2)In*(k+2), Br = k/(k+2)

7

8

QF=(1-5)Q° + BT !
: h* = max 4 (Q)
9 dF = hF— p

10: my = max{[a;cpSp(h* — h*~1)2 /2] 1}
11: D¥ = R-SAMPLE(h*, h*=1 my,)

12: Tk =Tk=1 4 Dk

13:  end for

14:  7"i(s) € argmaxgea Q"i(s,a) VseS
15 i1=1+1

16: until Sp(T™ — Q™) < 14e
17: Output: Q™ T™i 7™

E.1 ANALYSIS OF PF-RHI

To facilitate our analysis of PF-RHI, we first present some useful notations as follows.

n=SpQ° - Q)
v £ 8p(Q° — Q) +Sp(Q"),
¢ = max{Sp(r), Sp(Q°)}.
We then define the following random variables:
N =inf{n; e N: Sp(T™ — Q™) < 14¢}, and
I=inf{i e N: Sp(T™ — Q™) < 14e},
and it holds that N = 2.

We set ip € N be the smallest integer s.t. n;, > Sp(Q° — Q*)/e = u/e. Then either iy = 0 and
ni, = 1, 0r n;,_1 = n;,/2 < p/€, which, when combined, imply that n;, < 2(1 + p/e).

With these, we further define the additional random events:
S; ={Sp(T™ — Q™) < 14¢, V(s,a) € S x A}, and
Gi={IT" = Tp(Q")||oo <€, VE=0,1,...,n; ¥(s,a) € S x A}

where T and Q* are generated by the inner-loop k = 0,1, ..., n; during the 4-th iteration of PF-RHIL.

During this specific iteration 4, let M; be the number of samples generated so that M = ELO M;
where M and M, are random variables.

Lemma E.1. It holds that
Proof. Note that Propositiondirectly implies P(G;) > 1 — §,. Moreover, for ¢ > iy and for all
¢ € G, from Theorem D.6| we have that

Sp(T7(€) — Q™ (€)) < Sp(T™ (&) — Tp(Q™)(€)) +Sp(TP(Q™)(€) —Q™(§))  (66)

0 _ =
< 2+ w + de (67)
n; + 2
< 14e, (68)
thus G; C S;, which completes the proof. O
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Proposition E.2. It holds that
E[N] < 2(1+ p/e)/(1 - 9).

Namely, N is finite almost surely and PF-RHI(Q", ¢, §,i = 0) stops with probability 1 after a finite
number of iterations.

Proof. In each iteration i, in PE-RHI(Q°, ¢, 6,7 = 0), we reinitialize Q° = 0 prior to the inner for
loop where k = 0,1, ...,n,. This implies that the events {S; : ¢ € N} are mutually independent.
Thus,

P(I =i) = IF’( ﬁ S°N si) - 1:[ P(S) - P(S)).
j=0 j=0

Now from Lemma it holds that P(S¢) < P(GS) < ¢; for all ¢ > g, which implies that
. i—1

P(I =1i) < H;‘:io 0j-

Moreover, by definition of ¢, we have that 2 Zfio c; L < 1, thus 0; = 6/c; < 6/2, implying that

P(I = i) < (§/2)" ‘. Using this and the fact that n; = n;,2"~% it holds that

(o)
Snig+ Y i 2 ORI =)
i=ig+1
oo

Snio(l-i- Z (5i_i°).

i=ig+1
The proof is then completed by the bound of n;, < 2(1 4 u/e), which implies that E[N] <
21+ p/e)/(1—9). O

Theorem E.3. Let ¢, = 5(k + 2)In*(k + 2) and B, = k/(k + 2) hold. Let n; = N so that
(QN, TN, 7N is returned by PF-RHI(Q°, ¢, 8,7 = 0). Then with probability of at least (1 — §), we
have for all s € S,
N
gp = 9% () <Sp(Tp(QY) — Q™) < 16¢,

Which obtains a sample and time complexity ofO(ﬁ|S\ |A|(v?/€® + 1)), with L=In (4]SI1A|(1 +
p/€)/8)log (2(1 + p/e)).

Proof. As Lemmaimplies that 0 < g5 — g;;N < Sp(Tp(QN) — QM).
1

We first define A = {I < iy} and B = (;2, G, where G; = {||T* — Tp(Q")||c < €, V& =
0,1,...,n;,V(s,a) € S x A. We claim that, P(A N B) > (1 — §). To prove this, note that from
Proposition|D.3| P(G¢) < ¢;. Thus

P(B°) = IP( fj Gg) < f: §/c; < 8/2. (69)
i=1 =1

Then Lemma E.1|implies that P(A) > P(S;,) > P(G,,) > 1 — d;, > 1 — §/2, thus combining this
with equation|[69|implies P(A¢ U B¢) < 4, which proves our claim.

We then use the definitions of N, I, and G;, which imply that
Sp(Tp(QY) — Q™) < Sp(Tp(QY) = TV) +Sp(T" — Q™)
< 2¢ + 14e
= 16e.
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Applying equation [63|further implies the total sample complexity, M £ ZLO M; can be bounded as

Y (70)

= [S]|A] Z O(a¢Sp(QO)2 /€2 + a; In® (n; + 2)Sp(Q° — Q*)2/e® + ayn? In?(n; + 2))7

=0

where o; = In(2|S||A|(n; + 1)/;) is the parameter defined at iteration ¢ (prior to the inner for loop)
of PF-RHI. Moreover, since n? < 4(1 4 p/€)? = O(Sp(Q° — Q*)?/€* + 1), we have that

M < |S||A|(io + 1)O(aigSP(Q°)?/€* + aig log® (ni, +2)SP(Q° — Q") /¢® + aijyn, log* (ni, +2))
< || Afai, log* (s, +2) O(SP(Q)?/® +28p(Q° — Q7)*/¢® + 1)
< LIS||A|O(? /e + 1),

which completes the proof. O

Corollary E.4. Let n; = N. Then with probability of at least (1 — §), for all s € S, it holds that

gp — 9% (5) < Sp(Te(@Y) —QY) <
Thzs results in a sample and time complexity of O(L|S||A/H?/€?) = O(SAH?/€?), where we define
= 1In(2|S||A/H/(e6)) In*(H /€) and O(-) hides logarithmic terms.

Proof. Note that
Sp(Q” — Q) = Sp(Q") = Sp(r + Ph*) < Sp(r) + Sp(h*),

which is due to Q° = 0 at each iteration i and the nonexpansivity of the map @ +— max4(Q) = h.
Moreover, since 2(1 + p/€) = O(Sp(h)?/¢), combining with Theorem the result follows by

verifying the definition of L. O

We then derive the results under expecations.

Lemma E.5. For an arbitrary fixed iteration i € N of PF-RHI(Q°,¢,8,i = 0), let M; =
|SIIA| X251y my be the number of samples obtained during iteration i. We have

M; < [S[JAJO(ni + (¢/€)ain? log® (n; +2)),
where a; = In(2|S||Al(n; +1)/6;).

Proof. By using induction, for k = 0 we have by initialization d° = max4(Q") and T~! = r. By
using both equation 45|and equation [50|along with the induction hypothesis for £ > 0,

Sp(d") < Sp(Q* — @* 1)

2 1
SGiDE T @)+

m((k+1)(+() +:—+1<

(
¢

k—1
k+1s p(d")

IA

This implies that

Sp(T*) < Sp(T"~") +Sp(D")
< (k+ 1) + Sp(d®)
< (k+2)¢.
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Thus for a fixed « € N in PF-RHI, we can bound M; as
M; < |S|JAI((n: +1) + (/€)Y ¢;Sp(d)?)
§j=0

nq

< ISIAI((ni +1) +5(¢ /)% Y (7 +2) In(j +2))

j=0
= [SIAIO(n; + (¢/e)*asn? log® (ni + 2)),
which completes the proof. O

Theorem E.6. Assume that the robust-AMDP satisfies Assumption [3.1} and that the sequences
e = 5(k+2)In*(k+2) and By, = k/(k +2) hold. Let n; = N so that (Q™, TN , 7N ) is the output
of PF-RHI(Q°, ¢, 6,i = 0). Then for every s € S we have,
* v
E[gp - 9% (s)] < 16€ + 0Sp(r),

which yields an expected sample and time complexity of

O(IS|IA|(V2 /2 + 1+ 6(1+ u/e)*(1 + (¢/e)?)).

Proof. We start our proof similar to Theorem by considering the events A = {I < iy} and
B =02, G;. From Theorem under A N B, for every s € S it holds that g — g5 (s) < 16¢
with probability P(AN B) > 1 — 0.

On the other hand, under (4 N B)¢, we have the trivial bound of g5 — g5 (s) < Sp(r), Vs € S.

Hence the two cases together imply that
Elgh — g5 (s)] < 16e + 6Sp(r), Vs € S.

Similar to Theorem we wish to estimate the sample complexity like M = Zf:o M; for each
iteration ¢ of PF-RHI. We accomplish this by considering the infinite disjoint union of all indexes
i > ig, or more formally A° = | |2, ., {I = i} which yields

E[M] = E[M|AN BJP(AN B) +E[M|AN BP(AN B°) + i E[M|T = i|P(I =1i).
i=io+1

Term 1 Term 2

Term 3

Term 1:
We use the result derived from the proof of Theorem on the event (A N B) and the fact that

P(AN B) < 1. By defining L = In (4|S]|A|(1 + u/€)/3), we have that
E[M|ANBJP(AN B) = O(L|S||A|(v?/€* +1)). (71)

Term 2:
We can combine the result in Lemmal[E.3|with P(A N B¢) < P(B¢) < 4, and n;, < 2(1 + p/e) to
obtain the following result:

E[M|AN B P(AN B%) < 4[S||A] Y O(n; + (¢/e)*ain? log?(n; + 2))
=0
< (5|S||A|O(m0 + (C/e)2ai0n?0 logg(niO + 2))
< 8|S|JA|O(niy + L(¢/€)*n2). (72)

The final inequality holds by using the definition of L and that a;, log®(n;, +2) < O(L).

Term 3:
To bound this term, we can again employ the result of Lemma along with defining Z £
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Yoicio41 E[M|I = i]P(I = i) to have that
Z < ISIA] Y O(ni + (¢/e)*aint log®(n; + 2))P(I = i)

i=io+1

< |S]|A| Z O(n; +ﬁ(§/e)2i3n?)}}”([ =1),
i=io+1
where the final inequality follows from using the re-initializations of n;, J;, and «; in PF-RHI to
obtain c; = O(L+14) < LO(4), where log ((n; +1)¢;) = O(4), and likewise log (n; +2) = O(i?).
With this in place, recall that n; = n;,2~%. From Proposition for i > ig + 1 we have that
P(I =) <]['Z} 6, <0(0 M- - ). Therefore, we can denote the following

J=to Jj=io j+2
e’} 1—1 1
S &N 270 ] —. (73)
i=ig+1 j=io J+2
[e%s} i—1 1
Sp & Y 220 [T —, (74)
i=ig+1 J=to JT 2

which allows us to show that

Z < 8|S||AlO(Siniy + S2L(¢/€)*n3,).

However, we can calculate equation [73]and equation [74] using their incomplete Gamma functions
like,

Sy = 227D (44 4 2) — T(ig + 2,2)]

(e2—3)
<
< (75)
Sy = 84 4 4ig(ig + 5) 4 67e*27200FV [T (i 4+ 2) — T(ip + 2,4)]
= O((io +1)%). (76)
With equation[73]and equation[76] we can finally bound Z as
Z < 8|S|AIO (ns, + L(¢/€)*nf, (i0 +1)?). (77)

We can then find the total expected value of the sample complexity by combining equation [71]
equation[72] and equation [77] by rearranging similar order terms and disregarding the logarithmic
terms to obtain:

E[M] < |S[[AJO(L(V?/€® + 1) + dni + SL(¢/€)*n3, (io +1)?)
= [SIIAIO((v?/€® +1) +8(1 + u/e)* (L + (¢/e)?)),
which completes the proof. O

Corollary E.7. Assume that the robust-AMDP satisfies Assumption[3.1} that the sequences ¢y, =
5(k +2)In*(k + 2) and By = k/(k + 2) hold, r(s,a) € [0,1] V(s,a) € S x A, and H > 1. Let
n; = N such that N > H /e so that (QN, TN ,7™V) is returned by PF-RHI(Q°,¢/17,6,i = 0) with
Q'=0,e<1,andd = 62/17. We have for every s € S,
* v
Elgp —gp ()] <e¢,
where we obtain an expected sample complexity of O(|S||A[H?/€?).

Proof. The proof is directly derived by applying the value of § in Theorem [E.6] [
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