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Abstract

Security practitioners maintain reports in vul-001
nerability databases (e.g., GitHub Advisory)002
to help developers avoid potential risks and003
deploy vulnerability patches. However, exist-004
ing work shows that in more than half of the005
reports, the field of vulnerability-affected pack-006
ages is missing or incorrect. To help reduce007
the manual efforts in completing and validat-008
ing the affected-package field, existing work009
proposes to automatically identify this informa-010
tion. However, all existing work suffers from011
low accuracy, relying on relatively small mod-012
els such as logistic regression and BERT due to013
linear time cost to the number of packages un-014
der consideration. To address these limitations,015
we propose the first work, a framework named016
VulLibGen, to explore the use of a large lan-017
guage model (LLM) for directly generating the018
names of affected packages. VulLibGen con-019
ducts supervised fine-tuning (SFT) and retrieval020
augmented generation (RAG) to supply domain021
knowledge to the LLM, and a local search tech-022
nique to ensure that the generated name of an023
affected package is among the names of the024
packages under consideration. Our evaluation025
results show that VulLibGen has an average ac-026
curacy of 0.806 for identifying vulnerable pack-027
ages in the four most popular ecosystems in028
GitHub Advisory (Java, JS, Python, Go) while029
the best SOTA ranking approaches achieve only030
0.721. Additionally, VulLibGen has provided031
high value to security practice: we have sub-032
mitted 28 pairs of <vulnerability, affected pack-033
age> to GitHub Advisory, and 22 of them have034
been accepted and merged.035

1 Introduction036

With the increasing usage of third-party software037

packages, their security vulnerabilities pose great038

challenges to software and network systems. A039

recent study (Wang et al., 2020) shows that 84%040

third-party packages contain vulnerabilities and041

Github Advisory

Description
Jenkins Mail Commander Plugin for Jenkins-ci Plugin
1.0.0 and earlier stores passwords unencrypted in job
config.xml files on the Jenkins controller where they can
be viewed by users with Extended Read permission, or
access to the Jenkins controller file system.

org.jenkins-ci.plugins:mailcommander
EcosystemLibrary Name

GitHub Advisory Database / GitHub Reviewed / 
CVE-2020-2318

(Maven)

Package Affected Versions
<= 1.0.0

Figure 1: GitHub Advisory Report for CVE-2020-2318

60% of them are high-risk ones. To avoid poten- 042

tial risks posed by these vulnerabilities, security 043

practitioners maintain vulnerability databases for 044

reference, e.g., the National Vulnerability Database 045

(NVD) (COMMERCE, 2024) and GitHub Advi- 046

sory (GitHub, 2024a). These databases help devel- 047

opers realize and deploy vulnerability patches. Fig- 048

ure 1 shows an example report of one vulnerability, 049

CVE-2020-2318. The vulnerability’s affected pack- 050

ages include org.jenkins-ci.plugins:mailcommander 051

and its corresponding versions. The field of af- 052

fected packages is specified by the developers who 053

create this CVE. However, recent studies (Hary- 054

ono et al., 2022; Dong et al., 2019) show that in 055

more than half of vulnerability reports, this field 056

is missing or incorrect. To alleviate this problem, 057

human maintainers manually complete or validate 058

the affected-package information in databases such 059

as GitHub Advisory (GitHub, 2024b). However, 060

manual completion or validation requires high man- 061

ual efforts (Haryono et al., 2022; Chen et al., 2023), 062

underscoring the need for automatic identification. 063

Existing work on automatic identification of vul- 064

nerable packages (Chen et al., 2020; Dong et al., 065

2019; Haryono et al., 2022; Lyu et al., 2023; Chen 066

et al., 2023) suffers from two related limitations 067
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on time cost and accuracy, respectively. First, ex-068

isting work has linear time cost to the number069

of packages under consideration (e.g., 435k Java070

packages) (Lyu et al., 2023; Chen et al., 2023), so071

that the cost of each model inference has to be072

kept quite low. Given a vulnerability description073

(Figure 1), existing work computes a similarity074

score between the vulnerability description and075

each package’s text description from the ecosystem076

(e.g., PyPI, Maven), and then ranks all packages077

based on this score. As a result, the time cost078

for identifying each vulnerability = the number of079

candidate packages × the cost of each model infer-080

ence (e.g., BERT). Second, existing work suffers081

from low accuracy due to the adoption of a rela-082

tively small model. The first limitation causes the083

underlying model used for inference to be a rela-084

tively small model such as logistic regression and085

BERT (Chen et al., 2020; Lyu et al., 2023; Haryono086

et al., 2022; Chen et al., 2023).087

To address the preceding limitations, in this pa-088

per, we propose the first work, a framework named089

VulLibGen, to explore the use of a large language090

model (LLM) for identifying vulnerable packages,091

given the continuously and rapidly improved ef-092

fectiveness brought by an LLM for various tasks.093

VulLibGen uses an LLM to generate the names of094

affected packages instead of ranking the names of095

packages under consideration. Our rationale for not096

following the existing work’s ranking approaches097

is that the number (denoted as |P|) of packages un-098

der consideration (e.g., 435k Java packages) brings099

high cost to rank the similarity scores between a100

vulnerability and each package under consideration.101

In contrast, in order to identify vulnerable pack-102

ages, the generative approach invokes the model103

inference only once, instead of |P| times.104

Specifically, VulLibGen includes two techniques105

to address two main challenges of generating the106

names of affected packages. First, we conduct107

supervised fine-tuning (SFT), in-context learning,108

and retrieval-augmented generation (RAG) to en-109

hance the domain knowledge of an LLM as an110

LLM may lack the domain knowledge required to111

generate the name of the target package. During112

model inference, the vulnerability description as113

input fed to an LLM often does not contain the full114

information of the target package’s name, and thus115

the LLM is required to infer the missing informa-116

tion based on the domain knowledge. Second, we117

propose a local search technique to ensure that the118

generated name of an affected package is among 119

the names of the packages under consideration. Re- 120

cent studies (Vazquez et al., 2023) show that an 121

LLM may generate package names that do not ex- 122

ist. Based on our empirical study of incorrect raw 123

outputs of ChatGPT, we design our local search 124

technique that matches the generation output with 125

the closest package name among the names of the 126

packages under consideration, and produces the 127

matched package name as the final output. 128

Our evaluation of VulLibGen attains three main 129

findings. First, we observe that the accuracy of 130

VulLibGen significantly outperforms existing ap- 131

proaches (Chen et al., 2020; Haryono et al., 2022; 132

Lyu et al., 2023; Chen et al., 2023) and the com- 133

putational time cost is comparable. In particu- 134

lar, VulLibGen using Vicuna-13B outperforms the 135

larger ChatGPT and GPT-4 models by employing 136

supervised fine-tuning (SFT). Second, our ablation 137

studies show that SFT, RAG, and local search all 138

help improve the accuracy of VulLibGen. Third, 139

VulLibGen provides high value to security prac- 140

tice: we have submitted 28 pairs of <vulnerability, 141

affected package> to GitHub Advisory, and 22 of 142

them are accepted and merged. 143

2 Existing Work on Vulnerable Package 144

Identification 145

Existing Work on Smaller Models. There exist 146

various approaches on vulnerable package iden- 147

tification (Chen et al., 2020; Dong et al., 2019; 148

Haryono et al., 2022; Lyu et al., 2023). However, 149

they all suffer from lower accuracies (Lyu et al., 150

2023; Chen et al., 2023). Although existing ap- 151

proaches introduce different methods to improve 152

the accuracy, e.g., information extraction (Dong 153

et al., 2019; Anwar et al., 2021) and extreme multi- 154

label classification (Dong et al., 2019; Anwar et al., 155

2021), all of them rely on smaller language mod- 156

els, e.g., non-neural network models (Chen et al., 157

2020), logistic regression (Gupta et al., 2021; Lyu 158

et al., 2023) and BERT (Haryono et al., 2022; Chen 159

et al., 2023). The limited model size restricts their 160

capabilities in understanding the text. 161

Formal Definition of Existing Work. Given a vul- 162

nerability description q, the goal of existing work 163

is to select one or more affected packages p from a 164

list P of existing packages of an ecosystem. At test 165

time, existing work computes the similarity score 166

sim(p, q) for each p ∈ P , where p is represented 167

by its description documentation in the ecosystem. 168
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Table 1: An Empirical Study on ChatGPT’s Incorrect Response in Maven

Error Reason Example (w/ link) ChatGPT’s Output Ground Truth (Affected Packages)

Type 1: Incorrect
but exist (23% of
all errors)

CVE-2015-3158 org.picketlink:picketlink org.picketlink:picketlink-tomcat-common
Description: “The invokeNextValve function in identity/federation/bindings/tomcat/idp/AbstractIDPValve.java
in PicketLink before 2.7.1.Final does not properly check role based authorization, which allows remote
authenticated users to gain access to restricted application resources via a (1) direct request . . . ”

Type 2: Non-Exist,
Partially correct
(58% of all errors)

CVE-2011-2730 org.springframework:spring-framework org.springframework:spring-core
Description: “VMware SpringSource Spring Framework before 2.5.6.SEC03, 2.5.7.SR023, and 3.x before
3.0.6, when a container supports Expression Language (EL), evaluates EL expressions in tags twice which
allows remote attackers to obtain sensitive information. . . . ”

CVE-2020-2167 org.jenkins-ci.plugins:openshift-pipeline com.openshift.jenkins:openshift-pipeline
Description: “OpenShift Pipeline Plugin 1.0.56 and earlier does not configure its YAML parser to prevent
the instantiation of arbitrary types. This results in a remote code execution (RCE) vulnerability exploitable
by users able to provide YAML input files to OpenShift Pipeline Plugin’s build step. . . . ”

Type 3: Non-Exist,
Completely incorrect
(19% of all errors)

CVE-2020-11974 mysql:mysql-connector-java org.apache.dolphinscheduler:dolphinscheduler
Description: “In DolphinScheduler 1.2.0 and 1.2.1, with mysql connector a remote code execution vulnerab
-ility exists when choosing mysql as database.”

CVE-2019-13234 N/A org.opencms:opencms-core
Description: “In the Alkacon OpenCms Apollo Template 10.5.4 and 10.5.5 there is XSS in the search engine.”

As a result, the time cost on each vulnerability =169

|P|× the cost to compute each similarity score.170

Existing Work’s Efforts on Scaling to Larger171

Models. To improve the accuracy, existing work172

leverages re-ranking with the BERT model (Chen173

et al., 2023); nevertheless, there remains a large174

room for improvement. More specifically, they first175

use TF-IDF to rank all packages in the ecosystem176

(435k in Java and 506k in Python), then re-rank177

all top-512 packages using BERT. While the re-178

call@512 of TF-IDF is 0.9, their Accuracy@1 is179

far from 0.9.180

3 Two Challenges with LLM Generation181

The Generative Approach. To investigate the182

potential of using even larger models to improve183

the accuracy, we propose a framework that uses184

LLMs (7B or larger) to generate instead of ranking185

the affected packages. We cannot adopt the rank186

approach in existing work (Section 2) since the cost187

to compute each similarity and |P| are very high.188

Formally speaking, given the vulnerability de-189

scription q, the generative approach directly gen-190

erates the affected package names p, therefore the191

time cost on each vulnerability = 1×the inference192

cost of the LLM. Nevertheless, there exist two chal-193

lenges in the generative approach.194

Challenge 1: Lack of Domain Knowledge.195

The first challenge is that there may exist a196

knowledge gap for the LLM to generate the cor-197

rect package. This is because the description198

may not contain the full information about the199

affected package name. For example, CVE-200

2020-2167 in Table 1 is about the Java package201

com.openshift.jenkins.openshift-pipeline, but the202

the description does not mention the word "Jenk-203

ins". To predict the correct package name, the 204

LLM has to rely on domain knowledge to complete 205

this information. Existing work have used various 206

methods to bridge the knowledge gap of LLMs, 207

e.g., supervised fine-tuning (Prottasha et al., 2022; 208

Church et al., 2021) and retrieval augmented gen- 209

eration (Lewis et al., 2020; Mao et al., 2020; Liu 210

et al., 2020; Cai et al., 2022). 211

Challenge 2: Generating Non-Existing Package 212

Names. Following a previous studies on Reddit1, 213

the second challenge is that LLM may generate 214

library names that do not exist. Existing work 215

has adopted post-processing to alleviate this prob- 216

lem (Jin et al., 2023; Roziere et al., 2021). Fol- 217

lowing existing work, we can potentially leverage 218

post-processing by matching the generated pack- 219

age with the closest existing package based on their 220

edit distance. 221

To understand whether post-processing is 222

promising for solving Challenge 2 and to study 223

how to design the post-processing algorithm, we 224

conduct an empirical study on ChatGPT’s incorrect 225

response, the study result can be seen in Table 1. 226

The study uses 2,789 Java vulnerability descrip- 227

tions collected in a recent work (Chen et al., 2023). 228

We divide all ChatGPT responses into four types: 1. 229

the package is correct (42%); 2. the package is in- 230

correct but it exists (13%); 3. the package does not 231

exist and is partially correct (34%); 4. the package 232

is completely incorrect (11%). 233

From the study result, we draw the conclusion 234

that post-processing using edit-distance matching is 235

a promising approach to solve Challenge 2. Among 236

1https://www.reddit.com/r/ChatGPT/comments/
zneqyp/chatgpt_hallucinates_a_software_library_
that/
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the three types of errors, post-processing can help237

with Type 2 errors, which constitute 58% errors.238

The average edit distance between ChatGPT output239

and the ground truth in Type 2 is 76% on aver-240

age which shows promise in improving the accu-241

racy with post-processing. By applying a naive242

edit-distance matching on the ChatGPT output, the243

accuracy is improved from 42% to 51%.244

4 VulLibGen Framework245

To address the two challenges in LLM generation,246

we employ the following techniques: first, we use247

supervised fine-tuning or in-context learning to en-248

hance the domain knowledge in LLM; second, we249

further employ the retrieval-augmented framework250

(RAG) to enhance the knowledge when SFT is not251

easy; third, we design a local search technique252

which alleviates the non-existing package name253

problem. The VulLibGen framework can be found254

in Figure 2. 2.255

4.1 Supervised Fine-Tuning/In-Context256

Learning257

To solve the first challenge (Section 3), we incorpo-258

rate supervised fine-tuning (Prottasha et al., 2022;259

Church et al., 2021) and in-context learning (Dong260

et al., 2022; Olsson et al., 2022) in VulLibGen. For261

SFT, we use the full training data (Table 2); for ICL,262

we randomly sample 3 examples from the training263

data for each evaluation vulnerability. For both SFT264

and ICL, the input and output of the LLM follow265

the following format: Input: the same prompt as266

Figure 2 2, Output: "The affected package is [pack-267

age name]". The hyper-parameters used for ICL268

and SFT are listed in Table 7 of Appendix 10.2.269

4.2 Retrieval-Augmented Generation (RAG)270

To further enhance the LLM’s domain knowledge271

especially when SFT is not easy (e.g., ChatGPT272

and GPT4), we employ retrieval-augmented gener-273

ation (RAG) in VulLibGen.274

Retriever setting. Given the description of a275

vulnerability, our retriever ranks unique package276

names (Table 2) based on the similarity score277

between the vulnerability description and the278

package description. The descriptions of Java,279

2Our prompt in Figure 2 is: "Below is a [Programming
Language] vulnerability description. Please identify the soft-
ware name affected by it. Input: [DESCRIPTION]. The top
k search results are: [L1][L2]· · · [Lk]. Please output the
package name in the format "ecosystem:library name". ###
Response: The affected packages:".

JavaScript, Python, and Go packages are obtained 280

from Maven 3, NPM 4, Pypi 5, and Go 6 documen- 281

tations. For example, the description of the pack- 282

age org.jenkins-ci.plugins:mailcommander is “This 283

plug-in provides function that read a mail subject 284

as a CLI Command.”. Our retriever follows (Chen 285

et al., 2023)’s re-ranking strategy, i.e., first rank all 286

packages (e.g., 435k in Java) using TF-IDF, then 287

re-rank the top 512 packages using a BERT-base 288

model fine-tuned on the same training data in Ta- 289

ble 2. 290

4.3 Local Search 291

To solve the second challenge (Section 3), we incor- 292

porate post-processing in VulLibGen. Based on the 293

empirical study results in Section 3, we design a 294

local search technique to match the generation out- 295

put with the closest package name from an existing 296

package list (Algorithm 1 in Appendix 10.1). 297

Algorithm 1 employs the edit distance as the 298

metric and respects the structure of the package 299

name. Formally, a package name can be divided 300

into two parts: its prefix and suffix (separated by a 301

special character, e.g., ‘:’ in Java). The prefix (e.g., 302

the artifact ID of Java packages) specifies the main- 303

tainer/group of this package, and the suffix (e.g., 304

the group ID of Java packages) specifies the func- 305

tionalities of this package. Specifically, Java, Go, 306

and part of JS packages can be explicitly divided 307

while Python and the rest of JS packages only spec- 308

ify their functionalities in their names. We denote 309

the prefix of a package name as empty if it can not 310

be divided. 311

Algorithm 1 first compares the generated suffix 312

with all existing suffix names and matches the suf- 313

fix to the closest one. After fixing the suffix, we 314

can then obtain the list of prefixes that co-occur at 315

least once with this suffix. We match the generated 316

prefix with the closest prefix in this list. The reason 317

that we opt to match the suffix first is twofold. First, 318

our pilot study shows that the vulnerability descrip- 319

tion more frequently mentions the suffix than the 320

prefix. Among all 2,789 vulnerabilities investigated 321

in Section 3, their description mentions 12.4% of 322

the tokens in the prefixes of the affected packages 323

and 66.0% of the tokens in their suffixes of the af- 324

fected packages; second, our study also shows that 325

each suffix co-occurs with fewer unique prefixes 326

3https://mvnrepository.com
4https://www.npmjs.com
5https://pypi.org
6https://pkg.go.dev
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Jenkins Mail Commander Plugin for
Jenkins-ci Plugin 1.0.0 and earlier
stores passwords unencrypted in
job config.xml files on the Jenkins
controller ...

Package Description

LLM Generation

L1

L2

Local Search

Vulnerability Description

org.jenkins-ci.plugins:mailer
org.jenkins-ci.plugins:mailer

“The Jenkins Plugins Parent
POM Project”

Ecosystem's
Packages

maven:org.jenkins-ci.plugins:mailcommander
maven:org.jenkins-ci.plugins:mailer
maven:org.jenkins-ci.plugins:job-direct-mail
...

maven:org.jenkins-
ci.plugins:mailcommander

Retriever

...

Below is a Java vulnerability description. Please
identify the software name affected by it.  Input:

[Jenkins Mail Commander Plugin for Jenkins-ci...]

The top k search results are 

Please output as the format "ecosystem:library name"
### Response: The affected packages:

LkL1 L2 L3 ...

LLM Raw Output

The affected package is
"maven:org.jenkins-
ci.plugins:mail-commander" in
versions 1.0.0 and earlier.

Supervised
 Fine-Tuning

Figure 2: The VulLibGen Framework

than conversely. In all 435k Java packages, each327

prefix has 5.86 co-occurred suffixes while each suf-328

fix has only 1.13 co-occurred prefixes on average.329

As a result, for some vulnerabilities, it is easier330

to identify the prefix by first matching the suffix,331

and then matching the suffix with the co-occurred332

prefix list.333

5 Evaluation334

5.1 Evaluation Setup335

Dataset. In this paper, we evaluate the effective-336

ness of VulLibGen using the GitHub Advisory337

database, since each vulnerability in GitHub Advi-338

sory is manually reviewed and verified by expert339

maintainers (GitHub, 2024b). In GitHub Advi-340

sory, the vulnerabilities are classified by the asso-341

ciated Programming languages (GitHub, 2024a),342

therefore we can construct a list of programming343

language-focused datasets.344

Our dataset focuses on four widely used pro-345

gramming languages: Java7, JavaScript (JS),346

Python, and Go. The statistics of our dataset are347

listed in Table 2. In total, our dataset includes 2,789348

Java, 3,193 JS, 2,237 Python, and 1,351 Go vul-349

nerabilities, respectively. To the best of our knowl-350

edge, this is the first dataset for identifying vulnera-351

ble packages with various programming languages.352

For each PL, we split the train/validation/test data353

with the 3:1:1 ratio. The split is in chronological354

order to simulate a more realistic scenario and to355

prevent lookahead bias (Kenton, 2024).356

Comparative Methods. To evaluate the effective-357

ness of VulLibGen, we contrast it with four SOTA358

ranking approaches, FastXML (Chen et al., 2020),359

LightXML (Haryono et al., 2022), Chronos (Lyu360

et al., 2023), and VulLibMiner (Chen et al., 2023)361

for comparison. Recent studies (Lyu et al., 2023;362

7For Java, we use VulLib (Chen et al., 2023), which is
expanded from the Java vulnerabilities in GitHub Advisory.

Table 2: The Statistics of the GitHub Advisory Dataset

Java JS Python Go

#Vulnerabilities:
Training 1,668 1,915 1,342 810
Validation 556 639 447 270
Testing 565 639 448 271
Total 2,789 3,193 2,237 1,351

#Unique packages in the dataset:
2,095 2,335 710 601

#Total packages in their ecosystems:
435k 2,551k 507k 12k

#Avg. tokens of packages:
13.44 4.56 3.96 8.24

Chen et al., 2023) show that they outperform other 363

approaches, such as Bonsai (Khandagale et al., 364

2020) and ExtremeText (Wydmuch et al., 2018). 365

Models in VulLibGen. The models we evalu- 366

ate for the VulLibGen framework include both 367

commercial LLMs, e.g., ChatGPT (gpt-3.5-turbo) 368

and GPT4 (gpt-4-1106-preview), and open-source 369

LLMs, e.g., LLaMa (Touvron et al., 2023) and Vi- 370

cuna (Chiang et al., 2023). 371

We assess open-source LLMs in two scenarios: 372

few-shot in-context learning using 3 examples ran- 373

domly sampled from the training data and super- 374

vised fine-tuning using the full training data. For 375

the open-source LLMs (Table 3), we use ICL/SFT 376

+ RAG + local search, whereas for commercial 377

LLMs, we use RAG + local search only. 378

Evaluation Environments Our evaluations are 379

conducted on the system of Ubuntu 18.04. We 380

use one Intel(R) Xeon(R) Gold 6248R@3.00GHz 381

CPU, which contains 64 cores and 512GB memory. 382

We use 8 Tesla A100 PCIe GPUs with 40GB mem- 383

ory for model training and inference. In total, our 384

experiments constitute 200 GPU days (32 groups 385

in RQ1 + 68 groups in RQ2, and each group costs 386

0.25 GPU days across 8 GPUs). 387

Metrics Since more than 60% of the vulnerabilities 388

affect only one package (Chen et al., 2023), we 389
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Table 3: VulLibGen’s Accuracy@1 with Various LLMs

Approach Java JS Python Go Avg.

Ranking-based Non-LLMs:
FastXML 0.292 0.078 0.491 0.277 0.285
LightXML 0.450 0.146 0.529 0.494 0.405
Chronos 0.516 0.447 0.550 0.710 0.556
VulLibMiner 0.669 0.742 0.825 0.647 0.721

Commercial LLMs:
ChatGPT 0.758 0.732 0.915 0.646 0.763
GPT4 0.783 0.768 0.868 0.712 0.783

Few-Shot ICL on Open-Source LLMs:
LLaMa-7B 0.002 0.237 0.036 0.000 0.069
LLaMa-13B 0.122 0.238 0.049 0.048 0.114
Vicuna-7B 0.110 0.495 0.694 0.428 0.432
Vicuna-13B 0.186 0.513 0.527 0.394 0.405

Full SFT on Open-Source LLMs:
LLaMa-7B 0.710 0.773 0.924 0.716 0.781
LLaMa-13B 0.720 0.765 0.904 0.775 0.791
Vicuna-7B 0.697 0.768 0.929 0.782 0.794
Vicuna-13B 0.710 0.773 0.935 0.804 0.806

use Accuracy@1 for evaluating a model. That is,390

exact match between the first generation or ranking391

output and the ground truth.392

5.2 Evaluation of VulLibGen393

In this section, we evaluate the effectiveness of394

VulLibGen. We seek to answer the following re-395

search question: How does VulLibGen compare to396

existing work on identifying vulnerable packages?397

Overall Accuracy: Existing Work vs. VulLib-398

Gen. From Table 3 we can observe that for all399

programming languages, VulLibGen achieves sub-400

stantially higher accuracies compared to existing401

work. As a result, by leveraging LLMs, VulLib-402

Gen can effectively generate the names of affected403

packages with high accuracies.404

Overall, VulLibGen using supervised fine-tuning405

on the Vicuna-13B model has the best performance.406

Fine-tuning Vicuna-13B even outperforms the407

larger ChatGPT and GPT4 models on all datasets408

besides Java. As a result, the knowledge gap of409

LLMs can be effectively bridged by leveraging su-410

pervised fine-tuning. We further conduct statistical411

significance tests (Kim, 2015) between the best-412

performing generative approach (i.e., VulLibGen413

using Vicuna-13B SFT) and the best-performing ex-414

isting work (i.e., VulLibMiner (Chen et al., 2023)).415

The p-values of all tests are smaller than 1e-5, and416

the detailed results is listed in Appendix (Table 8).417

When Is VulLibGen More Advantageous? From418

Table 3 observe that the gap between the best-419

performing VulLibGen method and the best-420

performing existing approach for each program-421

Figure 3: Trade-Offs between Efficiency and Accuracy

ming language are 0.041, 0.031, 0.11, and 0.157. 422

By comparing with the data statistics in Table 2, 423

we can see that this gap is highly correlated with 424

#Unique packages in the dataset and #Total pack- 425

ages in the ecosystem. In general, VulLibGen is 426

less advantageous when the output package name 427

is longer and has a larger token space. 428

Efficiency of Existing Work vs. VulLibGen. In 429

Figure 3, we visualize the actual computational 430

cost and accuracy of each method in Table 3. We 431

further mark the upper bound of the ranking-based 432

approach using LLMs for comparison. The Ac- 433

curacy@1 is upper-bounded by the recall@512 of 434

TF-IDF, i.e., the best possible Accuracy@1; while 435

the time cost is upper-bounded by the time cost of 436

invoking the 13B model 512 times (10 mins). 437

We can observe the VulLibGen achieves a sweet 438

spot in the effectiveness and efficiency trade-off. 439

When compared with existing work, VulLibGen 440

achieves better a Accuracy@1 while the time 441

cost is comparable to the best-performed existing 442

work (Chen et al., 2023). When compared with the 443

upper bound, VulLibGen achieves a slightly lower 444

Accuracy@1 while consuming less than 1/100 time 445

and computation resources. 446

5.3 Ablation Studies on VulLibGen 447

In this sub section, we conduct ablation studies on 448

the three components of VulLibGen: supervised 449

fine-tuning, RAG, and local search. 450

SFT’s Improvement. By comparing the results 451

of in-context learning vs supervised fine-tuning in 452

Table 3, we can see that SFT outperforms ICL by 453

a larger margin. We observe that SFT also outper- 454

forms the baseline with neither ICL nor SFT, we 455

have not shown the latter result due to space limit. 456

This result indicates that for the 7B and 13B mod- 457

els, supervised fine-tuning on the full training data 458
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Table 4: RAG’s Improvement (Accuracy@1RAG −
Accuracy@1Raw)

Language Java JS Python Go

Commercial LLMs:
ChatGPT 16.1% ↑ 3.6% ↑ 38.8% ↑ 57.6% ↑
GPT4 12.1% ↑ 0.9% ↑ 0.9% ↑ 31.0% ↑

Full SFT on Open-Source LLMs:
LLaMa-7B 2.2% ↑ 2.2% ↑ 3.1% ↑ 1.8% ↓
LLaMa-13B 3.3% ↑ 0.4% ↑ 2.0% ↑ 3.7% ↑
Vicuna-7B 13.6% ↑ 2.3% ↑ 3.8% ↑ 3.7% ↑
Vicuna-13B 8.7% ↑ 1.2% ↑ 4.9% ↑ 0.0% -

Average 9.3% ↑ 1.8% ↑ 8.9% ↑ 15.7% ↑

is essential in bridging the models’ knowledge gap.459

RAG’s Overall Improvement: Table 4 shows460

the improvement of our RAG technique in Accu-461

racy@1. Specifically, it improves the Accuracy@1462

by 9.3%, 1.8%, 8.9%, and 15.7% on each program-463

ming language, respectively. These improvements464

indicate that our RAG technique is effective in help-465

ing generate the names of vulnerable packages.466

Table 4 also indicates that RAG’s improvement467

in commercial LLMs is higher than that of open-468

source LLMs. Especially in Go vulnerabilities,469

our RAG technique improves the Accuracy@1 by470

57.6% and 31.0% on ChatGPT and GPT4. The471

main reason is that both ChatGPT and GPT4 do472

not have sufficient domain knowledge about Go473

packages as they are relatively newer than packages474

of other programming languages (Hall, 2023).475

RAG Improvement vs. k/Retrieval Algorithm.476

We evaluate whether k and the retrieval algorithm477

affect the end-to-end effectiveness of VulLibGen.478

Specifically, we focus on Java vulnerabilities (as479

Java package names are the most difficult to gener-480

ate). The result can be found in Table 5.481

For k, we conduct an Analysis of Variance482

(ANOVA) (St et al., 1989) among the Accuracy@1483

of six representative numbers of RAG packages484

(ranging from 1 to 20). Although k = 20 has a485

slightly higher accuracy than k = 1 for both TF-486

IDF and BERT, this difference is not significant. In487

fact, the t-test results show that there is no signifi-488

cant difference among the Accuracy@1 of different489

k values (p = 0.814 for TF-IDF and p = 0.985 for490

BERT).491

As for the retrieval algorithm, we observe that492

Accuracy@1 with TF-IDF results is quite similar to493

that of non-RAG inputs, and the Accuracy@1 with494

BERT results is substantially higher than that of495

non-RAG/TF-IDF results. As a result, it is essential496

to use BERT-retrieved results in RAG.497

Local Search’s Improvement. Table 6 shows 498

the end-to-end improvement in Accuracy@1 of 499

VulLibGen before and after local search. Our lo- 500

cal search technique improves the Accuracy@1 by 501

3.43%, 1.02%, 1.57%, and 6.20% on each program- 502

ming language. Additionally, it is more effective 503

on commercial LLMs (an average improvement 504

of 4.58%) than fine-tuned open-source LLMs (an 505

average improvement of 2.29%). Since commer- 506

cial LLMs are not fine-tuned, local search plays 507

an important role in improving the effectiveness of 508

generation. 509

5.4 Evaluating VulLibGen Performance in 510

Real World Setting 511

To examine VulLibGen’s performance in the real- 512

world setting, we randomly sample a subset of the 513

vulnerability descriptions in Java and JS. We use 514

VulLibGen to generate the package names and sub- 515

mit the generated names (VulLibGen with Vicuna- 516

13B) to GitHub Advisory. 517

We report 28 pairs of <vulnerability, affected 518

package> that are not listed in GitHub Advisory. 519

At the time of the writing, 22 of them have been ac- 520

cepted and merged into GitHub Advisory. Among 521

the rest 6 packages, 3 of them are considered non- 522

vulnerabilities, and 3 of them are considered incor- 523

rect affected packages. The details of these issues 524

are listed in the Appendix (Table 9). 525

This result highlights the real-world perfor- 526

mance of VulLibGen in automatically identifying 527

affected package names. 528

6 Related Work 529

Vulnerable Package/Version Identification. 530

There exist numerous works on identifying the 531

affected software package and versions. Multiple 532

existing works model this problem as an NER 533

problem, i.e., extracting the subset of description 534

about the package (Dong et al., 2019; Anwar 535

et al., 2021; Jo et al., 2022; Kuehn et al., 2021; 536

Yang et al., 2021) or version (Dong et al., 2019; 537

Zhan et al., 2021; Zhang et al., 2019; Backes 538

et al., 2016; Zhang et al., 2018; Tang et al., 2022; 539

Gorla et al., 2014; Wu et al., 2023). The NER 540

approach works well for the version identification 541

since many version numbers are already in the 542

description (Dong et al., 2019). As the package 543

names are often only partially mentioned (e.g., 544

CVE-2020-2167 in Table 1), the NER approaches 545

are less effective (Lyu et al., 2023). Another 546
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Table 5: Accuracy@1 with Various RAG Inputs in Generating the Names of Java Affected Packages

IR Model: None TF-IDF Results BERT Results

#RAG packages: 1 2 3 5 10 20 1 2 3 5 10 20

Commercial LLMs:
ChatGPT 0.597 0.523 0.498 0.508 0.552 0.540 0.567 0.758 0.743 0.722 0.718 0.715 0.710
GPT4 0.676 0.619 0.559 0.588 0.619 0.626 0.638 0.783 0.773 0.784 0.792 0.797 0.792

Full SFT on Open-Source LLMs:
LLaMa-7B 0.688 0.692 0.697 0.701 0.563 0.591 0.609 0.710 0.701 0.710 0.678 0.665 0.683
LLaMa-13B 0.687 0.688 0.687 0.696 0.653 0.635 0.623 0.720 0.702 0.701 0.701 0.704 0.703
Vicuna-7B 0.561 0.596 0.398 0.404 0.441 0.439 0.421 0.697 0.701 0.683 0.685 0.706 0.683
Vicuna-13B 0.623 0.609 0.450 0.418 0.650 0.655 0.680 0.710 0.712 0.701 0.722 0.719 0.720

Table 6: Local Search’s Improvement
(Accuracy@1Search −Accuracy@1Raw)

Language Java JS Python Go

Commercial LLMs:
ChatGPT 4.1% ↑ 1.2% ↑ 0.7% ↑ 11.1% ↑
GPT4 5.3% ↑ 2.5% ↑ 2.9% ↑ 8.8% ↑

Full SFT on Open-Source LLMs:
LLaMa-7B 2.9% ↑ 0.9% ↑ 2.2% ↑ 7.0% ↑
LLaMa-13B 3.3% ↑ 0.3% ↑ 0.7% ↑ 4.1% ↑
Vicuna-7B 3.9% ↑ 0.9% ↑ 1.8% ↑ 3.3% ↑
Vicuna-13B 1.1% ↑ 0.3% ↑ 1.1% ↑ 2.9% ↑

Average 3.4% ↑ 1.0% ↑ 1.4% ↑ 6.2% ↑

branch of work models the package identification547

problem as extreme multi-label learning (XML)548

where each package is a class (Chen et al., 2020;549

Haryono et al., 2022; Lyu et al., 2023). However,550

these methods are limited to less than 3k classes551

(the labels in their dataset). Finally, (Chen et al.,552

2023) leverages the re-ranking approach using553

BERT; however, there still exists a gap between554

their method’s accuracy and the best possible555

performance (Table 3).556

Retrieval vs Generation. Existing work has in-557

vestigated scenarios of replacing the retrieval with558

generation. For example, Yu et al. (Yu et al., 2022)559

leverages LLM to generate the context documents560

for question answering, rather than retrieving them561

from a text corpus. Their experiment shows that562

the generative approach has a comparable perfor-563

mance to the retrieval approach on the QA task.564

However, since our task requires us to generate the565

exact package name, their conclusion is not directly566

transferrable to our task.567

Retrieval-Augmented Generation Retrieval-568

augmented generation (RAG) (Lewis et al., 2020;569

Mao et al., 2020; Liu et al., 2020; Cai et al., 2022)570

is a widely used technique and has shown its571

effectiveness in various generation tasks, e.g., code572

generation or question answering. Specifically,573

RAG enhances the performance of a generative 574

model by incorporating knowledge from a database 575

so that LLMs can extract and comprehend correct 576

domain knowledge from the RAG inputs. 577

Reducing Hallucination. In Section 3, we 578

show that ChatGPT’s raw output package name 579

may not exist. This phenomenon is similar 580

to hallucination (Ji et al., 2023; Tonmoy et al., 581

2024), which occurs in various LLM-related tasks. 582

Among hallucination reduction approaches, post- 583

processing (Madaan et al., 2023; Kang et al., 2023) 584

is a widely used one. For example, in code gener- 585

ation tasks, existing work (Jin et al., 2023; Chen 586

et al., 2022; Zhang et al., 2023; Huynh Nguyen 587

et al., 2022) adopts post-processing techniques to 588

reduce/rerank programs generated by LLMs, e.g., 589

using deep-learning models, test cases, or compil- 590

ers to determine whether a generated program is 591

correct and remove incorrect programs. However, 592

such techniques cannot be directly adopted in our 593

task because validating the generated names of af- 594

fected packages is relatively difficult. It requires a 595

Proof-of-Chain (PoC) (Mosakheil, 2018), which is 596

often unavailable due to security concerns. There- 597

fore, we design our local search algorithm focusing 598

on Type 2 errors in Table 1. 599

7 Conclusion 600

In this paper, we have proposed VulLibGen, the 601

first framework for identifying vulnerable pack- 602

ages using LLM generation. VulLibGen conducts 603

retrieval-augmented generation, supervised fine- 604

tuning, and a local search technique to improve the 605

generation. VulLibGen is highly effective, achiev- 606

ing an accuracy of 0.806 while the best SOTA 607

approaches achieve only 0.721. VulLibGen has 608

shown high value to security practice. We have 609

submitted 28 pairs of <vulnerability, affected pack- 610

age> to GitHub advisory, and 22 of them have been 611

accepted and merged. 612
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8 Limitation613

Our work has several limitations, which we plan614

to address in our future work:615

Improving the Generation of Complicated Lan-616

guages. As discussed in Section 5.2, the effective-617

ness of VulLibGen highly depends on the token618

length and the number of unique packages. For619

example, Vicuna-13B’s Accuracy@1 in Java vul-620

nerabilities (0.710) is less than that of Python vul-621

nerabilities (0.935). To improve the generation ac-622

curacy of complicated languages such as Java, we623

plan to further enhance the knowledge of LLM us-624

ing techniques such as constrained decoding (Post625

and Vilar, 2018). We leave this as our future work.626

Generating Package Names with Limited627

Ecosystem Knowledge. Though VulLibGen has628

demonstrated its effectiveness in four widely-used629

programming languages, some other programming630

languages, e.g., C/C++, do not have a commonly631

used ecosystem that maintains all its packages.632

Thus, it is difficult to generate/retrieve the affected633

packages of C/C++ vulnerabilities as we do not634

have specific ranges during the RAG step of VulLib-635

Gen. Exploring how to generate RAG results with-636

out a commonly used ecosystem (e.g., Maven or637

Pypi) or collecting other useful information for638

RAG is the future work of this paper.639

9 Ethical Consideration640

License/Copyright. VulLibGen utilizes open-641

source data from GitHub Advisory, along with four642

third-party package ecosystems. We refer users to643

the original licenses accompanying the resources644

of these data.645

Intended Use. VulLibGen is designed as an auto-646

matic tool to assist maintainers of vulnerability647

databases, e.g., GitHub Advisory. Specifically,648

VulLibGen helps generate the names of affected649

packages to complement the missing data of these650

databases. The usage of VulLibGen is also il-651

lustrated in Section 4 and our intended usage of652

VulLibGen is consistent with that of GitHub Advi-653

sory (GitHub, 2024a).654

Potential Misuse. Similar to existing open-source655

LLMs, one potential misuse of VulLibGen is gen-656

erating harmful content. Considering that we657

use open-source vulnerability data for LLM fine-658

tuning, the LLM might view harmful content dur-659

ing this step. To avoid harmful content, we use only660

reviewed vulnerability data in GitHub Advisory, so661

such misuse will unlikely happen. Overall, the sci-662

entific and social benefits of the research arguably 663

outweigh the small risk of their misuse. 664
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10 Appendix 894

895

10.1 Our Local Search Algorithm 896

897

Algorithm 1: Local Search
Input :rawName, a generated package name
Output :vulnNames, names of affected packages.

// Pre-process on name list
1 nameDict, suffixes =← {}, ∅;
2 for name ∈ nameList do
3 prefix, suffix← name.split(“/:”);
4 nameDict[suffix].add(prefix);

// Search the closest prefix/suffix
5 prefix, suffix← rawName.split(“/:”);
6 edit.weight← (Winsert,Wdelete,Wreplace);
7 suffix′ ← argmin

s∈suffixes

edit(suffix, s);

8 prefixes← nameDict[suffix′];
9 if prefixes.isEmpty() then

10 return {suffix′};
11 else
12 prefix′ ← argmin

p∈prefixes

edit(prefix, p);

13 return {prefix′} : {suffix′};

The pseudocode of our local search algorithm is 898

shown in Algorithm 1. The input of this algorithm 899

includes one package name generated by LLM to- 900

gether with the name list of existing libraries under 901

the same ecosystem. The output of this algorithm is 902

the name of one existing package that is the closest 903

to the generated package name. 904

In Lines 1-4, we pre-process the name list of 905

candidate packages. Now that we divide a package 906
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name into its prefix and suffix, we first construct907

the dictionary nameDict that maps a suffix into908

its corresponding prefix.909

In Lines 5-13, we search for the closest package910

name of the input package name, rawName. In911

Line 7, we use its suffix, suffix to find its clos-912

est and existing suffix, suffix′. Then in Lines913

8-13, we first determine whether it contains a cor-914

responding prefix. If it has no prefix (e.g., a Python915

package), we directly return the closest suffix. Oth-916

erwise, we find its closest prefix, prefix′, from917

all prefixs that correspond to suffix′. Addition-918

ally, in Line 6, we manually set the weight used919

in calculating edit distances because LLMs change920

the package names in terms of tokens instead of921

characters. Thus, the weight of inserting one char-922

acter should be smaller than that of deleting and923

replacing one, and we set the empirical weights as924

follows, Winsert = 1,Wdelete = 4,Wreplace = 4.925

Table 7: Parameters Used in Fine-Tuning LLMs

Supervised Fine-Tuning Parameters:

Train Batch Size : 4 Learning Rate : 2e-5
Evaluation Batch Size : 4 Weight Decay : 0.00
Learning Rate schedule : Cosine Warmup Ratio : 0.03
Max Sequence Length: 512 Use Lora: True

In-Context Learning Parameters:

Max Sequence Length: 512 #Shots : 3

Table 8: The P-Values of VulLibGen (Compared with
VulLibMiner)

Approach Java JS Python Go Total

Commercial LLMs:
ChatGPT 2e-13 8e-3 1e-10 3e-1 1e-20
GPT4 1e-18 5e-5 1e-5 3e-5 6e-30

Full SFT on Open-Source LLMs:
LLaMa-7B 7e-7 1e-5 1e-11 9e-6 1e-25
LLaMa-13B 5e-8 1e-4 1e-9 1e-9 3e-27
Vicuna-7B 5e-5 6e-5 1e-12 5e-10 1e-27
Vicuna-13B 7e-7 1e-5 6e-13 1e-11 4e-32

10.2 Appended Tables 926
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Table 9: Status of Submitted <Vulnerability, Affected Package> Pairs

CVE ID VulLibGen’s Output Status

CVE-2010-5327 com.liferay.portal:portal-impl Merged
CVE-2010-5327 com.liferay.portal:portal-service Merged
CVE-2012-3428 org.jboss.ironjacamar:ironjacamar-jdbc Merged
CVE-2012-5881 yui2 Merged
CVE-2013-1814 org.apache.rave:rave-web Merged
CVE-2013-1814 org.apache.rave:rave-portal-resources Merged
CVE-2013-1814 org.apache.rave:rave-core Merged
CVE-2014-0095 org.apache.tomcat.embed:tomcat-embed-core Merged
CVE-2014-0095 org.apache.tomcat:tomcat-coyote Merged
CVE-2014-1202 com.smartbear.soapui:soapui Merged
CVE-2014-6071 jquery Non-Vuln
CVE-2014-9515 com.github.dozermapper:dozer-parent Non-Vuln
CVE-2015-3158 org.picketlink:picketlink-bindings-parent Incorrect
CVE-2017-1000397 org.jenkins-ci.main:maven-plugin Merged
CVE-2017-1000406 org.opendaylight.integration:distribution-karaf Merged
CVE-2017-3202 com.exadel.flamingo.flex:amf-serializer Merged
CVE-2017-7662 org.apache.cxf.fediz:fediz-oidc Merged
CVE-2018-1000057 org.jenkins-ci.plugins:credentials-binding Merged
CVE-2018-1000191 com.synopsys.integration:synopsys-detect Merged
CVE-2018-1229 org.springframework.batch:spring-batch-admin-manager Merged
CVE-2018-1256 io.pivotal.spring.cloud:spring-cloud-sso-connector Merged
CVE-2018-3824 org.elasticsearch:elasticsearch Merged
CVE-2018-5653 wordpress/weblizar-pinterest-feeds Incorrect
CVE-2018-7747 calderajs/forms Incorrect
CVE-2019-10475 org.jenkins-ci.plugins:build-metrics Merged
CVE-2019-5312 com.github.binarywang:weixin-java-common Merged
CVE-2020-8920 com.google.gerrit:gerrit-plugin-api Merged
CVE-2022-25517 com.baomidou:mybatis-plus Non-Vuln

“Merged”: Its corresponding package name is accepted and merged into GitHub Advisory.
“Non-Vuln”: GitHub Advisory’s maintainers do not consider it as a vulnerability.
‘Incorrect”: VulLibGen’s output is incorrect and not accepted by maintainers.
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