
Preventing Conflicting Gradients in Neural Temporal
Point Process Models for Irregular Time Series Data

Tanguy Bosser
Department of Computer Science

University of Mons
tanguy.bosser@umons.ac.be

Souhaib Ben Taieb
Department of Statistics and Data Science

Mohamed bin Zayed University of Artificial Intelligence
souhaib.bentaieb@mbzuai.ac.ae

Abstract

Neural Marked Temporal Point Processes (MTPP) are flexible models typically
trained from large collections of sequences of irregularly spaced labeled events.
These models inherently learn two predictive distributions: one for the arrival times
of events and another for the types of events, also known as marks. In this study,
we demonstrate that learning an MTPP model can be framed as a two-task learning
problem, where both tasks share a common set of trainable parameters that are
optimized jointly. We show that this practice can lead to conflicting gradients
during training, resulting in overall degraded performance for both tasks. To
overcome this issue, we introduce novel parametrizations for neural MTPP models
that allow for separate modeling and training of each task, effectively avoiding the
problem of conflicting gradients.

1 Introduction

Sequences of labeled events observed at irregular intervals in continuous time are ubiquitous across
various fields such as healthcare [17], finance [30], social media [18], and seismology [52]. In
numerous application domains, an important problem involves predicting the timing and types of
future events—often called marks—based on historical data. Temporal Point Processes (TPPs) [13]
provide a mathematical framework for modeling sequences of irregularly-spaced events, enabling
subsequent inference on the system’s evolution. Inspired by the success of foundation models (FMs)
in natural language processing (NLP) [54, 14, 39, 8], FMs have been developed for time series
forecasting, demonstrating strong generalization capabilities [3, 74, 56, 22]. Similarly, to address the
limitations of classical temporal point process (TPP) models like the Hawkes process [29], recent
efforts have introduced a more flexible class of neural marked TPP (MTPP) models, which leverage
advances in deep learning [61], particularly through RNN [60, 78, 28] and Transformer [80, 77, 73]
architectures.

This paper argues that learning a neural MTPP model can be interpreted as a two-task learning
problem where both tasks share a common set of parameters and are optimized jointly. We identify
these tasks as time prediction and mark prediction, respectively. While parameter sharing between
tasks can sometimes enhance training efficiency [65], it may also result in performance degradation
when compared to training each task separately. A major challenge in the simultaneous optimization
of multi-task objectives is the issue of conflicting gradients [43]. When such conflicts arise, gradient
updates tend to favor tasks with larger gradient magnitudes, thus hindering the learning process
of other concurrent tasks and adversely affecting their performance. Although the phenomenon of
conflicting gradients has been studied in various fields [10, 11, 75, 63], its impact on the training of
neural MTPP models for irregular time series data remains unexplored. In this study, we demonstrate
that conflicting gradients frequently occur during the training of neural MTPP models. Furthermore,
we show that such conflicts can significantly degrade a model’s predictive performance. To prevent

NeurIPS 2024 Workshop on Time Series in the Age of Large Models.

this issue, we introduce novel parametrizations for existing neural MTPP models, allowing for
separate modeling and training of time and mark prediction tasks.

2 A Framework to Prevent Conflicting Gradients in Neural MTPP Models

A Marked Temporal Point Process (MTPP) is a random process whose realization is a sequence of
events S = {ei = (ti, ki)}ni=1. Each event ei ∈ S is an ordered pair with an arrival time ti ∈ [0, T]
(with t0 = 0) and a categorical label ki ∈ K = {1, ...,K} called mark. The arrival times form a
sequence of strictly increasing random values observed within a specified time interval [0, T], i.e.
0 ≤ t1 < t2 < . . . < tn ≤ T . If ei−1 is the last observed event, the occurrence of the next event
ei in (ti−1,∞[can be fully characterized by its K conditional marked intensity functions λk(t|Ht)
[55], where Ht = {(ti, ki) ∈ S | ti < t} is the observed process history. For clarity of notations, we
will use the notation ’∗’ of [13] to indicate dependence on Ht, i.e. λ∗

k(t) = λ∗(t|Ht). The marked
intensities can be further factorized as λ∗

k(t) = λ∗(t)p∗(k|t) where λ∗(t) is the ground intensity
of the process, and p∗(k|t) is a conditional PMF of marks. Finally, we can also define the marked
compensators Λ∗

k(t) =
∫ t

ti−1
λ∗
k(s)ds. Provided that certain modeling constraints are satisfied, each

of λ∗
k(t) and Λ∗

k(t) fully characterizes a MTPP.

Let λ∗
k(t;θ) = λ∗(t;θ)p∗(k|t;θ) be a valid model of λ∗

k(t) (i.e. it defines a valid probability
distribution of arrival times and marks), where θ denotes the set of trainable parameters. To train
this model, we use a dataset Strain = {S1, ...,SL}, where each sequence Sl comprises nl events with
arrival times observed within the interval [0, T] and l = 1, ..., L. The training objective is the average
sequence negative log-likelihood (NLL) given by

L(θ;Strain) = − 1

L

L∑
l=1

nl∑
i=1

log λ∗(tl,i;θ) +

∫ T

0

λ∗(s;θ)ds︸ ︷︷ ︸
LT (θ;Strain)

− 1

L

L∑
l=1

nl∑
i=1

log p∗(kl,i|tl,i;θ)︸ ︷︷ ︸
LM (θ;Strain)

, (1)

This reveals that learning a MTPP model effectively involves a two-task learning problem with shared
parameters θ. The time prediction task TT focuses on learning the predictive ground intensity λ∗(t;θ)
by minimizing LT (θ,Strain). Concurrently, the mark prediction task TM aims to learn the predictive
distribution of marks p∗(k|t;θ) by minimizing LM (θ,Strain).

Conflicting gradients. Let gT = ∇θLT (θ) and gM = ∇θLM (θ) denote the gradients of tasks TT
and TM , respectively, with respect to the shared parameters θ1. As discussed in [63], when gT and
gM are pointing in opposite directions, i.e. gT · gM < 0, an update step in the direction of negative
gT for θ will increase the loss for task TM , and inversely for task TT if an update step is taken in the
direction of negative gM . Such conflicting gradients can be formally defined as follows.

Definition 1 (Conflicting gradients [63]) Let ϕTM be the angle between the gradients gT and gM .
They are said to be conflicting with each other if cos ϕTM < 0.

The smaller the value of cos ϕTM ∈ [−1, 1], the more severe the conflict between the gradients.
Conflicting gradients, especially those with significant differences in magnitude, pose substantial
challenges during the optimization of multi-task learning objectives [75]. Specifically, if gT and gM
conflict, the update step for θ will likely be dominated by the gradient of whichever task—gT or
gM—has the greater magnitude, thereby disadvantaging the other task.

2.1 Disjoint Parametrizations of Neural MTPP models

Our goal is to prevent the occurrence of conflicting gradients during the training of neural MTPP
models with the NLL objective given in (1). To accomplish this, we introduce novel parametrizations
for neural MTPP models that enable disjoint modeling and training of time and mark prediction
tasks. To accomplish this, we need to specify p∗(k|t;θp) with parameters θp, and either λ∗(t;θλ),
or Λ∗(t;θλ) with parameters θλ. For a query time t ≥ ti−1, we also define a history representation
h = ENC({e1, ..., ei−1};θh) ∈ Rdh , where ENC(· ;θh) denotes the history encoder with param-
eters θh, and ei ∈ Rde is an encoding of event ei = (ti, ki). More training details are given in
Appendix A.2, and the original model formulations are provided in Appendix A.5.

1We explicitly omit the dependency of LT and LM on Strain to simplify notations.

2

A general approach to model the distribution of marks. Given a query time t ≥ ti−1 and its
corresponding history representation h, we propose defining the mark conditional PMF p∗(k|t;θp)
using the following simple model:

p∗(k|t;θp) = σSo (W2σR (W1 [h||log(τ)] + b1)) + b2) , (2)

where τ = t − ti−1, σSo is the Softmax activation function, W1 ∈ Rd1×(dh+1), b1 ∈ Rd1 ,
W2 ∈ RK×d1 and b2 ∈ RK , and || means concatenation. Here, θp = {W1,W2, b1, b2,θh}.
Despite its simplicity, this model is flexible and capable of capturing the evolving dynamics of the
mark distribution between two events.

Intensity-based parametrizations. We first consider MTPP models specified by their marked
intensities, namely THP [80] and SAHP [77]. We propose revising the original model formulations
to directly parametrize λ∗(t), while p∗(k|t) is systematically derived from expression (2).

SAHP++. While the original model formulation parametrizes λ∗
k(t), we adapt its formulation to

define:
λ∗(t;θλ) = 1T [σS (µ− (η − µ)exp(−γ(t− ti−1)))] , (3)

where 1 ∈ RC is a vector of 1’s allowing to define λ∗(t;θλ) as a sum over C different representations.
In (3), µ = σG(Wµh), η = σS(Wηh) and γ = σG(Wγh) where σS and σG are respectively the
softplus and GeLU activation functions [31]. Wµ,Wη,Wγ ∈ RC×dh are learnable parameters and
θλ = {Wµ,Wη,Wγ ,θh}.

THP++. Following a similar reasoning, the original formulation of THP is adapted to model λ∗(t)
instead of λ∗

k(t):

λ∗(t;θλ) = 1T

[
σS

(
wt

t− ti−1

ti−1
+Wh+ b

)]
, (4)

where wt ∈ RC
+, W ∈ RC×dh , b ∈ Rd1 , and θλ = {W,wt, b,θh}.

Cumulative intensity-based parametrizations. Integrating cumulative neural MTPP models into
our framework requires to define Λ∗(t;θΛ). Specifically, we extend the improved marked FullyNN
model (FNN) [53, 17] into FNN+, that models Λ∗(t) and p∗(k|t), instead of Λ∗

k(t):

Λ∗(t;θλ) = G∗(t;θλ)−G∗(ti−1;θλ), (5)

G∗(t;θλ) = 1T
[
σS

(
W(σGS

(
wt(t− ti−1) +Whh+ b1

)
+ b2

)]
, (6)

where W ∈ RC×d1 , wt, b1 ∈ Rd1 , Wh ∈ Rd1×dh , b2 ∈ RC , and σGS is the Gumbel-Softplus
activation function. Here, θλ = {W,Wh,wt, b1, b2,θh}. Similarly to the previous models, we use
(2) to define p∗(k|t;θp).

Training different history encoders. The different functions defined in this section, p∗(k|τ ;θp),
λ∗(t;θλ), and Λ∗(t;θλ), share a common set of parameters θh through a common history represen-
tation h. To enable fully disjoint modeling and training of time and mark functions, we define two
distinct history representations:

ht = ENCt

[
{e1, ..., ei−1};θt

h

]
∈ Rdt

h and hm = ENCm [{e1, ..., ei−1};θm
h] ∈ Rdm

h , (7)

where ENCt(· ;θt
h) and ENCm(· ;θm

h) are the time and mark history encoders, respectively, while
θt
h and θm

h represent the sets of disjoint learnable parameters of the two encoders. Using separate
history encoders further enables the model to capture information from past event occurrences that
are relevant to the time and mark prediction tasks separately. In this paper, without loss of generality,
we compute ht and hm by training two GRU encoders that sequentially process the set of event
representations in {e1, ..., ei−1}.

Disjoint training of the time and mark tasks. Using ht for λ∗(t;θλ) and Λ∗(t;θλ), and hm

for p∗(k|τ ;θp)
2 implies that θλ and θp are now completely disjoint set of trainable parameters.

Consequently, by injecting λ∗(t;θλ) or dΛ∗(t;θλ)/dt, and p∗(k|t;θp) in (1), we find that the NLL
objective now writes as sum over two entirely disjoint objectives LT (θλ,Strain) and LM (θp,Strain),
meaning that the associated tasks TT and TM can be learned independently. This contrasts with the
original formulations of THP, SAHP, and FNN [53, 17, 80, 77], in which shared parameters between
LT (θλ,Strain) and LM (θp,Strain) does not allow for disjoint training of (1).

2θh is now replaced by θt
h in θλ, and θΛ, and by θm

h in θp.

3

1.0 0.5 0.0 0.5 1.0
cos TM

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pr
op

or
tio

n

CG: 0.78

THP-MOOC

1.0 0.5 0.0 0.5 1.0
cos TM

0.00

0.05

0.10

0.15

0.20

Pr
op

or
tio

n

CG: 0.86

SAHP-MOOC

1.0 0.5 0.0 0.5 1.0
cos TM

0.00

0.05

0.10

0.15

0.20

0.25

Pr
op

or
tio

n

CG: 0.55

THP-LastFM

1.0 0.5 0.0 0.5 1.0
cos TM

0.00

0.05

0.10

0.15

0.20

0.25

Pr
op

or
tio

n

CG: 0.58

SAHP-LastFM

Figure 1: Distribution of cos ϕTM during training of THP and SAHP on MOOC and LastFM. CG
refers to the proportion of cos ϕTM < 0 (red bars) observed during training. The distribution is
obtained by pooling the values of ϕTM over 3 training runs.

3 Experiments

Experimental setup. We conduct an experimental study to assess the performance of our framework
as detailed in training the time and mark prediction tasks. Specifically, we compare the disjoint
parametrizations of THP++, SAHP++, and FNN++ detailed in Section 2 compared to their original
formulations3. To this end, we use five real-world marked event sequence datasets frequently
referenced in the neural TPP literature: LastFM, MOOC, Reddit [38], Github [68], and Stack
Overflow [16]. To ensure that performance gains cannot be attributed to increased model capacity,
we ensure that the number of parameters between the base and base++ parametrizations remains
equivalent. See Appendix A.2 for more details on the training setup, and Appendix A.3 for further
dataset descriptions. To evaluate the performance of the different baselines on the time and mark
prediction tasks, we report the LT and LM terms in (1), respectively, computed over all test sequences.

Preventing conflicts lead to improved performance. We present the LT and LM metrics for
the base and base++ models across all datasets in Table 1. We observe a consistent improvement
for THP++, SAHP++ and FNN++ compared to their original parametrizations. Figure 1 shows the
distribution of cos ϕTM during training for THP and SAHP on LastFM and MOOC. As observed, a
significant proportion of severe conflicts (as indicated by cos ϕTM in [-1, -0.5]) emerge for the shared
parameters of the base models during training. Combined with the LT and LM metrics from Table 1,
this observation highlights the advantages of our disjoint parametrization frameworks in preventing
conflicting gradients between the time and mark prediction tasks during training. We report results
with respect to other evaluation metrics in Appendix A.7.

Table 1: LT and LM results of the different setups across all datasets. The values are computed over
3 splits, and the standard error is reported in parenthesis. Best results are highlighted in bold.

LM
LastFM MOOC Github Reddit Stack O.

THP 714.3 (18.1) 93.5 (1.8) 133.2 (28.5) 40.7 (1.4) 104.9 (1.1)
THP++ 647.0 (20.2) 71.1 (1.4) 117.6 (25.0) 41.2 (1.6) 102.7 (1.1)

SAHP 829.4 (28.3) 162.8 (3.6) 144.3 (31.2) 73.2 (5.7) 106.9 (0.6)
SAHP++ 651.3 (18.7) 71.0 (1.5) 118.5 (25.0) 41.2 (1.0) 102.9 (1.1)

FNN 739.3 (30.1) 79.3 (1.8) 119.1 (25.1) 45.7 (1.2) 107.0 (1.0)
FNN++ 647.9 (17.6) 71.8 (1.5) 114.9 (24.4) 40.6 (1.0) 102.8 (1.1)

LT
LastFM MOOC Github Reddit Stack O.

THP -961.3 (44.0) -136.7 (1.8) -258.8 (62.4) -71.7 (3.4) -82.9 (2.1)
THP++ -1052.8 (50.1) -135.6 (2.8) -297.3 (80.9) -87.5 (2.9) -83.1 (2.1)

SAHP -1266.9 (64.7) -266.5 (4.3) -380.2 (89.8) -74.0 (2.6) -88.7 (2.2)
SAHP++ -1322.6 (67.9) -295.3 (4.8) -400.8 (92.6) -94.8 (3.2) -76.6 (1.7)

FNN -1271.9 (65.6) -281.9 (4.1) -395.4 (89.9) -76.8 (2.8) -80.2 (2.0)
FNN++ -1321.1 (62.8) -301.9 (4.7) -395.5 (89.6) -95.6 (3.3) -87.7 (2.1)

4 Conclusion, Limitations, and Future Work

In this paper, we demonstrate that shared parameters between the time and mark prediction tasks in
neural MTPP models lead to the emergence of conflicting gradients during training, often resulting in
degraded performance on each individual task. To tackle this issue, we introduce novel parametriza-
tions of neural MTPP models that enable separate training and modeling of each task, effectively
preventing the occurrence of conflicting gradients. Through extensive experiments on real-world
event sequence datasets, we validate the benefits of our disjoint training framework over original
model parametrizations. Nonetheless, we acknowledge that our study has limitations: it focuses only
on categorical marks and models trained with the NLL objective. Future research could pertain to
exploring conflicting gradients using alternative scoring rules and in more more complex scenarios,
such as temporal graphs or spatio-temporal processes.

3For the remainder of this paper, THP, SAHP and FNN will be referred to as ’base models’, while THP++,
SAHP++ and FNN++ will be referred to as ’base++’ models.

4

References
[1] Souhaib Ben Taieb. Learning quantile functions for temporal point processes with recurrent

neural splines, 2022. AISTATS.

[2] Marin Biloš, Bertrand Charpentier, and Stephan Günnemann. Uncertainty on asynchronous
time event prediction, 2020. Neurips.

[3] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson,
Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel,
Jared Quincy Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano
Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren
Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto,
Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas
Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling,
Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna, Rohith Kuditipudi,
Ananya Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa
Li, Xuechen Li, Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric
Mitchell, Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman,
Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr,
Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi
Raghunathan, Rob Reich, Hongyu Ren, Frieda Rong, Yusuf Roohani, Camilo Ruiz, Jack
Ryan, Christopher Ré, Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishnan
Srinivasan, Alex Tamkin, Rohan Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang,
William Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga,
Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia
Zheng, Kaitlyn Zhou, and Percy Liang. On the opportunities and risks of foundation models.
ArXiv preprint, 2022.

[4] Tanguy Bosser and Souhaib Ben Taieb. On the predictive accuracy of neural temporal point
process models for continuous-time event data, 2023. TMLR.

[5] Felix J. S. Bragman, Ryutaro Tanno, Sebastien Ourselin, Daniel C. Alexander, and M. Jorge
Cardoso. Stochastic filter groups for multi-task cnns: Learning specialist and generalist
convolution kernels, 2019. Proceedings of the 2019 IEEE/CVF International Conference on
Computer Vision (ICCV).

[6] Jonas Brehmer, Tilmann Gneiting, Marcus Herrmann, Warner Marzocchi, Martin Schlather, and
Kirstin Strokorb. Comparative evaluation of point process forecasts, 2021.

[7] Glenn W. Brier. Verification of forecasts expressed in terms of probability, 1950. Monthly
Weather Review.

[8] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. Proceed-
ings of the 34th Conference on Neural Information Processing Systems, 2020.

[9] David Bruggemann, Menelaos Kanakis, Stamatios Georgoulis, and Luc Van Gool. Automated
search for resource-efficient branched multi-task networks, 2020. Proceedings of the 31st
British Machine Vision Conference (BMVC).

[10] Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks, 2018. ICML.

[11] Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong, Henrik Kretzschmar, Yuning Chai,
and Dragomir Anguelov. Just pick a sign: Optimizing deep multitask models with gradient
sign dropout, 2020. Proceedings of the 34th International Conference on Neural Information
Processing Systems (NeurIPS),.

5

[12] Nick Craswell. Mean reciprocal rank, 2009. Encyclopedia of Database Systems, Springer.

[13] Daryl J. Daley and David Vere-Jones. An introduction to the theory of point processes. volume
ii: General theory and structure. Springer, 2008.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT), 2019.

[15] Victor Dheur and Souhaib Ben Taieb. A large-scale study of probabilistic calibration in neural
network regression, 2023. ICML.

[16] Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and
Le Song. Recurrent marked temporal point processes: Embedding event history to vector, 2016.
SIGKDD.

[17] Joseph Enguehard, Dan Busbridge, Adam Bozson, Claire Woodcock, and Nils Y. Hammerla.
Neural temporal point processes for modelling electronic health records, 2020. ML4H.

[18] Mehrdad Farajtabar, Yichen Wang, Manuel Gomez Rodriguez, Shuang Li, Hongyuan Zha,
and Le Song. Coevolve: A joint point process model for information diffusion and network
co-evolution, 2017. Journal of Machine Learning Research, 18, 1-49.

[19] Christopher Fifty, Ehsan Amid, Zhe Zhao, Tianhe Yu, Rohan Anil, and Chelsea Finn. Efficiently
identifying task groupings for multi-task learning, 2021. Proceedings of the 35th International
Conference on Neural Information Processing Systems (NeurIPS).

[20] Yuan Gao, Haoping Bai, Zequn Jie, Jiayi Ma, Kui Jia, and Wei Liu. Mtl-nas: Task-agnostic
neural architecture search towards general-purpose multi-task learning, 2020. Proceedings of
the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[21] Yuan Gao, Jiayi Ma, Mingbo Zhao, Wei Liu, and Alan L. Yuille. Nddr-cnn: Layerwise feature
fusing in multi-task cnns by neural discriminative dimensionality reduction, 2019. Proceedings
of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[22] Azul Garza, Cristian Challu, and Max Mergenthaler-Canseco. Timegpt-1. ArXiv preprint, 2024.

[23] Tilmann Gneiting, Fadoua Balabdaoui, and Adrian E. Raftery. Probabilistic forecasts, calibration
and sharpness, 2007. Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[24] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks, 2017. ICML.

[25] Michelle Guo, Albert Haque, De-An Huang, Serena Yeung, and Li Fei-Fei. Dynamic task prior-
itization for multitask learning, 2018. Proceedings of the European Conference on Computer
Vision (ECCV).

[26] Pengsheng Guo, Chen-Yu Lee, and Daniel Ulbricht. Learning to branch for multi-task learning,
2020. Proceedings of the 37th International Conference on Machine Learning (ICML).

[27] Ruocheng Guo, Jundong Li, and Huan Liu. Initiator: Noise-contrastive estimation for marked
temporal point process, 2018. IJCAI.

[28] Vinayak Gupta, Srikanta J. Bedathur, Sourangshu Bhattacharya, and A. De. Learning temporal
point processes with intermittent observations, 2021. Proceedings of The 24th International
Conference on Artificial Intelligence and Statistics (AISTATS).

[29] Alan G Hawkes. Point spectra of some mutually exciting point processes, 1971. Journal of the
Royal Statistical Society: Series B, 33(3).

[30] Alan G. Hawkes. Hawkes processes and their applications to finance: a review, 2018. Quantita-
tive Finance, 18(2), 193-198.

[31] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023.

6

[32] Valerie Isham and Mark Westcott. A self-correcting point process., 1979. Stochastic Processes
and Their Applications, 8(3):335–347.

[33] Adrián Javaloy and Isabel Valera. Rotograd: Gradient homogenization in multitask learning,
2022. International Conference on Learning Representations (ICLR).

[34] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics, 2018. Proceedings of the 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition.

[35] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014. ICLR.

[36] Iasonas Kokkinos. Ubernet: Training a ‘universal’ convolutional neural network for low-, mid-,
and high-level vision using diverse datasets and limited memory, 2017. Proceedings of the 2017
IEEE International Conference on Computer Vision and Pattern Recognition (CVPR).

[37] Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. Accurate uncertainties for deep
learning using calibrated regression, 2018. Proceedings of the 35 th International Conference
on Machine Learning (ICML).

[38] Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory
in temporal interaction networks. In Proceedings of the 25th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2019. KDD.

[39] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and comprehension. Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, 2020.

[40] Zichong Li, Yanbo Xu, Simiao Zuo, Haoming Jiang, Chao Zhang, Tuo Zhao, and Hongyuan Zha.
Smurf-thp: Score matching-based uncertainty quantification for transformer hawkes process,
2023. ICML.

[41] Haitao Lin, Cheng Tan, Lirong Wu, Zhangyang Gao, and Stan. Z. Li. An empirical study:
Extensive deep temporal point process, 2021.

[42] Haitao Lin, Lirong Wu, Guojiang Zhao, Pai Liu, and Stan Z. Li. Exploring generative neural
temporal point process, 2022. TMLR.

[43] Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent
for multi-task learning, 2021. Neurips.

[44] Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent
for multi-task learning, 2021. Proceedings of the 35th International Conference on Neural
Information Processing Systems (NeurIPS).

[45] Liyang Liu, Yi Li, Zhanghui Kuang, Jing-Hao Xue, Yimin Chen, Wenming Yang, Q. Liao,
and Wayne Zhang. Towards impartial multi-task learning, 2021. International Conference on
Learning Representations (ICLR).

[46] Shikun Liu, Edward Johns, and Andrew J. Davison. End-to-end multi-task learning with
attention, 2019. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR).

[47] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Philip S. Yu. Learning multiple tasks with
multilinear relationship networks, 2017. Proceedings of the 31st International Conference on
Neural Information Processing Systems (NeurIPS).

[48] Kevis-Kokitsi Maninis, Ilija Radosavovic, and Iasonas Kokkinos. Attentive single-tasking of
multiple tasks, 2019. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR).

[49] Hongyuan Mei and Jason Eisner. The neural hawkes process: A neurally self-modulating
multivariate point process, 2016. Neurips.

7

[50] Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch networks
for multi-task learning, 2016. Proceedings of the 2016 IEEE/CVF International Conference on
Computer Vision and Pattern Recognition (CVPR).

[51] Mahdi Pakdaman Naeini, Gregory F. Cooper, and Milos Hauskrecht. Obtaining well calibrated
probabilities using bayesian binning, 2015. AAAI.

[52] Yosihiko Ogata. Space-time point-process models for earthquake occurrences, 1998. Annals of
the Institute of Statistical Mathematics, 50(2):379–402.

[53] Takahiro Omi, Naonori Ueda, and Kazuyuki Aihara. Fully neural network based model for
general temporal point processes. 2019. Neurips.

[54] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding by generative pre-training. Preprint, 2018.

[55] Jakob Gulddahl Rasmussen. Lecture notes: Temporal point processes and the conditional
intensity function, 2018.

[56] Kashif Rasul, Arjun Ashok, Andrew Robert Williams, Hena Ghonia, Rishika Bhagwatkar, Arian
Khorasani, Mohammad Javad Darvishi Bayazi, George Adamopoulos, Roland Riachi, Nadhir
Hassen, Marin Biloš, Sahil Garg, Anderson Schneider, Nicolas Chapados, Alexandre Drouin,
Valentina Zantedeschi, Yuriy Nevmyvaka, and Irina Rish. Lag-llama: Towards foundation
models for probabilistic time series forecasting. R0-FoMo: Workshop on Robustness of Few-shot
and Zero-shot Learning in Foundation Models at NeurIPS 2023., 2024.

[57] Sebastian Ruder, Joachim Bingel, Isabelle Augenstein, and Anders Sogaard. Latent multi-task
architecture learning, 2019. Proceedings of the AAAI Conference on Artificial Intelligence.

[58] Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization, 2018.
Proceedings of the 32nd International Conference on Neural Information Processing Systems
(NeurIPS).

[59] Karishma Sharma, Yizhou Zhang, Emilio Ferrara, and Yan Liu. Identifying coordinated accounts
on social media through hidden influence and group behaviours, 2021. Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining.

[60] Oleksandr Shchur, Marin Biloš, and Stephan Günnemann. Intensity-free learning of temporal
point processes, 2020. ICLR.

[61] Oleksandr Shchur, Ali Caner Türkmen, Tim Januschowski, and Stephan Günnemann. Neural
temporal point processes: A review, 2021. Proceedings of 13th Joint Conference on Artificial
Intelligence.

[62] Jiayi Shen, Xiantong Zhen, Marcel Worring, and Ling Shao. Variational multi-task learning
with gumbel-softmax priors, 2021. Proceedings of the 35th International Conference on Neural
Information Processing Systems (NeurIPS).

[63] Guangyuan Shi, Qimai Li, Wenlong Zhang, Jiaxin Chen, and Xiao-Ming Wu. Recon: Reducing
conflicting gradients from the root for multi-task learning, 2023. ICLR.

[64] Ayan Sinha, Zhao Chen, Vijay Badrinarayanan, and Andrew Rabinovich. Gradient adversarial
training of neural networks, 2018.

[65] Trevor Standley, Amir R. Zamir, Dawn Chen, Leonidas Guibas, Jitendra Malik, and Silvio
Savarese. Which tasks should be learned together in multi-task learning?, 2020. ICML.

[66] Trevor Standley, Amir R. Zamir, Dawn Chen, Leonidas Guibas, Jitendra Malik, and Silvio
Savarese. Which tasks should be learned together in multi-task learning?, 2020. Proceedings of
the 37th International Conference on Machine Learning (ICML).

[67] Sebastian Thrun and Joseph O’Sullivan. Discovering structure in multiple learning tasks: The
tc algorithm, 1996. Proceedings of the 13th International Conference on Machine Learning
(ICML).

8

[68] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Representation
learning over dynamic graphs, 2019. International Conference on Learning Representations
(ICLR).

[69] Ali Caner Türkmen, Bernie Wang, and Alex Smola. Fastpoint: Scalable deep point processes,
2019. Proceedings of European Conference on Machine Learning and Knowledge Discovery in
Databases (ECML PKDD).

[70] Govind Waghmare, Ankur Debnath, Siddhartha Asthana, and Aakarsh Malhotra. Modeling
inter-dependence between time and mark in multivariate temporal point processes, 2022. CIKM.

[71] Zirui Wang, Yulia Tsvetkov, Orhan Firat, and Yuan Cao. Gradient vaccine: Investigating
and improving multi-task optimization in massively multilingual models, 2020. International
Conference on Learning Representations (ICLR).

[72] Shuai Xiao, Junchi Yan, Stephen M. Chu, Xiaokang Yang, and Hongyuan Zha. Modeling the
intensity function of point process via recurrent neural networks, 2017. Proceedings of the 31st
AAAI Conference on Artificial Intelligence.

[73] Chenghao Yang, Hongyuan Mei, and Jason Eisner. Transformer embeddings of irregularly
spaced events and their participants, 2022.

[74] Chin-Chia Michael Yeh, Xin Dai, Huiyuan Chen, Yan Zheng, Yujie Fan, Audrey Der, Vivian Lai,
Zhongfang Zhuang, Junpeng Wang, Liang Wang, and Wei Zhang. Toward a foundation model
for time series data. Proceedings of the 32nd ACM International Conference on Information
and Knowledge Management (CIKM), 2023.

[75] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea
Finn. Gradient surgery for multi-task learning, 2020. Proceedings of the 34th International
Conference on Neural Information Processing Systems (NeurIPS).

[76] Amir Zamir, Alexander Sax, William Shen, Leonidas Guibas, Jitendra Malik, and Silvio
Savarese. Taskonomy: Disentangling task transfer learning, 2018. Proceedings of the 2018
IEEE/CVF International Conference on Computer Vision and Pattern Recognition (CVPR).

[77] Qiang Zhang, Aldo Lipani, Omer Kirnap, and Emine Yilmaz. Self-attentive hawkes processes,
2020. ICML.

[78] Shixiang Zhu, Henry Shaowu Yuchi, and Yao Xie. Adversarial anomaly detection for marked
spatio-temporal streaming data, 2020. Proceedings of IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP).

[79] Shixiang Zhu, Minghe Zhang, Ruyi Ding, and Yao Xie. Deep fourier kernel for self-attentive
point processes, 2021. Proceedings of The 24th International Conference on Artificial Intelli-
gence and Statistics (AISTATS).

[80] Simiao Zuo, Haoming Jiang, Zichong Li, Tuo Zhao, and Hongyuan Zha. Transformer hawkes
process, 2020. ICML.

9

A Appendix

A.1 Related Work

Neural MTPP models. To address the limitations of simple parametric MTPP models [29, 32], prior
studies focused on designing more flexible approaches by leveraging recent advances in deep learning.
Based on the parametrization chosen, these neural MTPP models can be generally classified along
three main axis: density-based, intensity-based, and compensator-based approaches. Intensity-based
approaches propose to model the trajectories of future arrival-times and marks by parametrizing
the marked intensities λ∗

k(t). In this line of work, past event occurrences are usually encoded
into a history representation using RNNs [16, 49, 27, 69, 2, 78] or self-attention (SA) mechanisms
[80, 77, 79, 73, 40]. However, parametrizations of the marked intensity functions often come at the
cost of being unable to evaluate the log-likelihood in closed-form, requiring Monte Carlo integration.
This consideration motivated the design of compensator-based approaches that parametrize Λ∗

k(t)
using fully-connected neural networks [53], or SA mechanisms [17], from which λ∗

k(t) can be
retrieved through differentiation. Finally, density-based approaches aim at directly modeling the joint
density of (inter-)arrival times and marks f∗(τ, k). Among these, different family of distributions
have been considered to model the distribution of inter-arrival times [72, 41]. Notably [60] relies on
a mixture of log-normal distributions to estimate f∗(τ), a model that then appeared in subsequent
works [59, 28]. However, the original work of [60] assumes conditional independence of inter-arrival
times and marks given the history, which is alleviated in [70]. Nonetheless, a common thread of
these parametrizations is that they explicitly enforce parameter sharing between the time and mark
prediction tasks. As we demonstrate, this often leads to the emergence of conflicting gradient during
training, hindering model’s performance. For an overview of neural TPP models, we refer the reader
to the works of [61], [42] and [4].

Conflicting gradients in multi-task learning. Diverse approaches have been investigated in the
literature to improve interactions between concurrent tasks in multi-task learning problems, thereby
boosting performance for each task individually. In this context, a prominent line of work focuses
on balancing the different tasks at hand through direct manipulation of their gradients. These
manipulations either aim at alleviating the differences in gradient magnitudes between tasks [10,
58, 45], or the emergence of conflicts [64, 48, 75, 11, 71, 44, 33]. Alternative approaches to task
balancing have been explored based on different criteria, such as task prioritization [25], uncertainty
[34], or learning pace [46]. Another line of work refers to task clustering methods, which aim at
identifying the tasks that should be learned jointly [67, 76, 66, 62, 19]. At the network level, multi-
task learning methods can be partitioned into two main groups. Hard parameter sharing methods
denotes methods that share common parameters between multiple tasks [36, 47, 5]. Conversely, soft
sharing methods regroups methods where each task possess its own set of parameters, although a
sharing mechanism enables communication across tasks [50, 57, 21, 20]. Our methodology relates
more to branched architecture search approaches [26, 9, 63], where the aim is set on dynamically
identifying which layers should or should not be shared between tasks based on a chosen criterion,
e.g. the proportion of conflicting gradients.

A.2 Training details

Training details. For all models, we minimize the average NLL in (1) on the training sequences
using mini-batch gradient descent with the Adam optimizer [35] and a learning rate of 10−3. For the
base models, an early-stopping protocol interrupts training if the model fails to show improvement in
the total validation loss (i.e., LT + LT) for 50 consecutive epochs. Conversely, in the base++ setting,
two distinct early-stopping protocols are implemented for the LT and LM terms, respectively. If one
of these terms does not show improvement for 50 consecutive epochs, we freeze the parameters of
the associated functions (e.g. θλ for λ∗(t;θλ)) and allow the remaining term to continue training.
Training is ultimately interrupted if both early-stopping criteria are met. Figure 2 presents a graphical
representation of the base and base++ setups.

In all setups, the optimization process can last for a maximum of 500 epochs, and we revert the model
parameters to their state with the lowest validation loss after training. Finally, we evaluate the model
by computing test metrics on the test sequences of each split. Our framework is implemented in a

10

unified codebase using PyTorch4. All models were trained on a machine equipped with an AMD
Ryzen Threadripper PRO 3975WX CPU running at 4.1 GHz and a Nvidia RTX A4000 GPU.

Encoding past events. To obtain the encoding ei ∈ Rde of an event ei = (ti, ki) in Ht, we follow
the work of [17] by first mapping ti to a vector of sinusoidal functions:

eti =

dt/2−1⊕
j=0

sin (αjti)⊕ cos (αjti) ∈ Rdt , (8)

where αj ∝ 1000
−2j
dt and ⊕ is the concatenation operator. Then, a mark embedding eki ∈ Rdk for ki

is generated as eki = Ekki, where Ek ∈ Rdk×K is a learnable embedding matrix, and ki ∈ {0, 1}K
is the one-hot encoding of ki. Finally, we obtain ei through concatenation, i.e. ei = [eti||eki].

(a) Base (b) Base++

Figure 2: Graphical representation of the base and "++" setups.

Hyperparameters. To ensure that changes in performance are solely attributed to the features
enabled by our framework, we control the number of parameters such the capacity of baselines
remains equivalent between the base and base++ settings. Table 2 provides the total number of
trainable parameters for each setup when trained on the LastFM dataset, as well as their distribution
across the encoder and decoder heads. For all baselines and setups, we use a single encoder layer,
and the dimension de of the event encodings is set to 8. Additionally, we chose a value of M = 32
for the number of mixture components. It is worth noting that [60] found LogNormMix to be robust
to the choice of M . Finally, we set the number of projections for λ∗(t;θλ) to C = 32.

Table 2: Number of parameters for each baseline when trained on the LastFM dataset. The distribution
of parameters between the encoder and decoder heads is reported in parenthesis.

THP SAHP FNN

Base 14720 (0.66/0.34) 15588 (0.68/0.32) 15939 (0.65/0.35)
++ 14602 (0.63/0.37) 15514 (0.67/0.33) 14961 (0.67/0.33)

A.3 Datasets

We use 5 real-world event sequence datasets for our experiments:

• LastFM [38]: Each sequence corresponds to a user listening to music records over time.
The artist of the song is the mark.

• MOOC [38]: Records of students’ activities on an online course system. Each sequence
corresponds to a student, and the mark is the type of activity performed.

• Github [68]: Actions of software developers on the open-source platform Github. Each
sequence corresponds a developer, and the mark is the action performed (e.g. fork, pull
request,...).

• Reddit [38]: Sequences of posts to sub-reddits that users make on the social website Reddit.
Each sequence is a user, and the sub-reddits to which the user posts is considered as the
mark.

• Stack Overflow [16]. Sequences of badges that users receive over time on the website Stack
Overflow. A sequence is a specific user, and the type of badge received is the mark.

4https://pytorch.org/

11

We employ the pre-processed version of these datasets as described in [4] which
can be openly accessed at this url: https://www.dropbox.com/sh/maq7nju7v5020kp/
AAAFBvzxeNqySRsAm-zgU7s3a/processed/data?dl=0&subfolder_nav_tracking=1 (MIT
License). Specifically, each dataset is filtered to contain the 50 most represented marks, and all
arrival-times are rescaled in the interval [0,10] to avoid numerical instabilities. To save computational
time, the number of sequences in Reddit is reduced by 50%. Each dataset is randomly partitioned
into 5 train/validation/test splits (60%/20%/20%). The summary statistics for each (filtered) dataset is
reported in Table 3.

Table 3: Datasets statistics

#Seq. #Events Mean Length Max Length Min Length #Marks

LastFM 856 193441 226.0 6396 2 50
MOOC 7047 351160 49.8 416 2 50
Github 173 20656 119.4 4698 3 8
Reddit 4278 238734 55.8 941 2 50

Stack Overflow 7959 569688 71.6 735 40 22

A.4 Computational Time

We report in Table (4) the average execution time (in seconds) for a single forward and backward pass
on all training sequences of all datasets. The results are averaged over 50 epochs. We notice that the
computation of two separate embeddings ht and hm for THP++, SAHP++ and FNN++ inevitably
leads to an increase in execution time, which appears more pronounced for larger datasets such as
Reddit and Stack Overflow. However, the increased computational complexity is generally offset by
improved model performance, as detailed in Sections 3 and A.7.

Table 4: Average execution time (in seconds) for a single forward and backward pass on all training
sequences of all datasets. Results are averaged over 50 epochs.

FNN THP SAHP
Base ++ Base ++ Base ++

LastFM 4.29 4.74 2.96 3.62 4.82 4.48

MOOC 6.36 8.07 5.19 5.76 8.08 7.74

Github 0.76 0.8 0.38 0.58 0.51 0.69

Reddit 19.13 20.32 9.75 13.5 13.63 15.9

Stack O. 32.83 33.95 16.32 23.1 21.11 26.45

A.5 Original model formulations

As basis for comparison, we provide in this section the original formulations of the neural MTPP
models considered in this study.

SAHP. The marked intensity functions are given by

λ∗
k(t;θ) = σS,k (µk − (ηk − µk)exp(−γk(t− ti−1)))k , (9)

where µk = σG (Wµh), ηk = σG (Wηh), and γk = σS,k (Wγhi) with σG and σS,k the GeLU
[31] and mark-wise softplus activation functions, respectively, and Wµ,Wη,Wγ ∈ RK×dh .

THP. The marked intensity functions are given by

λ∗
k(t;θ) = σS,k

(
wt

t− ti−1

ti−1
+Whh+ b

)
k

, (10)

where wt ∈ RK
+ , Wk ∈ RK×dh , and b ∈ RK .

FNN. The marked compensators are defined as

Λ∗
k(t;θ) = G∗

k(t;θ)−G∗
k(ti−1;θ), (11)

12

https://www.dropbox.com/sh/maq7nju7v5020kp/AAAFBvzxeNqySRsAm-zgU7s3a/processed/data?dl=0&subfolder_nav_tracking=1
https://www.dropbox.com/sh/maq7nju7v5020kp/AAAFBvzxeNqySRsAm-zgU7s3a/processed/data?dl=0&subfolder_nav_tracking=1

G∗
k(t;θ) = σS,k

(
W2(σGS,k

(
wt(t− ti) +Whh+ b1

)
+ b2

)
k
, (12)

where W2 ∈ RK×d1
+ , wt, b1 ∈ Rd1 , Wh ∈ Rd1×dh , b2 ∈ RK , and σGS,k is the mark-wise

Gumbel-softplus activation function [17].

A.6 Alternative Scoring Rules

The NLL in (1) has been largely adopted as the default scoring rule for learning MTPP mod-
els [61]. However, our framework can be extended even further by using alternative scoring
rules other than NLL for assessing the mark and time prediction tasks. Let Sf , Sm and Sw be
(strictly) consistent scoring rules for f∗(t;θλ) = λ∗(t;θλ)exp

(
−
∑K

k=1 Λ
∗
k(t;θλ)

)
, p∗(k|τ ;θp)

and 1− F ∗(T ;θλ) =
∫ T

tn

∑K
k=1 λ

∗
k(s;θλ)ds, respectively. Given a sequence S of n events (i.e.

L = 1), the scoring rule

L(θ;S) =
n∑

i=1

[
Sf (f∗(ti;θλ))

]
+ Sw (1− F ∗(T ;θλ))︸ ︷︷ ︸

LT (θλ,Strain)

+

n∑
i=1

Sp(p∗(ki|ti;θp))︸ ︷︷ ︸
LM (θp,Strain)

, (13)

is (strictly) consistent for the conditional joint density f∗(t, k;θλ,θp) restricted to the interval [0, T]
[6]. Using the LogScore for Sf , Sm and Sw in (13) reduces to the NLL in (1). One can also use
other choices tailored to the specific task. For instance, one can choose to use the continuous ranked
probability score (CRPS) [23] for Sf to evaluate the predictive distribution of inter-arrival times
[1]. Similarly, the Brier score [7] can be used for Sp to evaluate the predictive distribution of marks.
Contrary to the local property of the LogScore, both the CRPS and the Brier score are sensitive to
distance, in the sense that they reward predictive distributions that assign probability mass close to
the observed realization. Nonetheless, the choice between local and non-local proper scoring rules
has been generally subjective in the literature. While exploring alternative scoring rules to train
neural MTPP models is an exciting research direction, we leave it as future work and train the models
exclusively on the NLL in (1).

A.7 Additional Results

Distributions of conflicting gradients during training of the base models. Figures 5 and 6 show
the distribution of cos ϕTM during training for THP, SAHP, and FNN at the encoder (ENC) and
decoder (DEC) heads on all datasets . The distribution is obtained as follows: each model is trained
to minimize the NLL defined in (1) using the Adam optimizer [35] with α = 10−3. Consider that
θ = {θp}Pp=1, where θp denote the learnable parameters of the pth layer of the model, e.g. the
weights of a feed-forward network. Given a batch of training sequences, we first evaluate LT (θ)
and LM (θ) and compute the gradients gp

T = ∇θpLT (θ) and gp
M = ∇θpLM (θ) for all θp ∈ θ.

We finally evaluate the values of cos ϕTM according to definition (1) for all θp, and pool them
over all training iterations. As discussed in the main text, THP, SAHP and FNN frequently exhibit
(severe) conflicting gradients during training at both encoder and decoder heads, which impairs their
performance on the time and mark prediction tasks.

Additional evaluation metrics. Besides the LT metric reported in the main text to evaluate the
time prediction task, we quantify the (unconditional) probabilistic calibration of the fitted models by
computing the Probabilistic Calibration Error (PCE) [15]. Similarly, for the mark prediction task,
we also quantify the probabilistic calibration of the mark predictive distribution by computing the
Expected Calibration Error (ECE) [51]. Moreover, we assess the probabilistic calibration of both
predictive distributions of arrival times and marks through reliability diagrams [24, 37]. Finally, by
predicting the next event’s mark as

k̃ = argmax
k∈K

p∗(k|t;θp), (14)

we can assess the quality of the point predictions by means of various classification metrics. Specif-
ically, we compute the accuracy and the Mean Reciprocal Rank (MRR) [12] of mark predictions.
Lower PCE and ECE is better, while higher accuracy and MRR is better.

13

Tables 5 and 6 give the PCE, ECE, MRR, and accuracy results for THP, SAHP and FNN in the base
and base++ configurations across all datasets. The metrics are averaged over 3 splits, and the standard
error is given in parenthesis. We observe general improvement with respect to the time and mark
prediction tasks when moving from the base to the base++ models. These results are consistent with
our previous conclusions, i.e. by preventing conflicting gradients during training, our framework
leads to improved predictive accuracy and more reliable uncertainty estimates.

Table 5: PCE and ECE results of the different setups across all datasets. The values are computed
over 3 splits, and the standard error is reported in parenthesis. Best results are highlighted in bold.

PCE
LastFM MOOC Github Reddit Stack O.

THP 0.28 (0.0) 0.37 (0.0) 0.21 (0.01) 0.12 (0.0) 0.01 (0.0)
THP++ 0.28 (0.01) 0.37 (0.0) 0.22 (0.02) 0.05 (0.0) 0.01 (0.0)

SAHP 0.07 (0.01) 0.12 (0.0) 0.07 (0.01) 0.09 (0.01) 0.01 (0.0)
SAHP++ 0.04 (0.01) 0.03 (0.0) 0.04 (0.01) 0.01 (0.0) 0.03 (0.0)

FNN 0.04 (0.0) 0.09 (0.0) 0.03 (0.01) 0.08 (0.0) 0.05 (0.0)
FNN++ 0.03 (0.0) 0.01 (0.0) 0.02 (0.0) 0.01 (0.0) 0.0 (0.0)

ECE
LastFM MOOC Github Reddit Stack O.

THP 0.29 (0.05) 0.07 (0.0) 0.1 (0.02) 0.02 (0.0) 0.12 (0.0)
THP++ 0.03 (0.0) 0.02 (0.0) 0.09 (0.02) 0.03 (0.0) 0.02 (0.0)

SAHP 0.36 (0.01) 0.14 (0.0) 0.09 (0.02) 0.07 (0.01) 0.03 (0.0)
SAHP++ 0.03 (0.0) 0.03 (0.01) 0.11 (0.04) 0.02 (0.0) 0.02 (0.0)

FNN 0.26 (0.07) 0.04 (0.0) 0.09 (0.02) 0.03 (0.01) 0.03 (0.0)
FNN++ 0.03 (0.01) 0.02 (0.0) 0.08 (0.02) 0.02 (0.0) 0.03 (0.0)

Table 6: Accuracy and MRR results of the different setups across all datasets. The percentage of
the majority mark is shown in parentheses below each dataset, reflecting its proportion of the total
number of marked events. The values are computed over 3 splits, and the standard error is reported in
parenthesis. Best results are highlighted in bold.

Accuracy
LastFM MOOC Github Reddit Stack O.
(3.9%) (5.5%) (51.6%) (17.7%) (43.3%)

THP 0.19 (0.0) 0.4 (0.0) 0.59 (0.04) 0.82 (0.0) 0.47 (0.0)
THP++ 0.26 (0.01) 0.56 (0.0) 0.67 (0.01) 0.82 (0.0) 0.49 (0.0)

SAHP 0.05 (0.0) 0.36 (0.01) 0.61 (0.02) 0.71 (0.02) 0.48 (0.0)
SAHP++ 0.25 (0.0) 0.56 (0.0) 0.68 (0.01) 0.82 (0.0) 0.48 (0.0)

FNN 0.14 (0.01) 0.51 (0.0) 0.67 (0.01) 0.81 (0.0) 0.48 (0.0)
FNN++ 0.25 (0.01) 0.55 (0.0) 0.68 (0.01) 0.82 (0.0) 0.48 (0.0)

MRR
LastFM MOOC Github Reddit Stack O.
(3.9%) (5.5%) (51.6%) (17.7%) (43.3%)

THP 0.33 (0.0) 0.6 (0.0) 0.74 (0.02) 0.87 (0.0) 0.67 (0.0)
THP++ 0.39 (0.01) 0.7 (0.0) 0.79 (0.01) 0.87 (0.0) 0.67 (0.0)

SAHP 0.15 (0.0) 0.5 (0.01) 0.75 (0.01) 0.77 (0.02) 0.67 (0.0)
SAHP++ 0.39 (0.0) 0.7 (0.0) 0.79 (0.01) 0.87 (0.0) 0.67 (0.0)

FNN 0.28 (0.01) 0.67 (0.0) 0.79 (0.01) 0.86 (0.0) 0.66 (0.0)
FNN++ 0.39 (0.01) 0.7 (0.0) 0.8 (0.01) 0.87 (0.0) 0.67 (0.0)

Reliability diagrams. Figures 7 and 8 present the reliability diagrams for the predictive distributions
of arrival-times and marks for the base++ models on all datasets. Regarding p∗(k|t;θp), the diagrams
show that the base++ models are in general better calibrated than their base counterparts, as evidenced
by the bin accuracies aligning more closely with the diagonal. This improvement, which aligns with
the ECE results of Table 5, indicates that p∗(k|t;θp) obtained in the base++ setting more faithfully
reflects the true underlying uncertainty of the model. Additionally, we note that improvements with
respect to the probabilistic calibration of the predictive distribution of arrival times are in general
less prevalent. This observation is in accordance to the PCE results of Table 5 and suggests that
conflicting gradients during training predominantly affect the mark prediction task. Nonetheless, we
observe substantial time calibration improvements for SAHP++ and FNN++ on MOOC and Reddit
compared to their base parametrizations.

Conflicting gradients remain harmful as capacity increases. Figure 3 shows the evolution of the
proportion of conflicting gradients CG for the base THP, SAHP and FNN on LastFM, along with
the evolution of their test LT and LM . For each capacity (25K, 50K, 75K and 100K parameters),
we maintain the distribution of parameters between the encoder and decoder heads constant at
0.67/0.33. We note that increasing a model’s capacity has a limited impact on CG as well as on model
performance with respect to both LT and LM .

Scaling the loss does not efficiently address conflicts. To better balance tasks during training, a
natural approach would consist in scaling the contribution of TT in (1) to reduce its impact on the
overall loss, i.e.

L(θ;Strain) =
1

s
LT (θ;Strain) + L(θ;Strain), (15)

where s ≥ 1 is a scaling coefficient. To assess the effectiveness of this method, we train the base THP,
SAHP and FNN models on the objective in (15) following the experimental setup detailed in Section
A.2. For these models, we report in Figure (4) the evolution of the training CG along their unscaled

14

test LT and LM . We observe that the occurrence of conflicting gradients is marginally impacted by
larger values of s.

However, as scaling increases, optimization begins to favor TM , and improvements on LM can
be observed. Nevertheless, this comes at the cost of significant degradation with respect to LT ,
offsetting the gains on TM . Although a specific value of s could lead to a trade-off between tasks,
models trained in our base++ setting generally show improved performance with respect to both tasks
simultaneously.

25K 50K 75K 100K

0.560

0.565

0.570

TH
P

CG

25K 50K 75K 100K

1000

950

900

T

Base

25K 50K 75K 100K
680

700

720

740

M

25K 50K 75K 100K

0.560

0.565

0.570

SA
HP

25K 50K 75K 100K

1300

1250
T

25K 50K 75K 100K

800

825

850

875

M

25K 50K 75K 100K

0.480

0.485

0.490

FN
N

25K 50K 75K 100K
Number of trainable parameters

1300

1250

1200

T

25K 50K 75K 100K
720

740

760

780

M

Figure 3: Evolution of CG, LT and LM with increasing model capacity for the base THP, SAHP and
FNN models during training on LastFM.

1 2 5 10 20 50 100

0.50

0.55

0.60

TH
P

CG

1 2 5 10 20 50 1001000

900

800

700

T

1 2 5 10 20 50 100600

650

700

750

800
M

1 2 5 10 20 50 100
0.50

0.55

0.60

0.65

SA
HP

1 2 5 10 20 50 100

1200

1000

800

T

1 2 5 10 20 50 100

700

750

800

850

M

1 2 5 10 20 50 100

0.50

0.52

0.54

FN
N

1 2 5 10 20 50 100
Scaling coefficient

1350

1300

1250

1200

T

1 2 5 10 20 50 100
700

750

800

850

M

Figure 4: Evolution of CG, LT and LM with increasing value of scaling s in (15) for the base THP,
SAHP and FNN models during training on LastFM.

15

1.0 0.5 0.0 0.5 1.0
cos TM

0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
tio

n

CG: 0.56

1.0 0.5 0.0 0.5 1.0
cos TM

CG: 0.52

1.0 0.5 0.0 0.5 1.0
cos TM

CG: 0.61

1.0 0.5 0.0 0.5 1.0
cos TM

CG: 0.42THP-ENC THP-DEC SAHP-ENC SAHP-DEC
La

st
FM

1.0 0.5 0.0 0.5 1.0
cos TM

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Pr
op

or
tio

n

CG: 0.56

1.0 0.5 0.0 0.5 1.0
cos TM

CG: 0.50FNN-ENC FNN-DEC
La

st
FM

1.0 0.5 0.0 0.5 1.0
cos TM

0.00

0.05

0.10

0.15

0.20

0.25

Pr
op

or
tio

n

CG: 0.72

1.0 0.5 0.0 0.5
cos TM

CG: 0.89

1.0 0.5 0.0 0.5 1.0
cos TM

CG: 0.94

1.0 0.5 0.0 0.5 1.0
cos TM

CG: 0.70THP-ENC THP-DEC SAHP-ENC SAHP-DEC

M
OO

C

1.0 0.5 0.0 0.5 1.0
cos TM

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pr
op

or
tio

n

CG: 0.49

1.0 0.5 0.0 0.5 1.0
cos TM

CG: 0.49FNN-ENC FNN-DEC

M
OO

C

1.0 0.5 0.0 0.5 1.0
cos TM

0.00

0.05

0.10

0.15

0.20

0.25

Pr
op

or
tio

n

CG: 0.57

1.0 0.5 0.0 0.5 1.0
cos TM

CG: 0.64

1.0 0.5 0.0 0.5 1.0
cos TM

CG: 0.65

1.0 0.5 0.0 0.5 1.0
cos TM

CG: 0.71THP-ENC THP-DEC SAHP-ENC SAHP-DEC

Gi
th

ub

1.0 0.5 0.0 0.5 1.0
cos TM

0.0

0.1

0.2

0.3

0.4

Pr
op

or
tio

n

CG: 0.74

1.0 0.5 0.0 0.5 1.0
cos TM

CG: 0.61FNN-ENC FNN-DEC

Gi
th

ub

Figure 5: Distribution of cos ϕTM during training of THP, SAHP, and FNN on LastFM, MOOC and
Github at the encoder (ENC) and decoder (DEC) heads. CG refers to the proportion of cos ϕTM < 0
(red bars) observed during training. The distribution is obtained by pooling the values of ϕTM over 3
training runs.

16

1.0 0.5 0.0 0.5 1.0
cos TM

0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
tio

n

CG: 0.63

1.0 0.5 0.0 0.5 1.0
cos TM

CG: 0.50

1.0 0.5 0.0 0.5 1.0
cos TM

CG: 0.97

1.0 0.5 0.0 0.5 1.0
cos TM

CG: 0.75THP-ENC THP-DEC SAHP-ENC SAHP-DEC

Re
dd

it

1.0 0.5 0.0 0.5 1.0
cos TM

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Pr
op

or
tio

n

CG: 0.66

1.0 0.5 0.0 0.5 1.0
cos TM

CG: 0.61FNN-ENC FNN-DEC

Re
dd

it

1.0 0.5 0.0 0.5 1.0
cos TM

0.00

0.05

0.10

0.15

0.20

0.25

Pr
op

or
tio

n

CG: 0.41

0.5 0.0 0.5 1.0
cos TM

CG: 0.46

1.0 0.5 0.0 0.5 1.0
cos TM

CG: 0.67

1.0 0.5 0.0 0.5 1.0
cos TM

CG: 0.60THP-ENC THP-DEC SAHP-ENC SAHP-DEC

St
ac

k
Ov

er
flo

w

1.0 0.5 0.0 0.5 1.0
cos TM

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Pr
op

or
tio

n

CG: 0.61

1.0 0.5 0.0 0.5 1.0
cos TM

CG: 0.58FNN-ENC FNN-DEC

St
ac

k
Ov

er
flo

w

Figure 6: Distribution of cos ϕTM during training of THP, SAHP, and FNN on Reddit and Stack
Overflow at the encoder (ENC) and decoder (DEC) heads. CG refers to the proportion of cos ϕTM <
0 (red bars) observed during training. The distribution is obtained by pooling the values of ϕTM over
3 training runs.

17

(a) LastFM

0.2 0.4 0.6 0.8 1.0

0.0
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

THP

0.2 0.4 0.6 0.8 1.0
 Confidence

SAHP

0.2 0.4 0.6 0.8 1.0

FNN

0.0 0.5 1.0

0.0
0.2
0.4
0.6
0.8
1.0

Fr
eq

ue
nc

y

THP

0.0 0.5 1.0
 Predicted Probability

SAHP

0.0 0.5 1.0

FNN

0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.5

0.8

1.0

Ac
cu

ra
cy

THP++

0.2 0.4 0.6 0.8 1.0
 Confidence

SAHP++

0.2 0.4 0.6 0.8 1.0

FNN++

0.0 0.5 1.0

0.0
0.2
0.4
0.6
0.8
1.0

Fr
eq

ue
nc

y

THP++

0.0 0.5 1.0
 Predicted Probability

SAHP++

0.0 0.5 1.0

FNN++

(b) MOOC

0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.5

0.8

1.0

Ac
cu

ra
cy

THP

0.2 0.4 0.6 0.8 1.0
 Confidence

SAHP

0.2 0.4 0.6 0.8 1.0

FNN

0.0 0.5 1.0

0.0
0.2
0.4
0.6
0.8
1.0

Fr
eq

ue
nc

y

THP

0.0 0.5 1.0
 Predicted Probability

SAHP

0.0 0.5 1.0

FNN

0.2 0.4 0.6 0.8 1.0

0.0
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

THP++

0.2 0.4 0.6 0.8 1.0
 Confidence

SAHP++

0.2 0.4 0.6 0.8 1.0

FNN++

0.0 0.5 1.0

0.0
0.2
0.4
0.6
0.8
1.0

Fr
eq

ue
nc

y

THP++

0.0 0.5 1.0
 Predicted Probability

SAHP++

0.0 0.5 1.0

FNN++

(c) Github

0.2 0.4 0.6 0.8 1.0

0.0
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

THP

0.2 0.4 0.6 0.8 1.0
 Confidence

SAHP

0.2 0.4 0.6 0.8 1.0

FNN

0.0 0.5 1.0

0.0
0.2
0.4
0.6
0.8
1.0

Fr
eq

ue
nc

y THP

0.0 0.5 1.0
 Predicted Probability

SAHP

0.0 0.5 1.0

FNN

0.2 0.4 0.6 0.8 1.0

0.0
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

THP++

0.2 0.4 0.6 0.8 1.0
 Confidence

SAHP++

0.2 0.4 0.6 0.8 1.0

FNN++

0.0 0.5 1.0

0.0
0.2
0.4
0.6
0.8
1.0

Fr
eq

ue
nc

y

THP++

0.0 0.5 1.0
 Predicted Probability

SAHP++

0.0 0.5 1.0

FNN++

Figure 7: Reliability diagrams of the predictive p∗(k|t;θp) (left) and λ∗(t,θλ)/Λ
∗(t;θλ) (right) on

LastFM, MOOC, and Github. Frequency and Accuracy aligning with the black diagonal corresponds
to perfect probabilistic and top label calibration, respectively. The results are averaged over 3 splits,
and the error bars correspond to the standard error.

18

(a) Reddit

0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.5

0.8

1.0

Ac
cu

ra
cy

THP

0.2 0.4 0.6 0.8 1.0
 Confidence

SAHP

0.2 0.4 0.6 0.8 1.0

FNN

0.0 0.5 1.0

0.0
0.2
0.4
0.6
0.8
1.0

Fr
eq

ue
nc

y THP

0.0 0.5 1.0
 Predicted Probability

SAHP

0.0 0.5 1.0

FNN

0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.5

0.8

1.0

Ac
cu

ra
cy

THP++

0.2 0.4 0.6 0.8 1.0
 Confidence

SAHP++

0.2 0.4 0.6 0.8 1.0

FNN++

0.0 0.5 1.0

0.0
0.2
0.4
0.6
0.8
1.0

Fr
eq

ue
nc

y THP++

0.0 0.5 1.0
 Predicted Probability

SAHP++

0.0 0.5 1.0

FNN++

(b) Stack Overflow

0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.5

0.8

1.0

Ac
cu

ra
cy

THP

0.2 0.4 0.6 0.8 1.0
 Confidence

SAHP

0.2 0.4 0.6 0.8 1.0

FNN

0.0 0.5 1.0

0.0
0.2
0.4
0.6
0.8
1.0

Fr
eq

ue
nc

y THP

0.0 0.5 1.0
 Predicted Probability

SAHP

0.0 0.5 1.0

FNN

0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.5

0.8

1.0

Ac
cu

ra
cy

THP++

0.2 0.4 0.6 0.8 1.0
 Confidence

SAHP++

0.2 0.4 0.6 0.8 1.0

FNN++

0.0 0.5 1.0

0.0
0.2
0.4
0.6
0.8
1.0

Fr
eq

ue
nc

y THP++

0.0 0.5 1.0
 Predicted Probability

SAHP++

0.0 0.5 1.0

FNN++

Figure 8: Reliability diagrams of the predictive p∗(k|t;θp) (left) and λ∗(t,θλ)/Λ
∗(t;θλ) (right) on

Reddit and Stack Overflow. Frequency and Accuracy aligning with the black diagonal corresponds to
perfect probabilistic and top label calibration, respectively. The results are averaged over 3 splits, and
the error bars correspond to the standard error.

19

	Introduction
	A Framework to Prevent Conflicting Gradients in Neural MTPP Models
	Disjoint Parametrizations of Neural MTPP models

	Experiments
	Conclusion, Limitations, and Future Work
	Appendix
	Related Work
	Training details
	Datasets
	Computational Time
	Original model formulations
	Alternative Scoring Rules
	Additional Results

