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ABSTRACT

Prompt learning is widely adopted for fine-tuning vision-language foundation
models such as CLIP and offers strong generalization ability by inserting learnable
embeddings in the input space for pre-adjustment. However, existing methods
usually suffer from limited fitting capacity and heavily rely on biased exclusive
cross entropy loss that compromises the generalization to unseen classes. To ad-
dress these problems, in this paper, we propose the first framework named adaPter
bootstrApped prompt contrastive Tuning (PAT) to integrate the superior fitting ca-
pacity of post-adjustment via adapters into prompt learning. Specifically, we boot-
strap prompt learning with adapters and achieves pre-post alignment to achieve a
more effective trade-off between fitting capability and generalization ability. Fur-
thermore, we propose a tolerance regularization that equally pushes away all neg-
ative samples and improves generalization by introducing additional categories of
unlabeled data to avoid overfitting. To our best knowledge, this is the first suc-
cessful attempt to simultaneously exploit the advantages of prompt learning and
adapter tuning. Extensive evaluations demonstrate that PAT achieves state-of-the-
art performance in various recognition tasks on three prevailing benchmarks.

1 INTRODUCTION

Vision-language models (VLMs) pretrained on large-scale image-text pairs have demonstrated
strong representational capabilities Alayrac et al. (2022); Radford et al. (2021); Jia et al. (2021).Nev-
ertheless, fine-tuning these models for downstream tasks demands substantial computational re-
sources. Recently, parameter-efficient fine-tuning (PEFT) Han et al. (2024) has been emerging as a
promising alternative to address these challenges. Compared to full fine-tuning, PEFT achieves com-
petitive performance by tuning a minimal number of trainable parameters, therefore widely adopted
as alternatives to full fine-tuning. Currently, the predominant approaches to PEFT could be gener-
ally categorized into three types, i.e., prompt learning Jia et al. (2022), adapters Chen et al. (2022),
and reparameterization Hu et al. (2022). Reparameterization based methods such as LoRA Hu et al.
(2022) achieve low-rank decomposition of weight matrices for PEFT. Prompt learning introduces
trainable embeddings into the input space to guide the adaptation of pretrained models to down-
stream tasks, while adapter-based methods insert trainable parameters alongside the original weight
matrices.

Prompt learning is prevailing in the context of adapting VLMs. CoOp Zhou et al. (2022b) converts
the text encoder into a classifier by combining classification labels with a classification template
and introducing trainable text embeddings. Although prompt learning exhibits strong generalization
ability, they remain limited in fitting ability. By contrast, adapter-based methods are less explored
in the context of adapting VLM due to limitation in generalization, but they enjoy strong fitting
ability. To this end, we employ Prompt learning as a form of pre-alignment, and further enhance
its effectiveness through Adapter-based post-alignment, striving to simultaneously achieve strong
fitting capacity and robust generalization ability.

In Figure 1, we reveal that adapters emphasize fitting ability and prompt learning focuses more on
generalization, and validate their discrepancy in fitting and generalization ability to adapt VLMs
in base-to-new generalization. For adapters, we adopt commonly used AdapterFormer Chen et al.
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Figure 1: Evaluation on Base-to-New Experiments. The results on the base classes reflect the fitting
capability of each method, while the results on the new classes indicate their generalization ability.
Adapter-based methods possess stronger fitting capability but weaker generalization, while Prompt-
based methods show the opposite tendency. In contrast, our method successfully achieves both
strong fitting and generalization abilities.

(2022) for the text branch and Convpass Jie et al. (2024) for the vision branch of CLIP, and use
the representative MaPLe approach as a representative for prompt learning. Adapter-based methods
focus on fitting and is superior on base classes, while prompt learning favors generalization and
outperforms adapters on new classes. Unfortunately, despite of the potential of integrating adapters
and prompt learning, there still lacks an efficient paradigm to unify them for jointly enhanced fitting
and generalization. To further enhance the model’s generalization, we revisit the training paradigm
of VLMs during transfer to downstream tasks and find that generalization to unseen categories is
undermined in existing methods, since they rely heavily on exclusive cross entropy loss to select the
class with the highest similarity between fine-tuned visual and textual representations as final pre-
diction. Table 1 shows that the forced-choice constraint causes incorrect bias toward the categories
given in the few-shot tuning and results in a loss of information about unseen categories.

In this paper, we propose a novel vision language efficient tuning framework named adaPter boot-
strAp prompt contrastive Tuning (PAT) that for the first time simultaneously exploits the advantages
of prompt learning and adapter tuning. PAT incorporates two novel modules, i.e., pre-post alignment
to match and integrate the prompt learning based pre-adjustment and adapter based post-adjustment
and tolerance regularization to mitigate the bias caused by exclusive cross-entropy loss. Our contri-
butions are summarized as below.

• We develop the adaPter bootstrAp prompt contrastive Tuning (PAT) framework to simul-
taneously improve the fitting capability and generalization performance of prompt learning
in downstream tasks.

• We bootstrap the pre-adjustment with prompt learning by integrating post-adjustment with
adapters and introduce a pre-post alignment module to integrate the fitting capability of
Adapters with the generalization ability of Prompts.

• We propose a tolerance regularization, which equally pushes away all negative samples and
improves generalization by introducing additional categories of unlabeled data to prevent
the model from over-fitting on the training categories.

Extensive evaluations have been made to demonstrate the fitting and generalization abilities of PAT,
including base-to-new generalization, few-shot learning, cross-dataset generation across more than
ten datasets and comprehensive ablation studies. PAT is shown to achieve state-of-the-art perfor-
mance compared with most recent vision language efficient tuning methods. Specifically, PAT
achieves an average 0.9% accuracy gain in Base-to-New over existing state-of-the-arts (i.e. 80.4%
vs. 79.5%), and achieves an average 1.5% improvement in the few-shot learning (i.e., 78.2% vs.
76.7%).
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2 RELATED WORK

2.1 VISION LANGUAGE MODELS

Vision-language models (VLMs) learn multi-modal representations by pretraining on large-scale
image-text datasets, such as CLIPRadford et al. (2021) and ALIGNJia et al. (2021), with 400 mil-
lion and 1 billion pairs, respectively. Using contrastive loss, these models align paired features
while distinguishing unpaired ones, enabling strong open-vocabulary generalization. Recent ad-
vancements enhance their descriptive and discriminative capabilities through stronger encodersLi
et al. (2023); Vaswani et al. (2017), deeper modality fusion, larger datasets, and techniques like
Masked Language Modeling (MLM) and image maskingKim et al. (2021); Lu et al. (2019). CLIP, a
key framework with exceptional generalization, has inspired numerous CoOp-based prompt tuning
approaches. In this work, we propose a novel prompt learning framework to further adapt pretrained
CLIP for generalization and few-shot learning.

2.2 PEFT FOR VISION LANGUAGE MODELS

Prompt learning, as a parameter-efficient fine-tuning method, aims to transfer pretrained models
to downstream tasks while keeping most parameters frozen. Classical prompt learning methods
achieve this by adding a small number of trainable embeddings into the input space of pretrained
models without altering the pretrained weights, thereby guiding the model’s outputs to adapt to
downstream tasks. Due to its efficiency in terms of trainable parameters, developing more powerful
prompt learning methods for adapting multimodal pretrained models like CLIP to visual or vision-
text downstream tasks has garnered significant interest from both academia and industry. For exam-
ple, Context Optimization (CoOp) Zhou et al. (2022b) replaces handcrafted prompts with learnable
embeddings in the input space of CLIP’s text encoder to enable few-shot adaptation. Recently,
Textual-based Class-aware Prompt (TCP) Yao et al. (2024) proposed another paradigm, focusing on
class-aware prompt tuning and try to combine adapter and prompt learning. To mitigate potential
knowledge forgetting during fine-tuning, Knowledge-Guided Context Optimization (KgCoOp) Yao
et al. (2023) applies L2 norm constraints to the text encoder, thus enhancing generalization.

Unlike these methods, we observe that while both are parameter-efficient fine-tuning approaches,
adapter-based methods differ from prompt learning in their focus. Instead of modifying the input
space of pretrained models as prompt learning does, adapter-based methods insert a small number
of trainable parameters alongside the pretrained modules. This indicates that these two approaches
exhibit different tendencies in generalization and fitting when learning knowledge. In this paper, we
propose a novel approach that leverages prompt learning as a pre-adjustment, followed by a post-
adjustment using adapter methods. By aligning the representations learned from both approaches,
we demonstrate that the knowledge acquired through adapter methods can be utilized to further
bootstrap the effectiveness of prompt learning.

3 METHODOLOGY

3.1 REVISITING VISION-LANGUAGE MODEL

We consider the pre-trained vision-language model CLIP that comprises a text encoder g and a
vision encoder f with respective pre-trained parameters θg and θf . We denote θCLIP = {θg, θf} as
the collection these parameters.

Vision Encoder: An input image X ∈RC×H×W is first divided into M patches that are projected
into M patch tokens t1, · · · , tM . The input X̂ = {tcls, t1, · · · , tM} to the vision encoder f is then
formed by appending a learnable class token tcls to the M patch tokens. Latent visual feature
representation f̂=f(X̂, θf )∈Rd is extracted from X̂ with multiple transformer blocks.

Text Encoder: The class label y corresponding to the image is wrapped within a text template (e.g.,
‘a photo of a class label’) to form Ŷ = {tSOS , t

′
1, · · · , t′L, ck, tEOS}, where {t′l}Ll=1 and ck are

word embeddings for the text template and class label of the kth class, respectively, and tSOS and
tEOS are learnable start and end token embeddings. The text encoder g encodes Ŷ via multiple
transformer blocks to obtain the latent textual feature ĝ = g(Ŷ , θg) ∈ Rd.
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Table 1: In the Base-to-New experiment, performance comparison between classification experi-
ments using New classes labels and All classes labels on the New classes dataset. Using All classes
labels results in a significant performance loss.

Datasets Labels CoOp CoCoOp MaPLe PromptSRC

SUN397 New 68.3 76.9 78.7 79.0
All 57.9 67.4 69.0 68.6

EuroSAT New 53.0 60.0 73.2 68.4
All 41.7 49.4 46.3 54.6

UCF101 New 67.4 73.5 78.7 78.3
All 52.3 65.6 71.3 71.6

Zero-shot Classification for Vision-Language Model: For zero-shot classification, textual
prompts are crafted with the text template and class labels y ∈ {1, · · · , C} for C classes. The
prediction ŷ given the image feature f̂ is calculated by cosine similarity with a temperature param-
eter τ .

p(ŷ|f̂) = exp(sim(f̂ , ĝŷ)/τ)∑i=1
C exp(sim(f̂ , ĝi)/τ)

. (1)

Limitations of Different Tuning Methods: Prompt learning inserts trainable embeddings into the
model’s input space without modifying its internal parameters, which can lead to instability during
training. Furthermore, since these embeddings merely guide the model’s output, their effectiveness
in downstream tasks is highly dependent on the pretrained model’s inherent capabilities. Conse-
quently, prompt learning performs poorly in scenarios where there is a significant distribution shift
between the pretraining data and downstream tasks or when handling complex tasks. In contrast,
adapter-based methods introduce trainable modules alongside the model’s parameter matrices, en-
abling stronger representational capacity. They are more robust to distribution shifts and complex
datasets; however, this learning tendency may result in a loss of the model’s generalization ability.
Therefore, an important research question is how to efficiently integrate adapter-based methods with
prompt learning to leverage their respective advantages.

3.2 PROPOSED METHOD

Existing PEFT methods for vision-language models such as TCP Yao et al. (2024) and DePT
Zhang et al. (2024), are primarily Prompt-based, thereby exhibiting strong generalization capabili-
ties. However, as illustrated in Figure 1, prompt-based methods remain limited in fitting capacity,
whereas Adapter-based methods demonstrate superior fitting ability. Accordingly, this section in-
troduces PAT, which integrates Adapter and Prompt as pre-adjustment and post-adjustment, and
propose a pre-post-alignment to enhance the coordination between the two method and promote
more effective joint optimization. To futher reinforce the model’s discriminative and generaliza-
tion capability, we combined PAT with tolerance regulatization, ultimately achieving more robust
classification performance. Figure 2 depicts the overall framework architecture. We use prompt
learning as a pre-adjustment to fine-tune the pre-trained VLM, followed by adapter tuning as a post-
adjustment, as formulated below.

f̂α = f(X̂, {θf , αf}), ĝα = g(Ŷ , {θg, αg}), (2)

f̂β = f({βf , X̂}, θf ), ĝβ = g({βg, Ŷ }, θg), (3)

f̂ = f̂α + f̂β , ĝ = ĝα + ĝβ , (4)

where αg and αf denote the learnable parameters of adapter inserted alongside the model for the
text branch and the visual branch, respectively. βg and βf represent the prompt learnable parameters
inserted into the input embeddings for the text branch and the visual branch, respectively. f̂α and ĝα
represent the fine-tuned representations obtained after applying prompt learning (pre-adjustment) of
text branch and visual branch. Similarly, f̂β and ĝβ indicate the fine-tuned representations obtained
after applying adapter tuning (post-adjustment). the final fine-tuned representations f̂ and ĝ are
obtained by integrating both approaches. Figure 3 illustrates the tolerance regularization mechanism.
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Figure 2: Overall Structure of PAT. In this figure, the blue blocks represent trainable parameters. As
shown in the overall pipeline of PAT, trainable parameters are first inserted into the input space of
both the image and text branches as pre-adjustment, followed by the insertion of adapters as post-
adjustment. Then, MSE is applied to align this two features. Subsequently, the two representations
are integrated through equal-weighted summation and the features after pre- and post-adjustments,
together with the features obtained from Zeroshot CLIP are further constrained using MAE and KL
divergence.
3.2.1 PRE-POST ALIGNMENT

To compensate for the limited fitting capacity of Prompt learning, a feasible approach is to constrain
the features obtained by adapter and prompt, thereby promoting the optimization of Prompts through
the updates of Adapters. Considering that x is the input image, z is the latent feature, α and β is the
parameterized adapter and prompt respectively. Then we have

pα(y|x) =
∫

pα(y|z)pα(z|x)dz = Ez[pα(y|z)], (5)

pβ(y|x) =
∫

pβ(y|z)pβ(z|x)dz = Ez[pβ(y|z)]. (6)

In equation 5 and equation 6, we assume that pα(z|x) and pβ(z|x) obey the Gaussian distributions
N (z;µα(x), σ

2
αI) and N (z;µβ(x), σ

2
βI). pα(y|z) and pβ(y|z) are the determinant function, i.e.,

the linear projection layer
pα(y|z) = δ(y −Wαz), pβ(y|z) = δ(y −Wβz), (7)

where δ(·) is the Dirac delta function and Wα and Wβ are the weight matrices. The expectation can
be simplified as

pα(y|x) = pα(z = µα(x)|x), pβ(y|x) = pβ(z = µβ(x)|x). (8)
We aim to minimize the KL divergence between the prediction distribution as

DKL(pα(y|x)∥pβ(y|x)) = Ey∼pα(y|x)

[
log

pα(y|x)
pβ(y|x)

]
. (9)

Then we bring Eq. equation 8 into the above objective. Considering that pα(z|x) and pβ(z|x) obey
Gaussian distribution, then the KL divergence has the analytical form:

DKL(pα∥pβ) =
1

2

[
log

σ2
β

σ2
α

+
σ2
α + (µα − µβ)

2

σ2
β

− 1

]
. (10)
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For simplification, we assume the adapter α and prompt β have the same variance σ2
α = σ2

β = σ2

in equation 10. Thus, we obtain that

DKL(pα∥pβ) =
1

2σ2
∥µα − µβ∥2. (11)

Therefore, the pre-post alignment loss for each modal branch model is formalized using MSE.

Lpre−post = E[(f̂α − f̂β)
2] + E[(ĝα − ĝβ)

2] (12)

3.2.2 TOLERANCE REGULARIZATION

For each sample xi, the corresponding visual feature is fi, and for all the textual description, the
textual representation is {tk}Kk=1, where K is the number of categories. We then calculate the logits
after softmax as

ŷ
(k)
i =

exp (cfitk + b)∑K
j=1 exp (cfitj + b)

. (13)

where c is the constant and b is the bias. For one-hot label y(k)i ∈ {0, 1}, the cross-entropy loss is
defined as

H(ŷ, y) = − 1

|B|

|B|∑
i=1

K∑
k=1

y
(k)
i log ŷ

(k)
i . (14)

In conventional vision language efficient tuning, the predicted textual description is forced to match
one of the given label. This over-fits the training categories and hampers generalization to unseen
classes. To avoid over-fitting on training datasets, we propose to use binary contrastive loss, i.e., the
sigmoid loss, as the regularization in the objective function.

Ltol(fi, gj) = − 1

|B|

|B|∑
i=1

|B|∑
j=1

log
1

1 + exp(zij(−tfi · gj + b))
, (15)

where zij returns 1 when the i-th visual representation fi matches the j-th textual representation gj
and −1 otherwise. Different from Zhai et al. (2023), we fix the parameters b to −2 and t to − log 2,
since the model possesses strong representation capability during fine-tuning.

Theorem 1. The sigmoid loss function degenerates to the class-irrelevant binary cross entropy loss
function, when considering only positive samples.

Proof. Please refer to the appendix.

Proposition 1 demonstrates that the proposed tolerance regularization yields a non-differentiable
binary cross-entropy (BCE) loss. Furthermore, when incorporating images from unrelated cate-
gories without label information and randomly sampled mismatched text, the non-differentiable
constraint effectively prevents the model from incorrectly assigning these samples to inappropri-
ate categories. By avoiding the enforcement of erroneous category selection, the regularization
enhances the model’s robustness and generalization capability

As shown in Figure 3, the training data is divided into images within the current category space
paired with their corresponding labels and noise images outside the current category space paired
with randomly sampled labels during fine-tuning. The tolerance regularization processes each
image-text pair independently. For images within the category space, it brings their representa-
tion closer to the corresponding textual representation. For noise images, the similarity with the
representation of all existing category texts will be pushed farther. During this process, we pro-
gressively penalize the distance between unknown samples and known text representation, thereby
enhancing their generalization to unseen categories. Subsequent experimental results demonstrate
that the application of tolerance regularization significantly improves the generalization capability
of prompt learning.
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Text Encoder

A photo of a Cat.

Pull Together

Push Away

Negative Pair

Positive Pair

A photo of a Dog.

Image Encoder

Figure 3: Schematic diagram of contrastive learning based on the tolerance regularization loss. For
each image-text pair, if the pair is positive, the resulting visual representation and textual represen-
tation are pull together; otherwise, the two representations are pushed away apart.

3.2.3 OBJECTIVE FUNCTION

The final objective function of PAT is

L = −0.01Ltol(f̂i, ĝ
(zs)
j ) + Lpre−post + Lce + Lpre−tune, (16)

where ĝ
(zs)
j represents the text representation obtained through zero-shot CLIP. In addition to the

proposed pre-post align and pos-neg align, the objective function includes a cross-entropy loss Lce

for guiding classification and a widely adopted alignment loss Lpre−tune for prompt learning Khat-
tak et al. (2023b); Yao et al. (2023; 2024) to constrain the pretrained and fine-tuned model.

4 EXPERIMENTS

4.1 BENCHMARK SETTINGS

Datasets: Following Khattak et al. (2023b) and Yao et al. (2024), we conduct Base-to-New general-
ization, few-shot learning, and cross-dataset generalization for a wide range of recognition tasks on
11 datasets, including ImageNet Deng et al. (2009) and Caltech101 Fei-Fei et al. (2004) for generic
objects, OxfordPets Parkhi et al. (2012), StanfordCars Krause et al. (2013), Flowers102 Nilsback &
Zisserman (2008), Food101 Bossard et al. (2014), and FGVC-Aircraft Maji et al. (2013) for fine-
grained classification, SUN397 Xiao et al. (2010) for scene recoginition, UCF101 Soomro et al.
(2012) for action recognition, DTD Cimpoi et al. (2014) for texture classification, and EuroSAT
Helber et al. (2019) containing satellite images.

Implementation Details: We adopt the pretrained CLIP with the ViT-B/16 backbone. All the ex-
periments are repeated for 3 times to report the average results. Under all the settings, the prompts
are randomly initialized and trained for 20 epochs, and the length is set to 4. We adopt Adapter-
Former Chen et al. (2022) for post-adjustment of the text encoder and Convpass Jie et al. (2024) for
the vision encoder. For both modalities, the adapters are applied in the multi-head attention layer
and the linear layer with a scaling factor of 0.1 and a hidden dimension of 16. For cross-dataset
evaluation, we train the source model on all classes of ImageNet with 16 shots settings using SGD
optimizer with the learning rate of 3.5×10−3 and the batch size of 4. For feature ensembling, we
add both feature from pre-adjustment and post-adjustment with equal weight. All the experiments
are performed on NVIDIA RTX 2080Ti GPU except that evaluations on ImageNet are performed
on RTX 4090 and NVIDIA A100 GPUs.

Baselines: We adopt most recent state-of-the-art methods without using the large language model
as baselines, including CoOp Zhou et al. (2022b), CoCoOp Zhou et al. (2022a), ProGrad Zhu
et al. (2023), KgCoOp Yao et al. (2023), PromptSRC Khattak et al. (2023b), MaPLe Khattak et al.
(2023a), LFA Ouali et al. (2023), DePT Zhang et al. (2024), PLOT Chen et al. (2023), TaskRes Yu
et al. (2023), RPO Lee et al. (2023), DAPTCho et al. (2023), VPT Jia et al. (2022), TIP-Adapter-F
Zhang et al. (2022), TCP Yao et al. (2024) and DCP Li et al. (2025).
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Table 2: Performance comparison across different methods on Base-to-New Benchmark. PAT
achieved state-of-the-art performance across Base, New, and H, with performance improvements
of 1.5%, 0.7%, and 0.9%, respectively.
Datasets Sets CoOp CoCoOp ProGrad KgCoOp RPO PLOT LFA MaPLe DePT PromptSRC TCP DPC PAT(ICCV22)(CVPR22)(ICCV23)(ICCV23)(ICCV23)(ICLR23)(ICCV23)(CVPR23)(CVPR24) (ICCV23) (CVPR24)(CVPR25)

Average
Base 82.4 80.5 82.5 80.7 81.1 84.0 83.6 82.3 83.6 84.1 84.1 85.9 85.6
New 68.0 71.7 70.8 73.6 75.0 71.7 74.6 75.1 75.0 75.0 75.4 73.3 76.1

H 74.5 75.8 76.2 77.6 77.8 77.4 78.8 78.5 79.1 79.3 79.5 79.1 80.4

ImageNet
Base 76.5 76.0 77.0 75.8 76.6 77.3 76.9 76.7 77.0 77.8 77.3 77.9 78.0
New 66.3 70.4 66.7 70.0 71.6 69.9 69.4 70.5 70.1 70.7 69.9 68.0 70.5

H 71.0 73.1 71.5 72.8 74.0 73.4 72.9 73.4 74.1 73.4 73.4 72.6 74.1

Caltech101
Base 97.8 98.0 98.0 97.7 98.0 98.5 98.4 97.7 98.3 98.1 98.2 98.6 98.8
New 93.3 93.8 93.9 94.4 94.4 92.8 93.9 94.4 94.6 93.9 94.7 94.5 94.1

H 95.5 95.8 95.9 96.0 96.0 95.6 96.1 96.0 96.4 96.0 96.0 96.5 96.4

OxfordPets
Base 94.5 95.2 95.1 94.7 94.6 94.5 95.1 95.4 94.3 95.5 94.7 95.8 95.8
New 96.0 97.7 97.6 97.8 97.5 96.8 96.2 97.8 97.2 97.4 97.2 97.7 97.4

H 95.2 96.4 96.3 96.2 96.1 95.7 95.7 96.6 95.8 96.4 95.9 96.7 96.6

Cars
Base 75.7 70.5 77.7 71.8 73.9 79.1 76.3 72.9 79.1 78.4 80.8 79.6 81.5
New 67.5 73.6 68.6 75.0 75.5 74.8 74.9 74.0 75.5 74.7 74.1 71.2 73.5

H 71.4 72.0 72.9 73.4 74.7 76.9 75.6 73.5 77.3 75.5 77.3 75.2 77.3

Flowers
Base 97.3 94.9 95.5 95.0 94.1 97.9 97.3 95.9 98.0 97.9 97.7 98.2 98.2
New 67.1 71.8 71.9 74.7 76.7 73.5 75.4 72.5 76.4 76.8 75.6 72.7 77.3

H 79.4 81.7 82.0 83.7 84.5 84.0 85.0 82.6 85.8 86.1 85.2 83.5 86.5

Food101
Base 89.4 90.7 90.4 90.5 90.3 89.8 90.5 90.7 90.5 90.6 90.6 91.4 90.5
New 88.8 91.3 89.6 91.7 90.8 91.4 91.5 92.1 91.6 91.5 91.4 90.5 91.2

H 89.1 91.0 90.0 91.1 90.6 90.6 91.0 91.4 91.1 91.1 91.0 90.9 90.8

Aircraft
Base 39.7 33.4 40.5 36.2 37.3 42.1 41.5 37.4 43.2 42.3 42.0 49.5 46.2
New 31.2 23.7 27.6 33.6 34.2 33.7 32.3 35.6 34.8 37.0 34.4 34.0 37.4

H 35.0 27.7 32.8 34.8 35.7 37.5 36.3 36.5 38.6 39.5 37.8 40.4 41.3

SUN397
Base 80.9 79.7 81.3 80.3 80.6 82.2 82.1 80.8 82.3 82.8 82.6 82.0 82.9
New 68.3 76.9 74.2 76.5 77.8 73.6 77.2 78.7 77.8 79.0 78.2 75.9 78.8

H 74.1 78.3 77.6 78.4 79.2 77.7 79.6 79.8 80.0 80.9 80.4 78.9 80.8

DTD
Base 80.0 77.0 77.4 77.6 76.7 82.0 81.3 80.4 82.2 82.6 82.8 85.5 85.3
New 48.6 56.0 52.4 55.0 62.1 43.8 60.6 59.2 59.1 57.5 58.1 55.6 63.5

H 60.5 64.9 62.5 64.4 68.6 57.1 69.5 68.2 68.8 67.8 68.3 67.4 72.8

EuroSAT
Base 90.1 87.5 90.1 85.6 86.6 93.7 93.4 94.1 89.0 92.4 91.6 98.3 94.8
New 53.0 60.0 60.9 64.3 69.0 62.7 71.2 73.2 71.1 68.4 74.7 72.2 74.4

H 66.7 71.2 72.7 73.5 76.8 75.1 80.8 82.3 79.0 78.6 82.3 83.3 83.4

UCF101
Base 84.5 82.3 84.3 82.9 83.7 86.6 87.0 83.0 85.8 86.9 87.1 88.1 89.2
New 67.4 73.5 74.9 76.7 75.4 75.9 77.5 78.7 77.2 78.3 80.8 74.2 79.3

H 75.0 77.7 79.4 79.7 79.3 80.9 82.0 80.8 81.3 82.4 83.8 80.5 84.0

4.2 BASE-TO-NEW GENERALIZATION

To evaluate the generalization ability of PAT, we equally split each dataset into base and new classes.
The model is trained using the base classes in a 16-shot setting and evaluated on new classes. To
simultaneously evaluate the fitting ability, generalization capability, and overall performance, we
report the classification accuracy for both base classes and new classes, as well as their harmonic
mean. Table 2 shows that PAT achieves state-of-the-art performance on 9 out of 11 datasets and
is competitive on the remaining SUN397 and Flowers datasets. Compared with CoOp Zhou et al.
(2022b), PAT achieves an accuracy gain of 5.9% on average and 3.2% and 8.1% on the base and
new classes, respectively. Furthermore, PAT outperforms the state-of-the-art TCP by 0.9% on av-
erage (80.4% vs. 79.5%), 1.5% on the base classes (85.6% vs. 84.1%), and 0.7% on the new
classes (76.1% vs. 75.4%). These results demonstrate that PAT achieves better fitting capability and
generalization ability compared to existing methods.

4.3 FEW-SHOT CLASSIFICATION

To better validate the ability of the proposed PAT in transfer learning with limited data, we perform
few-shot classification on 11 datasets. All the methods were trained using K-shot training images
and corresponding class labels, and evaluated on test sets that share the same class space as the
training sets. Following previous approaches, we present classification performance on 4-shots.
Table 3 shows that PAT achieves the best performance in 8 out of 11 datasets. For example, in DTD,
we improved performance from 64% to 65.4%; in EuroSAT, from 77.4% to 85.3%; and in SUN397,
from 72.8% to 74.0%. Overall, PAT shows a 1.5% improvement compared to the previous state-
of-the-art, providing strong evidence of its capability for downstream transfer learning with limited
samples.
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Table 3: Accuracy (%) for few-shot classification. PAT achieved state-of-the-art performance in
4-shot settings, delivering an absolute performance improvement of 1.5% compared to TCP.
Datasets CLIP CoOp CoCoOp ProGrad KgCoOp MaPLe TIP-Adapter-F DAPT PromptSRC PLOT TaskRes TCP PAT

ImageNet 66.7 69.4 70.6 70.2 70.2 70.7 70.8 70.8 70.8 70.4 62.9 70.5 70.8
Caltech101 93.3 94.4 95.0 94.9 94.7 94.3 94.8 94.2 94.8 95.1 94.7 95.0 95.5
OxfordPets 89.1 91.3 93.0 93.2 93.2 92.1 92.3 92.2 93.2 92.6 92.0 91.9 93.5
StanfordCars 65.7 72.7 69.1 71.8 72.0 68.7 74.4 74.4 71.8 74.9 75.9 76.3 75.7
Flowers 70.7 91.1 82.6 90.0 90.7 80.8 93.0 92.4 91.3 92.9 91.5 94.4 93.7
Food101 85.9 82.6 86.6 85.8 86.6 86.9 86.2 83.6 86.1 86.5 86.0 85.3 86.3
Aircraft 24.9 33.2 30.9 32.9 32.5 29.0 35.5 32.5 32.8 35.3 33.8 36.2 38.0
SUN397 62.6 70.1 70.5 71.2 71.8 71.5 70.7 72.2 72.8 70.4 72.7 72.1 74.0
DTD 44.3 58.6 54.8 57.7 58.3 54.7 61.7 61.4 60.6 62.4 59.6 64.0 65.4
EuroSAT 48.3 68.6 63.8 70.8 71.1 54.9 78.3 72.7 75.0 80.7 72.9 77.4 85.3
UCF101 67.6 77.4 75.0 77.8 78.4 73.7 79.7 79.4 79.4 79.8 76.1 80.8 81.7
Average 65.4 73.6 72.0 74.2 74.5 70.7 76.1 75.1 75.3 76.5 74.4 76.7 78.2

Table 4: Ablation study on the hyper-parameters α and r in adapter configuration.

α r
EuroSAT DTD UCF101 Flowers Pets Cars

Base New H Base New H Base New H Base New H Base New H Base New H

0.1 2 94.1 66.5 77.8 83.9 63.6 72.4 88.3 79.2 83.5 98.0 76.7 86.0 95.5 97.4 96.4 78.9 74.3 76.5
0.1 4 93.7 72.0 81.4 84.1 63.4 72.3 88.2 78.4 83.0 98.3 76.9 86.3 95.7 97.3 96.5 79.6 74.2 76.8
0.1 8 94.1 74.4 83.1 84.3 62.0 71.5 89.5 79.6 84.2 98.5 76.9 86.4 95.8 97.5 96.6 80.6 73.7 77.0
0.1 16 94.8 74.4 83.4 85.3 63.5 72.8 89.2 79.3 84.0 98.2 77.3 86.5 95.8 97.4 96.6 81.5 73.5 77.3

10.0 16 96.0 68.0 79.6 84.8 58.9 69.5 87.0 74.7 80.4 98.0 73.4 83.9 95.3 97.0 96.1 77.4 73.7 75.5
1.0 16 96.2 65.2 77.7 83.9 57.9 68.5 87.4 78.1 82.5 98.2 73.5 84.0 95.8 96.8 96.3 77.4 74.1 75.7
0.1 16 94.8 74.4 83.4 85.3 63.5 72.8 89.2 79.3 84.0 98.2 77.3 86.5 95.8 97.4 96.6 81.5 73.5 77.3

0.01 16 92.8 75.9 83.5 83.7 60.3 70.0 86.4 78.2 82.1 98.4 76.6 86.1 96.0 97.2 96.6 77.5 75.6 76.5

4.4 CROSS-DATASET GENERALIZATION

Cross-dataset generalization is evaluated to further validate the generalization ability of PAT, con-
sidering that the base and new classes sampled from the same datasets are similar in data distribution
in base-to-new generalization. Unlike previous studies, we aim to verify whether models maintain
strong generalization abilities after downstream transfer under truly small-scale data with limited
samples. The full results please refer to Appendix.

4.5 ABLATION STUDIES

Ablation studies are performed on base-to-new generalization on EuroSAT, DTD, UCF101, Flowers,
Pets, and Cars to validate the loss function, adapter configuration, and prompt length. We evaluate
on each dataset using three random seeds, and report average accuracy for base classes, new classes,
and their harmonic mean. The results of ablation on adapter configuration and prompt length please
refer to appendix.

4.6 ADAPTER CONFIGURATION

Since PAT relies on adapters to constrain the update of prompt learning, we perform ablation ex-
periments on the scaling factor α and hidden dimensions r of the adapter. Table 4 shows that the
configuration with α = 0.1 and r = 16 achieves the best comprehensive performance overall. How-
ever, other hyperparameter combinations can outperform this configuration on specific datasets. For
instance, α = 0.1 and r = 8 perform better on UCF101, while α = 0.01 and r = 16 achieve
superior results on EuroSAT. Note that, compared to the hidden dimension r, the scaling factor α
has a more significant impact on performance across all three datasets.

5 CONCLUSION

In this paper, we propose a novel prompt learning approach based on pre-adjustment, post-
adjustment, and contrastive learning. To further enhance the fitting ability and generalization of
current prompt learning methods, we employ adapter-based feature adaptation as a post-adjustment
to integrate the strengths of Prompts and Adapters, thereby achieving a better balance between
fitting capability and generalization ability. Furthermore, we utilize a tolerance regularization to
bring known samples closer to text representations while penalizing noise samples against existing
text representations, resulting in a more robust multimodal classifier. Our extensive experimen-
tal results, including Base-to-New, Cross-dataset, and few-shot evaluations, demonstrate that our
proposed method, PAT, achieves significant advancements in both fitting performance and general-
izability compared to previous SOTA.
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A APPENDIX

A.1 THE USAGE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, Large Language Models was utilized primarily for pol-
ishing and enhancing the readability in various sections. Specifically, LLMs assisted me in checking
grammar errors, improving phrasing, and enhancing the overall fluency of the writing. And it should
be emphasized that LLMs did not contribute to the development of methodologies or the design of
experiments; all research ideas, data analyses, and experiments were carried out by the authors of
the paper.

A.2 PROOF OF PROPOSITION 3.1

When we only consider the positive samples Then we have the sigmoid loss function as

L = − 1

|B|

|B|∑
i=1

log κ(cfiti − b). (17)

where κ is the sigmoid function as κ(u) = 1
1+e−u Besids, the cross entropy can be simplified as

H(ŷ, y) = − 1

|B|

|B|∑
i=1

log
ecfitk∗+b∑K
j=1 e

cfitj+b
. (18)

Considering that only on positive textual label for each image sample. Besides, Similarity scores for
all negative samples are constant as cfitj + b = 0(j ̸= k∗). Then we have

K∑
j=1

ecfitj+b = ecfitk∗+b + (K − 1)e0 = ecfitk∗+b + (K − 1). (19)

Then the cross entropy degrads into:

H(ŷ, y) = − 1

|B|

|B|∑
i=1

log
ecfitk∗+b

ecfitk∗+b + (K − 1)
. (20)

When we further consider the binary classification, i.e., whether the image feature is aligned with
the textual description, we have

H(ŷ, y) = − 1

|B|

|B|∑
i=1

log
ecfitk∗+b

ecfitk∗+b + 1
= − 1

|B|

|B|∑
i=1

log κ(cfitk∗ + b). (21)

A.3 DOMAIN GENERALIZATION

Domain generalization experiments involve training a model on the source domain and testing it on
the target domain, making them useful for evaluating model generalization. Therefore, we train PAT
under the ImageNet 16-shot setting and test it on ImageNetV2, ImageNet-Sketch, ImageNet-A, and
ImageNet-R. The final results are reported as the average performance across these five datasets. As
shown in Table 5, PAT still holds state-of-the-art performance.

A.4 CROSS-DATASET GENERALIZATION

In this experiment, all methods are trained on the base classes of the DTD and EuroSAT datasets
and all classes of ImageNet in 16-shot settings under three distinct random seeds, and subsequently
evaluated on all categories of the other datasets. We compare the proposed PAT with Zero-shot CLIP
and TCP that demonstrates robust performance in base-to-new generalization.

Table 6 shows that, when trained on these cross-distribution few-shot datasets, TCP is inferior to
zero-shot CLIP in most cases. Notably, compared with zero-shot CLIP, TCP suffers accuracy loss
of 7.2% on EuroSAT and 2.0% on DTD. In contrast, PAT surpasses zero-shot CLIP and outperforms
TCP by 7.7% and 3.3% on these two datasets, respectively. This further demonstrates the superior
generalization ability of PAT.
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Datasets ImageNet -V2 -S -A -R Avg.

CoCoOp 71.0 64.1 48.8 50.6 76.2 62.1
ProGrad 72.2 64.7 47.6 49.4 74.6 61.7
KgCoOp 71.2 64.1 49.0 50.7 76.7 62.3
MaPLe 70.7 64.1 49.2 50.9 77.0 62.4
DAPT 71.7 64.5 49.5 51.1 76.3 62.6
TCP 71.2 64.6 49.5 51.2 76.7 62.6
PromptSRC 71.3 64.4 49.6 50.9 77.8 62.8
PAT 72.8 66.5 49.4 49.0 77.1 63.0

Table 5: Performance comparison across different methods on Domain Generalization Experiment.
PAT achieved state-of-the-art performance, delivering an absolute performance improvement of
0.2% compared to PromptSRC.

Table 6: Accuracy (%) for cross-dataset generalization. PAT achieved state-of-the-art performance
in all settings.
Parameter-Efficient Fine-Tuning On DTD Base Classes

Methods Caltech101 OxfordPets Cars Flowers Food101 Aircraft SUN397 EuroSAT UCF101 ImageNet Average

CLIP 93.3 89.1 65.6 70.7 85.9 24.7 62.6 48.3 67.6 72.4 68.0
TCP 91.6 86.8 64.7 68.5 85.2 20.5 62.1 46.4 68.2 65.6 66.0
PAT 96.7 89.4 60.3 66.3 87.9 22.4 72.0 57.5 68.6 71.6 69.3
Parameter-Efficient Fine-Tuning On EuroSAT Base Classes

Methods Caltech101 OxfordPets Cars Flowers Food101 Aircraft SUN397 DTD UCF101 ImageNet Average

CLIP 93.3 89.1 65.6 70.7 85.9 24.7 62.6 44.1 67.6 72.4 67.6
TCP 86.4 82.8 61.4 65.1 83.3 16.5 51.6 34.8 63.3 58.8 60.4
PAT 96.8 87.0 60.4 63.3 88.9 21.4 70.7 53.9 68.9 69.2 68.1
Parameter-Efficient Fine-Tuning On ImageNet all Classes

Methods Caltech101 OxfordPets Cars Flowers Food101 Aircraft SUN397 DTD EuroSAT UCF101 Average

CLIP 93.3 89.1 65.6 70.7 85.9 24.7 62.6 44.1 48.3 67.6 65.2
CoOp 93.7 89.1 64.5 68.7 85.3 18.5 64.2 41.9 46.4 66.6 63.9
ProGrad 91.5 89.6 62.4 67.9 85.4 20.2 62.5 39.4 43.5 64.3 62.7
KgCoOp 93.9 89.8 65.4 70.0 86.4 22.5 66.2 46.4 46.0 68.5 65.5
DePT 94.2 90.0 65.6 70.6 86.4 23.3 66.7 46.0 43.5 69.3 65.6
VPT 93.7 89.3 65.5 70.2 86.3 22.1 66.6 46.9 47.4 67.2 65.5
PLOT 92.1 90.1 65.7 69.2 86.2 25.0 61.7 38.6 47.8 67.0 64.3
PromptSRC 93.6 90.3 65.7 70.3 86.2 23.9 67.1 46.9 45.5 68.8 65.8
MaPLe 93.5 90.5 65.6 72.2 86.2 24.7 67.0 46.5 48.1 68.7 66.3
DAPT 93.5 90.7 65.9 71.7 86.1 23.0 67.0 44.0 52.5 68.7 66.3
TCP 94.0 91.3 64.7 71.2 86.7 23.5 67.2 44.4 51.5 68.7 66.3
PAT 93.4 90.2 65.8 71.3 86.0 24.5 67.6 46.1 50.8 68.9 66.5

A.5 ABLATION ON ADAPTER CONFIGURATION

Since PAT relies on adapters to constrain the update of prompt learning, we perform ablation ex-
periments on the scaling factor α and hidden dimensions r of the adapter. Table 4 shows that the
configuration with α = 0.1 and r = 16 achieves the best comprehensive performance overall. How-
ever, other hyperparameter combinations can outperform this configuration on specific datasets. For
instance, α = 0.1 and r = 8 perform better on UCF101, while α = 0.01 and r = 16 achieve
superior results on EuroSAT. Note that, compared to the hidden dimension r, the scaling factor α
has a more significant impact on performance across all three datasets.

A.5.1 ABLATION ON LOSS FUNCTION

We first validate the effectiveness of the proposed loss function, including the alignment loss to
constrain pre-adjustment and post-adjustment and the tolerance regularization for constructing a ro-
buster classifier. Table 7 shows that the absence of the tolerance regularization results in a 1.4%
decline in overall performance on EuroSAT, with accuracy decreasing by 1.3% on the Base cat-
egory and 1.4% on the New category. On DTD, the overall performance drops by 0.4%, with a
1.3% decrease in the Base category. Similarly, when the PP loss is removed, the accuracy on Eu-
roSAT decreases by 2.7% in the New category and 1.6% overall. On DTD, the Base, New, and
overall performance decrease by 0.3%, 2.3%, and 1.6%, respectively. In this setting, the baseline
removes both the PP and Tol losses. Compared to the baseline, both PP and Tol bring significant
improvements. Specifically, the PP loss improves overall performance by 8.3%, 6.0%, and 1.7%
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Table 7: Ablation study on the loss function. B, PP, and Tol stand for Baseline, Pre-Post, and
Tolerance, respectively.

B PP Tol EuroSAT DTD UCF101
Base New H Base New H Base New H

✓ 96.6 60.4 74.3 84.7 54.6 66.4 88.5 76.5 82.1
✓ ✓ 93.5 73.0 82.0 84.0 63.6 72.4 89.0 79.2 83.8
✓ ✓ 95.2 71.7 81.8 85.0 61.2 71.2 89.0 80.5 84.5
✓ ✓ ✓ 94.8 74.4 83.4 85.3 63.5 72.8 89.2 79.3 84.0

Figure 4: Ablation study on prompt length ranging from 2 to 8.

on EuroSAT, DTD, and UCF101, respectively, while the Tol loss leads to gains of 8.1%, 4.8%, and
2.4% on the these datasets. These results demonstrate the effectiveness of our method and further
validate that adjusting the alignment before integration is superior to directly combining Adapter
and Prompt approaches.

A.6 ABLATION ON PROMPT LENGTH

We investigate the impact of prompt length under the Base-to-New configuration. We compare the
performance effects of prompt lengths ranging from 2 to 8. Figure 4 shows that PAT is generally
insensitive to the choice of prompt length. In previous experiments, we fixed the prompt length to 4.
However, when the prompt length is set to 2, 6, or 7, PAT’s performance on EuroSAT can be further
improved, and a length of 2 achieves better performance on UCF101.
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