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ABSTRACT

Robust reinforcement learning (RL) under the average-reward criterion is essential
for long-term decision-making, particularly when the environment may differ
from its specification. However, a significant gap exists in understanding the
finite-sample complexity of these methods, as most existing work provides only
asymptotic guarantees. This limitation hinders their principled understanding and
practical deployment, especially in data-limited scenarios. We close this gap by
proposing Robust Halpern Iteration (RHI), a new algorithm designed for robust
Markov Decision Processes (MDPs) with transition uncertainty characterized by
ℓp-norm and contamination models. Our approach offers three key advantages
over previous methods: (1). Weaker Structural Assumptions: RHI only requires
the underlying robust MDP to be communicating, a less restrictive condition than
the commonly assumed ergodicity or irreducibility; (2). No Prior Knowledge:
Our algorithm operates without requiring any prior knowledge of the robust MDP;
(3). State-of-the-Art Sample Complexity: To learn an ϵ-optimal robust policy, RHI
achieves a sample complexity of Õ

(
SAH2

ϵ2

)
, where S and A denote the numbers of

states and actions, and H is the robust optimal bias span. This result represents the
tightest known bound. Our work hence provides essential theoretical understanding
of sample efficiency of robust average reward RL.

1 INTRODUCTION

Reinforcement Learning (RL) seeks to find an optimal policy for an agent interacting with an
environment to maximize a cumulative reward. While RL has achieved remarkable success in
controlled settings like board games (Silver et al., 2016; Zha et al., 2021) and video games (Wei et al.,
2022; Liu et al., 2022a), its deployment in real-world applications is often hindered by a significant
performance drop. This issue, known as the "Sim-to-Real" gap (Zhao et al., 2020; Peng et al., 2018;
Tobin et al., 2017), stems from mismatches between the training (simulation) and deployment (real-
world) environments. In contrast to games where these environments are identical, practical scenarios
are fraught with model discrepancies arising from modeling errors, environmental perturbations, or
even adversarial attacks (Henderson et al., 2018; Rajeswaran et al., 2016; Zhang et al., 2018). Such
mismatches can render a learned policy highly suboptimal, severely undermining the reliability of RL
in practice. To address this critical reliability challenge, the framework of (distributionally) robust RL
was developed (Bagnell et al., 2001; Nilim & El Ghaoui, 2004; Iyengar, 2005). Instead of assuming
a single, perfectly known environment model, robust RL considers an uncertainty set of plausible
transition dynamics. The objective is to find a policy that optimizes performance for the worst-case
model within this set. This "worst-case" approach yields a policy with formal performance guarantees
across all considered environmental variations, making it inherently more resilient and robust to
model mismatch and enhancing its generalizability (Pinto et al., 2017; Zhang et al., 2025).

Beyond robustness, the choice of the reward criterion fundamentally shapes the RL problem. The
discounted-reward criterion, while mathematically elegant and widely studied, can be myopic due to
its exponential down-weighting of future rewards, potentially leading to poor long-term outcomes
(Schwartz, 1993; Seijen & Sutton, 2014; Tsitsiklis & Roy, 1997; Abounadi et al., 2001). In contrast,
numerous real-world applications–such as queuing control, portfolio optimization, and communica-
tion networks (Kober et al., 2013; Lu et al., 2018; Chen et al., 2022; Wu et al., 2023; Moody & Saffell,
2001; Charpentier et al., 2021; Masoudi, 2021; Li & Hai, 2024)–demand policies that are evaluated
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based on their long-term, steady-state performance when executed over an extended period of time.
This practical necessity underscores the importance of the average-reward criterion, which does not
discount the future reward and thus captures the long-term performance (Sigaud & Buffet, 2013). In
this paper, we focus on the intersection of these two needs: developing robust RL algorithms under
the average-reward criterion, to ensure performance of RL systems under model mismatch.

Robust RL under the average-reward criterion, however, is more challenging than its discounted-
reward counterpart and remains relatively understudied. The primary difficulties stem from its reliance
on the limiting behavior of stochastic processes, leading to analytical and algorithmic complications.
Recent work has highlighted these issues, including the non-contractive nature of the associated
Bellman operator, the high dimensionality of the solution space, and the instability of standard
iterative algorithms (Wang et al., 2023g; Grand-Clement et al., 2023). Therefore, a critical gap in
the literature persists: existing studies are predominantly asymptotic or planning based, leaving the
crucial finite-sample properties of data-driven robust average-reward RL largely unexplored.

A natural strategy to obtain finite-sample results is to reduce the average-reward problem to its
discounted counterpart, thereby leveraging the rich literature on robust discounted-reward RL (Wang
et al., 2022; Zurek & Chen, 2023). This approach is theoretically supported by the convergence
of the robust discounted value function to the average-reward value function as the discount factor
approaches one (Wang et al., 2023f). However, these reduction-based methods are often suboptimal
(Grand-Clément & Petrik, 2023) or require additional prior knowledge (Roch et al., 2025). While
other recent works have proposed direct methods, they typically rely on strong structural assumptions,
such as irreducibility, which induce a contraction property (Xu et al., 2025a;b). To circumvent these
limitations, in this paper, we propose a direct approach, Robust Halpern Iteration (RHI), which
enables a practical, model-free implementation and achieves a near-optimal sample complexity. Our
contributions are summarized as follows.

Theoretical Foundation for Communicating Robust AMDPs. We relax the restrictive structural
assumptions common in prior work, such as irreducibility (Xu et al., 2025a) and ergodicity (Chen
et al., 2025), by analyzing robust AMDPs under the weaker communicating condition (Bertsekas,
2011). Within this more general framework, we first establish that the optimal robust average reward
is constant across all states. We then provide fundamental guarantees for the corresponding robust
Bellman equation, proving its solvability and the optimality of its solution. Crucially, we formally
derive the equivalence between solving this equation and finding an optimal robust policy, which
provides the theoretical foundation for our algorithm’s design and analysis.

A Near-Optimal, Model-Free Algorithm for Robust Average-Reward RL. We propose the
Robust Halpern Iteration (RHI), a direct algorithm that bypasses the complexities of reduction-based
approaches. Inspired by Halpern Iteration from the optimization literature (Halpern, 1967; Lieder,
2021; Lee et al., 2025), our method integrates two key technical innovations: (1) leveraging a quotient
space to manage the high dimensionality of the robust Bellman equation’s solution space and tackle
the double unknown variables in the equation, and (2) designing a novel estimator for the robust
average-reward Bellman operator. We provide a rigorous finite-sample analysis for RHI under both
contamination (Wang & Zou, 2021; 2022; Jiao & Li, 2024) and ℓp-norm (Kumar et al., 2023; Zhang
et al., 2025) uncertainty models. Under our communicating assumption, we prove that RHI finds an
ϵ-optimal policy with a sample complexity of Õ

(
SAH2

ϵ2

)
, where S and A are the sizes of the state

and action spaces, and H is the span of the robust optimal bias. This result establishes the tightest
near-optimal sample complexity bound for robust average-reward RL.

Empirical Validation. We validate the practical performance of RHI by conducting experiments
across three common uncertainty models: contamination, total variation (ℓ∞-norm), and ℓ2-norm.
Our results demonstrate that RHI consistently and efficiently converges to the optimal robust average
reward, computed based on the RRVI method (Wang et al., 2023g). These empirical findings
corroborate our theoretical analysis and validate the convergence of RHI in practice.

2 PRELIMINARIES AND PROBLEM FORMULATION

Discounted reward MDPs. A discounted reward Markovian decision process (DMDP) (S,A,P, r, γ)
is specified by: a state space S, an action space A, a nominal (stationary) transition kernel P =

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

{Pa
s ∈ ∆(S), a ∈ A, s ∈ S}1, where Pa

s is the distribution of the next state over S upon taking
action a in state s (with Pa

s,s′ denoting the probability of transitioning to s′), a reward function
r : S ×A → [0, 1], and a discount factor γ ∈ [0, 1). At each time step t, the agent at state st takes
an action at, the environment then transitions to the next state st+1 according to Pat

st , and produces a
reward signal rt = r(st, at) to the agent.

A stationary policy π : S → ∆(A) is a distribution over A for any given state s. The agent
follows the policy by taking an action following the distribution π(s). The accumulative reward of a
stationary policy π starting from s ∈ S for DMDPs is measured by the discounted value function:
V π
γ,P(s) ≜ Eπ,P [

∑∞
t=0 γ

trt|S0 = s].

Average reward MDPs. Unlike DMDPs, average reward MDPs (AMDPs) do not discount the
rewards over time and instead measure the accumulative reward by considering the behavior of the
underlying Markov process under the steady-state distribution. Specifically, the average reward (or
the gain) of a policy π starting from s ∈ S is

gπP(s) ≜ lim inf
n→∞

Eπ,P

[
1

n

n−1∑
t=0

rt|S0 = s

]
. (1)

The bias or the relative value function for an AMDP is defined as the cumulative difference over time
between the immediate reward and the average reward:

hπ
P(s) ≜ Eπ,P

[ ∞∑
t=0

(rt − gπP)|S0 = s

]
. (2)

Distributionally robust MDPs. In distributionally robust MDPs, the transition kernel is not fixed but,
instead, belongs to a designated uncertainty set denoted as P . Following an action, the environment
undergoes a transition to the next state based on an arbitrary transition kernel P ∈ P . In this paper,
we mainly focus on the (s, a)-rectangular uncertainty set (Nilim & El Ghaoui, 2004; Iyengar, 2005;
Wiesemann et al., 2013), where P =

⊗
s,a Pa

s , with Pa
s ⊆ ∆(S) defined independently over all

state-action pairs. In most studies, the uncertainty set is defined through some distribution divergence:
Pa
s = {q ∈ ∆(S) : D(q||Pa

s) ≤ R}, (3)
where D is some distribution divergence like total variation, Pa

s is the centroid of the uncertainty set,
referred to as the nominal kernel, and R is the radius of the uncertainty set for the given state and
action, measuring the level of uncertainties. In most studies, the nominal kernel can be viewed as the
simulation, and all training data are generated under it. In this paper, we mainly consider two widely
studied models:

Contamination model: Pa
s = {(1−R)Pa

s +Rq : q ∈ ∆(S)}, (4)
ℓp-norm model: Pa

s = {q ∈ ∆(S) : ∥q − Pa
s∥p ≤ R}. (5)

Robust MDPs aim to optimize the worst-case performance over the uncertainty set. With the
discounted reward criterion, the robust DMDP (S,A,P, r, γ) consider the robust discounted value
function of a policy π, which is the worst-case discounted value function over all possible transition
kernels:

V π
γ,P(s) ≜ min

P∈P
Eπ,P

[ ∞∑
t=0

γtrt|S0 = s

]
. (6)

The discounted robust value functions are shown to be the unique solution to the robust discounted
Bellman equation (Iyengar, 2005), where σPa

s
(V ) ≜ minP∈Pa

s
PV :

V (s) =
∑
a

π(a|s)(r(s, a) + γσPa
s
(V )). (7)

When the long-term performance under uncertainty is concerned, we focus on the robust AMDP
(S,A,P, r). The worst-case performance is then measured by the following robust average reward:

gπP(s) ≜ min
P∈P

lim inf
n→∞

Eπ,P

[
1

n

n−1∑
t=0

rt|S0 = s

]
= min

P∈P
gπP(s). (8)

1∆(S): the (|S| − 1)-dimensional probability simplex on S.
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The robust AMDP aims to find an optimal policy w.r.t. it: π∗ ≜ argmaxπ∈Π gπP(s), for any s ∈ S,
and we denote the optimal robust average reward by g∗P ≜ maxπ g

π
P . Moreover, we define the

optimal robust bias span for the robust AMDP as

H ≜ max
P∈P

Sp(hπ∗

P ) (9)

where hπ∗

P is the bias defined in equation 2 and Sp(h) ≜ maxs h(s) − mins h(s) is the Span
semi-norm.

Problem formulation. We consider the standard generative model setting (Panaganti & Kalathil,
2022; Shi et al., 2023; Xu et al., 2023), where the learner assumes access to a simulator to generate
i.i.d. samples under any state-action pair, following the nominal kernel P. We study the sample
complexity from the nominal kernel for identifying an ϵ-optimal policy π for the robust AMDP:

gπ
∗

P (s)− gπP(s) ≤ ϵ, ∀s ∈ S. (10)

3 COMMUNICATING RAMDPS

In this work, we consider robust AMDPs with compact uncertainty sets and satisfying the robust
communicating assumption, which can be viewed as an extension of the standard weakly communi-
cating condition in standard MDPs, e.g., (Bertsekas, 2011; Wan et al., 2021; Wan & Sutton, 2022;
Zurek & Chen, 2024; 2023; Wang et al., 2022; Zhang & Xie, 2023).2

Assumption 3.1. The uncertainty set P is compact. Moreover, for any transition kernel P ∈ P , and
any two states s ̸= s′ ∈ S, there exists a stationary policy π and some positive integer N , such that
Pπ(SN = s′|S0 = s) > 0.

The robust communicating assumption assumes that for any kernel P ∈ P , any state s′ can be reached
from any other state s under some policy. Note that this policy may vary depending on the specific
state pair and transition kernel. This condition is substantially weaker than the ergodic or irreducible
assumptions made in previous robust AMDP literature Chen et al. (2025); Xu et al. (2025b;a), which
require that all states inter-communicate under any stationary policy. It also differs from the unichain
assumption (Wang et al., 2023f;g; Roch et al., 2025), which permits transient states but requires
all recurrent states to form a single communicating class under any stationary deterministic policy.
While neither our communicating assumption nor the unichain assumption strictly contains the other,
however, our theoretical results can be directly applied to the unichain setting.

We then characterize structures of robust AMDPs under Assumption 3.1. Specifically, we mainly
focus on the following robust Bellman equation of (Q, g) ∈ RSA × R:

Q(s, a) = r(s, a)− g + σPa
s
(Qmax), (11)

where ·max : RSA → RS is a mapping that maps any SA-dimensional vector Q to a S-dimensional
vector Qmax ∈ RS with entry Qmax(s) = maxa∈A Q(s, a). This equation plays a central part in
unichain robust AMDP studies, and we extend the results to our communicating setting.
Theorem 3.2. Consider a robust AMDP satisfying Assumption 3.1. Then it holds that:

(1). The optimal robust average reward g∗P is a constant, i.e., g∗P(s1) = g∗P(s2),∀s1 ̸= s2;

(2). The robust Bellman equation in 11 has a solution (Q∗, g∗), and the solution g∗ is the optimal
robust average reward, i.e., g∗ = g∗P(s);

(3). The greedy policy π∗ w.r.t. Q, i.e., π∗(s) ∈ argmaxa Q(s, a), is an optimal robust policy.

Our results extend the results for unichain robust AMDPs in (Wang et al., 2023f;g). Specifically,
denote TP,g(Q)(s, a) ≜ r(s, a)−g+σPa

s
(Qmax), then the robust Bellman equation equation 11 can

be rewritten as Q = TP,g(Q). As proved, the optimal policy π∗ can be obtained from the solution Q∗

to equation 11: π∗(s) ∈ argmaxa Q
∗(s, a), thus obtaining the optimal policy for our communicating

robust AMDP is equivalent to solving the equation Q = TP,g∗
P
(Q).

Based on this fundamental result, we develop a sample efficient algorithm to effectively solve
equation 11, thus finding the optimal robust policy.

2Our communicating assumption is slightly stronger than the standard weakly communicating condition,
which allows transient states to exist.
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4 ROBUST HALPERN ITERATION (RHI) FOR ROBUST AMDPS

In this section, we design our data-driven robust Halpern Iteration (RHI) algorithm to solve equa-
tion 11. We will show later that, our RHI algorithm does not require any prior information of the
robust AMDP, and achieves a near-optimal sample complexity.

As discussed in Section 2, finding the optimal policy for a robust AMDP is equivalent to solving
the corresponding robust Bellman equation (11): Q = TP,g∗(Q) = TP(Q)− g∗P , where TP(Q) ≜
r + σP(Qmax). However, solving this equation is highly challenging. Firstly, the equation has two
unknown variables: Q and g∗P ; Since g∗P is unknown, the operator TP,g∗

P
is not readily feasible.

Moreover, different from the irreducible or ergodic cases where the operator TP,g is a contraction,
it is a non-expansion under our setting, invalidating the previous methods. Finally, the non-linear
structure of TP,g (compared to the linear structure of the non-robust operator) further results in a
complicated solution space to the Bellman equation (Wang et al., 2023g). In the following, we
address these challenges sequentially, and propose our RHI algorithm.

Curse of dual variables. To address the issue of solving an equation with two unknown variables, we
first claim that, even if we do not know the value of g∗P , we can still obtain the optimal policy through
a proximal equation. Our claim is based on the following result, where we show that a near-optimal
policy can be identified by approximating the solution to the robust Bellman equation (11) w.r.t. the
Span semi-norm.

Lemma 4.1. Under Assumption 3.1, let Q ∈ RSA and π be the greedy policy w.r.t. Q, i.e.,
π(s) ∈ argmaxa∈A Q(s, a). Then, for every state s ∈ S, it holds that:

0 ≤ g∗P − gπP(s) ≤ Sp(TP,g∗
P
(Q)−Q) = Sp(TP(Q)−Q). (12)

The result thus implies that, to obtain the optimal policy π∗, exactly solving equation 11 is not
necessary; instead, it suffices to find a weaker solution Q such that TP,g∗

P
(Q)−Q = ce, for some

constant c ∈ R and the all-one vector e = (1, ..., 1) ∈ RSA (note that the solution Q to equation 11
also satisfies the equation with c = 0). Moreover, we show that this equation, and hence finding the
optimal policy, are further equivalent to solving the proximal equation that only contains one variable:

TP(Q)−Q = ce, for some c ∈ R, (13)

since it is sufficient to find an arbitrary solution to equation 13 for some c. Noting that the span
semi-norm is invariant to constant shifts, and inspired by previous studies of non-robust AMDPs
(Zhang et al., 2021; Lee et al., 2025), we instead consider the embedded equation in the quotient
space w.r.t. identical vectors. Namely, we define a relation between two vectors v, w ∈ RSA: v ∼ w
if v − w = ce for some c, which can be directly verified to be an equivalence relation. We thus
construct the quotient space E ≜ RSA/ ∼, and the embedded equation of equation 13 on E becomes:

[TP(Q)] = [Q], where [·] denotes the equivalence class of · . (14)

Thus, solving a robust AMDP is equivalent to solving equation 14 in the quotient space E. Notably,
this equation only contains one variable and has a much easier structure.

Non-contraction. The second challenge is that the robust Bellman operator TP is not a contraction,
but rather only a non-expansion, even in the quotient space E. This invalidates the previous approaches
for the discounted setting or average reward setting with stronger assumptions (Chen et al., 2025;
Xu et al., 2025a;b), which utilize the Banach-Picard iteration to find the unique fixed point of the
contracted operator. To address this issue and find a solution to the non-expansion equation 13, we
adopt the Halpern iteration (Halpern, 1967) from the stochastic approximation area. Specifically, to
solve an equation x = T (x) for a non-expansion operator x, the Halpern iteration recursively updates
the algorithms through xk+1 = (1−βk+1)x

0+βk+1T (x
k), which is a convex combination between

T (xk) and the initialization x0. Halpern iteration has been studied in optimization areas (Halpern,
1967; Sabach & Shtern, 2017; Lieder, 2021; Park & Ryu, 2022; Contreras & Cominetti, 2023) and
more recently in non-robust RL (Lee et al., 2025; Lee & Ryu, 2025).

Based on the Halpern iteration, we can similarly develop our RHI algorithm in the quotient space as
[Qk+1] = [(1− βk+1)Q

0 + βk+1TP(Q)]. We show in the following result that it will converge to
some solution to equation 14, and hence find an optimal policy, when the robust AMDP is known.
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Theorem 4.2. Consider the exact robust Halpern iteration [Qk+1] = [(1−βk+1)Q
0 +βk+1TP(Q)],

with βk = k
k+2 . Set πk to be the greedy policy w.r.t. Qk. Then,

Sp(TP(Qk)−Qk) → 0, and g∗P − gπ
k

P → 0, as k → ∞. (15)

This result hence implies the asymptotic convergence of our RHI algorithm, even if the operator may
not be a contraction. Notably, the convergence result utilizes the solvability of the robust Bellman
equation, which we derived under our weaker communicating setting.

Efficient data-driven algorithm. The above convergence of RHI can be obtained when we exactly
know the uncertainty set P . However, in the learning setting where we do not know the worst-case
kernel, we only have access to samples from the nominal kernel. This stands as the most challenging
problem in the robust RL setting, since estimating the robust Bellman operator from nominal samples
can be challenging, known as off-dynamic learning (Eysenbach et al., 2020; Liu & Xu, 2024; Holla,
2021). Note that the robust Bellman operator captures the dynamics under the worst-case transition
kernel, which is generally different from the nominal kernel. To address this issue, a multi-level
Monte-Carlo (MLMC) approach was introduced in previous works (Liu et al., 2022b; Wang et al.,
2023g). However, MLMC generally results in an infinitely large sample complexity, and only
guarantees asymptotic convergence, hence it cannot be applied.

To effectively estimate the robust Bellman operator while maintaining a tractable sample complexity,
we propose a recursive sampling technique, inspired by (Lee et al., 2025; Jin et al., 2024b). In
particular, we utilize the nominal samples to estimate the difference between two steps: TP(Qk)−
TP(Qk−1). Notably, although TP is an off-dynamic term, the difference term TP(Qk)− TP(Qk−1)
can be efficiently estimated under the uncertainty sets we considered, thus enabling our algorithm
design. Moreover, this sampling scheme allows us to re-use the samples from previous steps, and
hence improves sample efficiency. Based on this technique, we design a concrete sampling subroutine,
R-SAMPLE, for two types of uncertainty sets: contamination model in equation 4 and ℓp-norm
model in equation 5. We further incorporate our R-SAMPLE sampling algorithm to propose our RHI
algorithm in Algorithm 1. In our algorithm, we utilize the sampling scheme to estimate the difference
between two steps, and then re-use the estimation T k−1 of the Bellman operator for the previous step
to construct the estimation T k for the current step.

Algorithm 1 Robust Halpern Iteration (RHI)

1: Input: Q0 = 0 ∈ RSA, δ ∈ (0, 1), c0 = 10 · ln2(2), β0 = 0
2: α = ln(2|S||A|(n+ 1)/δ)
3: T−1 = r;h−1 = 0
4: for k = 0, . . . , n do
5: ck = 5(k + 2) ln2(k + 2), βk = k/(k + 2)
6: Qk = (1− βk)Q

0 + βk T
k−1

7: hk = Qk
max

8: mk = max{⌈αckSp(hk − hk−1)2/ϵ2⌉, 1}
9: Dk = R-SAMPLE(hk, hk−1,mk) See Appendix C for the algorithm

10: T k = T k−1 +Dk

11: end for
12: πn(s) ∈ argmaxa∈A Qn(s, a) ∀ s ∈ S
13: Output: πn

We then derive the sample complexity analysis for our RHI algorithm.
Theorem 4.3 (Performance of RHI). Consider a robust AMDP defined by contamination or ℓp-norm,
satisfying Assumption 3.1 (or the unichain assumption (Wang et al., 2023g)). Set the step sizes
ck = 5(k + 2) ln2(k + 2) and βk = k/(k + 2). Then, with probability at least 1 − δ, the output
policy πn is ϵ-optimal:

g∗P − gπ
n

P (s) ≤ ϵ, (16)

as long as the total iteration number n exceeds H
ϵ , resulting in a total sample complexity of

Õ
(
SAH2

ϵ2

)
. (17)
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Our result is the first finite sample complexity guarantee for robust AMDPs under communicating
assumptions, without any prior knowledge requirement. Hence, it underscores the sample efficiency
and applicability of our algorithm. Our complexity result represents the state-of-the-art in robust
average reward RL (see Section 5.1 for a detailed comparison with prior works).

We note that the minimax optimal sample complexity for non-robust AMDPs is Ω̃
(
SAH
ϵ2

)
(Wang

et al., 2022), where H is the non-robust optimal span. Noting that non-robust AMDPs are special
cases of robust ones, our sample complexity result matches this minimax optimal complexity in all
terms except for H, and is thus near-optimal. We also highlight that, the minimax optimal complexity
for non-robust AMDPs is achievable only with prior knowledge of H or other MDP parameters
(Zurek & Chen, 2023; Sapronov & Yudin, 2024; Wang et al., 2023b;c); and when there is no such
knowledge, non-robust algorithms also are sub-optimal (Jin et al., 2024a; Lee et al., 2025). We leave
it as future research to investigate the minimax lower bound for robust AMDPs, if it is achievable
without any prior knowledge, and if it can be extended to other uncertainty sets.
Remark 4.4. Implementing our RHI algorithm does not require any prior knowledge, except that the
total iteration number, n, depends on H. Although it is common in sample complexity analysis to
have an iteration number that depends on unknown underlying parameters, e.g., (Li et al., 2021a;b;
Wang et al., 2024d), its concrete and practical implementations can still be challenging. To address
this issue, we further modify Algorithm 1 to employ a doubling trick (Auer et al., 1995; Besson
& Kaufmann, 2018; Lee et al., 2025), and propose our Parameter-Free RHI (PF-RHI) algorithm.
PF-RHI is completely independent of H, while maintaining the same sample complexity. We defer the
discussion to Appendix E,

5 RELATED WORK

5.1 COMPARISONS WITH PRIOR RESULTS

In this section, we first compare with the most related works on finite sample complexity analysis of
robust average-reward RL, including (Grand-Clément & Petrik, 2024; Roch et al., 2025; Xu et al.,
2025b;a; Chen et al., 2025). The comparison is summarized in Table 1.

In (Grand-Clément & Petrik, 2024; Roch et al., 2025; Chen et al., 2025), reduction-based methods are
developed. In these works, a robust discounted reward RL with some specific discount factor (referred
to as a reduction factor) is constructed, and its optimal robust policy is shown to be near-optimal
under average reward. Thus, the sample complexity of robust average reward RL is then equivalent
to that of the corresponding discounted RL with the reduction factor. In (Grand-Clément & Petrik,
2024), an upper bound on the reduction factor is derived as γ ≤ 1 − C

SSmS2 , when the nominal
kernels are rational, i.e., Pa

s = ns,a/ms,a with ns,a,ms,a ∈ N, and m is the smallest denominator
among all kernel entries. However, coupling this bound with existing sample-complexity results for
robust DMDPs yields exponential sample complexity for robust AMDPs. In (Chen et al., 2025), the
reduction factor is set to a sample-number dependent value, and the corresponding sample complexity
is derived. However, their results require stronger assumptions on the AMDP structure (uniformly
ergodic) and the radius of the uncertainty set (the radius has to be small), limiting the applicability.
More recently, a reduction factor γ = 1− ϵ

H is developed in (Roch et al., 2025) and sample complexity
that matches ours is derived under the unichain setting. However, this reduction factor depends on
the robust optimal span H, requiring its knowledge even before learning. In practice, access to such
knowledge is infeasible, and even its estimation can be challenging and inefficient (Zurek & Chen,
2023; Tuynman et al., 2024).

Another line of work (Xu et al., 2025b;a) utilizes the truncated multi-level Monte-Carlo method
developed in (Wang et al., 2024b) to directly find the optimal policy. However, both works assume
the underlying robust AMDP is irreducible, under which the robust Bellman operator becomes a
γ-contraction w.r.t. the Span, and the sample complexity can be derived. Their method relies heavily
on the contraction (which does not hold in our setting), and so cannot be applied.

Hence, compared to these prior works, our method enjoys three major advantages: (1). We require
the weakest AMDP structure, communicating–all prior work imposes stronger structures; (2). We do
not require any prior knowledge of the robust AMDP (like H in (Roch et al., 2025)); (3). We enjoy
the tightest sample complexity (noting that H ≤ tm, i.e., the mixing time (Wang et al., 2022; Roch
et al., 2025)). Thus, our RHI method represents the state-of-the-art in robust average reward RL.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Algorithm AMDP
Structure

Uncertainty
Set

Sample
Complexity

(Grand-Clément & Petrik, 2024) P ∈ Q N/A Exponential

Chen et al. (2025) Uniformly ergodic KL Õ
(

SAt2m
p∧ϵ2

)
Xu et al. (2025b) Irreducible & aperiodic TV Õ

(
SAt2m

(1−γ)2ϵ2

)
Xu et al. (2025a) Irreducible & aperiodic TV Õ

(
SAt2m

(1−γ)2ϵ2

)
Roch et al. (2025) Unichain TV Õ

(
SAH2

ϵ2

)
Ours Communicating/unichain lp Õ

(
SAH2

ϵ2

)
Table 1: Comparison with prior results. tm denotes the robust mixing time; γ in (Xu et al., 2025a;b)
is the contraction coefficient under the irreducibility assumption.

5.2 OTHER RELATED WORK

Robust RL with average reward. Studies on robust RL with average reward are relatively limited.
Early research focused on dynamic programming (DP) methods in robust AMDPs. These inves-
tigations, initiated by (Tewari & Bartlett, 2007) for specific finite-interval uncertainty sets, were
subsequently extended to more general uncertainty models in works such as (Wang et al., 2023f;
Grand-Clement et al., 2023; Wang & Si, 2025). These foundational studies were instrumental in
revealing the fundamental structure of robust AMDPs and illustrating their connections to robust
DMDPs. As an alternative method, (Chatterjee et al., 2023) recently proposed a game-theoretic
approach for finding the optimal policy. Building on the understanding of robust AMDP structures,
the focus also extends to learning algorithms, where (Wang et al., 2023g) introduced a model-free
algorithm with asymptotic convergence guarantees. However, all of these aforementioned approaches
focus on asymptotic convergence only, leaving finite-sample complexity analyses largely unaddressed.

Robust RL with discounted rewards. Robust DMDPs were first studied in foundational works such
as (Iyengar, 2005; Nilim & El Ghaoui, 2004; Bagnell et al., 2001; Wiesemann et al., 2013; Lim et al.,
2013). These initial investigations typically assumed a fully known uncertainty set and developed
solutions based on robust DP. Since then, extensive theoretical research has significantly adapted
and extended these concepts to various learning paradigms where the uncertainty set or the nominal
model might be unknown or learned from data. Prominent research directions include analyses in
settings with generative models (Yang et al., 2022; Panaganti & Kalathil, 2022; Xu et al., 2023; Shi
et al., 2023; Zhou et al., 2021; Wang et al., 2023d; Liang et al., 2023; Liu et al., 2022b; Wang et al.,
2023e; 2024b; 2023a; Kumar et al., 2023; Derman et al., 2021), investigations into offline learning
from fixed datasets (Shi & Chi, 2022; Liu & Xu, 2024; Wang et al., 2024a;c), and developments
within online learning frameworks involving exploration (Wang & Zou, 2021; Lu et al., 2024; Ghosh
et al., 2025; He et al., 2025). A key focus across these diverse settings is often to provide rigorous
finite-sample complexity guarantees or convergence rates, characterized under different assumptions
regarding the structure of the uncertainty set and the nature of data access.

Non-robust RL with average reward. The study of non-robust AMDPs originated with foundational
model-based DP techniques, such as Policy Iteration and Value Iteration, which assume a known
model (Puterman, 2014; Bertsekas, 2011). Subsequently, research shifted towards model-free RL
algorithms. These include adaptations of Q-learning and SARSA, like RVI Q-learning (Abounadi
et al., 2001; Wan et al., 2021; Wan & Sutton, 2022), designed to learn optimal policies directly from
interaction data without requiring explicit model knowledge (Dewanto et al., 2020).

Beyond asymptotic convergence, sample complexity for achieving near-optimal policies in (non-
robust) AMDPs is extensively studied. A significant body of work is based on the reduction frame-
work, which transforms the AMDP into a DMDP using a carefully chosen discount factor. However,
selecting an appropriate discount factor typically requires prior knowledge of crucial MDP parame-
ters, such as the span of the bias function (Zurek & Chen, 2023; Wang et al., 2022; Zurek & Chen,
2024; Sapronov & Yudin, 2024; Jin & Sidford, 2021) or various mixing time constants (Wang et al.,
2023b;c). Notable progress has been made under such assumptions, for instance, (Zurek & Chen,
2023; Sapronov & Yudin, 2024) demonstrate that if the bias span is known and used to set the
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reduction factor, the resulting sample complexity matches the minimax optimal rate for weakly
communicating MDPs (Wang et al., 2022). Alongside reduction-based methods, direct approaches
that do not involve conversion to DMDPs, but still require prior knowledge, have also been recently
developed (Zhang & Xie, 2023; Li et al., 2024). Recognizing that the prerequisite of prior knowledge
can be restrictive and impractical, and that estimating these parameters accurately is challenging
(Tuynman et al., 2024), another line of research investigates AMDPs without prior knowledge,
achieving sub-optimal sample complexity (Lee et al., 2025; Jin et al., 2024a; Lee & Ryu, 2025;
Tuynman et al., 2024).

Extending these diverse frameworks and insights to robust AMDPs is, however, particularly chal-
lenging. This difficulty stems from the greater complexity inherent in the robust average-reward
paradigm, including issues such as the non-linearity of the robust Bellman operator and a more
intricate, high-dimensional solution space for the robust Bellman equation (Wang et al., 2023g).

6 EXPERIMENT RESULTS

We conduct experiments to validate our theoretical results and evaluate the empirical performance of
RHI. We consider the Garnet problem (Archibald et al., 1995) G(20,15) with 20 states and 15 actions,
where nominal transition kernels are randomly generated. We consider three uncertainty sets: the
contamination model, the ℓ∞-norm model (total variation), and the ℓ2-norm model.

After each iteration of our RHI algorithm, we derive the greedy policy based on the current Q-value
estimates from RHI. The robust average reward of this derived policy is then calculated using the
RRVI algorithm from (Wang et al., 2023g) and recorded. For comparison, we establish a baseline
consisting of the optimal robust average reward, also computed via the RRVI algorithm. Each
experimental configuration is repeated for 10 independent runs. All of our experiments require
minimal compute resources and are implemented using Google Colab. We present the mean robust
average reward across these runs where the shaded region in Figure 1 is the standard deviation.

As depicted in Figure 1, the experimental results demonstrate that our RHI algorithm effectively
converges to the optimal robust average reward, thereby corroborating our theoretical findings.

(a) Contamination model (b) ℓ∞-norm model (c) ℓ2-norm model

Figure 1: Performance of RHI.

7 CONCLUSION

Robust reinforcement learning under the average-reward criterion suffers from the significant chal-
lenge of developing efficient algorithms with finite-sample guarantees, thus hindering its application
in data-limited environments. This generally resulted from complexity of the problem setting and the
limitations of prior approaches, which often relied on stronger structural assumptions, or required
impractical prior knowledge. Therefore, we introduced Robust Halpern Iteration (RHI), a novel
model-free algorithm for finding near-optimal policies in robust AMDPs. Key advantages of RHI
are its ability to bypass the need for prior knowledge of specific MDP parameters or strong AMDP
structures, which are common prerequisites for prior methods. We theoretically established that
RHI achieves a sample complexity of Õ

(
SAH2

ϵ2

)
to find an ϵ-optimal policy, under the contami-

nation/unichain conditions and ℓp-norm/contamination uncertainty sets. Our result is near-optimal,
enhancing the applicability of average-reward robust RL in those data-intensive and real-world
applications.
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A PRELIMINARIES AND PROOF ORGANIZATION

To facilitate the analysis and understanding of our work, we specify the notations as follows.

System Characteristics. We consider a robust AMDP (S,A,P, r) centered around the nominal
kernel P with the following properties:

• The uncertainty set P =
⊗

s∈S,a∈A Pa
s is SA-rectangular (Nilim & El Ghaoui, 2004;

Iyengar, 2005; Wiesemann et al., 2013), where Pa
s ⊆ ∆(S) is defined independently

∀(s, a) ∈ S ×A.
• Each Pa

s is simultaneously compact and convex.
• The robust system is communicating, meaning that for any arbitrary transition kernel P ∈ P

and s1, s2 ∈ S s.t. s1 ̸= s2, there exists some stationary policy π and integer N s.t.
Pπ(SN = s2|S0 = s1) > 0.

• The learner in the robust system has access to a generative model or simulator (Panaganti &
Kalathil, 2022; Shi et al., 2023; Xu et al., 2023) to generate i.i.d. samples for any state-action
pair under the nominal kernel P.

Additional notation.

• We define a stationary policy as π : S → ∆(A), and subsequently define the finite set of all
stationary policies as Π such that π ∈ Π.

• Since the worst-case robust average reward under the time varying model is equivalent to
the one under the stationary model (Wang et al., 2023f), we therefore focus on this time
invariant model. For a given stationary policy, π ∈ Π, satisfying equation 8, we define the
set of minimizing (worst-case) transition kernels as Ωπ

g ≜ {P ∈ P : gπP = gπP}, where
gπP(s) ≜ lim infT→∞ Eπ,P

[
1
T

∑T−1
n=0 rt|S0 = s

]
.

• We use r to denote the SA-dimensional vector, whose (s, a)-th entry is r(s, a). We use
Pa
s,s′ to denote the transition probability from s to s′ under the action a of some transition

kernel P.
• Given a policy π, a reward r and a transition kernel P, we denote the induced reward and

state-transition kernel by rπ ∈ RS and Pπ ∈ RS×S :

rπ(s) =
∑
a

π(a|s)r(s, a), (Pπ)s,s′ =
∑
a

π(a|s)Pa
s,s′ . (18)

• For a vector V ∈ RS , we use PV to denote an SA-dimensional vector as

(PV )s,a = Pa
sV. (19)

Specifically, for Q ∈ RSA, Qmax ∈ RS , and

(P(Qmax))s,a = Pa
s(Qmax) =

∑
s′

Pa
s,s′ max

b
{Q(s′, b)}. (20)

• For an uncertainty set P , we denote the robust Bellman operator TP(Q) : RSA → RSA as

TP(Q)(s, a) = r(s, a) + σPa
s
(Qmax). (21)

B PROOF OF THEOREM 3.2

Theorem B.1. (Restatement of Theorem 3.2) Consider a robust AMDP satisfying Assumption 3.1.
Then it holds that:

(1). The optimal robust average reward g∗P is a constant, i.e., g∗P(s1) = g∗P(s2),∀s1 ̸= s2;

(2). The robust Bellman equation in 11 has a solution (Q∗, g∗), and the solution g∗ is the optimal
robust average reward, i.e., g∗ = g∗P(s);

(3). The greedy policy π w.r.t. Q, i.e., π(s) ∈ argmaxa Q(s, a), is an optimal robust policy.
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Proof. Proof of (1). Note that Assumption 3.1 implies that for any P ∈ P , the non-robust MDP
(S,A,P, r) is weakly accessibility (Zurek & Chen, 2023), thus the optimal average reward g∗P is a
constant (Bertsekas, 2011).

We then apply Theorem 3.5 from (Grand-Clement et al., 2023), which shows that the optimal robust
average gain, g∗P , is the value of the zero-sum stochastic game between the agent and the environment,
and the following saddle-point equilibrium exists:

g∗P = sup
π

inf
P∈P

gπP = inf
P∈P

sup
π

gπP . (22)

Since for a fixed P, supπ g
π
P = g∗P is a constant, thus the RHS of equation 22 is also a constant, as the

infimum over a set of scalar constants is itself a scalar constant. This hence proves that the optimal
robust gain g∗P is a constant, independent of the initial state.

Proof of (2). As g∗P is a constant under our setting, it satisfies the initial-state-independent condition
in (Wang & Si, 2025), thus part (2) can be directly obtained by applying the results in (Wang & Si,
2025).

Proof of (3). Since (Q∗, g∗) is a solution to the robust Bellman equation equation 11, the pair
(h∗, g∗), where h∗(s) ≜ maxa Q

∗(s, a) satisfies the following equation:

h∗(s) + g∗ =
∑
a

π(a|s)(r(s, a) + σPa
s
(h∗)).

Let Pπ ∈ P be the worst-case transition kernel for policy π. Then it holds that

h∗(s) + g∗ =
∑
a

π(a|s)(r(s, a) + σPa
s
(h∗)) =

∑
a

π(a|s)(r(s, a) + (Pπ)
a
s(h

∗)),

i.e.,

h∗ = rπ − g∗ + (Pπ)
πh∗. (23)

Multiplying this inequality by ((Pπ)
π)k and taking a sum further implies that

g∗ =

∑n−1
k=0((Pπ)

π)krπ
n

+
(((Pπ)

π)n − I)h∗

n
. (24)

We then take lim inf on both sides, and it implies that

g∗ = lim inf
n→∞

∑n−1
k=0((Pπ)

π)krπ
n

= gπP , (25)

since (Pk − I)h∗ is bounded and finite. Since (2) implies that g∗ = g∗P , thus gπP = g∗P , and the
greedy policy π is optimal.

We hence complete the proof.

C SAMPLING ALGORITHM

In this section, we present a method to approximate the robust Bellman operator T k ≈ TP(Qk) by
sampling from the nominal kernel P. Our method is based on the concrete closed-form of the support
function σP(·) over the two considered uncertainty sets.

ℓp-norm sets. When the uncertainty set is defined through the ℓp-norm as in equation 5, it is shown
that the robust Bellman operator has the following closed-form solution in (Kumar et al., 2023):

TP(Qk) = r + P(Qk
max)−Rκ(Qk

max), (26)

with some penalty function κ that is independent from P. We defer the constructions of κ to Re-
mark D.2.

Contamination set. With contamination set in equation 4, it holds that (Wang & Zou, 2021):

TP(Qk) = r + (1−R)P(Qk
max) +Rmin

s
(Qk

max). (27)
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Note that for both uncertainty sets, the difference TP(Q1)− TP(Q2) further can be derived, which
facilitates our estimation. To re-use the pre-collected samples to enhance sample efficiency, we
further develop our difference-based algorithm.

Specifically, for the ℓp-norm case, let hk = Qk
max and hk−1 = Qk−1

max, and we set the difference terms
dk = hk − hk−1, and Kk = κ(hk)− κ(hk−1). Then it holds that

TP(Qk)− TP(Qk−1) = Pdk +Kk. (28)

Hence it suffices to estimate Pdk in our algorithm. We present our robust sampling algorithm
(R-SAMPLE) as follows.

Algorithm 2 R-SAMPLE(hk, hk−1,m)

1: Input: hk, hk−1, m
2: for (s, a) ∈ S ×A do
3: if ℓp-norm uncertainty set then
4: Compute dk = hk − hk−1 and Kk = κ(hk)− κ(hk−1)

5: Dk(s, a) = 1
m

∑m
j=1 d

k(sj)−RKk(s, a) with sj
iid∼ Pa

s

6: end if
7: if Contamination uncertainty set then
8: Compute dk = hk − hk−1 and Kk = mins(h

k)−mins(h
k−1)

9: Dk(s, a) = 1−R
m

∑m
j=1 d

k(sj) +RKk(s, a) with sj
iid∼ Pa

s

10: end if
11: end for
12: Output: Dk

D PROOFS FOR RHI

D.1 ANALYSIS OF RHI

Lemma D.1 (Restatement of Lemma 4.1). Under Assumption 3.1, let Q ∈ RSA and π be the greedy
policy w.r.t. Q, i.e., π(s) ∈ argmaxa∈A Q(s, a). Then for every state s ∈ S, it holds that:

0 ≤ g∗P − gπP(s) ≤ Sp(TP,g∗
P
(Q)−Q) = Sp(TP(Q)−Q).

Proof. Denote h(s) ≜ Qmax(s) = maxa Q(s, a). Since π is greedy w.r.t Q, it follows that h(s) =
Q(s, π(s)) for all s ∈ S. We first denote the worst-case transition kernel of h over P by P, and its
induced kernel by Pπ , i.e.,

(Pπh) (s) = min
P∈Pπ(s)

s

Es′∼P[h(s
′)] = σPπ(s)

s
(h), ∀s ∈ S. (29)

The robust average reward under Assumption 3.1, gπP , exists and is the average reward under the
worst-case kernel Pπ , thus it holds that

gπP = gπPπ
= P∞

π rπ, (30)

where rπ = r(s, π(s)) and P∞
π is the Cesaro limit of Pπ (Puterman, 2014). Note that it holds that

P∞
π = P∞

π Pπ (Puterman, 2014), thus applying this fact to equation 30 yields that

gπP = P∞
π (rπ + Pπh− h). (31)

We further note that the (s′, π(s′))-th entry of (TP(Q)−Q) is in fact (rπ(s′) + (Pπh)(s
′)− h(s′)),

thus it holds that

min
s′∈S,a′∈A

(TP(Q)−Q)(s′, a′) ≤ (TP(Q)−Q)(s′, π(s)) = (rπ(s) + (Pπh)(s
′)− h(s′)) ,
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and by multiplying by P∞
π recursively and equation 31 we have that

min
s′∈S,a′∈A

(TPπ (Q)−Q)(s′, a′) ≤ P∞
π (rπ + (Pπh)− h) = gπP . (32)

On the other hand, denote the optimal robust policy as π∗ and its associated optimal average reward
as g∗P . Let Pπ∗ ∈ P be the corresponding worst-case transition kernel. Similar to equations 30-31,
we have that,

g∗P = gπ
∗

P∗
π∗

= P∞
π∗rπ∗ = P∞

π∗(rπ∗ + Pπ∗h− h), (33)

We introduce an auxiliary function h′ ∈ RS as h′(s′) ≜ Q(s′, π∗(s′)) for all s′ ∈ S. By definition
of h and h′, we have h′(s′) ≤ h(s′) which implies that −h(s′) ≤ −h′(s′). Substituting this in
equation 33 implies that for all s ∈ S,

g∗P(s) = P∞
π∗(rπ∗(s′) + (Pπ∗h)(s′)− h(s′))

≤ P∞
π∗(rπ∗(s′) + (Pπ∗h)(s′)− h′(s′)). (34)

Now we note that (rπ∗(s′)+(Pπ∗h)(s′)−h′(s′)) is exactly the (s′, π∗(s′))-th entry of (TP(Q)−Q),
then it holds that

g∗P(s) = P∞
π∗(rπ∗(s′) + (Pπ∗h)(s′)− h(s′))

≤ P∞
π∗(rπ∗(s′) + (Pπ∗h)(s′)− h′(s′))

≤ P∞
π∗ · max

s′∈S,a′∈A
(r(s′, a′) + (Pπ∗h)(s′)− h′(s′))

= max
s′,a′

(TP(Q)−Q)(s′, a′) (35)

Thus together with equation 32, it implies that

g∗P − gπP(s) ≤ max
s′,a′

(TP(Q)−Q)(s′, a′)−min
s′,a′

(TP(Q)−Q)(s′, a′) = Sp(TP(Q)−Q). (36)

It hence completes the proof by noting that Sp(TP,g∗
P
(Q) − Q) = Sp(TP(Q) − Q) since g∗P is a

constant per Theorem 3.2.

Remark D.2. Let Fs,a ⊂ S be a subset of forbidden states, namely when the system is at state s ∈ S
and taking action a ∈ A, it is unfeasible for the system to transition to certain other states. Formally,
by denoting the nominal kernel as P̃ we have

P̃(s′|s, a) = P(s′|s, a) = 0, ∀P ∈ P,∀s′ ∈ Fs,a.

We can then rewrite our kernel noise in equation 3 as

Pa
s =

{
P| ||P||p = R,

∑
s′

P(s′) = 0,P(s′′) = 0,∀s′′ ∈ Fs,a

}

Under consideration of the ℓp-norm model in equation 5 it can be shown

κ(h, s, a) = min
||P||p=R,

∑
s′ P(s

′)=0,P(s′′)=0,∀s′′∈Fs,a

⟨P, h⟩

= min
ω∈R

||u− ω1||p, where u(s) = h(s)1(s /∈ Fs,a),

= κp(u).

For a concrete example within the context of our empirical results for the ℓ∞ (total variation) model
in Figure 1b, we have

κ∞(h, s, a) =
maxs/∈Fs,a

h(s)−mins/∈Fs,a
h(s)

2
.

This construction of κ is what allows us to directly apply Theorem 8 from (Kumar et al., 2023) by
considering the ℓp-ball of transition kernels ||P̃− P||p ≤ R for all P ∈ P and the nominal kernel
P̃ as turning into a penalty on the next state’s value function. Adding this penalty during sampling
in Algorithm 2 allows us to effectively sample from the worst-case kernel with only access to the
nominal environment.
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We then present the proofs for our Robust Halpern Iteration for ℓp-normed Robust AMDPs. The
proof for contamination models can be derived similarly and is hence omitted.
Proposition D.3. Let ck > 0 with 2

∑∞
k=0 c

−1
k ≤ 1 and T k, Qk the iterates generated by

RHI(Q0, n, ϵ, δ). Then, with probability at least 1 − δ we have that ∥T k − TP(Qk)∥∞ ≤ ϵ si-
multaneously for all k = 0, 1, . . . , n.

Proof. We fix an (s, a)-pair in our analysis, denote Y i ≜ Di − Pdi − Ki and Xk ≜
∑k

i=0 Y
i.

Recall that di = hi − hi−1, then it holds that for all (s, a) ∈ S ×A and any i,

σPa
s
(hi)− σPa

s
(hi−1) = Pdi −Rκ(hi) +Rκ(hi−1), (37)

where the Rκ(·) is the penalty term from (Kumar et al., 2023), which we discuss further in Re-
mark D.2.

Since h−1 = 0 by the initialization of RHI, we have the robust Bellman operator as

TP(Qk)(s, a) = r(s, a) + σPa
s
(hk) = r(s, a)−Rκ(hk, s, a) +

∑
s′∈S

P(s′|s, a)h(s′). (38)

We further denote that Ki ≜ Rκ(hi)−Rκ(hi−1), and from equation 28 we have that

TP(Qk) = r +

k∑
i=0

Ki. (39)

We then consider the estimation error. Recall that T k(s, a) = T k−1(s, a) +Dk(s, a), thus

T k(s, a)− TPa
s
(Qk)(s, a)

= T k−1(s, a)− TPa
s
(Qk−1)(s, a) +Dk(s, a)− Pdk −Kk

= T k−1(s, a)− TPa
s
(Qk−1)(s, a) + Y k(s, a)

= Xk(s, a), (40)

due to our initialization.

We then estimate P(∥Xk(s, a)∥∞ ≥ ϵ), ∀(s, a) by adapting the arguments of the Azuma-
Hoeffding inequality as in (Lee et al., 2025). We consider the filtration Fk = σ({Di}ki=0). Since
hk, dk, and mk are Fk−1-measurable and the relation between the robust and non-robust Bellman
operators (Kumar et al., 2023), it follows that E[Y k(s, a)|Fk−1] = 0 for all (s, a) during sampling.
Thus the sequence {Xk(s, a)}k≥0 is a Fk-martingale. Using Markov’s inequality and the tower
property of conditional expectation yields that for every (s, a) ∈ S ×A and λ > 0,

P(Xk(s, a) ≥ ϵ) ≤ e−λϵE[exp(λXk(s, a))]

= e−λϵE
[
exp(λXk−1(s, a))E[exp(λY k(s, a))|Fk−1]

]
. (41)

Moreover, since Ki is deterministic and independent from P, it holds that Y k =
1

mk

(∑mk

j dk(ss,ak,j)
)

− Pdk(s, a). Now since dk(ss,ak,j) ∈ [mins′ d
k(s′), maxs′ d

k(s′)] and

E[Y k(s, a)|Fk−1] = 0, Hoeffding’s inequality yields that

E[exp(λY k(s, a))|Fk−1] =

mk∏
j=1

E
[

exp(λY k
j )|Fk−1

]

≤ exp
(
1

2
λ2Sp(dk)2/mk

)
, (42)

where Y k
j = 1

mk

(
dk(ss,ak,j)

)
− 1

mk
Pdk(s, a), and the last inequality is due to the fact that |Y k

j | ≤
Sp(dk)
mk

.

Combining equation 41 and equation 42 along with mk ≥ αckSp(dk)2/ϵ2, it can be derived that

E[exp(λXk(s, a))] ≤ exp
(
1

2
λ2ϵ2

k∑
i=0

c−1
i /α

)
. (43)
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Combining this with
∑∞

i=0 c
−1
i ≤ 1

2 , we have P(Xk(s, a) ≥ ϵ) ≤ exp(−λϵ + 1
4λ

2ϵ2/α). Taking
λ = 2α/ϵ we can obtain

P(Xk(s, a) ≥ ϵ) ≤ exp(−α) =
δ

2|S||A|(n+ 1)
.

Synonymously, we can find the same bound for P(Xk(s, a) ≤ −ϵ) s.t. P(|Xk(s, a)| ≥ ϵ) ≤
δ/(|S||A|(n+ 1)). The proof is hence completed by taking the union bound over all (s, a) ∈ S ×A
and over all iterations k.

We then derive our analysis under the event specified, i.e.,

∥T k(s, a)− TPa
s
(Qk)∥∞ ≤ ϵ ∀k = 0, 1, . . . , n, and (s, a) ∈ S ×A, (44)

which holds with probability (1− δ) by Proposition D.3.

Moreover, we note that from our R-SAMPLE algorithm, it holds that Sp(Dk) ≤ Sp(dk). Combining
this fact with the nonexpansivity of the max operator implies that

Sp(T k − T k−1) = Sp(Dk) ≤ Sp(dk) = Sp(hk − hk−1) ≤ Sp(Qk −Qk−1). (45)

We first provide two lemmas.

Lemma D.4. Let Q∗ be a solution to the robust Bellman equation Q∗ = TP(Q∗). Under the event
in equation 44, it holds that

Sp(Qk −Q∗) ≤ Sp(Q0 −Q∗) +
2

3
ϵk, ∀ k = 0, 1, . . . , n. (46)

Proof. By the update rule of RHI, at iteration k, it holds that Qk = (1 − βk)Q
0 + βkT

k−1 with
βk = k

k+2 . We thus have that

Sp(Qk −Q∗) ≤ (1− βk)Sp(Q0 −Q∗) + βkSp(T k−1 −Q∗)

=
2

k + 2
Sp(Q0 −Q∗) +

k

k + 2
Sp(T k−1 −Q∗). (47)

Using the invariance of Sp(·) by the addition of constants and the nonexpansivity of TP , we can then
apply the triangle inequality along with the fact that Sp(·) ≤ 2∥ · ∥∞ and the bound in equation 44 to
obtain,

Sp(T k−1 −Q∗) = Sp
(
T k−1 − TP(Q∗)

)
≤ 2ϵ+ Sp(Qk−1 −Q∗). (48)

We can then plug this back into equation 47 to get

Sp(Qk −Q∗) ≤ 2

k + 2
Sp(Q0 −Q∗) +

k

k + 2

(
2ϵ+ Sp(Qk−1 −Q∗)

)
.

Set θk = (k+1)(k+2)Sp(Qk −Q∗), then we have θk ≤ θ0(k+1)+2ϵk(k+1)+ θk−1. Through
induction we can get that,

θk ≤ θ0

k∑
i=1

(i+ 1) + 2ϵ

k∑
i=1

i(i+ 1) + θ0

= θ0
1

2
(k + 1)(k + 2) +

2

3
ϵk(k + 1)(k + 2).

Dividing both sides by (k + 1)(k + 2) hence completes the proof.

Lemma D.5. Under the event in equation 44. We denote ρk ≜ 2Sp(Q0 −Q∗) + 2
3ϵk, then for all

k = 1, 2, . . . , n, we have

Sp(Qk −Qk−1) ≤ 2

k(k + 1)

k∑
i=1

ρi+2.
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Proof. We have shown two equations:

Qk =
2

k + 2
Q0 +

k

k + 2
T k−1, Qk−1 =

2

k + 1
Q0 +

k − 1

k + 1
T k−2. (49)

We then subtract them and have that

Qk −Qk−1 =
2

(k + 1)(k + 2)

(
T k−1 −Q0

)
+

k − 1

k + 1

(
T k−1 − T k−2

)
. (50)

By Sp(Qk −Q∗) ≤ Sp(Q0 −Q∗) + 2
3ϵk (from Lemma D.4) and equation 48, we then have that

Sp(T k−1 −Q0) ≤ Sp(T k−1 −Q∗) + Sp(Q∗ −Q0)

≤ ρk+2.

Substituting this into equation 50 and using equation 45 yields

Sp(Qk −Qk−1) ≤ 2

(k + 1)(k + 2)
ρk+2 +

k − 1

k + 1
Sp(Qk−1 −Qk−2).

We further set θ̃k = k(k + 1)Sp(Qk −Qk−1), and it holds that

θ̃k ≤ 2k

k + 2
ρk+2 + k(k − 1)Sp(Qk−1 −Qk−2)

≤ 2k

k + 2
ρk+2 + θ̃k−1

≤ 2ρk+2 + θ̃k−1

≤ 2

k∑
i=1

ρi+2.

Dividing both sides by k(k + 1) implies that

Sp(Qk −Qk−1) ≤ 2

k(k + 1)

k∑
i=1

ρi+2, (51)

which completes the proof.

Theorem D.6 (Restatement of Theorem 4.2). Consider the exact robust Halpern iteration [Qk+1] =
[(1− βk+1)Q

0 + βk+1TP(Q)], with βk = k
k+2 . Set πk to be the greedy policy w.r.t. Qk. Then,

Sp(TP(Qk)−Qk) → 0, and g∗P − gπ
k

→ 0, as k → ∞. (52)

Proof. By Lemma D.1, we have that g∗P − gπ
k

P ≤ Sp(TP(Qk)−Qk), thus it suffices to show that
Sp(TP(Qk)−Qk) → 0.

We derive our analysis under the event in Proposition D.3, that with probability at least (1− δ), we
have that ∥T k − TP(Qk)∥∞ ≤ ϵ for all (s, a) ∈ S ×A and for all k = 0, 1, . . . , n.

For ease of reading, we drop the brackets from the equivalence class notations. Our RHI updates as
Qk = (1− βk)Q

0 + βkT
k−1 = 2

k+2Q
0 + k

k+2T
k−1 in the quotient space, which implies that for

each (s, a) ∈ S ×A, we have the following decomposition

TP(Qk)−Qk (53)

=
2

k + 2

(
TP(Qk)−Q0

)
︸ ︷︷ ︸

Term 1

+
k

k + 2

(
TP(Qk)− TP(Qk−1)

)
︸ ︷︷ ︸

Term 2

+
k

k + 2

(
TP(Qk−1)− T k−1

)
︸ ︷︷ ︸

Term 3

.

We then bound the three terms.
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Term 1:
Recall that ρk = 2Sp(Q0 − Q∗) + 2

3ϵk. From the invariance of Sp(·) by additive constants, the
triangle inequality, the nonexpansivity of TP(·) under the span seminorm, and Lemma D.4, it yields

Sp(TP(Qk)−Q0) ≤ Sp(Qk −Q∗) + Sp(Q∗ −Q0)

≤ ρk, ∀(s, a) ∈ S ×A.

Term 2:
This term can be bounded through a similar approach to Lemma D.5 as

Sp
(
TP(Qk)− TP(Qk−1)

)
= Sp(Qk −Qk−1)

≤ 2

k(k + 1)

k∑
i=1

ρi+2, ∀(s, a) ∈ S ×A.

Term 3:
From Proposition D.3 we have that

Sp(TP(Qk−1)− T k−1) ≤ ϵ, ∀(s, a) ∈ S ×A.

We then combine all three terms in equation equation 53, and we have that

g∗P − gπ
k

P (s)

Lemma 4.1
≤ Sp(TP(Qk)−Qk) (54)

equation 53

≤ 2

k + 2
ρk +

k

k + 2

[
2

k(k + 1)

k∑
i=1

ρi+2

]
+

k

k + 2
(2ϵ) (55)

(a)

≤ 4

k + 2
Sp(Q0 −Q∗) +

4ϵk

3(k + 2)
+

2

(k + 1)(k + 2)

[ k∑
i=1

(
2∥Q0 −Q∗∥∞ +

2

3
ϵ(i+ 2)

)]
+ 2ϵ

(56)
(b)

≤ 4

k + 2
Sp(Q0 −Q∗) +

4ϵk

3(k + 2)
+

4k

(k + 1)(k + 2)
Sp(Q0 −Q∗) +

2ϵ(k2 + 5k)

3(k + 2)(k + 1)
+ 2ϵ

(57)

≤ 4(1 + 2k)

(k + 2)(k + 1)
Sp(Q0 −Q∗) +

4(3k2 + 8k + 3)

3(k + 2)(k + 1)
ϵ (58)

≤ 8Sp(Q0 −Q∗)

k + 2
+ 4ϵ, (59)

where inequality (a) is from the definition of ρk, inequality (b) is from Sp(·) ≤ 2∥ · ∥∞.

The proof is thus completed by letting k → ∞ and ϵ → 0.

Theorem D.7 (Restatement of Theorem 4.3 - Performance of RHI). Consider a robust AMDP defined
by contamination or ℓp-norm, satisfying Assumption 3.1. Set the step sizes ck = 5(k + 2) ln2(k + 2)
and βk = k/(k + 2). Then, with probability at least 1− δ, the output policy πn is ϵ-optimal:

g∗P − gπ
n

P (s) ≤ ϵ, (60)

as long as the total iteration number n exceeds H
ϵ , resulting in the total sample complexity of

Õ
(
SAH2

ϵ2

)
. (61)
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Proof. Using the fact that Sp(dk) ≤ Sp(Qk −Qk−1) in equation 45 and Lemma D.5, we can derive

Sp(dk) ≤ 2

k(k + 1)

k∑
i=1

ρi+2

=
4

k + 1
Sp(Q0 −Q∗) +

2(k + 5)

3(k + 1)
ϵ

≤ 4

k + 1
Sp(Q0 −Q∗) + 2ϵ.

Since in RHI, in each step k, we sample mk samples for each (s, a)-pair, thus the total sample
complexity is SA|

∑n
k=0 mk. Note that

mk = max{⌈αckSp(dk)2/ϵ2⌉, 1} ≤ 1 + αckSp(dk)2/ϵ2, (62)

thus we have that
n∑

k=0

mk

≤ (n+ 1) +
α

ϵ2

n∑
k=0

ckSp(dk)2

≤ (n+ 1) +
10α

ϵ2
ln2(2)Sp(Q0)2 +

5α

ϵ2

n∑
k=1

(k + 2) ln2(k + 2)
(4Sp(Q0 −Q∗)

k + 1
+ 2ϵ

)2

≤ (n+ 1) +
10α

ϵ2
ln2(2)Sp(Q0)2 +

n∑
k=1

240α

ϵ2(k + 1)
ln2(k + 2)Sp(Q0 −Q∗)2 + 40α

n∑
k=1

(k + 2) ln2(k + 2)

≤ O
(
αSp(Q0)2/ϵ2 + α ln3(n+ 2)Sp(Q0 −Q∗)2/ϵ2 + αn2 ln2(n+ 2)

)
, (63)

where the penultimate line uses (a+ b)2 ≤ 2a2+2b2 and k+2
k+1 ≤ 3

2 , and the final equality by integral

estimation of the sums. Recalling that α = ln(2|S||A|(n+1)/δ), L = ln
(

2|S||A|(n+1)
δ

)
log3(n+2),

Q0 = 0, and since n ≥ H/ϵ, Sp(Q∗) ≤ H, it holds that

SA|
n∑

k=0

mk ≤ Õ
(SAH2

ϵ2
)
, (64)

which completes the proof.

E PF-RHI: A PARAMETER-FREE VARIANT OF RHI

In this section, we present a fully implementable framework for our Robust Halpern Iteration (RHI)
algorithm for diverse and unknown problem settings.

As we mention in Remark 4.4, our RHI algorithm does not require any prior knowledge of the
underlying robust AMDP, yet the total number of iterations necessary to generate an ϵ-optimal policy
is dependent on H. In practice, such an iteration number may need to be pre-set, and it may be
infeasible to set for RHI.

In order to bridge this theoretical finite sample complexity result with the nuances of practical
application for varying size problem settings, we now extend our RHI algorithm to a more general
and implementable framework: PF-RHI, presented in Algorithm 3. Notably, our PF-RHI do not
require any knowledge of H (even the iteration number); and we will show that it finds an ϵ-optimal
policy with identical total sample complexity results as RHI, Õ

(
SAH2

ϵ2

)
.

Note that in our PF-RHI, in each episode i, we run the RHI for ni steps, and output Qni and Tni .
PF-RHI will terminate if the span Sp(Tni −Qni) is small enough. Hence we do not specify iteration
number, and thus no knowledge of H is needed.
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Algorithm 3 Implementable Robust Halpern Iteration (PF-RHI)

1: Input Q0 ∈ RS×A, ϵ > 0, δ ∈ (0, 1), i = 0
2: repeat
3: Set ni = 2i, δi = δ/ci
4: Set αi = ln(2|S||A|(ni + 1)/δi), Q

0 = 0, T−1 = r, h−1 = 0, c0 = 10 · ln2(2), β0 = 0
5: for k = 0, . . . , ni do
6: ck = 5(k + 2) ln2(k + 2), βk = k/(k + 2)
7: Qk = (1− βk)Q

0 + βk T
k−1

8: hk = maxA(Q
k)

9: dk = hk − hk−1

10: mk = max{⌈αickSp(hk − hk−1)2/ϵ2⌉, 1}
11: Dk = R-SAMPLE(hk, hk−1,mk)
12: T k = T k−1 +Dk

13: end for
14: πni(s) ∈ argmaxa∈A Qni(s, a) ∀ s ∈ S
15: i = i+ 1
16: until Sp(Tni −Qni) ≤ 14ϵ
17: Output: Qni , Tni , πni

E.1 ANALYSIS OF PF-RHI

To facilitate our analysis of PF-RHI, we first present some useful notations as follows.

µ ≜ Sp(Q0 −Q∗),

ν ≜ Sp(Q0 −Q∗) + Sp(Q0),

ζ ≜ max{Sp(r),Sp(Q0)}.

We then define the following random variables:

N = inf{ni ∈ N : Sp(Tni −Qni) ≤ 14ϵ}, and
I = inf{i ∈ N : Sp(Tni −Qni) ≤ 14ϵ},

and it holds that N = 2I .

We set i0 ∈ N be the smallest integer s.t. ni0 ≥ Sp(Q0 − Q∗)/ϵ = µ/ϵ. Then either i0 = 0 and
ni0 = 1, or ni0−1 = ni0/2 < µ/ϵ, which, when combined, imply that ni0 ≤ 2(1 + µ/ϵ).

With these, we further define the additional random events:

Si = {Sp(Tni −Qni) ≤ 14ϵ, ∀(s, a) ∈ S ×A}, and

Gi = {∥T k − TP(Qk)∥∞ ≤ ϵ, ∀k = 0, 1, . . . , ni, ∀(s, a) ∈ S ×A}

where T k and Qk are generated by the inner-loop k = 0, 1, . . . , ni during the i-th iteration of PF-RHI.
During this specific iteration i, let Mi be the number of samples generated so that M ≜

∑I
i=0 Mi

where M and Mi are random variables.
Lemma E.1. It holds that

P(Si) ≥ P(Gi) ≥ 1− δi, ∀i ≥ i0,∀(s, a) ∈ S ×A. (65)

Proof. Note that Proposition D.3 directly implies P(Gi) ≥ 1− δi. Moreover, for i ≥ i0 and for all
ξ ∈ Gi, from Theorem D.6 we have that

Sp
(
Tni(ξ)−Qni(ξ)

)
≤ Sp

(
Tni(ξ)− TP(Qni)(ξ)

)
+ Sp

(
TP(Qni)(ξ)−Qni(ξ)

)
(66)

≤ 2ϵ+
8Sp(Q0 −Q∗)

ni + 2
+ 4ϵ (67)

≤ 14ϵ, (68)

thus Gi ⊆ Si, which completes the proof.
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Proposition E.2. It holds that

E[N ] ≤ 2(1 + µ/ϵ)/(1− δ).

Namely, N is finite almost surely and PF-RHI(Q0, ϵ, δ, i = 0) stops with probability 1 after a finite
number of iterations.

Proof. In each iteration i, in PF-RHI(Q0, ϵ, δ, i = 0), we reinitialize Q0 = 0 prior to the inner for
loop where k = 0, 1, . . . , ni. This implies that the events {Si : i ∈ N} are mutually independent.
Thus,

P(I = i) = P
( i−1⋂

j=0

Sc
j ∩ Si

)
=

i−1∏
j=0

P(Sc
j ) · P(Si).

Now from Lemma E.1, it holds that P(Sc
i ) ≤ P(Gc

i ) ≤ δi for all i ≥ i0, which implies that
P(I = i) ≤

∏i−1
j=i0

δj .

Moreover, by definition of c, we have that 2
∑∞

i=0 c
−1
i ≤ 1, thus δj = δ/cj ≤ δ/2, implying that

P(I = i) ≤ (δ/2)i−i0 . Using this and the fact that ni = ni02
i−i0 , it holds that

E[N ] =

∞∑
i=0

niP(N = ni)

≤ ni0 +

∞∑
i=i0+1

ni02
i−i0P(I = i)

≤ ni0

(
1 +

∞∑
i=i0+1

δi−i0
)
.

The proof is then completed by the bound of ni0 ≤ 2(1 + µ/ϵ), which implies that E[N ] ≤
2(1 + µ/ϵ)/(1− δ).

Theorem E.3. Let ck = 5(k + 2) ln2(k + 2) and βk = k/(k + 2) hold. Let ni = N so that
(QN , TN , πN ) is returned by PF-RHI(Q0, ϵ, δ, i = 0). Then with probability of at least (1− δ), we
have for all s ∈ S,

g∗P − gπ
N

P (s) ≤ Sp(TP(QN )−QN ) ≤ 16ϵ,

Which obtains a sample and time complexity of O
(
L̂|S||A|(ν2/ϵ2 + 1)

)
, with L̂ = ln

(
4|S||A|(1 +

µ/ϵ)/δ
)
log4(2(1 + µ/ϵ)).

Proof. As Lemma D.1 implies that 0 ≤ g∗P − gπ
N

P ≤ Sp(TP(QN )−QN ).

We first define A = {I ≤ i0} and B =
⋂∞

i=0 Gi, where Gi = {∥T k − TP(Qk)∥∞ ≤ ϵ, ∀k =
0, 1, . . . , ni,∀(s, a) ∈ S × A. We claim that, P(A ∩ B) ≥ (1 − δ). To prove this, note that from
Proposition D.3, P(Gc

i ) ≤ δi. Thus

P(Bc) = P
( ∞⋃

i=1

Gc
i

)
≤

∞∑
i=1

δ/ci ≤ δ/2. (69)

Then Lemma E.1 implies that P(A) ≥ P(Si0) ≥ P(Gi0) ≥ 1− δi0 ≥ 1− δ/2, thus combining this
with equation 69 implies P(Ac ∪Bc) ≤ δ, which proves our claim.

We then use the definitions of N, I, and Gi, which imply that

Sp(TP(QN )−QN ) ≤ Sp(TP(QN )− TN ) + Sp(TN −QN )

≤ 2ϵ+ 14ϵ

= 16ϵ.
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Applying equation 63 further implies the total sample complexity, M ≜
∑I

i=0 Mi can be bounded as

M ≤
i0∑
i=0

Mi (70)

= |S||A|
i0∑
i=0

O
(
αiSp(Q0)2/ϵ2 + αi ln

3(ni + 2)Sp(Q0 −Q∗)2/ϵ2 + αin
2
i ln

2(ni + 2)
)
,

where αi = ln(2|S||A|(ni + 1)/δi) is the parameter defined at iteration i (prior to the inner for loop)
of PF-RHI. Moreover, since n2

i0
≤ 4(1 + µ/ϵ)2 = O

(
Sp(Q0 −Q∗)2/ϵ2 + 1

)
, we have that

M ≤ |S||A|(i0 + 1)O
(
αi0Sp(Q0)2/ϵ2 + αi0 log

3(ni0 + 2)Sp(Q0 −Q∗)2/ϵ2 + αi0n
2
i0 log

2(ni0 + 2)
)

≤ |S||A|αi0 log
4(ni0 + 2) O

(
Sp(Q0)2/ϵ2 + 2Sp(Q0 −Q∗)2/ϵ2 + 1)

≤ L̂|S||A|O(ν2/ϵ2 + 1),

which completes the proof.

Corollary E.4. Let ni = N . Then with probability of at least (1− δ), for all s ∈ S, it holds that

g∗P − gπ
N

P (s) ≤ Sp(TP(QN )−QN ) ≤ ϵ.

This results in a sample and time complexity of O(L̃|S||A|H2/ϵ2) = Õ(SAH2/ϵ2), where we define
L̃ = ln(2|S||A|H/(ϵδ)) ln4(H/ϵ) and Õ(·) hides logarithmic terms.

Proof. Note that

Sp(Q0 −Q∗) = Sp(Q∗) = Sp(r + Ph∗) ≤ Sp(r) + Sp(h∗),

which is due to Q0 = 0 at each iteration i and the nonexpansivity of the map Q 7→ maxA(Q) = h.
Moreover, since 2(1 + µ/ϵ) = O

(
Sp(h)2/ϵ

)
, combining with Theorem E.3, the result follows by

verifying the definition of L̃.

We then derive the results under expecations.

Lemma E.5. For an arbitrary fixed iteration i ∈ N of PF-RHI(Q0, ϵ, δ, i = 0), let Mi =
|S||A|

∑ni

j=0 mj be the number of samples obtained during iteration i. We have

Mi ≤ |S||A|O
(
ni + (ζ/ϵ)2αin

2
i log

2(ni + 2)
)
,

where αi = ln(2|S||A|(ni + 1)/δi).

Proof. By using induction, for k = 0 we have by initialization d0 = maxA(Q
0) and T−1 = r. By

using both equation 45 and equation 50 along with the induction hypothesis for k ≥ 0,

Sp(dk) ≤ Sp(Qk −Qk−1)

≤ 2

(k + 1)(k + 2)
Sp(T k−1 −Q0) +

k − 1

k + 1
Sp(dk−1)

≤ 2

(k + 1)(k + 2)

(
(k + 1)ζ + ζ

)
+

k − 1

k + 1
ζ

= ζ.

This implies that

Sp(T k) ≤ Sp(T k−1) + Sp(Dk)

≤ (k + 1)ζ + Sp(dk)
≤ (k + 2)ζ.
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Thus for a fixed i ∈ N in PF-RHI, we can bound Mi as

Mi ≤ |S||A|
(
(ni + 1) + (αi/ϵ

2)

ni∑
j=0

cjSp(dj)2
)

≤ |S||A|
(
(ni + 1) + 5(ζ/ϵ)2αi

ni∑
j=0

(j + 2) ln2(j + 2)
)

= |S||A|O
(
ni + (ζ/ϵ)2αin

2
i log

2(ni + 2)
)
,

which completes the proof.

Theorem E.6. Assume that the robust-AMDP satisfies Assumption 3.1, and that the sequences
ck = 5(k+2) ln2(k+2) and βk = k/(k+2) hold. Let ni = N so that (QN , TN , πN ) is the output
of PF-RHI(Q0, ϵ, δ, i = 0). Then for every s ∈ S we have,

E
[
g∗P − gπ

N

P (s)
]
≤ 16ϵ+ δSp(r),

which yields an expected sample and time complexity of

Õ
(
|S||A|(ν2/ϵ2 + 1 + δ(1 + µ/ϵ)2(1 + (ζ/ϵ)2)

)
.

Proof. We start our proof similar to Theorem E.3 by considering the events A = {I ≤ i0} and
B =

⋂∞
i=1 Gi. From Theorem E.3, under A ∩B, for every s ∈ S it holds that g∗P − gπ

n

P (s) ≤ 16ϵ
with probability P(A ∩B) ≥ 1− δ.

On the other hand, under (A ∩B)c, we have the trivial bound of g∗P − gπ
n

P (s) ≤ Sp(r), ∀s ∈ S.
Hence the two cases together imply that

E[g∗P − gπ
n

P (s)] ≤ 16ϵ+ δSp(r), ∀s ∈ S.

Similar to Theorem E.3, we wish to estimate the sample complexity like M =
∑I

i=0 Mi for each
iteration i of PF-RHI. We accomplish this by considering the infinite disjoint union of all indexes
i > i0, or more formally Ac =

⊔∞
i=i0+1{I = i} which yields

E[M ] = E[M |A ∩B]P(A ∩B)︸ ︷︷ ︸
Term 1

+E[M |A ∩Bc]P(A ∩Bc)︸ ︷︷ ︸
Term 2

+

∞∑
i=i0+1

E[M |I = i]P(I = i)︸ ︷︷ ︸
Term 3

.

Term 1:
We use the result derived from the proof of Theorem E.3 on the event (A ∩ B) and the fact that
P(A ∩B) ≤ 1. By defining L̂ = ln

(
4|S||A|(1 + µ/ϵ)/δ

)
, we have that

E[M |A ∩B]P(A ∩B) = O
(
L̂|S||A|(ν2/ϵ2 + 1)

)
. (71)

Term 2:
We can combine the result in Lemma E.5 with P(A ∩Bc) ≤ P(Bc) ≤ δ, and ni0 ≤ 2(1 + µ/ϵ) to
obtain the following result:

E[M |A ∩Bc]P(A ∩Bc) ≤ δ|S||A|
i0∑
i=0

O
(
ni + (ζ/ϵ)2αin

2
i log

2(ni + 2)
)

≤ δ|S||A|O
(
ni0 + (ζ/ϵ)2αi0n

2
i0 log

3(ni0 + 2)
)

≤ δ|S||A|O
(
ni0 + L̂(ζ/ϵ)2n2

i0

)
. (72)

The final inequality holds by using the definition of L̂ and that αi0 log
3(ni0 + 2) ≤ O(L̂).

Term 3:
To bound this term, we can again employ the result of Lemma E.5 along with defining Z ≜

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

∑∞
i=i0+1 E[M |I = i]P(I = i) to have that

Z ≤ |S||A|
∞∑

i=i0+1

O
(
ni + (ζ/ϵ)2αin

2
i log

2(ni + 2)
)
P(I = i)

≤ |S||A|
∞∑

i=i0+1

O
(
ni + L̂(ζ/ϵ)2i3n2

i

)
P(I = i),

where the final inequality follows from using the re-initializations of ni, δi, and αi in PF-RHI to
obtain αi = O(L̂+ i) ≤ L̂O(i), where log

(
(ni+1)ci

)
= O(i), and likewise log2(ni+2) = O(i2).

With this in place, recall that ni = ni02
i−i0 . From Proposition E.2, for i ≥ i0 + 1 we have that

P(I = i) ≤
∏i−1

j=i0
δj ≤ O

(
δ
∏i−1

j=i0
1

j+2

)
. Therefore, we can denote the following

S1 ≜
∞∑

i=i0+1

2i−i0

i−1∏
j=i0

1

j + 2
, (73)

S2 ≜
∞∑

i=i0+1

22(i−i0)i3
i−1∏
j=i0

1

j + 2
, (74)

which allows us to show that

Z ≤ δ|S||A|O
(
S1ni0 + S2L̂(ζ/ϵ)

2n2
i0

)
.

However, we can calculate equation 73 and equation 74 using their incomplete Gamma functions
like,

S1 = e22−(i0+1)[Γ(i0 + 2)− Γ(i0 + 2, 2)]

≤ (e2 − 3)

2
(75)

S2 = 84 + 4i0(i0 + 5) + 67e42−2(i0+1)[Γ(i0 + 2)− Γ(i0 + 2, 4)]

= O
(
(i0 + 1)2

)
. (76)

With equation 75 and equation 76, we can finally bound Z as

Z ≤ δ|S||A|O
(
ni0 + L̂(ζ/ϵ)2n2

i0(i0 + 1)2
)
. (77)

We can then find the total expected value of the sample complexity by combining equation 71,
equation 72, and equation 77 by rearranging similar order terms and disregarding the logarithmic
terms to obtain:

E[M ] ≤ |S||A|O
(
L̂(ν2/ϵ2 + 1) + δni0 + δL̂(ζ/ϵ)2n2

i0(i0 + 1)2
)

= |S||A|Õ
(
(ν2/ϵ2 + 1) + δ(1 + µ/ϵ)2(1 + (ζ/ϵ)2)

)
,

which completes the proof.

Corollary E.7. Assume that the robust-AMDP satisfies Assumption 3.1, that the sequences ck =
5(k + 2) ln2(k + 2) and βk = k/(k + 2) hold, r(s, a) ∈ [0, 1] ∀(s, a) ∈ S × A, and H ≥ 1. Let
ni = N such that N ≥ H/ϵ so that (QN , TN , πN ) is returned by PF-RHI(Q0, ϵ/17, δ, i = 0) with
Q0 = 0, ϵ ≤ 1, and δ = ϵ2/17. We have for every s ∈ S,

E[g∗P − gπ
N

P (s)] ≤ ϵ,

where we obtain an expected sample complexity of Õ
(
|S||A|H2/ϵ2

)
.

Proof. The proof is directly derived by applying the value of δ in Theorem E.6.
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