Under review as submission to TMLR

Delays, Detours, and Forks in the Road:
Latent State Models of Training Dynamics

Anonymous authors
Paper under double-blind review

Abstract

The impact of randomness on model training is poorly understood. How do differences
in data order and initialization actually manifest in the model, such that some training
runs outperform others or converge faster? Furthermore, how can we interpret the result-
ing training dynamics and the phase transitions that characterize different trajectories? To
understand the effect of randomness on the dynamics and outcomes of neural network train-
ing, we train models multiple times with different random seeds and compute a variety of
metrics throughout training, such as the Ly norm, mean, and variance of the neural net-
work’s weights. We then fit a hidden Markov model (HMM; [Baum & Petrie, [1966) over
the resulting sequences of metrics. The HMM represents training as a stochastic process
of transitions between latent states, providing an intuitive overview of significant changes
during training. Using our method, we produce a low-dimensional, discrete representation of
training dynamics on grokking tasks, image classification, and masked language modeling.
We use the HMM representation to study phase transitions and identify latent “detour”
states that slow down convergence.

1 Introduction

We possess strong intuition for how various tuned hyperparameters, such as learning rate or weight decay,
affect model training dynamics and outcomes (Galanti et al.l 2023} [Lyu et al., |2022)). For example, a larger
learning rate may lead to faster convergence at the cost of sub-optimal solutions (Hazanl 2019; |Smith et al.
2021; |Wu et al) [2019). However, we lack similar intuitions for the impact of randomness. Like other
hyperparameters, random seeds also have a significant impact on training (Madhyastha & Jain| [2019; |Sellam
et al., 2022), but we have a limited understanding of how randomness in training actually manifests in the
model.

In this work, we study the impact of random seeds through a low-dimensional representation of training
dynamics, which we use to visualize and cluster training trajectories with different parameter initializations
and data orders. Specifically, we analyze training trajectories using a hidden Markov model (HMM)
fitted on a set of generic metrics collected throughout training, such as the means and variances of the
neural network’s weights and biases. From the HMM, we derive a visual summary of how learning occurs
for a task across different random seeds.

This work is a first step towards a principled and automated framework for understanding variation in
model training. By learning a low-dimensional representation of training trajectories, we analyze training
at a higher level of abstraction than directly studying model weights. We use the HMM to infer a Markov
chain over latent states in training and relate the resulting paths to training outcomes.

Qur contributions:

1. We propose to use the HMM as a principled, automated, and efficient method for analyzing variabil-
ity in model training. We fit the HMM to a set of off-the-shelf metrics and allow the model to infer
latent state transitions from the metrics. We then extract from the HMM a “training map,” which
describes the important metrics for each state and changes in these metrics during state transitions,
helping to visualize how training evolves (Section [2)).

Under review as submission to TMLR

We train HMMs on training trajectories derived from grokking tasks, language modeling, and image
classification across a variety of model architectures and sizes. For these settings, we use the training
map to characterize how different random seeds lead to different training trajectories. We analyze
phase transitions in grokking by matching them to corresponding latent states in the training map,
and thus the changes in metrics associated with the phase transitions (Section [3.1)).

2. We discover detour states, which are latent states associated with slower convergence. We propose
our method for finding detour states as a general way to assign semantics onto latent states in

training maps (Sections [2.3] [3.4).

We discover that we can induce detour states in image classification by destabilizing the optimization
process and, conversely, remove detour states in grokking by stabilizing the optimization process. By
making a few changes that are known to stabilize neural network training, such adding normalization
layers, we find that the gap between memorization and generalization in grokking is dramatically
reduced. Our results, along with prior work from |Liu et al| (2023]), show that grokking can be
avoided by changing the architecture or optimization of deep networks (Section .

2 Methods

fw)] [Aiw)
LW | [Fatw)

-
7YY

Figure 1: From training runs we collect metrics, which are functions of the neural networks’ weights. We
then train a hidden Markov model using the sequences of metrics generated from the training runs. The
hidden Markov model learns a discrete latent state over the sequence, which we use to cluster and analyze
the training trajectory.

L(we)

—— Loss

In this work, we cluster training trajectories from different random seeds and then analyze these clusters to
better understand their learning dynamics and how they compare to each other. To cluster trajectories, we
assign each model checkpoint to a discrete latent state using an HMM. We choose the HMM because it is
the simplest time series model with a discrete latent space.

Let wi.p7 € RPXT be the sequence of neural network weights observed during training. Each w; is a model
checkpoint. In this work, we use the Gaussian HMM to label each checkpoint wi.7 with its own latent
state, si1.p. Fitting the HMM directly over the weights is computationally infeasible, because the sample
complexity of an HMM with O(D?) parameters would be prohibitively high. Our solution to this problem
is to compute a small number of metrics f1(wi.7), ..., fa(wi.r) from wy.7, where d << D and f : RP — R.

2.1 Training an HMM over Metrics

In this work, we focus on capturing how the computation of the neural network changes during training
by modeling the evolution of the neural network weights. To succinctly represent the weights, we compute
various metrics such as the average layer-wise L; and Lo norm, the mean and variances of the weights and
biases in the network, and the means and variances of each weight matrix’s singular values. A full list of the
14 metrics we use, along with formulae and rationales, is in Appendix

To fit the HMM, we concatenate these metrics into an observation sequence zi.7. We then apply z-score
normalization (also known as standardization), adjusting each feature to have a mean of zero and a standard

Under review as submission to TMLR

deviation of one, as HMMs are sensitive to the scale of features. We thus obtain the normalized sequence
Z1.7. To bound the impact of training trajectory length, we compute z-scores using the estimated mean and
variance of (up to) the first 1000 collected checkpoints.

fi(wy) [fi(we) — p(fr(wir))]/o(fi(wir))

falwr) [Fa(we) — p(Falworr))] o (Falwrr)

We collect N sequences {z;.7}Y from N different random seeds, normalize the distribution of each metric
across training for a given seed, and train the HMM over the sequences {Z1.7} using the Baum-Welch
algorithm (Baum et al.}[1970). The main hyperparameter in the HMM is the number of hidden states, which
is typically tuned using the log-likelihood, Akaike information criterion (AIC), and/or Bayesian information
criterion (BIC) (Akaike) 1998 [Schwarz, (1978) of validation sequences. Here, we hold out 20% of the N
trajectories as validation sequences and choose the number of hidden states that minimizes the BIC. We use
BIC because BIC imposes a stronger preference for simpler, and thus more interpretable, models. Model
selection curves are in Appendix [G]

2.2 Extracting the Training Map

Next, we use the HMM to describe what each hidden state means and how the hidden states relate to each
other. We convert the HMM into a “training map,” which represents hidden states as vertices in a graph
and hidden state transitions as edges in the graph.

First, we extract the graph’s structure from the HMM. The learned HMM has two sets of parameters: the
transition matrix p(s¢|si—1) between hidden states, and the emission distribution p(Z¢|s; = k) ~ N (uk, Xk),
where py and X are the mean and covariance of the Gaussian conditioned on the hidden state k, respectively.
The transition matrix is a Markov chain that defines the graph’s structure. It defines what hidden states
exist and the possible transitions between hidden states a priori. We prune edges in the Markov chain if the
edge is unused by the HMM for all training trajectories.

We label the hidden states s1.7 (i.e., the graph’s vertices) by ranking the features according to how much
each feature Z;[i] changes the posterior probability p(s; = k|Z1.t). If a change AZ[i] along a feature Zi]
leads to a large change in p(s; = k|Z1.;), then we consider Z[i] to be an influential feature for the prediction
that s; = k. Let £ be the likelihood p(Z¢|s;).

Proposition 1 We can rank features Z:[i] according to how much they change the posterior probability
p(st = k|Z1.4) by computing the derivative:
dlog L
OA%I]

S iy i) (1)

Proof sketch: The posterior probability p(s¢|Z1.+) is a monotonic transformation of the likelihood L when
holding Z1.4_1 fized. Thus, we can simply take the derivative gi‘;gt[f] = E;l[i, i] to find the features Z.[i] that
produce the largest changes in the log-likelihood. It follows that the most important feature Z;[i] for hidden

state k has the largest Egl[ai]. See Appendixfor the full derivation.

In the results to follow, we use Proposition [1| to compute the 3 most important features for each hidden

state. Formally, the most important feature is arg maxz,; %gt[f].

To characterize an edge (j — k) in the graph, we can subtract the means between state j and k. The
difference vector up — p; then describes the movement of features along the edge. In summary, we can
obtain a training map from an HMM by extracting:

o The graph structure (vertices and edges) from a pruned transition matrix.

e Vertex labels from the learned covariance matrix of each hidden state, which describes the features
that change the hidden state the most.

o Edge labels from the difference vectors between hidden states.

Under review as submission to TMLR

2.3 Assigning Semantics to Latent States

From the HMM’s transition matrix, we obtain a training map, or the Markov chain between learned latent
states of training. We then label the nodes and edges in the training map using probabilistic reasoning over
the HMM’s learned means and covariances. But what do we learn from the path a training run takes through
the map? In particular, what impact does a particular state have on training outcomes?

In order to relate HMM states to training outcomes, we select a metric and predict it from the path a
training run takes through the Markov chain. To do so, we must featurize the sequence of latent states, and
in this work we use unigram featurization, or a “bag of states” model. Formally, let sq, s2,...,s7 be the
latent states visited during a training run. The empirical distribution over states can be calculated as:

A]lSj:k
P(s:k):# (2)

where k represents a particular state and 7' is the total number of checkpoints in the trajectory. This
distribution can be written as a d-dimensional vector, which is equivalent to unigram featurization.

In this work, we investigate how particular states impact convergence time, which we measure as the first
timestep that evaluation accuracy crosses a threshold. We set the threshold to be a value slightly smaller
than the maximum evaluation accuracy (see Section . We use linear regression to predict convergence
time from P. Here, we are not forecasting when a model will converge from earlier timesteps; rather, we are
simply using linear regression to learn a function between latent states and convergence time.

After training the regression model, we examine the regression coefficients to see which states are correlated
with slower or faster convergence times. If the regression coefficient for a state is positive when predicting
convergence time, then a training run spending additional time in that state implies longer convergence time.
Additionally, if that same state is not visited by all trajectories, then we can consider it a detour, because
the trajectories that visit the optional state are also delaying their convergence time.

Definition: Detour state.

A learned latent state is a detour state if:

e Some training runs converge without visiting the state. This indicates that the state is
“optional.”

o Its linear regression coefficient is positive when predicting convergence time. This indi-
cates that a training run spending more time in the state will have a longer convergence
time.

Our method for assigning semantics to latent states can be extended to other metrics. For example, one
might use regression to predict a measure of gender bias, which can vary widely across training runs (Sellam
et al., [2022)), from the empirical distribution over latent states. The training map then becomes a map of
how gender bias manifests across training runs. We also recommend computing the p-value of the linear
regression and only interpreting the coefficients when they are statistically significant.

3 Results

Training maps help us understand how and when variations due to randomness manifest over the course
of training. We perform experiments across five tasks: modular addition, sparse parities, masked language
modeling, MNIST, and CIFAR-100. For all training hyperparameter details, see Appendix [C}

Modular arithmetic and sparse parities are tasks where models consistently exhibit grokking (Power et al.|
2022), a phenomenon where the training and validation losses seem to be decoupled, and the validation loss
drops sharply after a period of little to no improvement. The model first memorizes the training data and
then generalizes to the validation set. We call these sharp changes “phase transitions,” which are periods in
training which contain an inflection in the loss (i.e., the concavity of the loss changes) that is then sustained
(no return to chance performance).

Under review as submission to TMLR

We study modular arithmetic and sparse parities to see how phase transitions are represented by the HMM'’s
discrete latent space. We complement these tasks with masked language modeling (Appendix @ and image
classification. In this work, we ignore embedding matrices and layer norms when computing metrics, as we
are primarily interested in how the function represented by the neural network changes.

3.1 Algorithmic Data: Modular Arithmetic and Sparse Parities

Modular Arithmetic: Figure In modular addition, we train a one-layer autoregressive transformer
to predict z = (x + y) mod 113 from inputs = and y. We collect trajectories using 40 random seeds and
train and validate the HMM on a random 80-20 validation split, a split that we use for all settings. This is
a replication of the experiments in Nanda et al.| (2023)).

In modular arithmetic, the number of epochs that different training runs take to converge differ by thousands
of epochs. Examining the modular addition training map, we find that there exist paths of different lengths:
some training runs take the shortest path through the map to convergence, while others do not. We feature
three such paths in Figure [2] All runs initialize in state 1 and achieve low loss in state 3, but there are
several paths from 1 to 3. The longest path (1 — 5 — 2 — 3) coincides with the longest time to convergence
of the three featured runs, and the shortest path (1 — 3) with the shortest.

Using the HMM, we can further dissect this variability by relating the edges exiting state 1 to how fast or
slow generalizing runs differ with respect to model internals. The results of this examination are in the table
of Figure 2] Here, we take the top 3 features of states 2, 5, and 3 via the learned covariance matrices, and
quantify the feature movements of the top 3 features by subtracting the learned means (recall Z) between
these states and state 1. We find that the fast-generalizing path (1 — 3) is characterized by a “just-right”
drop in the Ls norm (}1.68, see table). The slower-generalizing runs (1 — 2 — 3) and (1 - 5 — 2 — 3) are
characterized by either smaller (10.59) or larger (]2.08) drops in Ly norm.

State 1 encapsulates the memorization phase transition: the training loss drop to near-zero in state 1, while
validation loss increases. Thus, according to the training map, the epoch in which the generalization phase
transition happens is affected by how fast the Lo norm drops immediately after the memorization phase
transition. A “just-right” drop in the Lo norm is correlated with the quickest onset of generalization.

Sparse Parities: Figure [8 in Appendix [El Sparse parities is a similar rule-based task to modular
addition, where a multilayer perceptron must learn to apply an AN D operation to 3 bits within a 40-length
bit vector; the crux of the task is learning which 3 of the 40 bits are relevant. We again collect 40 training
runs.

Similar to modular arithmetic, path variability through the training map also appears at the beginning
of training in sparse parities. Slow-generalizing runs take the path (2 — 0 — 5), while fast-generalizing
runs take the more direct path (2 — 5). The L, norm remains important here, with the edge (2 — 0)
characterized by an increase in the Lo norm and the edge (2 — 5) characterized by a decrease. Once again,
the speed at which the generalization phase transition occurs is associated with a specific change in the Lo
norm immediately after the memorization phase transition.

3.2 Image classification: CIFAR-100 and MNIST

CIFAR-100: Figure As a counterpoint to grokking, consider image classification, a well-studied task
in computer vision and machine learning. We collect 40 runs of ResNet18 (He et al.l 2016) trained on
CIFAR-100 (Krizhevsky, [2009), and find that the learning dynamics are smooth and insensitive to random
seed. The training map is a linear graph, and the state transitions all tend to feature increasing dispersion
in the weights. We show the top 3 features for each state transition in the table of Figure 8] The Ly, Lo
and average singular value are increasing monotonically across all state transitions.

MNIST: Figure[9)in Appendix[F} The dynamics of CIFAR-100 seem to be shared by MNIST. We collect
40 training runs of a two-layer MLP learning image classification on MNIST, with hyperparameters based
on [Simard et al.|(2003). The training runs of MNIST follow a single trajectory through the training map.

Under review as submission to TMLR

10 ---- Train 0,002
—— Validation -

8 0.996
a6 0.005 5
S

4 4

5 Y 0.004

1
0 I\
0 2000 4000 6000 8000 10000 0@
Epoch
12.5
10.0 -
0.987 0.995 0.995 0.996
w 13 0.01 A 0.005 A 0.005
s ! & 2 0
- 5.0
2.5 Nt 0.004
0.0
0 2000 4000 6000 8000 10000 @)
Epoch
12.5
10.0 0.987 7 0.995 0.995
2 7.5 ‘é 0.005 '& B
S 1 N\0.002 0.001
5.0
: 0.997
25 &
0.0 Sessse=m— -
0 2000 4000 6000 8000 10000
Epoch
’ Edge \ Top 3 important feature changes (z-score) \ Transition frequency | Mean convergence epoch ‘
1—3 Ly }1.68, o(w) {1.99, Ly |1.83 2 /40 1810+ 71.5
1—2 Lo]0.59, L1]0.88, % $1.05 34 /40 2950 + 104
1—5 Ly]2.08, o(w) }2.24, Ly |2.25 4 /40 5450 + 313

Figure 2: One-layer transformer trained on modular addition. The first edge that a training run takes to
exit the initialization state 1 significantly impacts the number of epochs the run takes to generalize. We
sort features from most to least important by inverting the learned covariance matrices of each state, and
we define edges by subtracting the learned means between states, as discussed in Section [2:2] See Appendix
B for a glossary of metrics. The changes in the chart are the top three differences in learned means, sorted
by importance—for example, state 2 has a learned Lo norm that is 0.59 standard deviations lower than state
1, and the Lo norm is the most important feature for state 2.

We examine several state transitions throughout training and find that the transitions are also characterized
by similar changes between features.

3.3 Destabilizing Image Classification, Stabilizing Grokking

So far, we have observed that the training dynamics of neural networks learning algorithmic data (modular
addition and sparse parities) are highly sensitive to random seed, while the dynamics of networks trained on

Under review as submission to TMLR

6
---- Train
—— Validation
4
a 0.968 0.982 0.986 0.986 1.0
3 A O Oy
2 0.032 0.018 0.014 0.014
e D@ @@
Pﬂ""""‘s\l\"‘,
¥ “\‘M‘\“""I.v" W'\\l\n\l_m“ .
0 rranveat e
0 1000 2000 3000 4000 5000 6000
Step
’ Edge \ Top 3 important feature changes (z-score) ‘
i1 L, 10.64, L, 10.62, p()\) 10.56
1—-3 Ly 10.76, Ly 10.77, (X)) 10.75
32 Ly 10.80, Ly 10.81, p(A) 10.83
2—0 Lo 10.73, u(N) 10.75, Ly 10.73

Figure 3: ResNetl8 trained on CIFAR-100. All 40 training runs we collected from CIFAR-100 follow the
same path, although individual runs can spend slightly different amounts of time in each state. As shown
by the training map and accompanying annotations in the table, the training dynamics of CIFAR-100 are
similar between states.

image classification are relatively unaffected by random seed. One possible explanation is that sensitivity to
random seed is a property of the data, and grokking occurs because the data induces it. In this section, we
will show that this explanation is incomplete. Rather, grokking is also affected by model architecture and
optimization hyperparameters, and small changes to training can both close the gap between memorization
and generalization in grokking and make training robust to changes in random seed.

First, we examine the training dynamics of ResNets without batch normalization (loffe & Szegedy, 2015))
and residual connections. Residual connections help ResNets avoid vanishing gradients (He et al., |2016)) and
smooth the loss landscape (Li et al., 2018). Batch norm has similarly been shown to add smoothness to the
loss landscape (Santurkar et al., [2018)) and also contributes to automatic learning rate tuning (Arora et al.,
2019). We remove batch norm and residual connections from ResNet18 and train the ablated networks from
scratch on CIFAR-100 over 40 random seeds. All hyperparameters are in Appendix [C}

Without batch norm and residual connections, ResNet18’s training dynamics become significantly more
sensitive to randomness. See Figure [} Depending on the random seed, the model may stagnate for many
updates before generalizing. This increase in random variation is visible in the learned training map, which
now forks when exiting state 3, the initialization state. There now exists a slow-generalizing path (3 — 1)
and a fast-generalizing path (3 — 2), characterized by feature movements in opposite directions. In the
slow-generalizing path, norms and average singular value are increasing, while in the fast-generalizing path
these features are slightly decreasing.

If removing batch normalization destabilizes ResNet training in CIFAR-100, then adding layer normalization
(which was removed by Nanda et al.| (2023)) should stabilize training in modular addition. Thus, we add
layer normalization back in and train over 40 random seeds. We also decrease the batch size, which leads
SGD to flatter minima (Keskar et al., [2017). These modifications to training help the transformer converge
around 30 times faster on modular addition data. Furthermore, sensitivity to random seed disappears—the
training map in Figure [5] becomes a linear graph.

From this section, we draw two conclusions. First, that grokking is caused by both the data and model
training choices, and changes to model training can minimize the grokking effect. Second, that different
hyperparameters or architectures can result in different training maps for the same task. In training setups

Under review as submission to TMLR

---- Train
4 —— Validation

0.988

0 2000 4000 6000 8000 10000 12000
Step

0.994

0.995

0.988

0 2000 4000 6000 8000 10000 12000 o
Step
’ Edge \ Top 3 important feature changes (z-score) \ Transition frequency \ Mean convergence step ‘
3—2 Ly | 0.10, u(A) 40.17, Ly J0.18 29 / 40 3530 £+ 460
3—1 w(A) 1 0.67, Ly 1 0.75, Ly 1 0.64 12 / 40 7260 £+ 3010

Figure 4: Without residual connections and batch normalization, ResNet training becomes unstable, causing
convergence times to differ significantly. Slow-generalizing runs take the state transition (3 — 1), while fast-
generalizing runs take the state transition (3 — 2). (Runs can take the path (3 — 1 — 3 — 2), so transition
frequencies do not sum to 40). The variability induced by removing residual connections and batch norm
occurs at the beginning of training.

sensitive to random seed, the HMM associates differences in training dynamics with different latent states.
We formalize the connection between latent states and metrics such as convergence time in the next section.

3.4 Predicting Convergence Time

We now use these state models as features in a linear regression to identify convergence time, as described
in Section 2:3] We define convergence time as the iteration where validation accuracy is greater than some
threshold, and we take this threshold to be 0.9 in modular addition and sparse parities, 0.6 for the stable
version of CIFAR-100, 0.4 for destabilized CIFAR-100, and 0.97 for MNIST. We set these values to be
slightly less than the maximum evaluation accuracy for each task, respectively. To visualize the variance in
convergence times, see Appendix E

In Table [I] we find that linear regression predicts convergence time from a given training run’s distribu-
tion over latent states very accurately, as long as the training map contains forked paths. If the training
map is instead linear, training follows similar paths through the HMM across different random seeds. We
formalize this intuition of trajectory dissimilarity in terms of the expected Wasserstein distance W (-, -)

Under review as submission to TMLR

5 ---- Train
— Validation
4
w3 0.799 0.9 1.0
o
E &
0 0.201 ;Q/ 0.1 >(1
1
0
0 50 100 150 200 250 300
Epoch
| Edge [Top 3 important feature changes (z-score) |
02 Ty 1052, L; 10.93, Awaw 10.92
251 L, 12.08, o(w) 12.24, Ly 12.25

Figure 5: With layer normalization and a lower learning rate, the one-layer transformer quickly learns the
modular arithmetic task, with a convergence time stable across random seed. This stability is captured by
the linear training map. Critically, the map still reflects the grokking phase transitions: memorization, which
occurs in state 0, and generalization, which occurs in state 2.

Dataset R? p-value || Dissimilarity | Forking
Modular addition 0.977 | <0.001 0.496 v
Modular addition, stabilized | 0.514 | <0.001 0.038
CIFAR-100 0.094 | 0.469 0.028
CIFAR-100, destabilized 0.905 | <0.001 0.806 v
’ Sparse parities \ 0.961 \ <0.001 H 0.183 \ v ‘
y MNIST [0.049 [0.611] 0.063 \ \

Table 1: Predictability of convergence epoch using a unigram model of states. Dissimilarity is provided per
Equation [3[and the training maps are marked as forking unless they are linear.

(Kantorovich, [1939; [Vaserstein, |1969)) between empirical distributions for any two random seeds p, q over
latent states, sampled uniformly at random.

N i
2
Trajectory dissimilarity := E[W (p, q)] = NN-D Z Z W (pi,q;) (3)

i=1 j=1

With statistically significant (p < 0.001) regression models for modular addition, sparse parities, and desta-
bilized CIFAR-100, we can use the learned regression coefficients to find detour states. In Table [2] we
highlight these detour states, defined as any state with a positive regression coefficient that is only visited by
a strict subset of training trajectories. In our tasks with linear graphs, there are no detour states, because
every training run visits every latent state. Our regression analysis largely confirms observations drawn from
looking at the training maps and trajectories in sections prior: states 2 and 5 are detour states in modular
addition, state 0 is a detour state in sparse parities, and state 1 is a detour state in destabilized CIFAR-100.

Detour states signal that the outcome of training is unstable: they appear in training setups that are
sensitive to randomness, and they disappear in setups that are robust to randomness. By adding layer norm
and decreasing batch size, we decreased both the mean and variance of convergence time in modular addition

Under review as submission to TMLR

State | Coefficient State | Coefficient
0 20.15 0 0.77 | State [Coefficient |
1 0.98 1 0.41 0 0.66
2 1.19 2 0.98 1 1.20
3 -0.20 3 -0.23 2 0.28
4 0.18 4 0.58 3 1.91
5 0.95 5 1.13 4 1.12
(a) Modular addition (b) Sparse parities (¢) CIFAR-100, destabilized

Table 2: Learned linear regression coefficients. If the value is positive, then the time spent in the state is
correlated with increased convergence time, and vice versa. Detour states are bolded.

(see Table . Under these stabilized regimes, detour states disappear, as the training map becomes a linear
graph. Conversely, removing batch norm and residual connections destabilizes the training of ResNets,
thereby inducing forks in the training map that lead to detour states.

ResNet, Transformer,
CIFAR-100 Modular Addition
0.968 0.982 0.986 0.986 1.0 0.799 0.9 1.0
0.032 /Q 0.018 /Q 0.014 /Q 0.014 0.201 0.1
Stable 8) & & & /(\05 (%—(%—»&
- Batch norm + Layer norm
- Residual + Decrease
connections batch size
0.995
0.996
0.005 0
Unstable 0.988
0.004
0.008 0.005
1.o¢@
0.994

Figure 6: Training maps express variability in training dynamics as a more densely connected graph. For
stable training setups, the HMM learns a linear graph as the training map. Training dynamics can be
stabilized or destabilized by changing hyperparameters (batch size) or architecture (normalization layers,
residual connections).

4 Related Work

Our work is not the first to relate state machines to the internals of a neural network. Weiss et al.| (2018
2019) extract deterministic finite automata (DFA) from neural networks, which bears some similarity to
the annotated Markov chain we extract from training runs. |Williams| (1992) use an extended Kalman filter
(EKF) to train a recurrent neural network and note the similarity between EKF and the real-time recurrent
learning algorithm (Marschall et all, [2020). In contrast to the existing literature, we use state machines to
understand the training process rather than the inference process. Measuring the state of a neural network
using various metrics was also done in [Frankle et al.| (2020).

10

Under review as submission to TMLR

Analyzing time series data using a probabilistic framework has been successfully applied to many other
tasks in machine learning (Kim et al. 2017; [Hughey & Kroghl |1996} Bartolucci et al., 2014)). In a similar
spirit to our work, Batty et al.|(2019) use an autoregressive HMM (ARHMM) to segment behavioral videos
into semantically similar chunks. The ARHMM can capture both discrete and continuous latent dynamics,
making it an interesting model to try for future work. These modeling decisions (discrete vs. continuous
latent space, dimensionality reduction) all impact the interpretation of the trained model, so we invite readers
to consider them carefully.

Our work is substantively inspired by the progress measures literature, which aims to find metrics that can
predict discontinuous improvement or convergence in neural networks. Barak et al|(2022) first hypothesized
the existence of hidden progress measures. |Olsson et al.| (2022) found a progress measure for induction heads
in Transformer-based language models, and Nanda et al.| (2023) found a progress measure for grokking in the
modular arithmetic task. The L, norm is also known to be both important to and predictive of grokking,
thereby motivating the use of weight decay to accelerate convergence in grokking settings
[2023} [Power et all 2022; |Thilak et al., [2022). |Liu et al| (2023) highlight the importance of the Ly norm
by correcting for grokking via projected gradient descent within a fixed-size Lo ball; conversely, they also
induce grokking on new datasets by choosing a disadvantageous Ls norm. Our results mirror their work
while showing that grokking has other available remedies, beyond ones that directly manipulate the L norm.

Finally, this work relates broadly to the empirical study of training dynamics. Much of the literature treats
learning as a process where increases in training data lead to predictable increases in test performance
(Kaplan et al., |2020; [Razeghi et al., [2022]) and in model complexity (Choshen et all [2022; Mangalam &|
[Prabhu, |2019; Nakkiran et al) 2019). However, this treatment of training ignores how heterogeneous the
factors of training can be. Different capabilities are learned at different rates (Srivastava et al.| 2022),
different layers converge at different rates (Raghu et al., |2017)), and different latent dimensions emerge at
different rates (Jarvis et all, 2023; Saxe et all [2019). While early stages in training can be modeled nearly
exactly through simple methods (Hu et all [2020; |Jacot et al.l [2018)), these early stages are notably distinct
from later stages. Early stages exhibit unique phenomena such as critical learning periods
and break-even points (Jastrzebski et al., [2020). Consequently, methods like ours which treat training
as a heterogeneous process are crucial in understanding realistic training trajectories.

5 Discussion

The training maps derived from HMMs are interpretable descriptions of training dynamics that summarize
similarities and differences between training runs. Our results show that there exists a low-dimensional,
discrete representation of training dynamics. Via the HMM, this representation is generally predictive of the
next set of metrics in the training trajectory, given the previous metrics. Furthermore, in some cases this
low-dimensional, discrete representation can even be used to predict the iteration in which models converge.

5.1 Grokking and the Optimization Landscape

We conjecture that grokking is the consequence of a sharp optimization landscape. Consider the edits we
performed to significantly decrease the grokking effect: adding layer normalization and decreasing batch
size. Normalization layers and decreasing batch size have been documented in the literature as increasing
smoothness in the loss landscape (Santurkar et al. 2018} [Arora et all) [2019; Keskar et al., |2017). Image
classification is a well-studied task with many tricks for improving the efficiency of training; perhaps learning
algorithmic data will become just as efficient in the future, such that grokking is no longer a concern.

5.2 Progress Measures and Phase Transitions

By modeling convergence time in grokking settings, we analyze phase transitions. We find that the gen-
eralization phase transition can be sped up by avoiding detour states. These detour states are generally
characterized by specific requirements in metrics such as the Lo norm. For example, in the modular arith-
metic setting, avoiding detour states requires a “just-right” decrease in the Lo norm-not too little, and not
too much. posited that grokking occurs because the weight norm is slow to reach a shell

11

Under review as submission to TMLR

of particular Lo norm in weight space, previously called the “Goldilocks zone” (Fort & Scherlis|, |2018); our
results suggest that the rate of change is also crucial, and not only the momentary value of the norm.

5.3 The Impact of Random Seed

We recommend that researchers studying training dynamics experiment with a large number of training seeds.
When claims are based on a small number of runs, anomalous training phenomena might be missed, simply
due to sampling. These anomalous phenomena can be the most elucidating, as in grokking experiments,
where a small number of runs converge faster than the rest. The role of random variation has been highlighted
for the performance and generalization of trained models (McCoy et al., 2020; Sellam et al., [2022} |Juneja
et al.,|2023)), but there are fewer studies on variation in training dynamics. We recommend studying training
across many runs, and possibly relying on state diagrams like ours to distinguish typical and anomalous
training phenomena.

5.4 Limitations and Future Work

Our work assumes that training dynamics can be represented by a linear, discrete, and Markovian model.
Despite the successes of our approach, a higher-powered model might capture even more information about
training dynamics. Relaxing the assumptions of the HMM is likely a fruitful area for future work. Addi-
tionally, in this work we perform dimensionality reduction via hand-picked statistics. We use these statistics
as interpretable features for our training maps, but a fully unsupervised approach also deserves exploration.
Finally, our findings are suggestive for future work on hyperparameter search. We demonstrate that 1)
training instability to random seed is highly dependent on hyperparameters, and 2) instability manifests
early in training. Thus, it may be more efficient to measure early variation across a few seeds to quickly
evaluate a hyperparameter setting, rather than waiting to measure accuracy on the trained model.

6 Conclusion

We make several main contributions. First, we propose directly modeling training dynamics as a new avenue
for interpretability and training dynamics research. We show that even with a simple model like the HMM,
we can learn representations of training dynamics that are predictive of key metrics like convergence time.
Second, we discover detour states of learning, and show that detour states are related to both how quickly
models converge and how sensitive the overall training process is to random seed. Finally, we show that
stability across random seeds is empirically linked to generalization, providing a possible criterion for model
tuning and selection.

References

Alessandro Achille, Matteo Rovere, and Stefano Soatto. Critical Learning Periods in Deep Neural Networks.
arXiv:1711.08856 [cs, q-bio, stat], February 2019. URL http://arxiv.org/abs/1711.08856. arXiv:
1711.08856.

Hirotogu Akaike. Information Theory and an Extension of the Mazimum Likelihood Principle, pp. 199-213.
Springer New York, New York, NY, 1998. ISBN 978-1-4612-1694-0. doi: 10.1007/978-1-4612-1694-0__15.
URL https://doi.org/10.1007/978-1-4612-1694-0_15

Sanjeev Arora, Zhiyuan Li, and Kaifeng Lyu. Theoretical analysis of auto rate-tuning by batch normalization.
In International Conference on Learning Representations, 2019. URL https://openreview.net/forum?
1id=rkxQ-nA9FX.

Boaz Barak, Benjamin L. Edelman, Surbhi Goel, Sham M. Kakade, eran malach, and Cyril Zhang. Hidden
progress in deep learning: SGD learns parities near the computational limit. In Alice H. Oh, Alekh Agarwal,
Daunielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.
URL https://openreview.net/forum?id=8XWP2ewX-im.

12

http://arxiv.org/abs/1711.08856
https://doi.org/10.1007/978-1-4612-1694-0_15
https://openreview.net/forum?id=rkxQ-nA9FX
https://openreview.net/forum?id=rkxQ-nA9FX
https://openreview.net/forum?id=8XWP2ewX-im

Under review as submission to TMLR

Francesco Bartolucci, Alessio Farcomeni, and Fulvia Pennoni. Latent markov models: a review of a general
framework for the analysis of longitudinal data with covariates. TEST, 23:433-465, 2014.

Eleanor Batty, Matthew R Whiteway, Shreya Saxena, Dan Biderman, Taiga Abe, Simon Musall, Winthrop F.
Gillis, Jeffrey E. Markowitz, Anne K. Churchland, John P. Cunningham, Sandeep Robert Datta, Scott W.
Linderman, and Liam Paninski. Behavenet: nonlinear embedding and bayesian neural decoding of behav-
ioral videos. In Neural Information Processing Systems, 2019.

Leonard E. Baum and Ted Petrie. Statistical Inference for Probabilistic Functions of Finite State Markov
Chains. The Annals of Mathematical Statistics, 37(6):1554 — 1563, 1966. doi: 10.1214/aoms/1177699147.
URL https://doi.org/10.1214/aoms/1177699147.

Leonard E. Baum, Ted Petrie, George W. Soules, and Norman Weiss. A maximization technique occurring
in the statistical analysis of probabilistic functions of markov chains. Annals of Mathematical Statistics,
41:164-171, 1970.

Leshem Choshen, Guy Hacohen, Daphna Weinshall, and Omri Abend. The Grammar-Learning Trajectories
of Neural Language Models. arXiw:2109.06096 [cs], March 2022. URL http://arxiv.org/abs/2109.
06096l arXiv: 2109.06096.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidi-
rectional transformers for language understanding. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pp. 4171-4186, Minneapolis, Minnesota, June 2019. Association for
Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423.

Stanislav Fort and Adam Scherlis. The goldilocks zone: Towards better understanding of neural network
loss landscapes. CoRR, abs/1807.02581, 2018. URL http://arxiv.org/abs/1807.02581.

Jonathan Frankle, David J. Schwab, and Ari S. Morcos. The early phase of neural network training. In
International Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=
Hk11iRNFwS.

Tomer Galanti, Zachary S. Siegel, Aparna Gupte, and Tomaso Poggio. Sgd and weight decay provably induce
a low-rank bias in neural networks, 2023.

Elad Hazan. Introduction to online convex optimization. CoRR, abs/1909.05207, 2019. URL http://arxiv.
org/abs/1909.05207.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, 2016. doi:
10.1109/CVPR.2016.90.

Wei Hu, L. Xiao, Ben Adlam, and Jeffrey Pennington. The Surprising Simplicity of the Early-Time Learning
Dynamics of Neural Networks. ArXiv, 2020.

Richard Hughey and Anders Krogh. Hidden markov models for sequence analysis: extension and analysis of
the basic method. Computer applications in the biosciences : CABIOS, 12 2:95-107, 1996.

Niall P. Hurley and Scott T. Rickard. Comparing measures of sparsity. IEEE Transactions on Information
Theory, 55:4723-4741, 2008.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In Francis Bach and David Blei (eds.), Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp. 448-456,
Lille, France, 07-09 Jul 2015. PMLR. URL https://proceedings.mlr.press/v37/ioffel5.htmll

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural Tangent Kernel: Convergence and Generaliza-
tion in Neural Networks. arXiv:1806.07572 [cs, math, stat], June 2018. URL http://arxiv.org/abs/
1806.07572. arXiv: 1806.07572.

13

https://doi.org/10.1214/aoms/1177699147
http://arxiv.org/abs/2109.06096
http://arxiv.org/abs/2109.06096
https://aclanthology.org/N19-1423
http://arxiv.org/abs/1807.02581
https://openreview.net/forum?id=Hkl1iRNFwS
https://openreview.net/forum?id=Hkl1iRNFwS
http://arxiv.org/abs/1909.05207
http://arxiv.org/abs/1909.05207
https://proceedings.mlr.press/v37/ioffe15.html
http://arxiv.org/abs/1806.07572
http://arxiv.org/abs/1806.07572

Under review as submission to TMLR

Devon Jarvis, Richard Klein, Benjamin Rosman, and Andrew M Saxe. On the specialization of neural
modules. In The FEleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=Fh97BDaR61I.

Stanislaw Jastrzebski, Maciej Szymczak, Stanislav Fort, Devansh Arpit, Jacek Tabor, Kyunghyun Cho,
and Krzysztof Geras. The Break-Even Point on Optimization Trajectories of Deep Neural Net-
works. arXiv:2002.09572 [cs, stat], February 2020. URL http://arxiv.org/abs/2002.09572. arXiv:
2002.09572.

Jeevesh Juneja, Rachit Bansal, Kyunghyun Cho, Jodao Sedoc, and Naomi Saphra. Linear connectivity reveals
generalization strategies. In The FEleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=hY6MOJH13uLl

Leonid V Kantorovich. Mathematical methods of organizing and planning production. Management science,
6(4), 1939.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling Laws for Neural Language Models. arXiv:2001.08361
[es, stat], January 2020. URL http://arxiv.org/abs/2001.08361. arXiv: 2001.08361.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang.
On large-batch training for deep learning: Generalization gap and sharp minima. In International Con-
ference on Learning Representations, 2017. URL https://openreview.net/forum?id=HloyR1Yggl

Bomin Kim, Kevin H. Lee, Lingzhou Xue, and Xiaoyue Niu. A review of dynamic network models with
latent variables. Statistics surveys, 12:105-135, 2017.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, University of
Toronto, 2009. URL https://api.semanticscholar.org/CorpusID: 18268744l

Hao Li, Zheng Xu, Gavin Taylor, and Tom Goldstein. Visualizing the loss landscape of neural nets, 2018.
URL https://openreview.net/forum?id=HkmaTz-OW.

Ziming Liu, Eric J Michaud, and Max Tegmark. Omnigrok: Grokking beyond algorithmic data. In The
Eleventh International Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=zDiHoIWaOql.

Kaifeng Lyu, Zhiyuan Li, and Sanjeev Arora. Understanding the generalization benefit of normalization
layers: Sharpness reduction. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho
(eds.), Advances in Neural Information Processing Systems, 2022. URL https://openreview.net/forum?
1d=xp5V0BxTxZ.

Pranava Madhyastha and Rishabh Jain. On model stability as a function of random seed. In Proceedings
of the 23rd Conference on Computational Natural Language Learning (CoNLL), pp. 929-939, Hong Kong,
China, November 2019. Association for Computational Linguistics. doi: 10.18653/v1/K19-1087. URL
https://aclanthology.org/K19-1087.

Karttikeya Mangalam and Vinay Uday Prabhu. Do deep neural networks learn shallow learnable examples
first? ICML 2019 Workshop on Identifying and Understanding Deep Learning Phenomena, 2019. URL
https://openreview.net/forum?id=HkxHv4rn24.

Owen Marschall, Kyunghyun Cho, and Cristina Savin. A unified framework of online learning algorithms
for training recurrent neural networks. J. Mach. Learn. Res., 21(1), jan 2020. ISSN 1532-4435.

R. Thomas McCoy, Junghyun Min, and Tal Linzen. BERTSs of a feather do not generalize together: Large
variability in generalization across models with similar test set performance. In Proceedings of the Third
BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pp. 217-227, Online,
November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.blackboxnlp-1.21. URL
https://aclanthology.org/2020.blackboxnlp-1.21,

14

https://openreview.net/forum?id=Fh97BDaR6I
https://openreview.net/forum?id=Fh97BDaR6I
http://arxiv.org/abs/2002.09572
https://openreview.net/forum?id=hY6M0JHl3uL
http://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=H1oyRlYgg
https://api.semanticscholar.org/CorpusID:18268744
https://openreview.net/forum?id=HkmaTz-0W
https://openreview.net/forum?id=zDiHoIWa0q1
https://openreview.net/forum?id=zDiHoIWa0q1
https://openreview.net/forum?id=xp5VOBxTxZ
https://openreview.net/forum?id=xp5VOBxTxZ
https://aclanthology.org/K19-1087
https://openreview.net/forum?id=HkxHv4rn24
https://aclanthology.org/2020.blackboxnlp-1.21

Under review as submission to TMLR

Preetum Nakkiran, Gal Kaplun, Dimitris Kalimeris, Tristan Yang, Benjamin L. Edelman, Fred Zhang, and
Boaz Barak. SGD on Neural Networks Learns Functions of Increasing Complexity. arXiv:1905.11604 [cs,
stat/, May 2019. URL http://arxiv.org/abs/1905.11604. arXiv: 1905.11604.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures for
grokking via mechanistic interpretability. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=9XFSbDPmdW.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds,
Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario
Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. In-context learning
and induction heads, 2022.

Alethea Power, Yuri Burda, Harrison Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
eralization beyond overfitting on small algorithmic datasets. CoRR, abs/2201.02177, 2022. URL
https://arxiv.org/abs/2201.02177.

Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. SVCCA: Singular Vector Canon-
ical Correlation Analysis for Deep Learning Dynamics and Interpretability. arXiv:1706.05806 [cs, stat],
June 2017. URL http://arxiv.org/abs/1706.05806. arXiv: 1706.05806.

Yasaman Razeghi, Robert L Logan IV, Matt Gardner, and Sameer Singh. Impact of Pretraining Term
Frequencies on Few-Shot Numerical Reasoning. In Findings of the Association for Computational Lin-
guistics: EMNLP 2022, pp. 840-854, Abu Dhabi, United Arab Emirates, December 2022. Association for
Computational Linguistics. URL https://aclanthology.org/2022.findings-emnlp.59.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normalization
help optimization? In Proceedings of the 32nd International Conference on Neural Information Processing

Systems, NIPS’18, pp. 2488-2498, Red Hook, NY, USA, 2018. Curran Associates Inc.

Andrew M. Saxe, James L. McClelland, and Surya Ganguli. A mathematical theory of semantic development
in deep neural networks. Proceedings of the National Academy of Sciences, 116(23):11537-11546, June
2019. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1820226116. URL https://www.pnas.org/content/
116/23/11537. Publisher: National Academy of Sciences Section: PNAS Plus.

Gideon Schwarz. Estimating the dimension of a model. Annals of Statistics, 6:461-464, 1978.

Thibault Sellam, Steve Yadlowsky, Ian Tenney, Jason Wei, Naomi Saphra, Alexander D’ Amour, Tal Linzen,
Jasmijn Bastings, Iulia Raluca Turc, Jacob Eisenstein, Dipanjan Das, and Ellie Pavlick. The multiBERTSs:
BERT reproductions for robustness analysis. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=KOE_FOgFDgA.

Patrice Y. Simard, Dave Steinkraus, and John Platt. Best practices for convolutional neural networks applied
to visual document analysis. In Seventh International Conference on Document Analysis and Recognition,
2003. Proceedings., pp. 958-963, 2003. doi: 10.1109/ICDAR.2003.1227801.

Samuel L Smith, Benoit Dherin, David Barrett, and Soham De. On the origin of implicit regularization
in stochastic gradient descent. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=rq_QrOclHyo.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adria Garriga-Alonso, Agnieszka Kluska, Aitor
Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex Warstadt, Alexander W. Kocurek, Ali
Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish, Allen Nie, Aman Hussain, Amanda Askell, Amanda
Dsouza, Ambrose Slone, Ameet Rahane, Anantharaman S. Iyer, Anders Andreassen, Andrea Madotto,
Andrea Santilli, Andreas Stuhlmiiller, Andrew Dai, Andrew La, Andrew Lampinen, Andy Zou, Angela
Jiang, Angelica Chen, Anh Vuong, Animesh Gupta, Anna Gottardi, Antonio Norelli, Anu Venkatesh,

15

http://arxiv.org/abs/1905.11604
https://openreview.net/forum?id=9XFSbDPmdW
https://arxiv.org/abs/2201.02177
http://arxiv.org/abs/1706.05806
https://aclanthology.org/2022.findings-emnlp.59
https://www.pnas.org/content/116/23/11537
https://www.pnas.org/content/116/23/11537
https://openreview.net/forum?id=K0E_F0gFDgA
https://openreview.net/forum?id=rq_Qr0c1Hyo

Under review as submission to TMLR

Arash Gholamidavoodi, Arfa Tabassum, Arul Menezes, Arun Kirubarajan, Asher Mullokandov, Ashish
Sabharwal, Austin Herrick, Avia Efrat, Aykut Erdem, Ayla Karakas, B. Ryan Roberts, Bao Sheng Loe,
Barret Zoph, Bartlomiej Bojanowski, Batuhan Ozyurt, Behnam Hedayatnia, Behnam Neyshabur, Ben-
jamin Inden, Benno Stein, Berk Ekmekeci, Bill Yuchen Lin, Blake Howald, Cameron Diao, Cameron Dour,
Catherine Stinson, Cedrick Argueta, César Ferri Ramirez, Chandan Singh, Charles Rathkopf, Chenlin
Meng, Chitta Baral, Chiyu Wu, Chris Callison-Burch, Chris Waites, Christian Voigt, Christopher D. Man-
ning, Christopher Potts, Cindy Ramirez, Clara E. Rivera, Clemencia Siro, Colin Raffel, Courtney Ashcraft,
Cristina Garbacea, Damien Sileo, Dan Garrette, Dan Hendrycks, Dan Kilman, Dan Roth, Daniel Free-
man, Daniel Khashabi, Daniel Levy, Daniel Mosegui Gonzalez, Danielle Perszyk, Danny Hernandez, Danqi
Chen, Daphne Ippolito, Dar Gilboa, David Dohan, David Drakard, David Jurgens, Debajyoti Datta, Deep
Ganguli, Denis Emelin, Denis Kleyko, Deniz Yuret, Derek Chen, Derek Tam, Dieuwke Hupkes, Diganta
Misra, Dilyar Buzan, Dimitri Coelho Mollo, Diyi Yang, Dong-Ho Lee, Ekaterina Shutova, Ekin Dogus
Cubuk, Elad Segal, Eleanor Hagerman, Elizabeth Barnes, Elizabeth Donoway, Ellie Pavlick, Emanuele
Rodola, Emma Lam, Eric Chu, Eric Tang, Erkut Erdem, Ernie Chang, Ethan A. Chi, Ethan Dyer,
Ethan Jerzak, Ethan Kim, Eunice Engefu Manyasi, Evgenii Zheltonozhskii, Fanyue Xia, Fatemeh Siar,
Fernando Martinez-Plumed, Francesca Happé, Francois Chollet, Frieda Rong, Gaurav Mishra, Genta In-
dra Winata, Gerard de Melo, German Kruszewski, Giambattista Parascandolo, Giorgio Mariani, Gloria
Wang, Gonzalo Jaimovitch-Lépez, Gregor Betz, Guy Gur-Ari, Hana Galijasevic, Hannah Kim, Hannah
Rashkin, Hannaneh Hajishirzi, Harsh Mehta, Hayden Bogar, Henry Shevlin, Hinrich Schiitze, Hiromu
Yakura, Hongming Zhang, Hugh Mee Wong, Ian Ng, Isaac Noble, Jaap Jumelet, Jack Geissinger, Jack-
son Kernion, Jacob Hilton, Jachoon Lee, Jaime Ferndndez Fisac, James B. Simon, James Koppel, James
Zheng, James Zou, Jan Kocon, Jana Thompson, Jared Kaplan, Jarema Radom, Jascha Sohl-Dickstein, Ja-
son Phang, Jason Wei, Jason Yosinski, Jekaterina Novikova, Jelle Bosscher, Jennifer Marsh, Jeremy Kim,
Jeroen Taal, Jesse Engel, Jesujoba Alabi, Jiacheng Xu, Jiaming Song, Jillian Tang, Joan Waweru, John
Burden, John Miller, John U. Balis, Jonathan Berant, Jorg Frohberg, Jos Rozen, Jose Hernandez-Orallo,
Joseph Boudeman, Joseph Jones, Joshua B. Tenenbaum, Joshua S. Rule, Joyce Chua, Kamil Kanclerz,
Karen Livescu, Karl Krauth, Karthik Gopalakrishnan, Katerina Ignatyeva, Katja Markert, Kaustubh D.
Dhole, Kevin Gimpel, Kevin Omondi, Kory Mathewson, Kristen Chiafullo, Ksenia Shkaruta, Kumar
Shridhar, Kyle McDonell, Kyle Richardson, Laria Reynolds, Leo Gao, Li Zhang, Liam Dugan, Lianhui
Qin, Lidia Contreras-Ochando, Louis-Philippe Morency, Luca Moschella, Lucas Lam, Lucy Noble, Ludwig
Schmidt, Luheng He, Luis Oliveros Colén, Luke Metz, Liitfi Kerem Senel, Maarten Bosma, Maarten Sap,
Maartje ter Hoeve, Maheen Farooqi, Manaal Faruqui, Mantas Mazeika, Marco Baturan, Marco Marelli,
Marco Maru, Maria Jose Ramirez Quintana, Marie Tolkiehn, Mario Giulianelli, Martha Lewis, Martin
Potthast, Matthew L. Leavitt, Matthias Hagen, Matyas Schubert, Medina Orduna Baitemirova, Melody
Arnaud, Melvin McElrath, Michael A. Yee, Michael Cohen, Michael Gu, Michael Ivanitskiy, Michael
Starritt, Michael Strube, Michal Swedrowski, Michele Bevilacqua, Michihiro Yasunaga, Mihir Kale, Mike
Cain, Mimee Xu, Mirac Suzgun, Mo Tiwari, Mohit Bansal, Moin Aminnaseri, Mor Geva, Mozhdeh Gheini,
Mukund Varma T, Nanyun Peng, Nathan Chi, Nayeon Lee, Neta Gur-Ari Krakover, Nicholas Cameron,
Nicholas Roberts, Nick Doiron, Nikita Nangia, Niklas Deckers, Niklas Muennighoff, Nitish Shirish Keskar,
Niveditha S. Iyer, Noah Constant, Noah Fiedel, Nuan Wen, Oliver Zhang, Omar Agha, Omar Elbaghdadi,
Omer Levy, Owain Evans, Pablo Antonio Moreno Casares, Parth Doshi, Pascale Fung, Paul Pu Liang,
Paul Vicol, Pegah Alipoormolabashi, Peiyuan Liao, Percy Liang, Peter Chang, Peter Eckersley, Phu Mon
Htut, Pinyu Hwang, Piotr Mitkowski, Piyush Patil, Pouya Pezeshkpour, Priti Oli, Qiaozhu Mei, Qing Lyu,
Qinlang Chen, Rabin Banjade, Rachel Etta Rudolph, Raefer Gabriel, Rahel Habacker, Ramén Risco Del-
gado, Raphagl Milliere, Rhythm Garg, Richard Barnes, Rif A. Saurous, Riku Arakawa, Robbe Raymaekers,
Robert Frank, Rohan Sikand, Roman Novak, Roman Sitelew, Ronan LeBras, Rosanne Liu, Rowan Jacobs,
Rui Zhang, Ruslan Salakhutdinov, Ryan Chi, Ryan Lee, Ryan Stovall, Ryan Teehan, Rylan Yang, Sahib
Singh, Saif M. Mohammad, Sajant Anand, Sam Dillavou, Sam Shleifer, Sam Wiseman, Samuel Gruetter,
Samuel R. Bowman, Samuel S. Schoenholz, Sanghyun Han, Sanjeev Kwatra, Sarah A. Rous, Sarik Ghaz-
arian, Sayan Ghosh, Sean Casey, Sebastian Bischoff, Sebastian Gehrmann, Sebastian Schuster, Sepideh
Sadeghi, Shadi Hamdan, Sharon Zhou, Shashank Srivastava, Sherry Shi, Shikhar Singh, Shima Asaadi,
Shixiang Shane Gu, Shubh Pachchigar, Shubham Toshniwal, Shyam Upadhyay, Shyamolima, Debnath,
Siamak Shakeri, Simon Thormeyer, Simone Melzi, Siva Reddy, Sneha Priscilla Makini, Soo-Hwan Lee,
Spencer Torene, Sriharsha Hatwar, Stanislas Dehaene, Stefan Divic, Stefano Ermon, Stella Biderman,

16

Under review as submission to TMLR

Stephanie Lin, Stephen Prasad, Steven T. Piantadosi, Stuart M. Shieber, Summer Misherghi, Svetlana
Kiritchenko, Swaroop Mishra, Tal Linzen, Tal Schuster, Tao Li, Tao Yu, Tariq Ali, Tatsu Hashimoto,
Te-Lin Wu, Théo Desbordes, Theodore Rothschild, Thomas Phan, Tianle Wang, Tiberius Nkinyili, Timo
Schick, Timofei Kornev, Timothy Telleen-Lawton, Titus Tunduny, Tobias Gerstenberg, Trenton Chang,
Trishala Neeraj, Tushar Khot, Tyler Shultz, Uri Shaham, Vedant Misra, Vera Demberg, Victoria Nyamai,
Vikas Raunak, Vinay Ramasesh, Vinay Uday Prabhu, Vishakh Padmakumar, Vivek Srikumar, William
Fedus, William Saunders, William Zhang, Wout Vossen, Xiang Ren, Xiaoyu Tong, Xinran Zhao, Xinyi Wu,
Xudong Shen, Yadollah Yaghoobzadeh, Yair Lakretz, Yangqiu Song, Yasaman Bahri, Yejin Choi, Yichi
Yang, Yiding Hao, Yifu Chen, Yonatan Belinkov, Yu Hou, Yufang Hou, Yuntao Bai, Zachary Seid, Zhuoye
Zhao, Zijian Wang, Zijie J. Wang, Zirui Wang, and Ziyi Wu. Beyond the Imitation Game: Quantifying and
extrapolating the capabilities of language models, June 2022. URL http://arxiv.org/abs/2206.04615.
Number: arXiv:2206.04615 arXiv:2206.04615 [cs, stat].

Vimal Thilak, Etai Littwin, Shuangfei Zhai, Omid Saremi, Roni Paiss, and Joshua Susskind. The slingshot
mechanism: An empirical study of adaptive optimizers and the grokking phenomenon, 2022.

Leonid Nisonovich Vaserstein. Markov processes over denumerable products of spaces, describing large
systems of automata. Problemy Peredachi Informatsii, 5(3):64-72, 1969.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Extracting automata from recurrent neural networks using
queries and counterexamples. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th Inter-
national Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp.
5247-5256. PMLR, 10-15 Jul 2018. URL https://proceedings.mlr.press/v80/weiss18a.html.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Learning deterministic weighted automata with queries
and counterexamples. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/
d3f93e7766e8elb7ef66dfdd9a8be93b-Paper.pdf.

R.J. Williams. Training recurrent networks using the extended kalman filter. In [Proceedings 1992] IJCNN
International Joint Conference on Neural Networks, volume 4, pp. 241-246 vol.4, 1992. doi: 10.1109/
IJCNN.1992.227335.

Y. Wu, L. Liu, J. Bae, K. Chow, A. Iyengar, C. Pu, W. Wei, L. Yu, and Q. Zhang. Demystifying learning
rate policies for high accuracy training of deep neural networks. In 2019 IEEE International Confer-
ence on Big Data (Big Data), pp. 1971-1980, Los Alamitos, CA, USA, dec 2019. IEEE Computer Soci-
ety. doi: 10.1109/BigData47090.2019.9006104. URL https://doi.ieeecomputersociety.org/10.1109/
BigData47090.2019.9006104.

17

http://arxiv.org/abs/2206.04615
https://proceedings.mlr.press/v80/weiss18a.html
https://proceedings.neurips.cc/paper_files/paper/2019/file/d3f93e7766e8e1b7ef66dfdd9a8be93b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/d3f93e7766e8e1b7ef66dfdd9a8be93b-Paper.pdf
https://doi.ieeecomputersociety.org/10.1109/BigData47090.2019.9006104
https://doi.ieeecomputersociety.org/10.1109/BigData47090.2019.9006104

Under review as submission to TMLR

A Derivation
Lemma: The posterior probability p(s¢|Z1.¢) is a monotonic function of the likelihood p(Z¢|s;).
Proof:
p(sts 21:) = p(8t, Zt, Z1:4-1) The joint probability.
t
= p(Zt|st) ZP(Si\Siq)p(Siq, Z1:i-1)
i=2

=C - p(Zst)
= Oét(St)

where we collect terms that do not depend on the likelihood into the constant C.
t
p(Z1) = Zai(5i>
i=1

t—1
= ay(se) + Zai(sz‘)
=1

where we collect new terms that do not depend on the likelihood into D. So:

- p(st, 21:4)
p St|21: = =
(t| t) p(zlzt)
__C p(Zt]st)
C- p(ét\st) + D
% is positive, so the posterior is monotonic with respect to the likelihood. O

Proposition 1 We can rank features Zi[i] according to how much they change the posterior probability
p(st = k|Z1.) by computing the derivative:
dlog L
OA%I]

Sy i]

It follows from monotonicity that if a unit perturbation in feature Z;[i] results in the n-th largest change
in the log probability p(Z:|s; = k), the perturbation also produces the n-th largest change in the posterior
probability p(s; = k|Z1.+). Therefore, we can simply rank features by their derivative w.r.t. the log likelihood.

Let AZ[i] be a unit perturbation along feature i. In this work, we use Gaussian HMMs. The derivative of
the log likelihood of a Gaussian is:

Ologp(Z; + AZ[i]|s = k)

=215+ Az - p)

AZ[d]
=S AL+ E E does not depend on AZ[i].
=¥ i, 1] AZ[i] is a unit vector.
By the above, to rank features by 2162 (E'Xﬁta [llse=k) ig to rank features by their Yili,)71, a value from
the inverted covariance matrix. (]

18

Under review as submission to TMLR

B Metrics

Name Description

L, The Li-norm, averaged over matrices. = |w[i = &> [wi],
where K is the number of weight matrices in the neural network.
We average over matrices so that models with different depths
are comparable.

Ly The Lo-norm, averaged over matrices. =|lwlls = &+ Y1 | Vw?

% Measures the sparsity of the weights. % Zf; %, which is the
metric % averaged over the K weight matrices. Lower is more
sparse. For example, a one-hot vector is fully sparse and has code
sparsity of 1. See [Hurley & Rickard| (2008) for a discussion on
measures of sparsity.

p(w) Sample mean of weight. + Zf\; w;, where N is the number of
parameters in the network.

median(w) Median of the weights, treated as a set concatenated together.

o(w) Sample variance of weights without Bessel’s correction.
Do (wimw)?

N

w(b) Sample mean of the biases. We treat the biases separately be-
cause they have a distinct interpretation from the weights.

median(b) Median of the biases, treated as a set concatenated together.

o(b) Sample variance of biases without Bessel’s correction.

trace The average trace over K weight matrices. %Zf; tr(Wy),
where Wy is the kth weight matrix.

Amaz The average spectral norm. % Zfil [[We]l2-

% Average trace over spectral norm. % Zfil %

() Average singular value over all matrices.

a(N) Sample variance of singular values over all matrices.

Table 3: A glossary of metrics. The “Name” column is how the metrics appear in the text.

C Training Hyperparameters

For the MultiBERTS (Sellam et al., [2022), we use the open-source training checkpoints without any additional

training.

Hyperparameter Value
Learning Rate le-1
Batch Size 32

Training data size (randomly generated) 1000
Test data (randomly generated) 100

Architecture Multilayer perceptron
Number of hidden layers 1
Model Hidden Size 128
Weight Decay 0.01
Seed 0 through 40
Optimizer SGD

Table 4: Sparse parities, replicating [Barak et al.| (2022])

19

Under review as submission to TMLR

Table 5: Modular addition, replicating [Nanda et al.|(2023). To stabilize training (Figure , we reduced

Hyperparameter Value
Learning Rate le-3
Batch Size 2048
Training data size 3831 (30% of all possible samples)
Architecture Transformer, no layer normalization
Transformer Number of Layers 1
Transformer Number of Heads 4
Model Hidden Size 128
Model Head Size 32
Weight Decay 1.0
Seed 0 through 40
Optimizer AdamW

the batch size from 2048 to 256 and added back layer normalization.

Table 6: CIFAR-100. To destabilize training (Figure , we removed batch normalization and residual

connections.

Hyperparameter Value
Learning Rate le-3
Batch Size 256
Training data size 50000 (splits downloaded from PyTorch)
Architecture ResNet18
Weight Decay 1.0
Seed 0 through 40
Optimizer AdamW
Data preprocessing | Random crop, random horizontal flip, and normalization

Hyperparameter Value
Learning Rate le-3
Batch Size 256
Training data size 60000 (splits downloaded from PyTorch)
Architecture MLP
Number of hidden layers 1
Hidden size 800
Weight Decay 1.0
Seed 0 through 40
Optimizer AdamW
Data preprocessing Flatten to vector

Table 7: MNIST. MLP hyperparameters based on [Simard et al.| (2003)).

20

Under review as submission to TMLR

D Language Modeling: MultiBERTs

le-5

3.00- , 0.75
1 ---- Pretraining loss
1 . -10
2.75- | —— Average weight o
| <
2.50- 4 8 2 0.1 025
P § 6 z 0.75 0.8 10
92.25 5
I 0.25
2.00- 4 g p
175 ¢ TSweal L 2
0.0 0.5 1.0 15 2.0 \

3.00-

2.75-

0.75 0.8 1.0

Average weight
(=)
|3}
(2]

’ Edge \ Top 3 important feature changes, by z-score \ # of runs using edge (5 total) ‘
2 — 0 | median weight 11.69, average weight 11.70, max(\) 11.14 2
2 — 3 | median weight |1.33, average weight |1.30, max(\) 11.11 3

Figure 7: MultiBERTs. The average weight % Ziv w; initially decreases in two of the five MultiBERT runs
(2 — 0) and increases in the other three (2 — 3). However, all runs eventually converge to roughly the same
average weight. The HMM represents this difference in runs as the states 0 and 3. Critically, this difference
is imperceptible from the pretraining loss.

To study variation in masked language model training, we use the five released training trajectories from the
MultiBERTSs (Sellam et al., |2022), which are replications of the original BERT model (Devlin et al., [2019),
trained under different random seeds. MultiBERTs differs from the other settings we consider because its
training occurs over the course of a single epoch, rather than over multiple epochs.

The most notable feature of the MultiBERTS training map is the fork at state 2. The average weights of the
MultiBERTs models all converge to around 3.7 x 10~°, but the paths that the five models take to get there
can be clustered into two different trajectories. For the path including (2 — 0), the average weight increases
during states 2 and zero and then decreases during state 4, while the opposite is true for paths including
(2 — 3). Understanding this difference between MultiBERTs models could be a fruitful area for future work.
Critically, this difference in model internals is imperceptible from the pretraining loss, which decreases at
roughly the same rate for all five MultiBERTSs runs. However, the MultiBERTSs exhibit significant variation
in transfer learning performance and gender bias |Sellam et al.[(2022)), so these paths may indicate differences
in behavior under specific distribution shifts and settings.

21

Under review as submission to TMLR

E Algorithmic Data: Sparse Parities

1.5

1.0

Loss

0.5

0.0

50

.
P P

0 50

v
............

N
A L b ey A ia

100

150
Epoch

---- Train

.....

—— Validation

200 250 300
---- Train
—— Validation

200

250

300

0.955 0.978 0.976 0.981
0022 X oom
pt @ !
0.02
0.974
0.019
L0e@)
0.955 0.978 0.976 0.981
0.001 L gm0 oem
2 o) & !
0.019

L@

’ Edge \ Top 3 important feature changes, by z-score \ # of runs using edge (40 total) ‘

2—0

Ly 10.11, Ly J0.61, £+]0.32

39

2—5

Ly 10.19, Ly }1.01, £+ 10.54

1

Figure 8: Sparse parities. Faster generalization in sparse parities occurs with an early decrease in the Lo

Ly

norm. The norm ratio 7+ is a metric for dispersion, and it decreases as the vector becomes more sparse. For

example, a one-hot vector is completely sparse and is the minimum of %

22

Under review as submission to TMLR

F Image Classification: MNIST

1.5 ---- Train 0.942 0.978 0.981
1.0
7
S 0.019
0-5 9 0.025 940.021
0.0 1.0 0.975 0.979
0 200 400 600 800 1000 ’ ’
Step
’ Edge \ Top 3 important feature changes, by z-score ‘
3—14 Ly 10.62, Var(w) 10.58, Ly 10.61
0—2 Ly 10.69, Var(w) 10.70, Ly 10.70
5—1 Ly 10.46, Var(w) 10.50, Ly 10.48

Figure 9: MNIST. All 40 training runs we collected from MNIST follow the same path, although individual
runs can spend slightly different amounts of time in each state. As shown by the training map and accom-
panying annotations in the table, the training dynamics of MNIST are similar between states.

23

Under review as submission to TMLR

G Model Selection Curves

100000
> 0
‘@
e
8 -20000 50000
(o2}
S
—-40000
— 0
2 4 6 8
Number of components
(a) Modular addition. 6 components.
40000
> 20000 50000
D
g 0
o 0
9 —20000
—40000 = —50000
2 4 6 8
Number of components
(c) CIFAR-100. 5 components.
0
2 1000
e 200
R 800
[®)]
(o]
= 400 600

2 4 6 8
Number of components

(e) MultiBERTSs. 5 components.

AIC/BIC

AIC/BIC

AIC/BIC

1000 3000

>
g 000 2000 O
S m
S 0 o
o 1000 =
3 -500 0

—-1000 —-1000

2 4 6 8
Number of components
(b) Modular addition, stabilized. 3 components.
260000 =
@ ~100000 9
g Q
o N S
250000 A <
= —120000
/ —_—
2 4 6 8
Number of components
(d) CIFAR-100, destabilized. 5 components.

30000
z —20000
@ 20000 3]
s m
[} =
S o
o <
2 10000 ~40000

2 4 6 8
Number of components

(f) Sparse parities. 6 components.

55000

ity

50000

45000

Log dens

40000

—80000

—90000

AIC/BIC

—100000

4

Number of components

(g) MNIST. 6 components.

Figure 10: Model selection curves for choosing the number of hidden states in the HMM. We choose the

model with minimum BIC in all cases.

24

Under review as submission to TMLR

H Convergence Time Histograms

20 40
15 30
€ €
310 320
O O
. .)
0 — I s — 0
2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Convergence epoch Convergence epoch
(a) Modular addition. Threshold 0.9. (b) Modular addition, stabilized. Threshold 0.9.
40
30 20
= =
320 3
O ©10
10
0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000
Convergence step Convergence step
(c) CIFAR-100. Threshold: 0.6. (d) CIFAR-100, destabilized. Threshold: 0.4.
15
10
o 210
3 3
O 5 O
. 5 l
] — .-
050 75 100 125 150 175 200 950
Convergence epoch

400 450 500 550

Convergence step
(e) Sparse parities. Threshold: 0.9.

(f) MNIST. Threshold: 0.97.
Figure 11: Visualization of convergence times. Convergence time here is defined as the first time a model
crosses some threshold of evaluation accuracy, and choose the threshold to be a value slightly less than the

performance that the final model achieves. For example, our fully trained models generally achieve perfect
accuracy on modular addition, so we choose a threshold of 0.9

25

	Introduction
	Methods
	Training an HMM over Metrics
	Extracting the Training Map
	Assigning Semantics to Latent States

	Results
	Algorithmic Data: Modular Arithmetic and Sparse Parities
	Image classification: CIFAR-100 and MNIST
	Destabilizing Image Classification, Stabilizing Grokking
	Predicting Convergence Time

	Related Work
	Discussion
	Grokking and the Optimization Landscape
	Progress Measures and Phase Transitions
	The Impact of Random Seed
	Limitations and Future Work

	Conclusion
	Derivation
	Metrics
	Training Hyperparameters
	Language Modeling: MultiBERTs
	Algorithmic Data: Sparse Parities
	Image Classification: MNIST
	Model Selection Curves
	Convergence Time Histograms

