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Abstract001

Process-driven dialogue systems, which oper-002
ate under strict predefined process constraints,003
are essential in customer service and equipment004
maintenance scenarios. Although Large Lan-005
guage Models (LLMs) have shown remarkable006
progress in dialogue and reasoning, they still007
struggle to solve these strictly constrained dia-008
logue tasks. To address this challenge, we con-009
struct Process Flow Dialogue (PFDial) dataset,010
which contains 12,705 high-quality Chinese di-011
alogue instructions derived from 440 flowcharts012
containing 5,055 process nodes. Based on Plan-013
tUML specification, each UML flowchart is014
converted into atomic dialogue units i.e., struc-015
tured five-tuples. Experimental results demon-016
strate that a 7B model trained with merely 800017
samples, and a 0.5B model trained on total data018
both can surpass 90% accuracy. Additionally,019
the 8B model can surpass GPT-4o up to 43.88%020
with an average of 11.00%. We further evaluate021
models’ performance on challenging backward022
transitions in process flows and conduct an in-023
depth analysis of various dataset formats to024
reveal their impact on model performance in025
handling decision and sequential branches.026

1 Introduction027

Process-driven dialogue systems (Yi et al., 2024),028

as a special type of task-oriented dialogue systems,029

play a crucial role in various real-world applica-030

tions, particularly in scenarios such as customer ser-031

vice, equipment maintenance, and medical consul-032

tation, where strict adherence to predefined process033

constraints is essential. In these contexts, dialogue034

systems must navigate through complex decision035

trees while maintaining precise control over the036

conversation flow, ensuring both compliance with037

established procedures and effective user interac-038

tion. These process flows typically contain two039

types of branches: sequential branches that follow040

a linear progression, decision branches that require041

conditional routing based on user input.042

The power supply is not 
working properly.

Please check if the power 
supply is normal.

Please remove the battery.

Check if the 
power supply is 

normal.

Remove the 
battery.

NoYes

...

Figure 1: In this scenario, the system interacts with the
user based on a flowchart that checks whether the power
supply is functioning properly. If the power supply is
faulty, the system guides the user to remove the battery.
This interaction follows the decision-making process
outlined in the flowchart.

The emergence of Large Language Models 043

(LLMs) has brought unprecedented capabilities 044

in natural language understanding and generation, 045

demonstrating remarkable performance in both dia- 046

logue and reasoning tasks. These advances suggest 047

potential solutions for process-driven dialogue sys- 048

tems (Yi et al., 2024; Zhang et al., 2023; Wu et al., 049

2020). However, our empirical evaluation reveals 050

that even state-of-the-art (SOTA) LLMs like GPT- 051

4o (OpenAI, 2023) struggle to consistently main- 052

tain process constraints while engaging in dialogue. 053

Specifically, these models often deviate from pre- 054

defined process constraints, make incorrect state 055

transitions, or fail to properly handle complex de- 056

cision branches, highlighting the need for more 057

specialized solutions. 058

To address this challenge, we construct Process 059

Flow Dialogue (PFDial) dataset, which contains 060

12,705 high-quality dialogue instructions derived 061

from 440 flowcharts containing 5,055 process 062
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nodes. Based on PlantUML specification, each063

UML flowchart is converted into atomic dialogue064

units, forming structured five-tuples (flowchart de-065

scription, current state, user input, next state, robot066

output). This structured representation enables067

models to learn precise state transitions while main-068

taining natural dialogue capabilities. Through su-069

pervised fine-tuning (SFT) on PFDial, models can070

acquire strong controlled reasoning capabilities for071

process flows effectively following the prescribed072

state transitions and decision logic.073

We conducted comprehensive experiments to074

address four key questions:075

(1) How does our approach perform com-076

pared to SOTA LLMs? Our main experimental re-077

sults demonstrate that models with varying param-078

eter sizes can achieve excellent results after SFT079

on total data of PFDial. For instance, even a 0.5B080

model can achieve accuracy of 98.99% and 92.79%081

on in-domain and out-of-domain tests, respectively.082

More impressively, an 8B model achieves 97.02%083

accuracy on out-of-domain tests, surpassing GPT-084

4o by 11.00%, with over 43.88% improvement in085

decision branches.086

(2) How does model performance scale with087

training data size? Our data scaling experimental088

results show that a 7B model can surpass 90% accu-089

racy with only 800 training samples. As the train-090

ing dataset increases, the overall performance of091

the model continues to improve. This underscores092

PFDial’s exceptional effectiveness in enhancing the093

model’s capability for controlled reasoning tasks094

with minimal data.095

(3) How effective is our approach in handling096

backward transitions? We evaluated the model’s097

performance on more challenging backward tran-098

sitions in decision branches using our constructed099

dataset, PFDial-H. This specialized benchmark fo-100

cuses on cases where the next state returns to a101

previous point in the process flow. These transi-102

tions are particularly challenging due to their rel-103

ative scarcity and the complex reasoning they re-104

quire. Results on PFDial-H further validate our105

approach’s superiority in challenging controlled106

reasoning tasks.107

(4) How do different state representation for-108

mats affect model performance? Through sys-109

tematic analysis of three different dataset formats,110

we provide interpretable insights into how different111

formats impact model performance on decision and112

sequential branches, offering valuable guidance for113

future research.114

Statistics Train ID Test OOD Test

Flowcharts 440 80 80
State Nodes 5055 902 1262
Sequential Samples 9029 1628 2265
Decision Samples 3676 645 698
Dialogue Samples 12705 2273 2963
Avg. Length 277.16 270.57 326.10

Table 1: Statistics of the PFDial Dataset

Overall, our contributions can be summarized as 115

follows: 116

• We have developed the Process Flow Dialogue 117

(PFDial) dataset, which is derived from 440 118

flowcharts encompassing 5,055 process nodes. 119

This dataset contains 12,705 high-quality di- 120

alogue instructions, serving as a valuable re- 121

source for training process-driven dialogue 122

systems. 123

• The comprehensive experiments demonstrate 124

that the PFDial dataset is highly effective. 125

Even models with a smaller number of param- 126

eters (e.g., 0.5B, 1B, 1.5B) or those trained 127

on relatively limited data (800 training sam- 128

ples) can achieve high accuracy. An 8B 129

model achieves 97.02% accuracy on out-of- 130

domain tests, surpassing GPT-4o by 11.00%, 131

with over 43.88% improvement in decision 132

branches. 133

• We demonstrate our model’s superior perfor- 134

mance on complex backward transitions in 135

decision branches using the PFDial-H bench- 136

mark, highlighting its capability in handling 137

rare and intricate reasoning tasks. Addition- 138

ally, we provide insights into the impact of dif- 139

ferent dataset formats on model performance, 140

offering guidance for future research. 141

2 PFDial 142

In this section, we introduce PFDial, a Chinese 143

dataset specifically designed for process-driven di- 144

alogue systems. 145

2.1 Dataset Overview 146

2.1.1 PFDial 147

The construction of PFDial follows a systematic 148

pipeline, including flow chart collection, textual 149

representation conversion, state transition Informa- 150

tion extraction, prompt generation, and data vali- 151

dation. The dataset combines real-world scenarios 152
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Scenery: Data Generation

Start

Confirm Scene

Collect and convert to 
PlantUML manually

Traverse UML flowchart to confirm 
current and next states

Generate user input based on 
current, next state, and flowchart

Generate robot output based on 
current, next state, and flowchart

Yes No

Quality Check
Bad Data

Data Example

PlantUML:@startuml 
start: Confirm scene; ...

Is there an existing UML 
flowchart for this scene?

Use GPT-4o to generate 
PlantUML and human review Current State: Is there an 

existing UML flowchart 
for this scene?

Next State: Use GPT-4o 
to generate PlantUML 
and human review.

Robot Output: Please let 
GPT-4o to generate 
PlantUML, then review it.

User Input: There is no 
existing UML flowchart.

Good Data

Complete

Figure 2: The left side illustrates the data construction process. The right side shows an example of the five-tuple
dataset generated based on the leftside flowchart.

and synthetic data, achieving broad coverage of153

practical applications while maintaining high qual-154

ity and diversity. Table 1 presents detailed statistics155

of the PFDial dataset.156

2.1.2 PFDial-H157

Considering the prevalence and importance of back-158

ward transitions in practical applications, we specif-159

ically constructed a supplementary dataset that in-160

corporates backward transition mechanisms called161

PFDial-Hard (PFDial-H). By strategically adding162

backward transition nodes to existing flowcharts163

using GPT-4o, we implemented backward transi-164

tion functionality for cases where conditions are165

not met. This improvement was applied to both166

out-of-domain test and training flowcharts, generat-167

ing new training samples through the same prompt168

augmentation process. Table 5 in Appendix B.2169

presents detailed statistics of the PFDial-H dataset.170

2.2 Dataset Construction Process171

2.2.1 Flow Chart Collection172

Through extensive research, we identified and cat-173

egorized 90 specific business scenarios, details of174

which can be found in Appendix 16. Addition- 175

ally, we designed a carefully constructed template 176

dataset. After identifying the business scenarios, 177

we collected the flowcharts manually or automati- 178

cally, depending on whether pre-existing flowcharts 179

were available. This process, combining automa- 180

tion with human review, significantly improved the 181

efficiency and accuracy of UML flowchart genera- 182

tion. 183

2.2.2 Textual Representation Conversion 184

To efficiently convert flowcharts into machine- 185

readable formats, we conducted a comparative 186

study of several text-based representation schemes, 187

including PlantUML1, chart-mage2, nomnoml3, 188

and Mermaid4. After comprehensive evaluation, 189

we selected PlantUML as the standard format. This 190

decision was made for several reasons: First, Plan- 191

tUML employs a code-like structured representa- 192

tion utilizing syntax features such as indentation, 193

1https://plantuml.com/
2https://chartmage.com/intro.html
3https://www.nomnoml.com/
4https://mermaid.js.org/
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branching, and loops, making flowchart descrip-194

tions both intuitive to read and convenient for pro-195

gram processing. Second, a preliminary experi-196

ment using GPT-4o demonstrated that the Plan-197

tUML format exhibited superior accuracy com-198

pared to other approaches. Detiles can be find in199

Table 4 in Appendix B.1. During data processing,200

we represented all flowcharts in PlantUML format201

and generated standardized state nodes and their202

transition relationships through parsing, providing203

a unified representation for subsequent five-tuple204

dataset generation.205

2.2.3 State Transition Information Extraction206

Based on the standardized PlantUML representa-207

tion, we developed a specialized algorithm to ex-208

tract complete state transition information, which209

is shown in Algorithm 1 in Appendix A.1. During210

this process, we got all existing paths and identi-211

fied 5,055 distinct state nodes from the training212

set. Each state transition pair (current state -> next213

state) strictly corresponds to a specific path in the214

flowchart, ensuring the accuracy and consistency215

of the state information extraction.216

2.2.4 Prompt Generation217

To create quality training samples, we used the218

GPT-4o model for bidirectional prompt augmen-219

tation for each state transition. This involved gen-220

erating user input and robot output based on the221

current and next states, along with the flowchart.222

Detailed prompts can be found in Appendix D.223

2.2.5 Data Validation224

To ensure the reliability of the dataset, we imple-225

mented a rigorous multi-level validation process:226

first, ensuring that all state nodes strictly corre-227

spond to the original flowcharts; second, validating228

the syntax correctness of the PlantUML; and finally,229

checking the logical consistency between user in-230

puts and state transitions. Any data that does not231

meet these criteria will be regenerated.232

This dataset construction methodology not only233

ensures data quality and diversity but also pro-234

vides a solid foundation for subsequent model train-235

ing. Through systematic construction processes236

and strict quality control, the PFDial dataset effec-237

tively balances authenticity, standardization, and238

scalability requirements.239

3 Experiments 240

In this chapter, we present a series of comprehen- 241

sive experiments to address the four key questions 242

mentioned in Section 1. We conducted the main ex- 243

periment, data scaling experiment, backward tran- 244

sition studies, and format ablation studies respec- 245

tively. 246

3.1 Experimental Setup 247

Base Models We evaluate our method using two 248

series of base models with varying parameter sizes. 249

The first series includes Qwen2.5 models (Yang 250

et al., 2024) ranging from 0.5B to 7B parame- 251

ters (Qwen2.5-0.5B, Qwen2.5-1.5B, Qwen2.5-3B, 252

and Qwen2.5-7B). The second series consists of 253

Llama3 models (Dubey et al., 2024) spanning from 254

1B to 8B parameters (Llama3.2-1B, Llama3.2-3B, 255

and Llama3.1-8B). This diverse selection of models 256

enables us to comprehensively analyze the impact 257

of model scale on performance. 258

Baselines For comparison, we select a compre- 259

hensive set of both open-source and proprietary 260

state-of-the-art (SOTA) LLMs that have demon- 261

strated strong performance across various NLP 262

tasks. These include proprietary models like GPT- 263

4o (OpenAI, 2023), GPT-3.5-turbo (Ouyang et al., 264

2022a), Gemini-2.0-flash-exp (Anil et al., 2023), 265

and Claude-3.5-sonnet 5, as well as open-source 266

models such as DeepSeek-v3 (DeepSeek-AI et al., 267

2024), Llama3.1-8b-instruct (Dubey et al., 2024), 268

and Qwen2.5-7b-instruct (Yang et al., 2024). These 269

models represent the current frontier of language 270

model capabilities and serve as strong baselines for 271

evaluating our approach. 272

Datasets Our main experiments utilize the PF- 273

Dial dataset containing 12,705 training samples. 274

For evaluation, we maintain two test sets: our 275

out-of-domain test set comprising 698 decision 276

branches and 2,963 sequential branches, and an in- 277

domain test set containing 645 decision branches 278

and 1628 sequential branches. For backward transi- 279

tion experiments, we use the specially constructed 280

PFDial-H dataset. For format ablation studies, we 281

construct corresponding training and test sets in 282

three different state representation formats to sys- 283

tematically evaluate their impact on model perfor- 284

mance. 285

5https://www.anthropic.com/news/
claude-3-family
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Model ID-test OOD-test

Acc Decision
Acc

Sequential
Acc

Acc Decision
Acc

Sequential
Acc

Baselines
LLaMA-3.1-8B-Instruct − − − 13.20 2.16 15.00
Claude-3.5-Sonnet − − − 62.74 22.06 69.40
Qwen2.5-7B-Instruct − − − 65.87 37.88 71.34
Gemini-2.0-Flash-Exp − − − 75.17 47.48 79.66
DeepSeek-v3 − − − 79.02 47.72 84.11
GPT-3.5-Turbo − − − 79.76 39.57 86.29
GPT-4o − − − 86.29 51.80 91.90

FineTuned on PFDial
LLaMA-3.2-1B 98.90 98.59 98.96 93.57 87.05 94.62
LLaMA-3.2-3B 98.77 98.02 98.91 95.81 91.37 96.53
LLaMA-3.1-8B 99.03 98.31 99.17 97.29 96.88 97.35
Qwen2.5-0.5B 98.99 98.02 99.17 91.35 89.45 91.66
Qwen2.5-1.5B 98.90 97.46 99.17 94.00 88.97 94.82
Qwen2.5-3B 98.77 98.31 98.85 94.97 89.69 95.84
Qwen2.5-7B 98.94 98.02 99.11 96.51 90.65 97.47

Table 2: Results on PFDial: Decision Acc represents the accuracy of the decision branch, and Sequential Acc
reflects the accuracy of the sequential branch. Acc is The overall accuracy.
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Figure 3: Results on Data Scaling: The left plot shows the accuracy of ID and OOD tests using data scaling strategy
(a), while the right plot shows the accuracy using data scaling strategy (b).

Implementation Details We combine the PFDial286

dataset with the general dialogue dataset BELLE287

(BELLEGroup, 2023; Wen et al., 2023) in a 1:1288

ratio for SFT. For the training process, we uti-289

lize the OpenRLHF(Hu et al., 2024) framework.290

For instance, the training of Qwen2.5-7B model is291

conducted on 8 H20 GPUs, with a total training292

time of approximately 1 hour. For detailed hyper-293

parameter configurations, please refer to Table 6 in294

Appendix C.1.295

Evaluation Metrics Model performance is eval-296

uated by exact match accuracy between predicted297

and ground truth next states. For a prediction298

to be considered correct, it must exactly match299

the ground truth state transition. Specifically, our300

dataset contains two types of samples: sequential301

samples and decision samples. Sequential sam- 302

ples refer to cases where there is only one unique 303

next state given the current state. Decision samples 304

refer to cases where there are at least two possi- 305

ble next states for the current state. Accordingly, 306

our accuracy can be further refined into two types: 307

sequential accuracy and decision accuracy. 308

3.2 Main Results 309

Table 2 presents our detailed experimental results 310

on the main experiments. Our experiments demon- 311

strate significant improvements over baseline mod- 312

els across all parameter scales. Even our small- 313

est 0.5B parameter model achieves 91.35% ac- 314

curacy on out-of-domain tests, with particularly 315

strong performance on decision branches. Our 8B 316
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Model PFDial-H OOD-test of PFDial

Acc Backward
Acc(Dist <5)

Backward
Acc(Dist ≥5)

Acc Decision
Acc

Sequential
Acc

Baselines
LLaMA-3.1-8B-Instruct 15.00 13.64 15.52 13.20 2.16 15.00
Claude-3.5-Sonnet 57.50 59.09 56.90 62.74 22.06 69.40
Qwen2.5-7B-Instruct 31.25 31.82 31.03 65.87 37.88 71.34
Gemini-2.0-Flash-Exp 26.25 22.73 27.59 75.17 47.48 79.66
DeepSeek-v3 40.00 31.82 43.10 79.02 47.72 84.11
GPT-3.5-Turbo 51.25 54.55 50.00 79.76 39.57 86.29
GPT-4o 58.75 68.18 55.17 86.29 51.80 91.90

Secondary Fine-tuning
Qwen2.5-0.5B 58.75 77.27 51.72 50.77 52.67 39.09
Qwen2.5-1.5B 47.50 45.45 48.28 87.90 88.82 82.25
Qwen2.5-3B 57.50 59.09 56.90 79.73 80.91 72.42
Qwen2.5-7B 66.25 90.91 56.90 76.04 76.82 71.22

Integrated Training
Qwen2.5-0.5B 65.00 72.73 62.07 92.76 93.22 89.93
Qwen2.5-1.5B 70.00 72.73 68.97 93.87 94.82 88.01
Qwen2.5-3B 75.00 90.91 68.97 94.57 96.18 84.65
Qwen2.5-7B 76.25 86.36 72.41 96.31 96.96 92.33

Table 3: Results on PFDial and PFDial-H: Backward Acc represents the accuracy of backward transition.

model achieves sota performance with 97.29% ac-317

curacy on out-of-domain tests, surpassing GPT-4o318

by 11%. In decision branches, our 8B parameter319

model achieves 96.88% accuracy, surpassing GPT-320

4o by 43.88%.321

3.3 Data Scaling Experiments322

Experimental Setup To investigate data effi-323

ciency, we conducted experiments with varying324

training data sizes from 100 to 12,705 samples. We325

employed two data scaling strategies: (a) keeping326

fixed 12,000 general dialogue data samples while327

gradually increasing PFDial data, and (b) maintain-328

ing a 1:1 ratio mixing of general dialogue data and329

PFDial data.330

Results and Analysis Figure 3 presents our ex-331

perimental results on the data scaling experiments.332

The results demonstrate remarkable performance333

even with limited data: using only 800 samples, a334

7B model can surpass 90% accuracy on OOD test.335

Performance continues to improve consistently336

with increased data volume, though we observe337

diminishing returns after approximately 3,000 sam-338

ples. The comparable performance across both339

data scaling strategies validates the effectiveness of340

our PFDial dataset, demonstrating its robust data341

efficiency regardless of the mixing approach. For342

comprehensive results on decision accuracy and343

sequential accuracy across various data scaling con-344

figurations, please refer to Appendix C.2.345

3.4 Backward Transition Studies 346

Experimental Setup We evaluated models’ ca- 347

pability in handling complex backward transitions 348

on the PFDial-H test set, which provides a more 349

rigorous assessment of models’ ability to strictly 350

follow process constraints. The details of PFDial-H 351

test set is shown in table 5 in Appendix B.2. For 352

handling backward transitions, we compared two 353

approaches: integrated training, which incorporates 354

440 PFDial-H training data samples to our PFDial 355

training data during initial training, and secondary 356

fine-tuning, which applies a secondary fine-tuning 357

phase using PFDial-H data on the SFT-completed 358

model with 440 PFDial-H training data samples. 359

Results and Analysis Detailed experimental re- 360

sults are shown in Table 3. Our results demonstrate 361

that our method achieves optimal performance in 362

handling backward branches, with the integrated 363

training approach yielding superior results by main- 364

taining robust performance on forward transitions 365

while significantly improving accuracy in back- 366

ward transition cases. Specifically, with integrated 367

training, the Qwen2.5-7B model achieves 76.25% 368

overall accuracy on PFDial-H, with 86.36% ac- 369

curacy on backward transitions with distance less 370

than 5, and 72.41% accuracy on transitions with 371

distance greater than or equal to 5. Meanwhile, the 372

model maintains a high accuracy of 96.31% on the 373

OOD test. 374

In contrast, secondary fine-tuning not only fails 375
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Figure 4: Results on Model Performance with Different Formats: The left plot shows the sequential accuracy for
different models across three different formats (Format A, Format B, and Format C). The right plot shows the
decision accuracy for the same models under the same formats.
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Figure 5: Logits changes of Three formats

to improve performance on backward transition376

cases but also reduces performance on the PFDial377

dataset, with Qwen2.5-7B’s OOD test accuracy378

dropping from 96.31% to 76.04%. These results379

emphasize the importance of integrating backward380

transition samples during the initial training pro-381

cess rather than treating them as a post-hoc fine-382

tuning step.383

3.5 Format Abliation Studies384

Experimental Setup We conducted experiments385

for three state representation formats: Format A:386

natural language description (default method), For-387

mat B: state codes (e.g., S1, C2), and Format C:388

combining codes and descriptions to explore the389

impact of different data formats on model perfor-390

mance and the underlying reasons. Specific cases391

of data in different formats and the visualization392

results can be seen in Appendix C.3. To ensure393

fairness, we fine-tuned the base model on data in394

all three formats and tested it with corresponding 395

test sets containing the same content. 396

We then froze the attention heads of each layer 397

and compared the model’s output logits with the 398

original logits in these scenarios. By examining 399

the logits changes , we assessed the impact of each 400

attention head after fine-tuning with different for- 401

mats. Finally, we visualized these attention heads 402

to gain deeper insights into their roles. 403

Results and Analysis The model performance 404

with different formats are shown in Figure 4. The 405

results indicate that Format B achieved the highest 406

accuracy in most cases, particularly on Decision 407

Accuracy, however, it performed slightly worse 408

than other formats on Sequential Accuracy. The fol- 409

lowing experimental results, to some extent, shed 410

light on the reasons behind this phenomenon. 411

The comparison results of the three formats’s 412

attention heads are shown in Figure 5. The models 413

fine-tuned with FormatB and FormatC showed a 414

7



more uniform and diverse distribution of attention415

head contributions. This can be explained that both416

of the latter formats introduced code state identi-417

fiers, requiring the language model to learn both418

the sequence of state transitions and the correspon-419

dence between code states and natural language420

states. Thus more attention heads with different421

functions were activated.422

In particular, head_layer27_head20 is crucial423

in all three formats. We visualized this attention424

head’s scores for all three formats in Figure 6, Fig-425

ure 7, and Figure 8, respectively, focusing on signif-426

icant differences. The attention scores for both the427

natural language and hybrid formats were concen-428

trated at the intersection of the user’s current state429

and the corresponding state in the flowchart. For-430

mat C, which includes some state codes, showed431

a more moderated concentration. In contrast, For-432

mat B did not exhibit such clustering. We hypoth-433

esize that the introduction of state codes allows434

the model’s attention to generalize across different435

input parts, rather than being confined to specific436

segments. This enables models to better understand437

user inputs and facilitates learning of global logic,438

such as condition checking and state selection. This439

also reasonably explains previous results.440

4 Related Work441

4.1 Controllable Reasoning in LLMs442

Controllable reasoning in LLMs has gained sig-443

nificant attention in recent years. Ouyang et al.444

(2022b) pioneered instruction-guided control via445

Reinforcement Learning from Human Feedback446

(RLHF), combining supervised fine-tuning (SFT),447

reward model training, and Proximal Policy Opti-448

mization (PPO) to align outputs with human pref-449

erences. While effective, this approach requires450

complex annotation and training (Li and Liang,451

2021). In contrast, our approach simplifies the pro-452

cess by encoding reasoning logic into structured453

UML state flowcharts, guiding learning through454

SFT alone. This provides a clear, human-readable455

control mechanism, addressing the ’reasoning opac-456

ity’ challenge (Liang et al., 2024b).457

4.2 Graph-based Enhanced Reasoning458

Previous research (Pan et al., 2024) has explored459

graph-based approaches to enhance the reasoning460

capabilities of LLMs. Several works (Liang et al.,461

2024a; Luo et al., 2024a,b) have used Knowledge462

Graph (KG) structural information to reduce hal-463

lucinations by breaking reasoning into path extrac- 464

tion and inference steps. Similarly, Zhou et al. 465

(2024) showed that graph-based training improves 466

multi-hop reasoning accuracy. However, these 467

methods mainly treat graphs as external knowledge 468

sources rather than explicit control mechanisms. 469

4.3 LLM-based Dialogue Systems 470

Task-Oriented Dialogue (TOD) systems help users 471

achieve specific goals through conversations (Yi 472

et al., 2024). Current approaches fall into two main 473

categories: Pipeline-based Approaches, which sep- 474

arate dialogue systems into modules with LLMs 475

handling specific tasks (Comi et al., 2023; Parikh 476

et al., 2023; Chen et al., 2019; Nguyen et al., 2023), 477

and End-to-End Approaches, which use LLMs to 478

generate responses based on the entire dialogue his- 479

tory (Hemanthage et al., 2023; Zhang et al., 2024, 480

2023; Wu et al., 2020; Algherairy and Ahmed, 481

2025). Pipeline-based Approaches offer better 482

transparency but require extensive annotated data, 483

while End-to-End Approaches are simpler but less 484

controllable and demand higher model capabilities. 485

5 Conclusion 486

In this paper, we introduce the PFDial dataset, a 487

novel resource designed to enhance process-driven 488

dialogue systems. By utilizing structured dialogue 489

instructions derived from UML flowcharts, PFDial 490

provides a robust framework for training models 491

to handle complex decision-making and sequential 492

processes. Our experiments demonstrate that mod- 493

els fine-tuned on PFDial achieve high accuracy, 494

even with limited training data, and outperform 495

sota LLMs like GPT-4o on specific tasks. 496

We conducted an in-depth analysis of backward 497

transitions using the PFDial-H dataset, highlighting 498

the importance of integrated training approaches 499

for maintaining strong performance across diverse 500

dialogue scenarios. Additionally, we explored the 501

impact of various data representation formats, find- 502

ing that structured state codes significantly improve 503

the accuracy of state transition predictions. 504

Overall, our work underscores the potential of 505

structured datasets like PFDial to advance process- 506

driven dialogue systems, offering new insights into 507

the design and training of models for precise and 508

controlled reasoning. Future research will focus on 509

expanding the dataset to cover more scenarios and 510

refining training methodologies to enhance model 511

generalization and adaptability. 512
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Limitations513

Our research presents a comprehensive set of514

experiments, yet it is not without limitations.515

First, the Chinese-centric nature of our dataset516

introduces potential cross-lingual generalization517

constraints.Second, the scarcity of standardized518

flowchart benchmarks in Chinese process speci-519

fications increases the risk of domain-specific bi-520

ases, despite our rigorous validation framework;521

while the potential residual inconsistencies in flow-522

to-text conversion may emerge from the inherent523

subjectivity in interpreting semantic structures.524
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A Algorithm764

A.1 Parse PlantUML Code765

This algorithm parses the given PlantUML code by766

line by line. It initializes an empty dictionary, node-767

Dict, to store state nodes. Then, it calls PARSESE-768

QUENTIAL (Algorithm 2) to process the sequential769

flow. Finally, it returns all paths originating from770

the start node, representing the complete execution771

flow.

Algorithm 1 Parse PlantUML Code
1: function PARSEPLANTUML(code)
2: Split code into lines
3: Initialize an empty dictionary nodeDict to

store nodes
4: Call PARSESEQUENTIAL

5: return all paths originating from the start
node

6: end function
772

A.2 Parse Sequential Blocks773

This algorithm parses the sequential execution flow774

by processing each line to identify states. Sequen-775

tial states create and merge new nodes, while deci-776

sion states call PARSEDECISION (Algorithm 3) for777

further processing.778

A.3 Parse Decision Blocks779

This algorithm handles decision structures by first780

parsing the "if" block using PARSESEQUENTIAL781

(Algorithm 2). If an "else if" block is encountered,782

Algorithm 2 Parsing Sequential Blocks

1: function PARSESEQUENTIAL(startNode, lines,
nodeDict)

2: root← startNode
3: for each line in lines do
4: Trim whitespace
5: if the line represents a sequential state

then
6: Create a new node into nodeDict
7: Merge new nodes
8: else if the line represents a decision

state then
9: Call PARSEDECISION

10: Connect new nodes
11: else
12: Continue processing
13: end if
14: end for
15: return
16: end function

it recursively calls itself to process nested condi- 783

tions. For an "else" block, it parses the sequence 784

and connects the resulting nodes using PARSESE- 785

QUENTIAL (Algorithm 2). This ensures correct 786

branching and flow control within decision blocks. 787

Algorithm 3 Parsing Decision Blocks

function PARSEDECISION(startNode, lines,
nodeDict)

root← startNode
Call PARSESEQUENTIALto parse “if” block
if meet “else if” block then

Recursively call PARSEDECISION

Connect new nodes
return

else if meet “else” block then
Parse the “else” block using PARSESE-

QUENTIAL

Connect new nodes
return

else
return

end if
end function

788
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Format PlantUML ChartMage NomNoml Meamaid

Decision Block

if (D) then (C1) D - C1 ->> S1 [D] C1-> [Block1] A{D} – C1 –> B[S1]
S1 D - C2 ->> S2 [D] C2-> [Block2] A – C2 –> C[S2]

else (C2)
S2

Input
Here is the flowchart code:
[a UML flowchart with 21 paths, expressed in the corresponding format]
Show all possible complete paths and count how many there are.

Path Count 21 15 19 17

Table 4: Comparison of Flowchart Formats

B Dataset789

B.1 Different Format to Represent Flowchart790

In Table 4, we compares different formats to repre-791

sent flowchart. We select a complex flowchart with792

21 paths, and let GPT-4o to find all paths and count793

the number paths. Only with PlantUML, GPT-794

4o correctly output the right path number, which795

means flowchart with PlantUML is easy for mod-796

els to understand. Moreover, syntax features, as is797

shown in Table 4, such as indentation branching,798

and loops, making PlantUML a good format to read799

and convenient for program processing.800

B.2 PFDial-H Tests801

Table 5 presents the details of PFDial-H tests, in-802

cluding the total number of dialogues in the test set,803

average dialogue length in turns, and the proportion804

of dialogues with backward transition distances di-805

vided by the threshold of 5.806

C Experimental Details807

C.1 Implementation Details808

To ensure reproducibility of our experiments, we809

provide detailed hyper-parameter configurations810

used in our training process. All experiments were811

conducted using the AdamW optimizer with cosine812

annealing learning rate scheduling. The complete813

set of training hyper-parameters is presented in814

Table 6. We maintained consistent hyper-parameter815

settings across models of different scales to ensure816

fair comparison.817

C.2 Supplementary Data for Data Scaling818

Experiment819

While the section 3.3 presents the overall accuracy820

trend with increasing training samples, here we pro-821

vide the complete experimental results. Tables 11822

and 12 present the performance results for Strategy823

A and Strategy B respectively. Each table shows824

Backward Distance < 5 22
Backward Distance ≥ 5 58

Dialogue Samples 80
Avg. Length 534.36

Table 5: PFDial-H Tests Data Overview

Hyperparameter Value

Optimizer AdamW
Learning Rate 5× 10−6

Learning Rate Scheduling Cosine Annealing
Adam Beta1 0.9
Adam Beta2 0.95
Batch Size 128
Batch Size Per-Device 4
Training Epochs 5

Table 6: Training Hyper Parameters

overall accuracy, decision accuracy, and sequential 825

accuracy metrics on both ID and OOD tests across 826

different training sample sizes. The information 827

of dataset with different training sample sizes is 828

shown in Table 10. 829

C.3 Details in Format Ablation Study 830

In this section, we present specific cases of data 831

in different formats and the visualization results 832

for head_layer27_head20. As shown in Figure 6, 833

7, and 8, we visualize the attention patterns for 834

Format A (Natural Language) in Table 13, Format 835

B (State Code) in Table 14, and Format C (Hybird) 836

in Table 15 respectively. 837

D Prompt 838

D.1 Prompt for generating User Input 839

We use the prompt from Table 7 to generate user 840

inputs. This prompt helps us create appropriate 841

user input text based on the given state transitions. 842
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User
These examples are four-tuples consisting of the
PlantUML diagram, the current state, the next state,
and the user input.

[several examples]

The user’s input explains the change in state from
the current state to the next state. For example, if
the original state is A, the user might input "A has
been completed." or, when a choice is required, the
user selects an option based on the next state.
Now I have a four-tuple consisting of the Plan-
tUML diagram, the current state, and the next state,
without user inpupt. Your task is to generate the
user’s input based on the rules provided.

This is the four-tuple need to be filled:
[four-tuple to be filled]

Table 7: The prompt for generating the user’s input.

D.2 Prompt for generating Robot Output843

We use the prompt from Table 8 to generate robot844

outputs. This prompt helps us create appropriate845

robot responses based on the current state, next846

state, and user input.847

User
These examples are five-tuples consisting of the
PlantUML diagram, the current state, the next state,
user input, and the robot output.

[several examples]

The user’s input explains the change in state from
the current state to the next state. The robot output
is related to next state. Robot acts as the server-
provider. For example, if the current state is A,
tobot might output "Now process A." or, when a
choice is required, robot lets user to make a choice.
Now I have a five-tuple consisting of the PlantUML
diagram, the current state next state, and the user
input, without robot output. Your task is to generate
the robot’s output based on the rules provided.

This is the five-tuple need to be filled:
[five-tuple to be filled]

Table 8: The prompt for generating the robot’s output.

D.3 Prompt for Adding Backward Transition 848

In the third step, we use the prompt from Table 9 849

to add backward transitions. This prompt guides us 850

in adding logical loop structures to the flowchart. 851

User
This is a flowchart in PlantUML syntax and the
result after adding a loop to itself:

[original PlantUML and revised PlantUML]

Your task is to follow this modification rule ro add
a loop to the plantuml that I will give you next. The
following conditions must be met:
1. The added loop is logical
2. The conditional state of “repeat while” cannot be
repeated with the any conditional state that already
exists in the original PlantUML
3. Ensure that the syntax of PlantUML is correct
4. Add is([need to loop]) not([jump out of loop])
statements after repeat while as much as possible.

PlantUML to be modified:
[original PlantUML]

Table 9: Prompt for Adding Backward Transition.
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Training Sample Size 100 200 400 800 1600 3200 6400 9600 12705

Flowcharts 3 5 12 29 59 113 208 308 440
State Nodes 49 79 149 304 612 1236 2473 3772 5055
Sequential Samples 62 134 264 561 1099 2185 4293 6717 9029
Decision Samples 38 66 136 239 501 1015 2107 2883 3676
Avg. Length 386.22 368.19 320.24 286.92 275.63 272.29 273.00 280.90 277.16

Table 10: Statistics of the PFDial Dataset with Different Training Sample Sizes

Training Sample Size ID-test OOD-test

Acc Decision
Acc

Sequential
Acc

Acc Decision
Acc

Sequential
Acc

100-all 77.61 54.52 81.87 73.59 39.81 79.08
200-all 84.82 83.33 85.10 80.83 62.35 83.83
400-all 88.91 90.68 88.59 87.80 76.50 89.64
800-all 90.37 92.37 89.99 88.44 78.90 89.99
1600-all 93.84 94.92 93.64 91.59 84.17 92.79
3200-all 96.61 97.46 96.46 93.26 89.69 93.84
6400-all 97.89 97.18 98.02 95.34 91.85 95.91
9600-all 98.86 98.31 98.96 96.45 90.17 97.47
all 98.94 98.02 99.11 96.51 90.65 97.47

Table 11: Performance with different training sample sizes across ID and OOD datasets after training on Qwen2.5-
7B, with data scaling strategy (a)

Training Sample Size ID-test OOD-test

Acc Decision
Acc

Sequential
Acc

Acc Decision
Acc

Sequential
Acc

100-100 61.37 23.45 68.37 59.12 13.91 66.46
200-200 82.31 84.46 81.92 77.88 65.47 79.90
400-400 89.71 89.55 89.73 86.03 75.30 87.77
800-800 91.55 92.66 91.35 90.01 81.06 91.47
1600-1600 93.80 93.50 93.85 91.79 85.13 92.87
3200-3200 97.01 98.02 96.82 94.30 90.65 94.90
6400-6400 97.98 98.31 97.92 95.54 90.65 96.34
9600-9600 98.90 97.46 99.17 95.95 89.45 97.00
all 98.94 98.02 99.11 96.51 90.65 97.47

Table 12: Performance with different training sample sizes across ID and OOD datasets after training on Qwen2.5-
7B, with data scaling strategy (b)
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Figure 6: local attention score of head_layer27_head20 using Format A.
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Figure 7: local attention score of head_layer27_head20 using Format B.
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Figure 8: local attention score of head_layer27_head20 using Format C.
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Format Data Example

Format A PlantUML:
@startuml start :College entrance exam results announced; :Student obtains college entrance exam score
report; :Student checks the exam results and determines the range of colleges and majors to apply for;
if (Do you need to research colleges and majors in advance?) then (Yes) :Student conducts research on
colleges and majors; else (No) :Skip this step; endif :Student logs into the application system; :System
provides the application entry and instructions; :Student fills out the application, prioritizing choices;
:After completing the application, the system generates an application form; :Student confirms the form
and submits it; if (Application deadline?) then (Yes) :System closes the application entry; :Wait for the
admission results to be announced; else (No) :Student can modify the application before the deadline;
:Wait for the application deadline; endif :Admission results announced; if (Admitted?) then (Yes) :Student
completes registration procedures according to the admission notice; else (No) :Student applies for
supplementary applications or participates in the supplementary application process; endif :Enroll in the
school; stop @enduml
Current state:
System closes the application entry
Next state:
Wait for the admission results to be announced
User input:
The application deadline has passed, and the application system is now closed.
Robot output:
Please patiently wait for the announcement of the admission results.

Table 13: Example Data Display - Format A
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Format Data Example

Format B PlantUML:
@startuml start :S1; :S2; :S3; if (C1) then (Yes) :S4; else (No) :S5; endif :S6; :S7; :S8; :S9; :S10; if (C2)
then (Yes) :S11; :S12; else (No) :S13; :S14; endif :S15; if (C3) then (Yes) :S16; else (No) :S17; endif
:S18; stop @enduml
Dictionary of the state codes:
{ "College entrance exam results announced": "S1", "Student obtains college entrance exam score report":
"S2", "Student checks the exam results and determines the range of colleges and majors to apply for": "S3",
"Do you need to research colleges and majors in advance?": "C1", "Student conducts research on colleges
and majors": "S4", "Skip this step": "S5", "Student logs into the application system": "S6", "System
provides the application entry and instructions": "S7", "Student fills out the application, prioritizing
choices": "S8", "After completing the application, the system generates an application form": "S9",
"Student confirms the form and submits it": "S10", "Application deadline?": "C2", "System closes the
application entry": "S11", "Wait for the admission results to be announced": "S12", "Student can modify
the application before the deadline": "S13", "Wait for the application deadline": "S14", "Admission
results announced": "S15", "Admitted?": "C3", "Student completes registration procedures according
to the admission notice": "S16", "Student applies for supplementary applications or participates in the
supplementary application process": "S17", "Enroll in the school": "S18" }
Current state:
System closes the application entry
Next state:
Wait for the admission results to be announced
User input:
The application deadline has passed, and the application system is now closed.
Robot output:
Please patiently wait for the announcement of the admission results.

Table 14: Example Data Display - Format B
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Format Data Example

Format C PlantUML:
@startuml start :S1: College entrance exam results announced; :S2: Student obtains college entrance exam
score report; :S3: Student checks the exam results and determines the range of colleges and majors to apply
for; if (C1: Do you need to research colleges and majors in advance?) then (Yes) :S4: Student conducts
research on colleges and majors; else (No) :S5: Skip this step; endif :S6: Student logs into the application
system; :S7: System provides the application entry and instructions; :S8: Student fills out the application,
prioritizing choices; :S9: After completing the application, the system generates an application form; :S10:
Student confirms the form and submits it; if (C2: Application deadline?) then (Yes) :S11: System closes
the application entry; :S12: Wait for the admission results to be announced; else (No) :S13: Student can
modify the application before the deadline; :S14: Wait for the application deadline; endif :S15: Admission
results announced; if (C3: Admitted?) then (Yes) :S16: Student completes registration procedures
according to the admission notice; else (No) :S17: Student applies for supplementary applications or
participates in the supplementary application process; endif :S18: Enroll in the school; stop @enduml
Current state:
System closes the application entry
Next state:
Wait for the admission results to be announced
User input:
The application deadline has passed, and the application system is now closed.
Robot output:
Please patiently wait for the announcement of the admission results.

Table 15: Example Data Display - Format C
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Category Senarios

Lifestyle Services Hairdressing, Phone Card, Car Wash, Agritainment, Printing &
Copying, Lawyer, Yoga Studio, Music Classroom, Internship

Daily Convenience Takeout, Scenic Spots, Furniture Cleaning, Wedding Photography,
Movie, Cleaning Service, Self-service Car Wash, Second-hand
Car Trading, Visa Application

Food & Education Catering, Training Courses, Physiotherapy & Massage, Lighting
Design, Gym, Express Delivery, Travel Group Purchase, Health
Check-up, Group Tour

Entertainment & Trans-
portation

Concert, Car Rental, Baking Studio, Digital Repair, Airplane
Ticket, Water Delivery, Florist Shop, Photo Studio, Course Selec-
tion

Business & Professional
Services

Commercial Photography, Hospital, Pet Boarding, Café, Dentist,
Pet Grooming, Tea House, Outdoor Expansion, Electrician Inspec-
tion

Luxury & Specialized Ser-
vices

Beauty Salon, Museum, Horticultural Design, Car Maintenance,
Cruise, Photography Studio Rental, Piano Tuning, Basketball
Court, Cargo Delivery into Cabin

Living-related Services Laundry, House Rental, Education Consultation, Library, Cultural
Exhibition, Health Consultation, Holiday Villa, Interior Design,
Bank Account Operation

Maintenance & Care Ser-
vices

Home Appliance Repair, Hotel, Leather Goods Care, Arcade,
Furniture Installation, Medical Check-up, Car Insurance Claim,
Bicycle Rental, Parts Inspection

Comprehensive Services Moving, Resort, Language Translation, Medical Aesthetics, Driv-
ing School, Wedding Planning, Pet Hospital, Manicure, Document
Approval

Shopping & Other Activi-
ties

Shopping, Train Ticket, Water & Electricity Repair, Ski Resort,
Credit Card, College Entrance Examination Volunteer Filling,
Cooking, DIY Handicraft, Content Creation

Table 16: Senarios
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