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ABSTRACT

To address the annotation burden in LiDAR-based 3D object detection, active
learning (AL) methods offer a promising solution. However, traditional ac-
tive learning approaches solely rely on a small amount of labeled data to train
an initial model for data selection, overlooking the potential of leveraging the
abundance of unlabeled data. Recently, attempts to integrate semi-supervised
learning (SSL) into AL with the goal of leveraging unlabeled data have faced
challenges in effectively resolving the conflict between the two paradigms, re-
sulting in less satisfactory performance. To tackle this conflict, we propose a
Bidirectional Collaborative Semi-Supervised Active Learning framework, dubbed
as BC-SSAL. Specifically, from the perspective of SSL, we propose a Collabora-
tive PseudoScene Pre-training (CPSP) method that effectively learns from unla-
beled data without introducing adverse effects. From the perspective of AL, we
design a Collaborative Active Learning (CAL) method tailored for outdoor Li-
DAR scenes, which complements the uncertainty and diversity methods by model
cascading, alleviating the dilemma of sampling rare classes. Extensive experi-
ments conducted on KITTI and Waymo demonstrate the effectiveness of our BC-
SSAL. Especially, on the KITTI dataset, utilizing only 2% labeled data, BC-SSAL
can achieve comparable performance to the model trained on the full set.

1 INTRODUCTION

Being a fundamental task in autonomous driving, LiDAR-based 3D object detection plays a crucial
role in perceiving semantic and spatial clues, which recognizes and locates objects in 3D scenes
based on input point clouds captured by LiDAR sensors. During the past few years, a large number
of efforts (Yan et al., 2018; Zhou & Tuzel, 2018; Lang et al., 2019; Chen et al., 2022; Yang et al.,
2020) have been made with the performance of major public benchmarks (Geiger et al., 2013; Caesar
et al., 2020; Sun et al., 2020) rapidly and consistently increasing. Unfortunately, current methods
are deep learning based, substantially dependent on labeled data. For instance, the Waymo dataset
(Sun et al., 2020) alone encompasses over 10 million ground-truth (GT) 3D boxes. The labor-
intensive and time-consuming nature of annotating extensive datasets creates a bottleneck, hindering
the advancement in this field.

Active learning (AL) (Haussmann et al., 2020; Li et al., 2021; Feng et al., 2019) offers a promising
solution to overcoming this drawback. It selects a small subset from all samples as the most in-
formative data to measure the benefits of a fully annotated dataset. By adaptively choosing “good”
samples to label, AL significantly reduces the burden of data acquisition and annotation and shows
the potential to facilitate LiDAR-based 3D object detection (Luo et al., 2023b;a; Jiang et al., 2022;
Schmidt et al., 2020).

The AL paradigm typically consists of three phases, i.e. (1) temporary model updating (TMU),
(2) unlabeled sample selecting (USS), and (3) final model delivering (FMD). In TMU, a temporary
model is built or enhanced with the set of available labeled data, which is further applied to generate
pseudo annotations; in USS, some unlabeled data are screened out according to certain criteria and
annotated by the temporary model obtained; and in FMD, the final model is output. In general,
TMU and USS are jointly conducted for multiple iterations while FMD operates once in the end.
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Figure 1: The illustration depicts different paradigms for combining Active Learning (AL) and
Supervised/Semi-supervised Learning (SL/SSL): (a) Solely utilizing SL in all stages. (b) Employ-
ing SSL only in the final model delivering stage. (c) Integrating SSL across all stages. Paradigm (c)
achieves enhanced performance by incorporating unlabeled data compared to paradigm (a). How-
ever, traditional SSL methods face conflicts with AL in the temporary model updating stage, leading
to suboptimal data selection. Thus, paradigm (c) performs less effectively than paradigm (b).

The traditional AL methods only make use of labeled data, as shown in Fig. 1 (a). Since the large
amount of unlabeled data conveys rich information, which helps better understand the distribution
of all data rather than that of labeled ones, overlooking them leaves much room for improvement.

With the progress achieved in semi-supervised learning (SSL), some preliminary attempts (Lyu et al.,
2023; Wang et al., 2023; Mi et al., 2022) have been made to integrate such techniques in AL, where
SSL contributes to the performance gain by assigning pseudo-labels to unlabeled data based on the
prediction of the model trained on label data (Zhao et al., 2020; Wang et al., 2021). As depicted in
Fig. 1 (c), they employ SSL to strengthen both the temporary and final model in the TMU and USS
phases and demonstrate that the semi-supervised active learning (SSAL) paradigm is superior to
the traditional one (Fig. 1 (a)). However, the combination of SSL and AL is not as straightforward
as they expect, in particular for the synergy of TMU and USS. As we know, uncertainty-based
metrics are widely adopted in AL and the samples with higher uncertainties are more likely to be
selected for annotation in USS. On the other side, the samples of higher uncertainties may suffer
from low confidence scores due to the instability of SSL in TMU. In this case, a conflict arises,
where the assignment of incorrect pseudo labels to objects in SSL inevitably becomes a significant
source of noise and makes AL struggle to accurately assess their uncertainties. As this iterates for
multiple rounds, current SSAL is prone to converge with sub-optimal results, even inferior to that of
a degraded paradigm only applying SSL in FMD (Fig. 1 (b)).

To tackle the conflict between SSL and AL, we propose a bidirectional collaborative semi-supervised
active learning (BC-SSAL) framework. From the perspective of SSL, in TMU, we present a
method, namely collaborative pseudo-scene pre-training (CPSP), to effectively leverage unlabeled
data while bypassing the side effects aforementioned. The main idea is to selectively learn only
from confident objects. To this end, we generate pseudo-scenes of unlabeled data using confident
objects with the ones of high uncertainties excluded. Pre-training on these pseudo-scenes thus en-
sures that unconfident objects are not disturbed by their own pseudo-labels, which largely mitigates
the negative impact of mislabeling and noise. From the perspective of AL, considering that ob-
jects in outdoor LiDAR scenes show a severely long-tailed distribution and many objects of different
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classes appear in the same scene, it is quite difficult for AL to sample objects of rare classes for an-
notation. Moreover, accurately counting objects is challenging, as some background regions may be
misclassified as unconfident objects, further complicating the balanced sampling of scenes in active
learning. Therefore, we design a collaborative active learning (CAL) method, which simultaneously
takes the uncertainty and diversity into account. In contrast to previous counterparts, CAL enhances
uncertainty estimation and class weighting by cascading the model trained on labeled data with the
one trained on labeled and unlabeled data. Finally, BC-SSAL collaboratively integrates AL and SSL
by bidirectionally adapting them to fit each other.

In summary, our contributions are as follows:

• We point out the conflict between AL and SSL and propose a novel SSAL framework to
address it, where the CPSP method is presented to effectively leverage unlabeled data to
facilitate model training.

• We design the CAL method tailored for outdoor LiDAR scenes, which complements the
uncertainty and diversity methods by model cascading, alleviating the dilemma of sampling
rare classes.

• We do extensive experiments on the KITTI and Waymo datasets and reach state-of-the-
art results. Especially, on KITTI, we use only 2% labeled data and achieve comparable
performance to the model trained on the full set.

2 RELATED WORK

2.1 ACTIVE LEARNING

Active learning methods have gained significant attention in various domains to alleviate the labeling
burden. These methods can be broadly categorized into two main types: uncertainty-based (Houlsby
et al., 2011; Gal et al., 2017) and diversity-based approaches (Nguyen & Smeulders, 2004; Sener &
Savarese, 2017; Agarwal et al., 2020). Uncertainty-based methods leverage uncertainty to identify
informative samples for annotation while diversity-based methods prioritize capturing the diversity
and representativeness of the dataset. Furthermore, recent research (Huang et al., 2010; Ash et al.,
2019) has explored the integration of uncertainty-based and diversity-based approaches to leverage
the advantages of both.

Recently, there has been increased interest in applying active learning to object detection tasks. Un-
like image classification, active learning for object detection presents unique challenges due to the
complexities of localizing and identifying objects within images. One approach, MI-AOD (Yuan
et al., 2021) treats unlabeled images as bags of instances, using adversarial classifiers to measure
uncertainty. AL-MDN (Choi et al., 2021) utilizes mixture density networks for probabilistic out-
puts, while ENMS (Wu et al., 2022) applies entropy-based non-maximum suppression to assess
uncertainty. PPAL (Yang et al., 2022) offers a plug-and-play active learning method.

However, active learning for LiDAR-based object detection needs further research due to the dif-
ferences between images and outdoor LiDAR scenes. Some recent studies have begun to tackle
this issue. For example, CRB (Luo et al., 2023b) focuses on filtering redundant 3D bounding box
labels based on conciseness, representativeness, and geometric balance. KECOR (Luo et al., 2023a)
presents a novel strategy called kernel coding rate maximization to identify the most informative
point clouds for labeling. However, these methods may struggle with class imbalance caused by
long-tailed distributions in outdoor scenes and do not effectively utilize available unlabeled data.

2.2 SEMI-SUPERVISED ACTIVE LEARNING

Semi-supervised learning (SSL) techniques (Xu et al., 2021; Liu et al., 2021; Zhao et al., 2020; Wang
et al., 2021; Yin et al., 2022; Liu et al., 2023; Gao et al., 2023) aim to enhance model performance
by leveraging abundant unlabeled data. These methods can be integrated with active learning (AL)
to further optimize data annotation efforts (Elezi et al., 2022; Mi et al., 2022; Lyu et al., 2023; Wang
et al., 2023; Hwang et al., 2023). In most frameworks, SSL is employed for model pre-training
during the Temporary Model Updating (TMU) stage, after which AL identifies the most informative
samples for annotation. However, many approaches overlook the potential conflicts between SSL
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Figure 2: Overview of our BC-SSAL framework. In the Temporary Model Updating stage(TMU),
we propose creating pseudo scenes with confident objects for model pre-training (CPSP). Subse-
quently, in the Unlabeled Sample Selecting stage(USS), we design a collaborative active learn-
ing method to select valuable data for annotation (CAL). Finally, in the Final Model Delivering
stage(FMD), we leverage traditional semi-supervised learning methods to enhance the model per-
formance.

and AL during TMU. These methods often rely on pseudo-labeling techniques that may degrade
performance due to the noises (Mi et al., 2022; Lyu et al., 2023; Wang et al., 2023). On the other
hand, (Hwang et al., 2023) mainly uses consistency loss, which is less affected by conflicts between
SSL and AL, but it still lacks sufficient support for effective semi-supervised learning in 3D object
detection. Similarly, (Elezi et al., 2022) uses an auto-labeling scheme to reduce distribution drift.
However, this method relies on a specific loss function, making it difficult to supervise established
3D detectors. As a result, it may struggle to learn effectively from unlabeled data in 3D detection
tasks. In this paper, we propose a bidirectional collaborative semi-supervised active learning frame-
work, which addresses the conflicts between SSL and AL, effectively unleashing the potential of
unlabeled data for 3D object detection.

3 METHOD

3.1 FRAMEWORK OVERVIEW

As illustrated in Fig. 2, our Bidirectional Collaborative Semi-Supervised Active Learning frame-
work (BC-SSAL) consists of three main components: Temporary Model Updating (TMU), Unla-
beled Sample Selecting (USS), and Final Model Delivering (FMD). In the TMU stage, we initiate
the process with normal pre-training, where a small set of randomly sampled data is used to train the
initial model. Subsequently, our Collaborative PseudoScene Pre-training tailored for active learn-
ing is performed, creating pseudo scenes with confident boxes to enhance the model performance.
In the USS stage, we employ the innovative Collaborative Active Learning method, which entails
the strategic selection of informative data from the unlabeled pool, empowering the model to con-
centrate on challenging instances. In the FMD stage, semi-supervised learning is conducted to
further refine the model performance, which utilizes both labeled and unlabeled data to train the
model, capitalizing on insights gained from the active learning process. It’s important to note that
our framework is compatible with various existing semi-supervised methods, providing flexibility
in choosing the most suitable approach.

3.2 COLLABORATIVE PSEUDOSCENE PRE-TRAINING

To meet the requirements of active learning, we propose the Collaborative PseudoScene Pre-
training(CPSP) approach, which is specifically designed to support active learning by creating
pseudo scenes that focus on confident objects while excluding unconfident boxes. The entire process
is illustrated in Fig. 3.
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Figure 3: The illustration of the Collaborative PseudoScene Pre-training (CPSP) module. We
extract confident objects from unlabeled scenes based on their uncertainty and store them in a box
bank, which is iteratively updated to maintain its quality. Additionally, we remove point clouds
corresponding to the predicted boxes, creating ”background” scenes without any objects. The point
cloud from the box bank is then inserted into these ”background” scenes, forming pseudo scenes.
3.2.1 CONFIDENT OBJECT EXTRACTION

To optimize the extraction of confident objects for model pre-training, we employ a multi-step ap-
proach that enhances the quality of our training data. Initially, we utilize a Confident Object Filtering
module to extract confident objects from unlabeled scenes, providing crucial information for model
training. These extracted objects are then stored in a box bank to preserve and manage the collected
object information. Furthermore, we incorporate an Iterative Refinement mechanism that iteratively
generates confident boxes from the unlabeled data, integrating them into the box bank to create
high-quality pseudo labels for the models. This process is essential for improving the robustness
and accuracy of the model. Please see appendix B.1 for more details.

Confident Object Filtering. To ensure compatibility with active learning(AL), we utilize the same
uncertainty measure employed in the AL process. By applying this uncertainty measure to the ob-
jects, we collect their uncertainty scores and employ clustering techniques on these scores to identify
the group with the lowest uncertainty scores. After that, we filter the objects within this group to se-
lect confident objects. The object information is represented as O = {cls, loc, score, sceneid, pc},
where cls denotes the class labels, loc ∈ R7 represents the object location with orientation,
score ∈ R1 indicates the uncertainty score, sceneid corresponds to the scene index to which the
object belongs, and pc ∈ Rn×3 captures the point clouds of the object. Additionally, we extract
some backgrounds that are likely to be false positives, similar to the approach in (Oh et al., 2024).
All extracted object information is stored in a box bank for easy access and management.

Iterative Refinement To continuously improve the box bank, we implement a mechanism that
adds newly extracted confident objects. When a new object overlaps with an existing one, its un-
certainty scores are compared, and the object with the lower score is retained, ensuring that only
higher-confidence objects are prioritized for further processing. However, even with low uncertainty
scores, errors may still occur, potentially impacting uncertainty estimation during active learning.
To mitigate this, we introduce a deletion mechanism: after each training iteration and the extraction
of new confident boxes, the newly added boxes are compared with the existing ones to identify and
remove any mislabeled or erroneous entries. This iterative process refines the box bank, improving
its overall quality and ensuring more reliable uncertainty estimation.
3.2.2 PSEUDO SCENE FORMATION

To enhance the model’s focus on confident objects while minimizing the impact of unconfident ones,
we utilize the Reliable Background Mining Module from (Liu et al., 2022). Moreover, we establish
a relatively high threshold to preserve backgrounds prone to being falsely identified as positives.
This module effectively removes point clouds linked to predicted boxes from unlabeled scenes,
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accounting for the sparse nature of point cloud data. By leveraging these ”background” scenes, we
create a contextual learning environment for the model to concentrate on relevant objects. Next,
we construct Pseudo Scenes by merging point clouds from selected boxes in the box bank with
these background scenes. These Pseudo Scenes consist solely of confident objects, excluding any
unconfident ones from the training data. This strategy ensures that the pre-training data is tailored
to enhance the model’s ability to make stable and reliable predictions, providing a robust foundation
for the active learning process.

3.3 COLLABORATIVE ACTIVE LEARNING

To efficiently identify the most informative samples and achieve better collaboration with the semi-
supervised pre-training stage, we propose a novel Collaborative Active Learning (CAL) approach,
which simultaneously incorporates considerations of uncertainty and diversity. For uncertainty, we
devise Ensemble-based Entropy Uncertainty (E2 Unc). In terms of diversity, our approach includes
Box-level Diversity (B Div) and Class Balance Sampling (CBS). A more detailed algorithm is
provided in Appendix B.2.
3.3.1 ENSEMBLE-BASED ENTROPY UNCERTAINTY

We use entropy to measure the uncertainty of each predicted box. Considering the collective influ-
ence of all the boxes, the overall uncertainty of the entire scene is represented by calculating the
average entropy. This approach enables us to capture the overall uncertainty and make informed
decisions based on the entropy measure.

Specifically, the uncertainty for a point cloud scene S is computed as:

H(S) =

∑
b∈S

∑
c∈C(−pbc log pbc)
Nb × |C|

(1)

where b represents the predicted boxes, pbc is the predicted class probability of class c for box b, Nb

is the total number of predicted boxes, and |C| is the number of object classes.

We observe that the CPSP pre-trained model can overlook some original correct and confident ob-
jects. To address this, we propose an ensemble strategy that combines high-confidence predictions
from the normal pre-trained model with all boxes from our CPSP pre-trained model. We then apply
the Non-Maximum Suppression (NMS) technique to eliminate redundant boxes.

3.3.2 BOX-LEVEL DIVERSITY

Diversity is essential for reducing redundancy in the selected samples. We achieve this by measuring
the similarity between boxes using cosine similarity and assigning each box to its closest counterpart.
The similarity score for each scene is computed by averaging the cosine similarity between box
features from the current scene and features from previously selected scenes.

Formally, let Sa be a scene with box features Fa = {fa,i | boxai
∈ Sa}, and S = {Sc} be the set

of selected scenes with features F = {fi | boxi ∈ Sc}. We calculate the similarity of scene Sa as:

Sima =
1

|Fa|

|Fa|∑
i=1

max
j

(
fa,i · fj

||fa,i|| · ||fj ||

)
(2)

During the sample selection process, if the similarity score between a new sample and previously
selected samples exceeds a threshold, the sample is excluded from selection to avoid redundancy.
Given the potentially large size of |F |, we apply clustering to retain the most representative features.
3.3.3 CLASS BALANCE SAMPLING

Outdoor LiDAR scenes present significant challenges due to the presence of rare classes, which are
difficult to sample and annotate. Annotating these rare classes becomes disproportionately expensive
due to their limited representation, especially when they coexist with more frequent classes in the
same scene. Additionally, many existing methods (Luo et al., 2023b; Wu et al., 2022; Yang et al.,
2022; Luo et al., 2023a) fail to account for the fact that models often struggle to accurately estimate
the number of objects in complex outdoor scenes, leading to a higher rate of false positives (FP) and
false negatives (FN). To address this, we only consider boxes that are predicted by both the normal

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

pre-trained model and the CPSP pre-trained model. This intersection is more likely to represent real
objects, filtering out background noise and reducing false positives.

Moreover, to handle class imbalance, we propose a class balance algorithm that sets an upper limit
for the number of objects per class. If the number of objects in a class exceeds this limit, the weight
assigned to that class is reduced. This encourages the sampling of unconfident objects from other
classes in subsequent iterations, addressing the issue of class imbalance. As a result, our algorithm
ensures more effective and representative sampling, improving the overall training process. More
details are provided in Appendix B.2.

4 EXPERIMENTS

4.1 DATASETS AND IMPLEMENTATION DETAILS

4.1.1 KITTI DATASET

We conducted evaluations of our methods on the KITTI 3D detection benchmark (Geiger et al.,
2013), using the standard train split comprising of 3,712 samples and the validation split contain-
ing 3,769 samples (Shi et al., 2020). In our semi-supervised active learning framework, we initially
trained an initial model using randomly selected frames consisting of approximately 200 boxes. Sub-
sequently, we leveraged the remaining unlabeled training data for further model refinement. During
active learning, we specifically selected frames that contained around 150 boxes for effective train-
ing. The total number of labeled boxes in our approach is approximately 350 boxes, which accounts
for less than 2% of the total boxes present in the KITTI train split. Additionally, we excluded scenes
with ”Dontcares” as they may introduce noise and potentially affect the performance of active learn-
ing methods. For evaluation, we calculate the mean average precision (mAP) at 40 recall positions
for the Car, Pedestrian (Ped), and Cyclist (Cyc), employing 3D IoU thresholds of 0.7, 0.5, and 0.5,
respectively, across different difficulty levels: easy, moderate (mod), and hard.

4.1.2 WAYMO DATASET

We conducted evaluations of our methods on the Waymo dataset (Sun et al., 2020), a widely
used benchmark in autonomous driving. It offers diverse real-world driving scenarios with high-
resolution sensor data. The dataset comprises 798 training sequences and 202 validation sequences.
Notably, the annotations provide a full 360° field of view. Additionally, the prediction results are
categorized into LEVEL 1 and LEVEL 2 for 3D objects based on the presence of more than five
LiDAR points and one LiDAR point, respectively. To optimize efficiency, we adopted a time-saving
approach by setting a sample interval of 20 from the training set to generate a pool of frames. From
this pool, we selected frames for our divided datasets. Similar to our approach in the KITTI dataset,
we employed a similar strategy for the Waymo dataset. In the initial stage, we randomly sampled
frames with approximately 5000 boxes, and in the active learning stage, we again selected frames
with around 5000 boxes. The total number of boxes, which amounts to 10,000, is less than 1% of the
total boxes present in the Waymo train set. For evaluation, we use mean average precision (mAP)
for Vehicle (Veh), Pedestrian (Ped), and Cyclist (Cyc) in LEVEL 1 (L1) and LEVEL 2 (L2), along
with average mAP and heading accuracy weighted AP (mAPH).

4.1.3 IMPLEMENTATION DETAILS

As stated in (Lyu et al., 2023), the performance of object detection is closely tied to the number of
boxes. To ensure a fair comparison with other methods, we maintain a fixed number of boxes rather
than frames as the basis for our comparisons. In our implementation, we utilize PV-RCNN (Shi
et al., 2020), a well-known model in active learning and semi-supervised learning, as our detector
for the semi-supervised active learning framework.

In the stage of temporary model updating, we employ the same initial labeled and unlabeled data for
all methods. This consistent approach allows for a fair comparison of the model when leveraging
pre-training. Furthermore, in the final model delivering stage, we randomly initialize the model to
assess the performance improvements achieved by selecting better data during the active learning
procedure. Please see appendix C for more details.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Comparison of results for various methods under different settings on the KITTI dataset.
To ensure a fair comparison, we ensure that all frameworks utilize an identical amount of labeled
data. Here, N1 represents the initial box count, while N2 signifies boxes selected through AL.

Setting N1/N2 Pre-train AL SSL Car mod Ped mod Cyc mod Avg easy Avg mod Avg hard
mAP mAP mAP mAP mAP mAP

AL 200/150

Normal Random − 74.5 37.8 44.1 67.4 52.1 47.7
Normal Entropy − 73.6 48.2 51.9 71.4 57.9 53.3
Normal PPAL − 74.2 41.6 46.9 66.7 54.2 49.3
Normal CRB − 73.3 45.3 47.4 68.8 55.3 50.8
Normal KECOR − 73.2 46.7 48.2 69.7 56.0 51.3

AL+SSL 200/150

Normal Random HSSDA 78.8 54.1 59.9 77.1 64.3 59.7
Normal Entropy HSSDA 79.3 59.1 64.6 79.1 67.7 62.2
Normal PPAL HSSDA 80.0 56.1 66.2 79.7 67.4 61.8
Normal CRB HSSDA 79.0 58.7 63.9 78.7 67.2 62.7
Normal KECOR HSSDA 79.2 59.5 64.9 80.3 67.9 63.1
Normal CAL HSSDA 80.6 60.2 67.7 81.5 69.5 64.5

SSLp +AL+ SSL 200/150

3DIoUMatch Entropy HSSDA 78.1 57.3 64.4 80.1 66.6 61.5
3DIoUMatch CAL HSSDA 80.8 57.1 65.9 79.9 67.9 63.1

Joint3D CAL HSSDA 78.5 58.9 70.1 80.7 69.1 64.1
NAL CAL HSSDA 79.8 59.3 69.9 81.3 69.6 64.6

HSSDA Entropy HSSDA 78.8 52.3 68.2 79.9 66.4 62.0
HSSDA CAL HSSDA 79.8 59.6 66.2 80.8 68.5 63.9

BC − SSAL 200/150

CPSP Entropy HSSDA 79.5 57.5 68.0 80.1 68.3 62.9
CPSP PPAL HSSDA 79.9 55.8 68.1 80.9 67.9 62.6
CPSP CRB HSSDA 79.1 56.9 65.4 78.7 67.2 62.8
CPSP KECOR HSSDA 79.0 60.8 64.5 80.6 68.1 63.3
CPSP CAL HSSDA 79.5 61.2 70.7 81.8 70.5 65.1

Full −/− − − − 84.6 59.6 72.2 82.7 72.2 68.5

4.2 RESULTS ON KITTI

We conduct experimental evaluation on different settings: the Active Learning (AL) framework,
Semi-Supervised Active Learning (AL+SSL) framework, Pretrain-based Semi-Supervised Active
Learning (SSLP +AL+SSL) framework, our Bidirectional Collaborative Semi-Supervised Active
Learning framework (BC-SSAL), and full-labeled (Full) results.

Among all these frameworks, they share a similar pattern. In the stage of temporary model updating,
different pre-train methods are adopted like normal pre-train, 3DIoUMatch pre-train (Wang et al.,
2021), Joint3D pre-train (Hwang et al., 2023), NAL pre-train (Elezi et al., 2022) and our CPSP
pre-train. In the stage of unlabeled sample selection, different active learning methods are used,
like Entropy, CRB (Luo et al., 2023b), KECOR (Luo et al., 2023a), PPAL (Yang et al., 2022), and
our CAL. For the final model delivering stage, we leverage HSSDA (Liu et al., 2023) due to its
demonstrated good performance. To improve result reliability in the limited KITTI dataset, we ran
three times with different seeds and averaged the performance across them.

As shown in Table 1, our BC-SSAL framework outperforms all other approaches in average mAP,
with notable improvements in challenging classes such as Pedestrian and Cyclist. When comparing
pre-training methods while keeping the AL methods fixed, our CPSP pre-training consistently deliv-
ers superior performance. Notably, traditional SSL approaches negatively impact AL performance,
with results declining regardless of whether 3DIoUMatch or state-of-the-art HSSDA is used. In
contrast, CPSP pre-training enhances the performance of nearly all AL methods. When pre-training
methods are fixed and AL methods are varied, our CAL method demonstrates superior performance
across different pre-training methods, showing its effectiveness regardless of the pre-training method
employed.

4.3 RESULTS ON WAYMO

For the Waymo dataset, to expedite the training process, we utilize CPSP in the Final Model De-
livering stage. As shown in Table 2. Our BC-SSAL framework continues to demonstrate strong
performance even when applied to a large amount of data, as observed in the Waymo dataset. Com-
paring different types of pre-training within the context of the same active learning methods, our
CPSP pre-training consistently outperforms other methods in terms of average mAP, achieving an
improvement of 1.2%. Notably, it significantly improves mAP for challenging classes such as Pedes-
trian (1.1% improvement) and Cyclist (1.9% improvement) compared to other pre-training methods
using CAL. Furthermore, our proposed CAL method exhibits superior performance compared to
other active learning methods. It consistently outperforms other approaches by at least 1.6% mAP
within our BC-SSAL framework. More comparison with other methods with multi-rounds can be
seen in the appendix D.2.
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Table 2: Comparing results across different settings on the Waymo dataset. N1 represents the initial
box count, while N2 signifies boxes selected through AL.

Setting N1/N2 Pre-train AL SSL Veh(L1/L2) Ped(L1/L2) Cyc(L1/L2) Avg(L1/L2)
mAP mAP mAP mAP mAPH

AL 5000/5000

Normal Random − 62.9/54.8 59.6/51.0 41.3/39.8 54.6/48.6 37.9/33.6
Normal Entropy − 61.1/53.2 60.6/51.9 50.1/48.5 57.3/51.2 40.4/35.9
Normal CRB − 62.7/54.4 56.6/48.4 54.6/52.7 57.9/51.8 38.8/34.4
Normal KECOR − 61.8/53.5 57.1/49.0 52.1/50.2 57.0/50.8 39.1/34.5

AL+SSL 5000/5000

Normal Random CPSP 63.1/54.8 59.4/50.0 46.1/45.3 56.2/50.0 40.3/36.8
Normal Entropy CPSP 61.5/53.5 60.0/51.5 54.9/53.0 58.8/52.7 43.4/38.9
Normal CRB CPSP 63.2/54.6 57.2/48.9 56.9/54.2 59.1/52.6 42.1/37.7
Normal KECOR CPSP 62.5/53.8 57.5/49.7 56.1/53.6 58.7/52.4 42.3/38.1
Normal CAL CPSP 62.2/54.3 61.7/53.0 55.4/53.5 59.8/53.6 45.1/40.6

SSLp +AL+ SSL 5000/5000
3DIoUMatch CAL CPSP 63.1/54.7 60.9/52.7 53.3/51.6 59.1/53.0 43.9/39.2

Joint3D CAL CPSP 61.5/53.9 59.7/51.3 53.2/51.8 58.1/52.3 41.8/37.2
NAL CAL CPSP 62.6/54.3 60.1/51.7 55.1/53.1 59.3/53.1 42.0/38.1

BC − SSAL 5000/5000

CPSP Entropy CPSP 64.2/56.2 60.3/50.8 53.4/51.5 59.3/52.8 44.1/40.7
CPSP CRB CPSP 63.9/55.0 59.1/49.1 53.8/51.8 58.9/52.0 43.0/39.0
CPSP KECOR CPSP 63.0/54.5 60.2/50.6 54.3/52.4 59.2/52.5 44.6/41.1
CPSP CAL CPSP 62.8/54.8 62.8/54.1 57.3/55.3 61.0/54.7 46.5/42.4

Full −/− − − − 75.4/67.4 72.0/63.7 65.9/63.4 71.1/64.8 66.7/60.9

Table 3: Ablation study of different components
in CPSP.

Pre-train Stage 3D Detection mAPCar Ped. Cyc.
Normal TMU 71.8 30.0 14.9 38.9
Normal FMD 80.6 60.2 67.7 69.5

CPSP w/o iter TMU 77.7 42.7 27.4 49.3
CPSP w/o iter FMD 79.3 61.1 70.1 70.2
CPSP w/ iter TMU 77.8 44.3 36.1 52.7
CPSP w/ iter FMD 79.5 61.2 70.7 70.5

Table 4: Ablation study of different components
in CAL. mAP is calculated under the moderate
difficulty level.

CAL 3D Detection mAP
E2 Unc CBS B Div Car Ped. Cyc.

- - - 78.8 54.1 59.9 64.3
✓ - - 80.9 58.7 67.6 69.1
✓ ✓ - 79.6 61.0 70.2 70.3
✓ ✓ ✓ 79.5 61.2 70.7 70.5

4.4 ANALYSIS

In this section, we present a series of ablation studies to analyze the effect of our proposed strategies
in BC-SSAL.

4.4.1 ABLATION STUDY OF CONFIDENT OBJECT EXTRACTION (CPSP)

Table 3 demonstrates the results of our ablation study. It indicates that both the introduction of the
pseudo scene and the iterative refinement mechanism contribute positively to the model’s perfor-
mance. During the pre-training stage in TMU (Temporal Model Updating), CPSP achieves substan-
tial improvements in mAP scores for all classes, with total mAP enhancements of 9.4% (without
iteration) and 13.8% (with iteration). Notably, these improvements are particularly pronounced in
challenging classes such as Pedestrian and Cyclist, where we achieve gains exceeding 10% in mAP.
Besides, these enhancements carry over to the final model delivering stage, resulting in higher over-
all mAP scores compared to normal pre-training. The most significant gains are observed in the
challenging classes, with an improvement of 1% in mAP for pedestrians and 3% for cyclists.

4.4.2 ABLATION STUDY OF COLLABORATIVE ACTIVE LEARNING (CAL)

The ablation study, as depicted in Table 4, emphasizes the importance of the uncertainty measure,
class balance methods, and diversity methods in CAL for achieving improved performance. The
E2 Unc plays a crucial role in active learning by selecting informative samples. This selection
process enables the model to focus on challenging instances, leading to an overall mAP improve-
ment of 4.8%. CBS contributes significantly to addressing class imbalances, particularly in hard
classes like Pedestrian(2.3% mAP improvement) and Cyclist(2.6 % mAP improvement), resulting
in enhanced performance in these challenging scenarios. Additionally, B Div helps reduce redun-
dancy in the selected samples, enabling the model to capture a broader range of object variations
and further improve its detection capabilities. By incorporating these CAL components, the overall
semi-supervised active learning framework becomes more effective, leading to better performance
in 3D object detection.

4.4.3 ANALYSIS ABOUT DIFFERENT PRE-TRAINING METHODS.

To evaluate how well our CPSP pre-trained model aligns with uncertainty-based active learning
methods for object detection, we focus on two key aspects: Calibration and Detection Performance.

Calibration (Guo et al., 2017) refers to how accurately the model’s confidence scores reflect the
correctness of its predictions. A well-calibrated model is crucial for active learning, as it helps in
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Figure 4: Qualitative results of selected samples. Green boxes represent GT boxes, while the red
boxes denote the predicted boxes. We visualize two scenes, one located on the left(a) and the other
on the right(b). Each scene is presented with three images: the top image shows the corresponding
2D image, the bottom-left image displays the predicted results from the normal pre-trained model,
and the bottom-right image shows the predicted results from the CPSP pre-trained model.

selecting the most informative samples. We use D-ECE (Kuppers et al., 2020) to measure the cal-
ibration quality. Detection Performance, on the other hand, measures the overall detection ability
of the model and is quantified by mAP. As noted in appendix E.3, the KITTI dataset includes many
‘DontCare’ labels, making it challenging to accurately calculate D-ECE scores. Therefore, we con-
duct our analysis using the Waymo training set. As shown in Table 5, our CPSP model achieves
strong performance in both D-ECE and mAP, better supporting the active learning process. In con-
trast, other methods perform poorly in either D-ECE or mAP, making them less effective for active
learning. Please see appendix E.1 for more analysis.

Table 5: D-ECE scores, mAP(LEVEL 1) for different pre-train methods on Waymo training set.

Pre-train D-ECE ↓ mAP(%)
Veh Ped. Cyc. Veh Ped. Cyc. Avg

Normal 0.11 0.10 0.25 58.7 53.9 31.9 48.2
3DIoUMatch (Wang et al., 2021) 0.50 0.13 0.29 57.4 45.4 33.0 45.3

Joint3D (Hwang et al., 2023) 0.30 0.36 0.48 59.3 50.0 38.1 49.1
NAL (Elezi et al., 2022) 0.28 0.26 0.42 59.5 48.2 39.0 49.0

CPSP 0.09 0.08 0.15 60.4 55.1 35.2 50.2

4.4.4 QUALITATIVE RESULTS

We present visualizations of selected samples in Fig. 4. In Fig. 4(a), we observe that our CPSP
pre-trained model is capable of detecting hard objects that are missed by a model trained with nor-
mal pre-training. This highlights the effectiveness of our CPSP approach in discovering challenging
objects. In Fig. 4(b), we showcase how our CPSP pre-trained model retains uncertainty for real un-
confident boxes. This ability to maintain uncertainty is crucial for effective active learning, enabling
the model to focus on challenging examples and improve its performance.

5 CONCLUSION

In this paper, we propose a Bidirectional Collaborative Semi-Supervised Active Learning frame-
work, dubbed as BC-SSAL, which consists of Collaborative PseudoScene Pre-training (CPSP) and
Collaborative Active Learning (CAL), effectively addressing the conflicts between semi-supervised
learning and active learning. CPSP utilizes pseudo scenes with confident boxes for model pre-
training, while CAL maximizes the benefits of the CPSP pre-trained model to select superior
samples. Experimental results on KITTI and Waymo datasets demonstrate that our approach
achieves state-of-the-art performance, offering a promising solution for improving 3D object de-
tection through effective integration of semi-supervised and active learning.
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In the Appendix, we provide further details about our BC-SSAL method in Sec. B. Additionally, we
include more implementation specifics in Sec. C and extended experimental results in Sec. D. Fur-
ther analysis and visualizations are presented in Sec. E, offering a more comprehensive evaluation
of BC-SSAL’s performance. For ease of reference, a list of abbreviations used throughout the paper
is provided in Sec. A.

A LIST OF TITLE WORD ABBREVIATIONS

Abbreviation Full Title
AL Active Learning
SSL Semi-supervised Learning
SSAL Semi-supervised Active Learning
TMU Temporary Model Updating Stage
USS Unlabeled Sample Selecting Stage
FMD Final Model Delivering Stage
CPSP Collaborative Pseudo-Scene Pre-training
CAL Collaborative Active Learning
E2 Unc Ensemble-based Entropy Uncertainty
B Div Box-level Diversity
CBS Class Balance Sampling

B MORE METHOD DETAILS FOR BC-SSAL

B.1 COLLABORATIVE PSEUDOSCENE PRE-TRAINING

In this section, we delve into the details of extracting confident objects during the Collaborative
PseudoScene Pre-training.

More details about Confident Object Extraction To filter confident objects, previous SSL meth-
ods often use fixed thresholds or top-k selections. However, we observed that score distributions vary
significantly across different classes and models, making it challenging to determine an appropriate
class-specific threshold. Additionally, the performance of different models can fluctuate, complicat-
ing the selection of a consistent top-k value—if k is too small, the number of extracted objects may
be insufficient, while a larger k introduces more noise. To address this, we employ clustering meth-
ods (Liu et al., 2023), such as KMeans, on uncertainty scores to select confident objects. Clustering
allows objects within the same group to share similar patterns, and by choosing a relatively higher
number of centers, we improve the reliability of confident object selection.

Besides, to continuously improve the box bank, we implement an iterative refinement mechanism
that selectively incorporates newly extracted confident objects. Let Onew represent the set of newly
extracted objects and Obank represent the set of objects already stored in the box bank. For each new
object onew ∈ Onew, if it overlaps with an existing object obank ∈ Obank, we compare their uncertainty
scores, denoted as U(onew) and U(obank) respectively. The object with the lower uncertainty score is
retained:

oretain =

{
onew, if U(onew) < U(obank)

obank, otherwise
(3)

This ensures that only higher-confidence objects are kept in the box bank, minimizing the risk of
introducing noisy or uncertain objects into the training data.

Even though the retained objects have lower uncertainty scores, errors can still occur during the
uncertainty estimation, potentially leading to the inclusion of mislabeled or erroneous objects. To
address this issue, we introduce a deletion mechanism. After each training iteration, we extract new
confident boxes and compare them to existing boxes in the bank. The deletion mechanism checks for
discrepancies between newly extracted objects onew and existing objects obank. If the overlap between
two objects exceeds a certain threshold τoverlap, defined as the Intersection over Union (IoU):

IoU(onew, obank) > τoverlap, (4)
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we retain the object with the lower uncertainty score and delete the other. Additionally, mislabeled or
erroneous objects are identified and removed by evaluating their performance in subsequent training
iterations.

This iterative process of adding, comparing, and refining the box bank improves its overall quality,
ensuring that the uncertainty estimation becomes more reliable over time. Mathematically, this can
be formalized as:

Ot+1
bank =

(
Ot

bank \Oremove
)
∪Onew, (5)

where Ot
bank is the set of objects in the box bank at iteration t, and Oremove is the set of objects

identified for deletion based on the comparison with Onew. The iterative refinement ensures that
Obank evolves to contain higher-quality pseudo-labels for training.

B.2 COLLABORATIVE ACTIVE LEARNING

In this part, we provide more details about the Class Balance Sampling. We also present the com-
pleted pseudo-code for our active learning process, as shown in Algorithm 1.

More details about Class Balance Sampling Outdoor LiDAR scenes often present challenges
due to the class imbalance, where some classes, such as cyclists, are rare compared to more frequent
classes like cars. These rare classes are difficult to sample and annotate effectively. To address this,
we propose a class balance sampling algorithm that adjusts the number of samples for each class
based on its difficulty and co-occurrence patterns.

Class Weight Calculation: For each class c, we compute the average uncertainty uc of all predicted
boxes from the unlabeled data. The uncertainty of a class reflects the model’s performance on that
class, with higher uncertainty suggesting more difficulty in correctly predicting objects of that class.

Using this uncertainty, we assign a class weight wc that prioritizes classes with higher uncertainty,
ensuring that more challenging classes receive more attention during the sampling process. The
class weight wc is computed as follows:

wc =

√
1/uc∑

c

√
1/uc

, (6)

where the reciprocal square root of the uncertainty is taken to ensure that more uncertain classes
receive higher weights. This weight is then normalized across all classes. The goal of this weighting
is to prioritize the selection of challenging classes while maintaining a balance across the dataset.

Class Co-occurrence Patterns: In outdoor scenes, multiple object classes often appear together.
Therefore, simply assigning weights based on uncertainty may not fully address the issue of class
imbalance, especially when considering the co-occurrence of objects from different classes in the
same scene.

To handle this, we record the co-occurrence patterns between classes. For example, if a scene
contains a car, we examine the average frequency of other classes (e.g., cyclists) appearing alongside
it. This co-occurrence data is stored in a co-occurrence matrix A, where each entry Aij represents
the likelihood of class j appearing in a scene when class i is present.

Let’s denote A as a C × C matrix, where C is the number of classes. Each row corresponds to a
specific class and indicates the average appearance of other classes when that class is present. The
diagonal elements of A are normalized to 1 to indicate the expected number of objects for that class
when it is present.

Using this co-occurrence matrix, we compute the desired upper limits U for the number of objects
to sample from each class. We want these upper limits to reflect the desired sampling ratio while
considering the class co-occurrence patterns and uncertainty-based weights. This can be expressed
by the following equation:

AU = W ×B, (7)
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Algorithm 1 Collaborative Active Learning Algorithm
Input:

• Labeled data Dl = {Sli}Nl
i=1

• Unlabeled data Du = {Sui}Nu
i=1

• Budget b for selecting new samples
• Class set C
• Similarity threshold Tsim

• Class upper limits U(c) for each class c ∈ C

• Weight adjustment factor S(c) for each class c ∈ C

Output: Selected data ∆D for labeling
Initialize: ∆D ← ∅ (selected set of data to be labeled)

1: Calculate uncertainty of each sample in Du using E2 Unc: {Ei}Nu
i=1.

2: Sort Du in descending order based on uncertainty values {Ei}.
3: Initialize idx← 0 and Box(c)← 0 (the count of boxes for each class c ∈ C).
4: while Numbox(∆D) < b do
5: Compute similarity Sidx between Du(idx) and the already selected data ∆D using B Div.
6: if Sidx < Tsim then
7: Add Du(idx) to ∆D and remove it from Du.
8: if there exists class c ∈ C such that Box(c) < U(c) and Box(c)+Numbox(Du(idx, c)) ≥

U(c) then
9: Recalculate uncertainties {Ei}Nu

i=1 considering weight adjustment factor S(c).
10: Resort Du based on the updated uncertainties.
11: Set idx← 0.
12: else
13: Set idx← idx+ 1.
14: end if
15: Update Box(c) for each class based on newly selected data.
16: end if
17: end while

where: A is the co-occurrence matrix, U is the vector of upper limits for each class, W is the vector
of class weights computed using Equation 6, and B is the total number of boxes to be selected.

By solving this linear system, we can determine a balanced sampling strategy that takes both co-
occurrence patterns and class uncertainty into account.

Handling Small or Negative Upper Limits: One challenge we might encounter when solving for
the upper limits U is that some values could be unrealistically small or even negative, which would
not be appropriate for a balanced sampling strategy. To address this, we impose a constraint that
ensures each upper limit Uc is greater than or equal to a minimum threshold, such as B/10, where
B is the total number of samples to be selected.

Once the upper limits are determined, we apply these limits during the sampling process. If the
number of selected samples for a particular class exceeds its upper limit, the uncertainty scores for
that class are decreased accordingly, ensuring that the algorithm maintains a balanced representation
of all classes.

This approach ensures that rare or difficult classes are not underrepresented, while also preventing
the model from over-sampling classes that are easier to detect.

The Pipeline of Collaborative Active Learning The pipeline of collaborative active learning is
demonstrated in Algorithm 1. First, we calculate the uncertainty of all unlabeled data and sort them
in descending order. Next, we adopt a greedy approach to select the data with the highest uncertainty.
Throughout this process, we discard samples that are similar to the ones already selected to ensure
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diversity. Moreover, we incorporate class balance considerations by adjusting the uncertainty of a
class when it reaches its upper limit.

By following this pipeline, we systematically evaluate uncertainty, prioritize the most unconfident
samples, promote diversity by excluding similar data points, and account for class balance by ad-
justing uncertainty based on upper limits.

The Pipeline of Collaborative Active Learning The pipeline for Collaborative Active Learning
(CAL) is outlined in Algorithm 1. The algorithm operates in the following steps:

1. Uncertainty Calculation: For each sample in the unlabeled dataset, we compute the un-
certainty score using our Ensemble-based Entropy Uncertainty (E2 Unc) method. This
uncertainty quantifies how confident the model is about each prediction.

2. Sorting by Uncertainty: The unlabeled data is sorted in descending order of uncertainty,
so that the most uncertain samples are prioritized for selection.

3. Diversity Enforcement: To maintain diversity among the selected samples, we calcu-
late the similarity between each new candidate and the previously selected samples using
Box-level Diversity (B Div). If the similarity exceeds a predefined threshold Tsim, the
candidate sample is discarded to avoid redundancy.

4. Class Balance Adjustment: During the selection process, we also enforce class balance by
setting upper limits on the number of objects that can be selected from each class. If a class
exceeds its upper limit U(c), we adjust the uncertainty scores for that class by applying a
weight factor S(c). This recalibration ensures that we avoid over-sampling from any single
class.

5. Greedy Selection: The algorithm proceeds in a greedy manner, selecting the most uncer-
tain and diverse samples until the budget b is reached.

By following this pipeline, our method efficiently selects the most informative samples for label-
ing, ensuring both diversity and class balance while focusing on high-uncertainty data points. This
balanced approach improves the effectiveness of active learning, reducing redundancy and ensuring
that the model is trained on representative and diverse data.

C MORE IMPLEMENTATION DETAILS

In the Confident Object Extraction module, we use K-Means to do clustering and set the number of
centers as 20 for the KITTI dataset and 50 for the Waymo dataset. The similarity threshold (Tsim)
in the B Div module is set to 0.9. It is worth noting that due to the limited amount of data utilized,
achieving model convergence can be challenging. To address this, we extend the training iterations,
allowing the model to train for a longer duration. In order to achieve this, we repeat the data length
5 times for the KITTI dataset and 15 times for the Waymo dataset. Other basic settings like learning
rate, optimizer, and scheduler are following (Shi et al., 2020; Team, 2020).

Furthermore, when the normal pre-trained model undergoes the Collaborative Active Learning
(CAL) module, we utilize the upper limits calculated by the CPSP pre-trained model to ensure a
fair comparison. By incorporating these strategies, we can effectively evaluate the performance of
the normal pre-trained model in comparison to the CPSP pre-trained model. This ensures a reliable
and comprehensive assessment of the effectiveness of our proposed method.

D ADDITIONAL EXPERIMENT

D.1 MORE EXPERIMENTS ABOUT DIFFERENT SEMI-SUPERVISED METHODS ON KITTI

We replace the SSL methods in Tab.1 with our Collaborative PseudoScene Pre-training (CPSP) ap-
proach in the Final Model Delivering Stage (FMD) to examine how well our method performs when
compared with different pre-train methods. As presented in Tab. F, the results demonstrate that our
CPSP method not only achieves the best performance but also generates a more significant perfor-
mance gap in comparison to other pre-train methods. The improvement is particularly noticeable
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across challenging classes such as pedestrians and cyclists. This highlights the robustness of CPSP
in handling diverse object detection tasks.

Table F: Comparison of results for various methods on the KITTI dataset, with all frameworks using
the same amount of labeled data. N1 denotes the initial number of boxes, and N2 represents boxes
selected during active learning.

Pre-train AL SSL N1/N2
Car mod Ped mod Cyc mod Avg easy Avg mod Avg hard

mAP mAP mAP mAP mAP mAP

Normal CAL CPSP 200/150 76.8 54.7 67.3 79.9 66.3 61.2

Joint3D CAL CPSP
200/150

77.6 55.1 63.4 77.2 65.3 60.8
NAL CAL CPSP 77.3 60.8 62.6 78.7 66.9 61.2

HSSDA CAL CPSP 77.8 60.7 66.0 80.2 68.2 62.8

CPSP CAL CPSP 200/150 79.3 62.2 68.3 82.5 69.9 64.5

D.2 MULTIPLE ROUNDS OF EXPERIMENTS

We conducted experiments using both single-round and multi-round approaches to assess their po-
tential for improving performance. Specifically, we performed experiments on the Waymo dataset,
utilizing a total of 20,000 annotated boxes to compare the outcomes of single-round versus three-
round approaches. As shown in Table G, increasing the number of rounds while maintaining the
same annotation budget results in a 0.9% improvement in mAP. We attribute this enhancement to
the model’s improved ability to select better data over multiple rounds, underscoring the positive
impact of utilizing multiple rounds in our approach.

In addition, to facilitate a comprehensive comparison of our methods with existing approaches, we
employ active learning over multiple rounds. In each round, we annotate 5000 boxes, conducting a
total of 5 rounds, which culminate in 30,000 annotated boxes. We compare the following methods
in our evaluation: Joint3D (Hwang et al., 2023), NAL (Elezi et al., 2022), 3DIoUMatch (Wang
et al., 2021) combined with our CAL, Normal pre-training combined with CAL, and our CPSP
pre-training combined with CAL. For a fair comparison, all methods utilize CPSP in the Unlabeled
Sample Selecting Stage. As depicted in Fig. E, our method (CPSP + CAL) consistently outperforms
all other approaches across every round of active learning, demonstrating substantial performance
gains even in the final evaluation round. The sustained advantage of our method highlights its
effectiveness in selecting and leveraging superior data throughout the active learning process.

Table G: Results of single-round and three-round on Waymo.
Setting Rounds Numbers Veh(L1/L2) Ped(L1/L2) Cyc(L1/L2) Avg(L1/L2)

CPSP + CAL 1 5000+15000 65.3/57.1 65.0/56.2 58.1/55.9 62.8/56.3
CPSP + CAL 3 5000+3×5000 65.8/57.6 66.0/57.2 59.2/56.8 63.7/57.3
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Figure E: Performance(mAP) of different methods in multiple rounds on Waymo Datasets.
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E ADDITIONAL ANALYSIS

E.1 ANALYSIS OF DIFFERENT PRE-TRAINING METHODS

To gain a deeper understanding of why our CPSP pre-training method outperforms other pre-training
methods, we further analyze the model’s calibration beyond the D-ECE score. Specifically, we
divide the confidence scores into four ranges: 0-0.3, 0.3-0.5, 0.5-0.8, and 0.8-1. The scores in the
0.3-0.8 range represent more uncertain predictions, which are more likely to be selected by active
learning, while the 0.8-1 range corresponds to predictions that are more likely to represent real
objects.

As shown in Fig. F, our CPSP method demonstrates superior calibration, particularly in the 0.3-0.8
range, which is critical for active learning tasks. The accuracy of predictions within this range is
significantly higher compared to other pre-training methods, indicating that CPSP better handles
uncertain predictions and reduces overconfidence. Moreover, CPSP consistently outperforms across
all three object classes, maintaining both higher precision in high-confidence predictions (0.8-1
range) and better accuracy for uncertain predictions (0.3-0.8 range). This balanced calibration makes
CPSP especially effective for active learning, where selecting informative samples from uncertain
predictions is crucial for optimizing model performance with limited data.

Figure F: Histogram illustrating the distribution of Precision and Count across different pre-training
methods for three object classes. The figure highlights the comparative performance of each method
in terms of prediction accuracy and the number of predictions within specific confidence intervals.

E.2 NEGATIVE EFFECTS OF TRAINING ON UNCONFIDENT OBJECTS

Confident objects provide crucial information with minimal noise, while unconfident ones introduce
numerous incorrect pseudo-labels that mislead the model. We utilize two types of pre-training in
our approach CPSP: UNC (Unconfident) and CON (Confident). In UNC pre-training, objects with a
low number of clustering centers (2) are filtered, allowing us to include more unconfident objects in
the model training process. In CON pre-training, we train confident objects using the same methods
but with a higher number of clustering centers (20). This approach allows us to focus on objects
that exhibit a higher level of certainty and reliability during the training process. Fig. G depicts
the comparison between UNC and CON on the KITTI dataset. UNC is adversely affected by false
positives, degrading uncertainty assessment, and yielding inferior results (69.2%). In contrast, CON
achieves a higher score of 70.5%.
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Figure G: In Normal, an unconfident car and a false positive pedestrian (tree) are detected. UNC is
impacted by noise from unconfident labels, leading to more false positives. In contrast, CON learns
the car effectively and eliminates the false positives.

E.3 VISUALIZATION OF SELECTED SAMPLES WITHOUT DROPPING ”DONTCARE” CASES

As depicted in Fig. H, the visualization showcases selected examples that include ”DontCare” areas.
These ”DontCare” areas often contain numerous challenging objects with high uncertainty. Conse-
quently, these objects contribute significantly to the uncertainty measure of the frames. However,
since they are unlabeled, their presence can potentially hinder the performance of active learning
methods. In the context of evaluating active learning methods, it is necessary to exclude ”Dont-
Care” cases. To accomplish this, we employ a specific procedure. First, we project our predicted 3D
boxes onto 2D images since ”DontCare” areas only have 2D annotations in the KITTI dataset. Next,
we check whether the centers of the projected 2D boxes are located within the ”DontCare” areas. If
we find that more than two predicted boxes are situated within these ”DontCare” areas, we exclude
the respective frame from our selection.

Figure H: This figure showcases the visualization of selected samples without dropping the ”Dont-
Care” cases. It displays the ground-truth (GT) boxes in green, the predicted boxes in red, and the
”DontCare” areas in white. Each scene is presented through a 2D image and a point cloud represen-
tation. In the 2D images, both the GT boxes and the ”DontCare” areas are visualized, while in the
point cloud scenes, both the GT and predicted boxes are visualized.
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E.4 VISUALIZATION OF SELECTED SAMPLES

As shown in Fig. I, it provides a visual representation of the selected samples that highlight chal-
lenging instances across various object classes. The chosen samples encompass a diverse range of
scenarios and objects, capturing challenging cases that require accurate detection and localization.
The visualization of these challenging samples demonstrates the effectiveness of our active learning
strategy in identifying and prioritizing hard examples.

Figure I: This figure displays the visualization of selected samples, showcasing the ground-truth
(GT) boxes in green and the predicted boxes in red. Each scene is represented by both a 2D image
and a point cloud. In the 2D images, only the GT boxes are visualized, while in the point clouds,
both the GT and predicted boxes are visualized.
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