SAFE LEARNING THROUGH CONTROLLED EXPANSION
OF EXPLORATION SET

Anonymous authors
Paper under double-blind review

ABSTRACT

Safe reinforcement learning (RL) aims to maximize expected cumulative rewards
while satisfying safety constraints, making it well-suited for safety-critical applica-
tions. In this paper, we address the setting where the safety of state-action pairs is
unknown a priori, with the goal of learning an optimal policy while keeping the
learning process as safe as possible. To this end, we propose a novel approach
that guarantees almost-sure safety by progressively expanding an exploration set,
leveraging previously verified safe state-action pairs and a predictive Gaussian
Process (GP) model. We provide theoretical guarantees on asymptotic conver-
gence to the optimal policy and a bound on online regret. Numerical results on
benchmark problems with both discrete and continuous state spaces show that our
approach achieves superior safety during learning and effectively converges to
optimal policies.

1 INTRODUCTION

Reinforcement Learning (RL) has demonstrated notable success across diverse applications, including
recommendation systems (Afsar et al.,2022). Traditional RL methods, however, primarily focus on
expected cumulative reward maximization without adequately considering safety. As a result, unsafe
exploratory actions may occur during training, potentially leading to system failures or hazardous
outcomes in real-world deployments.

Safe reinforcement learning (Safe RL) methods are broadly categorized into model-based and model-
free approaches. Model-based approaches rely on environment models or simulators to predict
outcomes and avoid unsafe states. They are often sample-efficient but depend on accurate models
of the dynamics and constraints. Constrained Markov Decision Processes (CMDPs) are often used
to model problems that minimize cumulative cost under safety constraints. Control-theoretic tools
such as Lyapunov functions (Chow et al.,[2018]) and Model Predictive Control (MPC) (Wabersich &
Zeilinger, 202 1)) have also been employed to enforce stability and safety; for instance, |Berkenkamp
et al.| (2017) used Gaussian processes with Lyapunov analysis to provide stability guarantees. While
such approaches can yield strong safety certificates, their reliance on accurate prior models limits
applicability in complex uncertain environments.

Model-free approaches avoid explicit models, making them more broadly applicable but typically
more data-hungry. A seminal example is Constrained Policy Optimization (CPO, (Achiam et al.,
2017)), which adapts policy-gradient methods to CMDPs by constraining updates within a trust
region. Although CPO provides worst-case bounds on constraint violations, it is computationally
intensive and only enforces constraints in expectation. Other approaches include safety layers that
filter or correct unsafe actions at execution time; for example, OptLayer (Pham et al.,|[2018)), which
integrates stochastic control principles into neural networks. Similarly, |Srinivasan et al.| (2020)
proposed a safety critic trained from prior tasks to constrain learning in new tasks. These methods
intervene online but typically assume safety constraints or cost functions are known a priori.

Beyond the approaches above, a few works study safe exploration when the safety of state—action
pairs is not known a priori. Several works focus on gradually expanding a safe set of states or policies.
For example, Berkenkamp et al.|(2017)) considers a deterministic, discrete-time dynamic system and
incorporates reachability to fully cover the safely-reachable set while avoiding visits to unsafe pairs
with high probability. The algorithm ActSafe that was introduced in|As et al.| (2024)) investigates safe

exploration over feasible policy sets. Such methods rely on iteratively certifying safety and enlarging
the exploration space.

Across these lines of work, safety guarantees vary in strength: model-based methods can certify
safety given sufficiently structured dynamics (e.g., Marvi & Kiumarsi|(2021)); Fisac et al.|(2019); Liu
et al.|(2022)), model-free CMDP approaches enforce constraints only in expectation or asymptotically
(e.g.,/Achiam et al.|(2017))). Gradually expanding a safe set (e.g., Berkenkamp et al.| (2017); |As et al.
(2024))) can guarantee safety during learning with high probability. For a comprehensive overview,
please see Gu et al.| (2024)).

In contrast to the above, our work aims to address both the following critical challenges:

* Unknown safety of state-action pairs: Many existing approaches often assume that cost
functions, safety constraints, or reliable models are given in advance. We consider a harder
and more realistic setting where the safety of state-action pairs is unknown a priori, making
direct application of CMDP formulations or safety filters infeasible.

 Stronger safety during training: Most prior methods typically tolerate unsafe exploration in
the early learning phase as long as the final policy satisfies safety constraints. By contrast,
our goal is to keep the entire training process safe, quantified by maintaining unsafe costs
below a threshold (i.e., ¢ (¢, a;) < €5k) during training.

To address these challenges, we propose a method that starts with an initial safe exploration set and
progressively expands it. At each step, we use a Gaussian Process (GP) model to predict the costs of
unobserved states and define confidence bounds to certify safe expansion. Policies are trained only
within this iteratively updated safe set, ensuring that violations remain tightly controlled. Our work
shares the same spirit as|As et al.|(2024) in terms of gradually enlarging where the agent is allowed to
act, but our work differs significantly in safety guarantees and in how safety is defined and certified
during learning. More specifically, unlike |As et al.| (2024) which assumes known costs and defines
safety over policies with knowledge of the Lipschitz constant of cost functions, our method defines
safety directly over state—action pairs with unknown costs and rewards, leveraging the continuous
structure of the environment without requiring Lipschitz constants. Our formulation captures realistic
scenarios such as self-driving cars or robotics, where training must be carefully staged to prevent
catastrophic failures.

Our main contributions are summarized as follows: (1) We propose a Safe RL algorithm under
almost sure safety constraints, which requires every transition to satisfy the safety constraints. (2)
We provide theoretical guarantees for the proposed method, including asymptotic convergence to
the optimal policy and a finite-episode online regret bound. (3) Through numerical experiments on
the Gridworld, CartPole and Safety-Gymnasium benchmarks, we demonstrate that our algorithm
achieves superior safety during training and converges effectively to an optimal safe policy.

2 PROBLEM FORMULATION

Consider a finite-horizon Constrained Markov Decision Process (CMDP) M = (S, A, T, P, 1,r,c)
defined over a state space S and an action space A, with time horizon T'. For each state s € S and
action a € A, the next state s’ is drawn from an unknown transition kernel P, i.e., s’ ~ P(- | s,a).
A non-stationary policy 7 = {m,, }7_, consists of T functions, each mapping states to probability
distributions over actions, i.e., 7, : S — A(A). At each time step ¢, the agent takes an action a; in
state s, transitions to s 1, receives a reward 7 (s, a;), and incurs a cost ¢(s;, a;). The initial state s;
is drawn from a known distribution 7. The objective is to maximize the expected cumulative reward
while satisfying an almost sure safety constraint:

T
max E ZT(st,at) | w81 ~ T st c(se,ar) < &gk, Vi, (1)
t=1

s

where € is a predefined safety threshold. Without loss of generality, we assume that the reward
function is bounded as r(s, a) € [0, 1] to focus on the safety aspects of the problem. In this paper,
we consider an online episodic setting, where the agent interacts with the environment over multiple
episodes. In each episode, the agent uses data collected in policy deployment from previous episode
to both learn the environment and update the policy.

3 ALGORITHM

The central idea of our algorithm is to progressively expand the exploration set to ensure each
exploration to be safe with a high probability. We predict the safety of unvisited state-action pairs
based on previously collected data to define the exploration set. First, we rigorously define the safety
for state and state-action pairs.

Definition 3.1. A state s is called safe if there exists at least one safe action a such that (s, a) is safe.
Otherwise, the state is considered unsafe.

We assume access to an initial set .Sy containing state-action pairs known to be safe. At each episode,
the algorithm proceeds in three stages: (1) Prediction: use a predictive model to estimate the cost and
expand the exploration set; (2) Policy Update: update the policy using the data from the previous
episode within the newly expanded exploration set; (3) Policy Deployment: execute the updated
policy within the new exploration set and collect more data.

3.1 PREDICTION

Consider the n-th episode. We model the cost function ¢(s, a) using a Gaussian Process (GP) with

mean function (-) and kernel function &(-, -). Assume that the agent observes the cost ¢(s, a) after

experiencing a transition (s, a, s’). Denote the cost data collected in episode n as D,, = (x4, yi)fil,

where x; = (s;, a;), yi = ¢(8;,a;), and b, is the batch size. Given the dataset D,,, the updated GP
posterior mean and variance at a new point x = (s, a) are given by (Seeger, 2004):

-1
fin+1(2) = pn(2) + k. p (Kp, p,)" (YD, — Ha,D,.)

ki1 (2,2') = ky (2,2") — kg p, (Kp,.p,)”" ke ,Dps

@

where k. p,, = [kn(2,21), ..., kn(z,7,)] . The posterior mean represents the predicted value of
the cost at x, and the posterior variance quantifies the uncertainty in this prediction based on the
available data. While we employ GP for its principled uncertainty estimates, other models (e.g.,
neural networks) may be substituted for prediction provided they can produce a measure of epistemic
uncertainty (e.g., predictive variance).

3.2 EXPLORATION SET

The objective of this step is to define an exploration set that excludes high-risk state-action pairs, so
to ensure learning of the new policy within the exploration set is safe with a high probability.

Using the upper bound of the GP confidence interval, which denotes the pessimistic prediction of the
cost, the exploration set at episode n is defined as:

Sﬂ = {(87 (I) : max,un(s, a) + ankn(sy a; 870,) S erisk}' (3)

Here, o, is a confidence parameter: larger values of «,, correspond to more conservative explo-
ration (i.e., ensuring safety with a higher probability), while smaller values permit more aggressive
exploration.

3.3 PoLICY UPDATE

The objective of this step is to maximize cumulative rewards while ensuring that exploration remains
within the exploration set. To this end, we adopt a finite-horizon Q-learning approach. We initialize all
Q-values to be zero. For a safe pair (s, a) collected in the previous episode, we set the terminal-stage
Q-value as Q%:(s,a) = r(s, a) in episode n, and perform the following backward update:

P(s,a) < (1= Ba) Q' (s,a) + Bn rt(s,a)+rgg§@;;1(s’,a’) t=T—-1,...,1: 4
a

where $3,, is the learning rate at episode n. For any unsafe transition (s, a) observed in the previous
episode, we set Q7 (s,a) = —1 for all ¢, to discourage unsafe exploration, and update S,, to exclude
these pairs. To encourage sufficient exploration within the exploration set, we augment the Q-values

with an Upper Confidence Bound (UCB) bonus term. Specifically, for state-action pairs (s, a) € S,
we define:

- log (L,
Qo) = QP (sva) oo | R

where L,, is the total number of transitions observed so far, NV, (s, a) is the number of times (s, a)

has been visited, and c is a positive constant. For pairs outside the exploration set, we set Q7 (s, a) =
Q7 (s,a). A greedy policy is then derived from the Q-values with exploration bonuses, selecting
the action arg max,c 4 Q7 (s, a) for state s. To ensure sufficient exploration on the boundary of the
exploration set, we define the final policy 7, as an ¢,-greedy policy: with probability 1 — ¢, the
greedy action is selected, and with probability ¢,,, a random safe or unexplored action is chosen.

&)

3.4 PoLICY DEPLOYMENT

Definition 3.2. If an unsafe state-action pair (s, a) has been visited, then we say this pair is verified
to be unsafe. If all actions for a state have been verified to be unsafe, we say this state is verified to
be unsafe.

The policy 7, is deployed within the exploration set .S, to collect new dataset D,,. Define B,, to
be the set of states that has been visited and not been verified to be unsafe before episode n. Each
trajectory in policy deployment starts randomly at any state in B,, and terminates if the current
state-action pair is outside S,,, or the length of trajectory is larger than T, or safety constraint is
violated more than once. After data collection, the GP model is updated according to equation [2]using
the newly acquired dataset D,,. For the starting state, a straightforward approach is to initialize each
trajectory by following uniform distribution, which also helps theoretical analysis later. In practice,
we can use a non-uniform initialization scheme that prioritizes less-explored states. Specifically,
the probability of starting at state s can be set proportional to eV~ (5) where N,,(s) denotes the
number of transitions to state s observed so far and is a constant. The full algorithm is presented in
AlgorithmT] below.

Algorithm 1 Learning by Safe Expansion of Exploration Set(LearnSEES)

1: Input: An initial safe exploration set Sy and an initial safe policy 7, the safety threshold €5, .
2: Deploy the policy 7 in the exploration set Sy to obtain the initial dataset Dy. If the agent move
to the outside of Sy or the length of trajectory is larger than 7', stop.

3: for n=1 to N do

4: Update GP to (g, kn) by equationbased onD,_;.

5: Expanding Exploration Set: Define S,, according to equation

6: Policy Training: For a transition (s, a, s') in D,,_1,

7 if the current transition (s, a, s’) is safe then

8: Fort =T —1,T —1,...,1, do Q-learning update according to equation [4]

9: else

10: Set Q:(s,a) = —1 for all ¢.

11: end if _

12: For pairs (s, a) in Sy, excluding verified unsafe pairs, define Q7 (s, a) with the UCB bonus
according to equation Otherwise, set Q' (s,a) = Q7 (s, a).

13: Calculate the €,-greedy policy ,: use the greedy policy based on Q7 with probability 1 — ¢,
or uniformly randomly pick a safe or unexplored action with total probability €, .

14: Data Collection: Deploy policy 7, in true environment to collect new dataset D,, with the
starting and terminating rule described in Section[3.4].

15: end for

16: Output: policy 7.

4 THEORETICAL ANALYSIS

In this section, we analyze the convergence properties of Algorithm|[I] We begin by outlining key
assumptions, then establish asymptotic convergence guarantees, and finally provide a finite-episode
upper bound on the online regret.

4.1 ASYMPTOTICAL CONVERGENCE

Algorithm|I]involves two intertwined convergence processes. First, the exploration set converges:
as the algorithm expands the exploration set and identifies unsafe pairs over time, it is expected to
eventually encompass all safe state-action pairs that are reachable from the initial state. Second, the
policy converges: since policy updates and deployments are restricted to the current exploration set,
the learned policy is anticipated to converge to the optimal policy within the sub-MDP induced by the
safe pairs. A key analytical challenge in our algorithm lies in characterizing the number of episodes
required to visit and accurately learn the cost associated with all relevant state-action pairs. We now
formalize these intuitions by making following assumptions.

Assumption 4.1. The state space S and action space A are finite.

It should be noticed that Algorithm [I] also works for continuous-state problems in practice, as we
illustrated in the numerical section[5.2]and[5.3] To make the problem feasible, there should exist at
least one trajectory consisting of safe pairs.

Assumption 4.2. For any two safe states that are reachable from a common initial state, there exists
a trajectory composed entirely of safe pairs connecting them. Furthermore, for every safe transition
(s,a,s"), there exists at least one safe action available at s'.

Then we show asymptotic convergence of Algorithm 1]

Theorem 1 (Asymptotic Convergence). Suppose Assumptions[@.1|and .2 hold. Then, the policy
sequence generated by Algorithm[I|converges almost surely to the optimal policy as the number of
episodes n — <.

The proof of Theorem Theorem 1]is provided in Appendix Let M = (S,{As},cs, P, 7) denote
the safe sub-MDP, where S is the set of all safe states, A, is the set of all safe actions for state s € S,
and P and 7 are the restrictions of the original transition kernel and reward function to S and each
As. Theorem establishes that our algorithm converges almost surely to the optimal policy over the
safe sub-MDP M. It is important to note that violations of safety constraints may still occur during
policy training as part of the necessary tradeoff to enable exploration; however, the violations are
kept under the specified threshold €,;5;, in each episode.

4.2 ONLINE REGRET

For an online reinforcement learning problem, it is crucial to quantify not only asymptotic convergence
but also the finite-time performance of the algorithm. In particular, we study the cumulative regret
incurred over N episodes, defined as:

N
Regret(N) =E Z (Vi (sn,1) = V™ (sn,1)) |
n=1

Tn

where V" is the value function at the first time stage under the optimal policy , V;"" is the value
function under the policy 7, used in episode n, and s, ; is the initial state in episode n.

The regret analysis can be decomposed into two parts:(1) The regret incurred before all safe state-
action pairs are identified, i.e., during the convergence of the exploration set; (2) The regret incurred
afterwards, which corresponds to the online performance of Q-learning over the induced safe sub-
MDP. We now present the main result on the regret bound.

Theorem 2 (Online Regret Bound). Suppose Assumptions #.1] and 4.2 hold. Then the expected
cumulative regret after N episodes is bounded by

242 754
T.|S|E|6‘ +0<AS log(SANT)),
D min

where Ay(x,a) == V¥ (z) — QF (x,a), Apin = miny 4 o {Ai(z, a) : Ai(z,a) # 0} is the minimum
non-zero suboptimality gap over all safe state-action pairs, T is the episodic horizon length, § :=
min{p(s’|s,a) : p(s'|s,a) > 0} is the lower bound of all positive transition probabilities.

Regret(N) <

The proof of Theorem 2)is provided in Appendix [B.2] Theorem [J]establishes that the online regret
consists of two components: a constant term and a logarithmic term in the number of episodes V.

The constant term arises from the cost of learning the safe structure of the entire state-action space,
which must occur before safe Q-learning can be reliably applied. The logarithmic term reflects
the logarithmic regret incurred by Q-learning over the safe sub-MDP, once the exploration set has
converged. The logarithmic regret for regular Q-learning is proved by |Yang et al.|(2021)). To the best
of our knowledge, this O(log N) dependence on the number of episodes represents the best-known
regret bound for safe RL with almost sure constraint. For regret analysis in CMDPs, (Efroni et al.}
2020) derives O (N v 2) regret and violation bounds for episodic CMDPs via an optimistic UCB-style
algorithm. While still allowing sublinear cumulative constraint violations, (Ding et al., [2022) proves
the regret bound to O(N'/2) for Natural Policy Gradient Primal-Dual Method. The first primal-dual
algorithm achieving a sublinear regret guarantee without allowing error cancellations is proposed by
(Miller et al.| [2024).

5 NUMERICAL EXPERIMENTS

We evaluate our proposed algorithm LearnSEES on three benchmark problems: Gridworld, CartPole
and Safety-Gymanasium. In the Gridworld problem, we compare our method against a linear search
baseline; in CartPole, we compare our method against the Deep Q-Network (DQN) algorithm and
ActSafe; and in Safety-Gymnasium, we compare our method against Constrained Policy Optimization
(CPO). In some of these problems, we extend our algorithm to handle continuous states and continuous
actions. We also numerically validate our theoretical results and show the convergence of our
algorithm to an optimal safe policy.

5.1 DISCRETE GRIDWORLD

We first validate our algorithm using a modified Gridworld benchmark inspired by |[Leike et al.| (2017).
Specifically, we consider a 12x12 grid, as illustrated in Figure [T} The agent begins at the grid marked
‘S’ and aims to reach the goal ‘G’ as fast as possible while avoiding regions associated with high
risks. States correspond to grid coordinates, numbered from 0 to 143. Actions consist of discrete
directional moves: (+1/3,42/3) or (£2/3,+1/3), where each action probabilistically determines
horizontal and vertical movements and the sign determines the direction. The incurred cost depends
solely on the current grid state, i.e., ¢(s,a) = ¢(s), which is shown by the numbers in Figure
Therefore, blue grids are unsafe states, and white grids are safe states. The agent receives reward
T when it reaches the goal, 7'/2 per step when it stays at the goal after reaching there, and zero
otherwise. Three distinct safety thresholds are considered: €45 € {0.25,0.75,1.25}. Initially, the
exploration set Sy comprises states {0, 1,2, 3,4, 5}, with Gaussian Process (GP) initialized using
cost observations from the first three rows and six columns.

05 05| 05| 05/ 05/ 05| 05 05:05
115115 1] 1] 1] 1] 1/05
05| 05| 05| 05| 05/ 05| 05 05/ 0.5

| 05| 05 05 05 05/ 05 0505 05 05
\‘0511110505\1111
[Tos| 05| 05/ 15| 15[05| 05/ 05 1| 1518
}_ 05/ 05] 1| 1| 05 05 0505 1| 1
\

0.5 05 | 1 0.5 0.5

(a) 12 x 12 map (b) 12 x 12 Cost

Figure 1: Setting for Gridworld problem.

The results for e, = 0.75 is demonstrated in Figure@ and the results for ey = 0.25 and 1.25 are
shown in Appendix [B.3.1] Figure [2a] shows the number of visiting each state for the whole state
spaces, which shows that the region near the optimal route has been visited more often than other
states. Figure 2b] shows the route generated by the final policy, which shows that our algorithm
can learn a nearly optimal policy as well as learn the cost setting adjacent to the optimal route.
We also conduct linear search method as a baseline, which traverses all state-action pairs in each
iteration and exclude pairs having unsafe history. As shown in Figure[2c] linear search also finds
a nearly optimal route at the end. However, compared to linear search, our algorithm achieves a
significantly lower violation rate (0.43% vs. 2.26%), which is the percentage of transitions where

w0

(a) State visiting numbers (b) Final route for our al- (c) Final route for linear
for our algorithm after gorithm after 18786 transi- search after 16444 transi-
18786 transitions. tions. tions.

o] i

o]

Qnu‘l ’ ' 25 Y 75 S s ’ s

(d) 82 violations in 18786 (e) 372 violations in 16444

transitions (0.43% violation transitions(2.26% violation

rate) for our algorithm. rate) for linear search.

Figure 2: State visiting and constraint violation for €,;5, = 0.75.

the per-step cost exceeds the safety threshold, preventing large risks—particularly during the early
training phase. While linear search incurs many violations in the initial exploration period and
exhibits a higher overall violation rate, our method distributes violations more evenly throughout
training. This comparison is illustrated in Figure 2d|and Figure[2¢] Figure2d|shows the violation rate
for one typical replication of our algorithm. Running 10 replications generates the violation rates
with mean 0.43 and standard error 6.5 x 10~%, showing the stability of our algorithm across different
replications. This comparison demonstrates that our algorithm is safer during training process, which
is consistent with the intuition and theoretical analysis.

5.2 CONTINUOUS GRIDWORLD

Assumption {1} which is about finite state and action spaces, is made for theoretical convergence. In
practice, our algorithm can be applied to problem with continuous state and action spaces. Next, we
extend our evaluation to a continuous analog of the discrete Gridworld. The environment consists of
a 10x10 square with the agent aiming to reach a goal region in the upper-right corner while avoiding
two dangerous circular areas, which is showed in Figure [3a] The action space includes movements
in four cardinal directions, with the actual movement distance drawn uniformly from U(0.5,1).
For a transition (s, a, s’), the cost function penalizes proximity to the dangerous circles, defined as
max (4 — 2dy, 4 — 2ds, 0), where d; and ds denote Euclidean distances from the agent’s next position
s’ to the centers of two hazardous circles located at (3, 3) and (7, 7) with radius 2. Reward is defined
as max{10(1 — dist(s, (10, 10)),0}, which is positive exclusively in the upper-right corner and
diminishes with distance from the goal. Algorithm [I]was adapted to handle continuous state space:
discretizing state space and using the grid centers as representative points for GP predictions, training
policy and Q-values using neural networks, and employing a modified reward structure incorporating
a penalty term proportional to the incurred cost. Details are included in Appendix [B-3.2] Figure [3b]
visualizes the data distribution in a typical replication of the algorithm run, which achieves a low
violation rate of 2.3%. The violation rates over 10 replications have mean 2.0% and standard error
7.0 x 10~%, showing the stability of our algorithm across different replications. Figure shows that
our algorithm can find a nearly optimal route at the end.

o Circles with Centers (3,3) and (7,7), Radius 2

1o Circles with Centers (3,3) and (7,7), Radius 2

B 3) (/\\) S——"
TN
, (b) Data distribution with ~ © © ‘..t
(2) Map for continuous 333 violations in 14491 (c) Final learned route
Gridworld. transitions (2.3% viola- '
tion rate).

Figure 3: Environment Setting, data distribution and the final learned route for continuous Gridworld.

5.3 CARTPOLE

We test our algorithm on the classic CartPole task, comparing against Deep Q-Network (DQN)
(Mnih et al.,[2015) and ActSafe (As et al., [2024). CartPole environment considers a pole attached
by an un-actuated joint to a cart moving along a frictionless track, where the goal is to apply
horizontal forces to the cart to keep the pole balanced upright as long as possible. DQN approximates
the Q-value function using a neural network, and we adapt DQN to use the penalized reward
r'(s,a) = r(s,a) —50-c(s, a, s") in consideration of safety. ActSafe iteratively learns a probabilistic
model (e.g., a Gaussian process) of the environment’s transition dynamics from previously collected
data, update the policy by optimizing the worst-case performance over a set of policies that defined
to be safe with high probability, and deploy the policy to collect new data. While ActSafe needs to
assume known reward and cost to make policy decision and considers the total cost constraint, our
setting considers unknown reward and cost and consider the per-step cost constraint. So, we have
to use different settings for two algorithms, and our setting of unknown cost/reward is much more
challenging than ActSafe. Besides, ActSafe considers an accumulated cost constraint, so we have to
adjust ActSafe’s setup in implementation to an average cost constraint for fair comparison.

We set T' = 200 and the safety threshold ¢ = 0.3. Denote p and w to be the position and pole
angle of the pole. Then the cost is define to be max{dist(p, [—1.9,1.9]), 10 - dist(w, [—0.15,0.15])},
which is maximum distance of the pole position and pole angle (with the scaling parameter 10)
away from a safe interval. We show the training violation rate and the average performance of final
policy over 100 testing trajectories in Table[T} More setting details are provided in Appendix [B.33]
Our method consistently demonstrates fewer violations during training relative to DQN and ensures
absolute safety for the final policy. Compared to ActSafe, our method achieves a lower ratio of
violations throughout training. For the performance of the final policy, ActSafe and our algorithm can
both converge to an absolutely safe optimal policy. Over 10 replications of our algorithm, the training
violation rates have mean 0.01 and standard error 4 x 10™%, the average total rewards have mean
199.8 and standard error 0.099, and the testing violation rates have mean 1.2 X 10~* and standard
error 1.5 x 10~7. In 9 out of 10 replications, our algorithm achieved the maximum total reward and
zero testing violations, showing superior optimality and safety of our algorithm.

Table 1: CartPole Results: For training, we show the violation rate. For the testing of final policy, we
show the total reward and violation rate for the testing performance over 100 trajectories.

Training Violation Rate | Total Reward | Testing Violation Rate
Our Algorithm | 0.008 200 0
DQN 0.018 200 0.0017
ActSafe 0.0258 200 0

5.4 SAFETY-GYMNASIUM

We evaluate on Safety-Gymnasium (Ji et al.,2023)), focusing on SafetyPointGoall-v0, a continuous-
control task with a 60-dimensional continuous state and a 2-dimensional continuous action. The

agent is a velocity-controlled point robot in a 2-D workspace that must reach a moving goal while
avoiding circular keep-out zones (“hazards”). Details about environment setting are provided in
Appendix [B.3.4] Because both state and action are continuous, we replace the GP in Algorithm [I]
with a probabilistic cost model implemented by neural networks (NNs) that predicts a mean ., (s, a)
and variance 02 (s, a) for ¢(s, a). For policy training, we employ a parametric Q-learning controller
to select actions, updating it using the classical Q-learning rule.

Just like in Algorithm 1, action is selected according to the cost model: we act only with actions whose
upper confidence bound (UCB) on predicted cost is nonpositive, i.e. 1, (s, a) + a0, (s, a) < sk,
otherwise we choose the action with the minimal UCB cost. This strategy preserves safety early in
training while expanding coverage as uncertainty diminishes. Full implementation details are listed

in Appendix

We compare against Constrained Policy Optimization (CPO) (Achiam et al.,[2017), a classical Safe
RL algorithm. Figure @ reports learning curves for return and cost, along with cost histograms for
both methods on a typical run. Compared with CPO, our method yields substantially lower training
costs and higher final rewards, as well as much less violation during the training process.

Cost Comparsion Histogram
= cPO

20 I LSEES(Ours)

100 150 200 250
100 s 50 s 200 G B3 B wo 1 do w20
uuuuuuuuu Episode Cost

Figure 4: Safety-Gymnasium PointGoall. Left: average discounted returns per episode vs. the
number of episodes. Middle: average discounted costs per episode vs. the number of episodes. Right:
Per-episode cost hisograms.

6 CONCLUSION

In this paper, we proposed a novel model-free Safe RL algorithm, designed to reduce unsafe explo-
ration during training and to converge to an optimal safe policy. The algorithm progressively expands
an exploration set of state-action pairs, leveraging Gaussian Process models for cost estimation
based on visited state-action pairs. In each episode, it guides exploration cautiously while enabling
policy improvement within the verified safe region. We provided theoretical guarantees, establishing
both asymptotic convergence to the optimal safe policy and a finite-episode upper bound on online
regret. Empirical results in discrete and continuous environments, including Gridworld, CartPole,
and Safety-Gymanasium, demonstrate the effectiveness of our approach in maintaining safety during
training and achieving near-optimal performance in the final policy.

REPRODUCIBILITY STATEMENT

Most implementation and experimental details required to replicate our results are provided in the
Appendix B3] The anonymized supplementary materials include our complete codes, which contain
the remaining experimental details.

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International conference on machine learning, pp. 22-31. PMLR, 2017.

M Mehdi Afsar, Trafford Crump, and Behrouz Far. Reinforcement learning based recommender
systems: A survey. ACM Computing Surveys, 55(7):1-38, 2022.

Yarden As, Bhavya Sukhija, Lenart Treven, Carmelo Sferrazza, Stelian Coros, and Andreas Krause.
Actsafe: Active exploration with safety constraints for reinforcement learning. arXiv preprint
arXiv:2410.09486, 2024.

Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas Krause. Safe model-based
reinforcement learning with stability guarantees. Advances in neural information processing
systems, 30, 2017.

Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. A lyapunov-

based approach to safe reinforcement learning. Advances in neural information processing systems,
31, 2018.

Dongsheng Ding, Kaiqing Zhang, Jiali Duan, Tamer Basar, and Mihailo R Jovanovi¢. Convergence
and sample complexity of natural policy gradient primal-dual methods for constrained mdps. arXiv
preprint arXiv:2206.02346, 2022.

Yonathan Efroni, Shie Mannor, and Matteo Pirotta. Exploration-exploitation in constrained mdps.
arXiv preprint arXiv:2003.02189, 2020.

Jaime F Fisac, Neil F Lugovoy, Viceng Rubies-Royo, Shromona Ghosh, and Claire J Tomlin. Bridging
hamilton-jacobi safety analysis and reinforcement learning. In 2019 International Conference on
Robotics and Automation (ICRA), pp. 8550-8556. IEEE, 2019.

Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, and Alois Knoll. A
review of safe reinforcement learning: Methods, theories and applications. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2024.

Jiaming Ji, Borong Zhang, Jiayi Zhou, Xuehai Pan, Weidong Huang, Ruiyang Sun, Yiran Geng,
Yifan Zhong, Josef Dai, and Yaodong Yang. Safety gymnasium: A unified safe reinforcement
learning benchmark. Advances in Neural Information Processing Systems, 36:18964-18993, 2023.

Jan Leike, Miljan Martic, Victoria Krakovna, Pedro A Ortega, Tom Everitt, Andrew Lefrancq, Laurent
Orseau, and Shane Legg. Ai safety gridworlds. arXiv preprint arXiv:1711.09883, 2017.

Zijian Liu, Qinxun Bai, Jose Blanchet, Perry Dong, Wei Xu, Zhengqing Zhou, and Zhengyuan
Zhou. Distributionally robust g-learning. In International Conference on Machine Learning, pp.
13623-13643. PMLR, 2022.

Zahra Marvi and Bahare Kiumarsi. Safe reinforcement learning: A control barrier function opti-
mization approach. International Journal of Robust and Nonlinear Control, 31(6):1923-1940,
2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529-533, 2015.

Adrian Miiller, Pragnya Alatur, Volkan Cevher, Giorgia Ramponi, and Niao He. Truly no-regret
learning in constrained mdps. arXiv preprint arXiv:2402.15776, 2024.

Tu-Hoa Pham, Giovanni De Magistris, and Ryuki Tachibana. Optlayer-practical constrained opti-
mization for deep reinforcement learning in the real world. In 2018 IEEE International Conference
on Robotics and Automation (ICRA), pp. 6236-6243. IEEE, 2018.

Matthias Seeger. Gaussian processes for machine learning. International journal of neural systems,
14(02):69-106, 2004.

Krishnan Srinivasan, Benjamin Eysenbach, Sehoon Ha, Jie Tan, and Chelsea Finn. Learning to be
safe: Deep rl with a safety critic. arXiv preprint arXiv:2010.14603, 2020.

Vivek VP and Dr Shalabh Bhatnagar. Finite horizon g-learning: Stability, convergence, simulations
and an application on smart grids. arXiv preprint arXiv:2110.15093, 2021.

Kim Peter Wabersich and Melanie N Zeilinger. A predictive safety filter for learning-based control of
constrained nonlinear dynamical systems. Automatica, 129:109597, 2021.

Kunhe Yang, Lin Yang, and Simon Du. Q-learning with logarithmic regret. In International
Conference on Artificial Intelligence and Statistics, pp. 1576-1584. PMLR, 2021.

10

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, the large language model (LLM) was used for text grammar refinement, searching
related literature and code debugging.

B TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

B.1 PROOF OF THEOREM/[I]

Proof. Suppose that not all transitions have been visited before episode n. Recall that B,, defined in
Section [3.4]is the set of states that has been visited and not been verified to be unsafe before episode
n, and a new trajectory at episode n begins randomly and uniformly at an initial state 5 € B,,. There
are two cases:(1) All actions for § have been visited and there exists at least one action a that (3,a) is
safe, and all safe next states reachable from 5 by one safe transition have been visited ; (2) All actions
for 5 have been visited and there exists at least one action a that (s, a) is safe, and at least one safe
state reachable from 5 by one safe transition has not been visited ; (3) At least one action for s has
not been visited. By Assumption[4.2] the probability of case (2) or case (3) is zero if and only if we
have explored all safe state-action pairs reachable from the initial state. Thus, the probability of case
(2) or case (3) is nonzero, and at least ‘B—ll

Denote T; as the number of episodes between visiting the i-th and (i — 1)-the new state-action
pairs, and let M = Zzoil T;. Here, M is actually a finite summation of 7;’s because the number of
state-action pairs is finite. Define 6 := min{p(s’|s, a) : p(s’|s,a) > 0} to be the lower bound of
all positive transition probabilities. In each episode, the probability of visiting a new state-action

pair is at least B AT B H a0 by €,-greedy policy. Assuming the probability of visiting a new state-action

pair is exactly i B6] in each episode, then the number of episodes needed to visit a new transition

follows a geometric distribution with success probability p = i Béj"’ - Thus, E[T;] is smaller than
IB IIA\
<

the expectation of such a geometric random variable, i.e., E[T;] |Sg”§” . Summing over
P

[M] < M . Therefore, S,, w111 contain all safe state-action

pairs after a finite number of episodes with probablhty 1. Let M = (S,{As},cs, P, 7) denote the
safe sub-MDP, where S is the set of all safe states, A; is the set of all safe actions for state s € S,
and P and 7 are the restrictions of the original transition kernel and reward function to S and each
A,. By Deﬁmtlonnand Assumptlon L for any s € S and a € A,, (s, a) only transit to states in
S. Thus, P and 7 are well-defined.

After S,, contains all safe pairs, the policy will generate trajectories that remain entirely within M.
Moreover, every safe pair is visited infinitely often due to the €,-greedy policy. Thus, Q)| 5; converges
almost surely to Q* the optimal Q-function for M. Then, by Theorem 3 of VP & Bhatnagar (2021),
we have: (1) sup,, ||@Qn| 7]l < oo almost surely; (2) Q| — @ as n — oo almost surely. O

B.2 PROOF OF THEOREM[Z]

Define the constants oy = £, of = H;Zl (1—aj)and o} = a; H;Ziﬂ (1—aj)(i>0).

Let 8y = 0 and 5; = 4c TTSL for t > 1 and the event

gconc = {V(S a, t TL) 0 < (Qt Qt) (Saa) S
o nT+ Za " (t:_ls i) _ V*) (s:j_(f’a’i)) + By

We first show two lemmas that will be used.

Lemma B.1. Lemma 4.1 (Concentration)Yang et al| (2021). Event E..,. occurs w.p. at least
1-1/NT.

Lemma B.2. Lemma 4.2 (Bounded Number of Steps in Each Interval)Yang et al.|(2021). Under
Econc » we have for every n € [N],

11

cm ::H(k,h): % e s }’

2” 1Am1n7 2nAm1n)

) , where 1 =log (SANQTQ)

Proof of Theorem 2]

Proof. Define N, to be the time that the agent has visited each state-action pairs at least once. We
2 2

know from the proof of Theore that E[V,] < %, thus N, is finite with w.p.1. Notice that

Ny is a stopping time for MDP

N, N
Regert(N) = Z (Vi (sp,1) — V™ (sp1) Z (Sn,1) = V™ (Sn.1))
n=1 n=Ngz+1
=1+1I

For 1, as each reward is assumed to be in [0, 1], the value function gap V;* (sp,1) — V™" (Sp,1) is
bounded by the time horizon 7T'. Then we can get a bound for I by

N,

Z Sn 1 1 (Sn,l))

71511412

< TE|N| <
- [Ns] < €p0

For I, we now only need to consider consider the case n > N,. Notice that if we have visited all
state-action pairs at least once, we will only choose safe actions. Equivalently, we are doing the
Q-learning with UCB for a safe sub-MDP M that only contains all safe actions from the original
unconstrained MDP M, which appears in the proof of Theorem I}

For the upper bound of 11, we follows the proof of Theorem 3.1 [Yang et al.| (2021)). First, we can
construct a recursive equation.

(v =) (1)
=V (s1) = Qi (st) + (@1 — QT (s5,a)
=D (51 08) + By (fag.ap) (V5 - 17))]

T
=E|> Ai(sp,ap) | af =, (5?)] :
t=1

Notice that V;* (s}) = Q5 (s7',a*) < Q7 (s7,a*) < QF (s}, a}) . Then we have

Ay (i, ap) = clip [Vi* (s}) — Q7 (s, af") | Amin]
S Chp [(Q? - Qt) (St) ?) ‘ mm] 5

where clip is defined as clip[s | d] := s - I[s > §] and Ay, is the minimum non-zero gap:
Apin = ming .{A(s,a) : A(s,a) # 0}.

12

Finally, by using Lemma [B.T]and Lemma[B:2] we have

N T
IT=E| > Y A(s}a})

n=N,+1 t=1

=Y "P(traj) Y Ay (s)af | traj)
traj n,t
< > P(aj)- > clip[(QF — Q) (s}, ap | traj) | Apin]
traj € Econe n,t
+ Z P(traj) - NT-T
traj €Eoonc

N
<P (gconc) Z 2nAminC((n) + P (gconc) -NT-T

n=1
N
TSSAL
< _— T
_;O (2”Amin) i

6
<O <ZSA log(SANT)> .

min

Combining the bounds for I and /1, we complete the proof. [

B.3 DETAILS FOR NUMERICAL EXPERIMENTS

B.3.1 DISCRETE GRIDWORLD

The detailed parameters are set as below: time horizon 7' = 80, total episode number N = 1000, the
UCB coefficient for Q-value function is set to 20. Besides the results for €5 = 0.75 in Section@
we also show the results for €5 = 0.25 and 1.25 here. For ¢, = 0.75 or 1.25, we use the uniform
starting principle. Fo reqgx = 0.25, as the region of safe states is small compared with unsafe states,
we set the starting probability at s to be proportional to exp(—2N (s)) to accelerating exploration.
Figure 5] and[6]shows that our algorithm can converge to a nearly optimal policy and experience small
vioaltion rates in different settings.

0

0 20 0 0 80 1000

(a) State visiting numbers af- (c) 6 violations in 77174 transi-
ter 1000 episodes (77174 transi- (b) Final learned route after 77174 tions (0.0077% violation rate)for
tions). transitions. our algorithm.

Figure 5: State visiting and constraint violation for €, = 1.25.

B.3.2 CONTINUOUS GRIDWORLD

For the problem setting, when the agent takes one step toward a direction, it will move along that
direction with the distance following a uniform distribution U (0.6, 1.2). As described in for
a transition (s, a, s), the cost function penalizes proximity to the dangerous circles, defined as

13

|

200
¢ 0 175
200
2 N 1.50
P 75
125 1.50
N 4
| u °
100
6 6 1.00
©
0.7 o
& 8
o
®
050
o
0 o
000
N 025
o : i 3 : o 3 7 T T T %] 20 0 o %0 1000
w0

o

(c) 50 violations in 1573 transi-
(a) State visiting numbers after (b) Final learned route after 1573 tions (3.2% violation rate)for our
1000 episodes (1573 transitions). transitions. algorithm.

Figure 6: State visiting and constraint violation for €, = 0.25.

max (4 — 2dy, 4 — 2ds, 0), where d; and da denote Euclidean distances from the agent’s next position
s’ to the centers of two hazardous circles located at (3, 3) and (7, 7) with radius 2. Reward is defined
as max{10(1 — dist(s, (10,10)),0}, which is positive exclusively in the upper-right corner and
diminishes with distance from the goal. We use replay buffers to store the data collected and set the
batch size to be 128. Other detailed parameters for continuous Gridworld are set as below: discounted
factor v = 0.99, the random probability for the policy starting from ¢, = 0.9 and ending at 0.1, the
stepsize for Q-value update (3, is 0.005, the total time horizon T' = 180, cost threshold €5 = 0.3,
the parameter for exploration set «, is defined to be 0.7, the number of episodes is 250. As GP
update will become slower when data are collected more, we discretize the state space into 20 * 20
identical grids, and choose the grid centers as representer points for GP prediction. So now we make
GP on 400 points. What’s more, we use the penalized reward r(s, a) — 50 - ¢(s, a, s’) for Q-learning
training.

B.3.3 CARTPOLE

The state of CartPole is a four-dimensional vector [Cart Position, Cart Velocity, Pole Angle, Pole
Angular Velocity]. The cart position can take values between (—4.8, 4.8), but the episode terminates
if the cart leaves the (—2.4,2.4) range. The pole angle can be observed between (—0.418,0.418)
but the episode terminates if the pole angle is not in the range (—0.2095,0.2095). The action space
A = {0, 1}, which means pushing cart to the left or right respectively. When the episode does not
terminate, the reward is 1 for each step. Denote p and w to be the position and pole angle of the pole.
Then the cost is defined to be max{dist(p, [—1.9,1.9]), 10 - dist(w, [-0.15,0.15])}, which is the
maximum of distance (with scaling parameter) of position and pole angle away from a safe interval.

For parameters, we run 2000 episodes, and allow the maximum steps per episode to be 200. Random
policy parameter ¢, starts at 0.2 and increases to 0.4 gradually. The discounted factor v = 0.99 for
Q-learning part, and the batch size for training is 100. Cost threshold €5 = 0.3, and we use the
penalized reward r — 50 * ¢ for Q-learning training. In our algorithm, we use two networks to predict
the mean and variance of the cost simultaneously, which replaces GP for continuous state space. For
ActSafe, there are two stages. In the first stage, the agent tries to reduce the uncertainty in GP for pair
model, where we spend 40 episodes. In the second stage, the agent tries to maximize the expected
cumulative reward, where we spend 160 episodes.

B.3.4 SAFETY-GYMNASIUM

The task SafetyPointGoall-v0 in the environment Safety-Gymnasium is shown in Figure[7]

Episodes terminate upon success or time limit. Rewards encourage progress and success; an instan-
taneous safety cost ¢; € {0, 1} is incurred when the robot intersects any hazard. Aligned with our
almost-sure per-step safety objective, we adopt a per-step threshold &5 decreasing from 0.8 to 0.2,.
The reward is r; = (Djast — Dhow) 3, where Dy, denotes the distance between the agent and Goal
at the previous time step, Dyon denotes the distance between the agent and Goal at the current time
step, and [is a discount factor.

14

b

<

)
e e
o o
®

Figure 7: SafetyPointGoall-v0 Task

We use the default time limit 7=1000 per episode and discount y=0.99. Training runs for 200
epoches with 4096 steps per episode. We seed the exploration set Sy by verifying small action-
magnitude neighborhoods around initial states; only (s, a) pairs with zero observed cost enter
So. The confidence multiplier «, is annealed from optimistic to conservative milder values (
a1=0.2 = ay=1.1) to gradually expand S,,. The UCB weight grows from 0.2 to 1.1. Also, we
apply a penalized reward r — kc to train the Q-netwrok with an adaptive . To find the action that
maximizes the Q-value among the continuous action space, we use cross-entropy method under the
control of UCB safe set. For the cost prediction model loss, we use BCEWithLogitsLoss, where

BCEWithLogits(z,y) = —[ylogo(z) + (1 — y) log(1 — o(x))]
for a given logits = (unnormalized scores, any real number) and targets y € [0, 1].

All details can be found in safe_fqi.py file.

15

	Introduction
	Problem Formulation
	Algorithm
	Prediction
	Exploration Set
	Policy Update
	Policy Deployment

	Theoretical Analysis
	Asymptotical Convergence
	Online regret

	Numerical Experiments
	Discrete Gridworld
	Continuous Gridworld
	 CartPole
	Safety-Gymnasium

	Conclusion
	The Use of Large Language Models (LLMs)
	Technical Appendices and Supplementary Material
	Proof of Theorem 1
	Proof of Theorem 2
	Details for Numerical Experiments
	Discrete Gridworld
	Continuous Gridworld
	CartPole
	Safety-Gymnasium

