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Abstract

Gene expression prediction through DNA se-
quences and multimodal epigenomic signals inte-
gration presents significant challenges. Previous
methods often focus on using epigenomic signals
to locate distal enhancers and incorporate these en-
hancers into model development through long se-
quence modeling. Our experiments reveal that cur-
rent long sequence modeling actually decreases
performance, while proximal signals near target
genes prove more essential. Furthermore, we find
that different signals contribute varying degrees
of performance gain. Simple use of all epige-
nomic signals may lead models to depend exces-
sively on widespread background signals. These
background signals act as confounders, causing
the model to develop spurious dependencies. To
overcome these issues, we propose InFER, which
employs causal intervention through backdoor
adjustment to eliminate model dependencies on
potential confounding background epigenomic
regulation. Our experimental results show that
proper modeling of epigenomic regulation with
short sequences alone can achieve state-of-the-art
performance in gene expression prediction.

1. Introduction

Understanding and predicting gene expression is fundamen-
tal to deciphering the complex regulatory mechanisms gov-
erning cellular functions (Pratapa et al., 2020). Accurate
gene expression prediction enables breakthroughs across
biomedicine (Mamoshina et al., 2016), from unraveling dis-
ease pathogenesis (Cookson et al., 2009; Emilsson et al.,
2008), to enabling personalized therapeutic strategies (Blass
& Ott, 2021). However, accurately predicting gene expres-
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sion presents significant challenges. Previous methods pri-
marily focused on modeling long sequences, given that reg-
ulatory elements can act over considerable distances (Avsec
etal., 2021; Su et al., 2025).

Deep learning methods for gene expression prediction
have rapidly advanced. DNA language models such as
(Avsec et al., 2021; Dalla-Torre et al., 2024; Linder et al.,
2025; Nguyen et al., 2024b; Schiff et al., 2024) predict
directly from DNA sequences, but are limited by the ab-
sence of epigenomic signals. Conversely, GraphReg (Kar-
balayghareh et al., 2022) uses only epigenomic signals, ig-
noring DNA information. More recent approaches like (Lin
et al., 2024; Li et al., 2023) integrate both, first identifying
potential enhancers via epigenomic signals and then mod-
eling these regions with target genes due to distal enhancer
constraints. Seq2Exp (Su et al., 2025) now learns these
enhancers data-drivenly, masking irrelevant regions for full-
sequence input to achieve state-of-the-art (SOTA) results.
Detailed related works are in Appendix A.

In this work, we first challenge the long sequence modeling
paradigm (Su et al., 2025; Schiff et al., 2024). While we ac-
knowledge that modeling long sequences is biologically nec-
essary (Schoenfelder & Fraser, 2019), current approaches
to long sequence modeling exhibit notable limitations: (1)
(Lin et al., 2024; Li et al., 2023) utilize only statistically
identified potential regulatory elements (Fulco et al., 2019)
while ignoring other regions that may also have functional
effects. (2) Seq2Exp (Su et al., 2025) and a series of DNA
language models (Nguyen et al., 2024b; Schiff et al., 2024)
employ Mamba (Gu & Dao, 2023) or other State Space
Models (SSMs). Although SSMs can efficiently process
extra-long sequences like DNA with linear complexity, their
modeling capacity is questionable (Wang et al., 2025).

We conducted preliminary experiments to validate our chal-
lenge. Specifically, we trained Caduceus (Schiff et al., 2024)
and Seq2Exp (Su et al., 2025) with varying input lengths
centered at the transcription start site (TSS) for gene ex-
pression prediction. Caduceus uses complete sequences as
input, while Seq2Exp learns masks to filter out potentially
non-functional regions. According to Figure 1 (a), we ob-
serve that Caduceus’s performance consistently declines
after input lengths exceed 2k. Seq2Exp doesn’t show a
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Figure 1. (a) Performance of Seq2Exp (Su et al., 2025) and Caduceus (Schiff et al., 2024) with varying input sequence lengths. (b)
Caduceus performance with different epigenomic signals. (c) Performance degradation when specific signals are removed during testing

from a model trained with all signals.

clear downward trend, but its performance with 200k input
length remains essentially equivalent to using just 500 bases.
Therefore, we can confidently conclude that using SSMs to
model long sequences currently leads to performance degra-
dation. Even Seq2Exp’s masking approach only filters some
irrelevant regions, limiting performance decline, but fails to
leverage long sequence modeling to enhance performance.
Table 2 in Appendix B demonstrates that the Seq2Exp model
pre-trained on 200k sequences maintains nearly identical
performance even when input sequences are shortened to
2k during the testing phase. We attribute the effectiveness
of short sequences to that proximal epigenomic signals re-
flect the activity of distal regulatory elements through chro-
matin looping and spatial interactions (Plank & Dean, 2014).
Therefore, rather than extending sequence length, we focus
on more effectively leveraging these informative epigenomic
signals to enhance prediction performance.

Previous approaches typically utilize epigenomic signals
through simple feature concatenation, without considering
their distinct biological roles and potential interdependen-
cies (Lin et al., 2024; Su et al., 2025). In this work, we
conducted an extensive comparative study to characterize
the differential contributions of various epigenomic signals.
We trained Caduceus using DNA sequence alone and with
the addition of either H3K27ac, DNase, Hi-C, or all signals
combined. Figure 1 (b) reveals that each signal improves
performance, with H3K27ac showing the most substantial
enhancement. This aligns with biological understanding,
as H3K27ac directly marks active regulatory elements like
promoters and enhancers (Creyghton et al., 2010), func-
tioning as a specific “foreground” signal with direct causal
influence on gene expression. In contrast, DNase and Hi-C
provided smaller improvements as they predominantly serve
as “background” signals, indicating chromatin accessibil-
ity (Thurman et al., 2012) and three-dimensional organiza-
tion (Rao et al., 2014), respectively. Interestingly, models
trained on all signals combined performed comparably to
those trained solely on H3K27ac, indicating that these back-
ground signals provide almost no additional improvement
when H3K27ac is already known.

More revealing is our study in Figure 1 (c), where remov-
ing background signals during testing from a model trained
on all signals causes significant performance degradation.
This creates a paradox with our observations in Figure 1
(b) - while background signals themselves provide minimal
performance improvement, models that use these signals
during training develop an over-dependence on them, result-
ing in substantial performance drops when these signals are
removed. This asymmetric impact pattern strongly suggests
these signals play a confounding role rather than a causal
one. We attribute this phenomenon to background epige-
nomic signals acting as confounders, which are broadly
present across many genes but do not causally regulate gene
expression directly (Schreiber et al., 2020). The original
data for Figure 1 is in Appendix C. Evidence from our case
study supporting the treatment of background signals as
confounders is presented in Appendix D.

These background epigenomic signals create spurious cor-
relations by influencing both the observed epigenomic land-
scape and gene expression levels, while not directly par-
ticipating in the causal gene regulation mechanism. To
address this issue, we employ a Structural Causal Model
(SCM) to characterize background epigenomic signals as
confounders in gene expression prediction, and further ap-
ply backdoor adjustment (Pearl et al., 2016) to eliminate
their confounding effects, better utilizing epigenomic reg-
ulation for prediction. We name our method InFER (an
Interventional Framework of Epigenomic Regulation).

2. Related Works

Sequence-to-function models are designed to predict
functional genomic signals directly from DNA sequences.
DeepSEA (Zhou & Troyanskaya, 2015) established this ap-
proach by utilizing convolutional neural networks (CNN5s)
to extract sequence features for multi-task prediction. The
field has evolved through architectural innovations and ex-
panded training datasets (Kelley et al., 2018; Zhou et al.,
2018; Chen et al., 2022). Currently, Enformer (Avsec et al.,
2021) represents the leading methodology, achieving excep-
tional performance through its hybrid Transformer-CNN



InFER

architecture. While these models simultaneously predict
various outputs including epigenomic signals and gene ex-
pression levels, they typically lack specialized mechanisms
for leveraging epigenomic data to enhance expression pre-
diction specifically, treating all prediction targets as parallel
outputs rather than considering their biological interdepen-
dencies.

Unsupervised DNA foundation models leverage the suc-
cessful paradigm of unsupervised pre-training established
in natural language processing. DNABERT (Ji et al., 2021)
was the first to adapt this approach to genomics, applying
BERT-like (Devlin et al., 2019) techniques to learn trans-
ferable DNA representations. Subsequent models have ex-
panded upon this foundation (Zhou et al., 2024; Dalla-Torre
etal., 2024; Li et al., 2024; Sanabria et al., 2024). In parallel,
generative frameworks like Evo (Nguyen et al., 2024a) have
emerged (Nguyen et al., 2024b; Brixi et al., 2025), enabling
functional element design applications (Linder et al., 2025;
Yang et al., 2025). Despite these advances, such models’
effectiveness for gene expression prediction remains limited
due to their exclusive reliance on DNA sequence informa-
tion, without incorporating the critical epigenomic context
that modulates gene activity.

Gene expression prediction represents a fundamental chal-
lenge in bioinformatics (Segal et al., 2002). Early ap-
proaches like Enformer (Avsec et al., 2021) attempted to pre-
dict gene expression directly from DNA sequences, facing
inherent limitations, while GraphReg (Karbalayghareh et al.,
2022) enhanced performance by incorporating epigenomic
information through graph attention networks to model phys-
ical interactions between genomic regions. More recent
methods have progressed toward integrating both sequence
and epigenomic information, with Creator (Li et al., 2023)
and EPInformer (Lin et al., 2024) demonstrating improved
performance through this combined approach. However,
these models typically rely on pre-identified regulatory el-
ements, overlooking potential contributions from unanno-
tated regions. Seq2Exp (Su et al., 2025) addressed this
limitation through an end-to-end, data-driven methodology
that simultaneously learns to identify relevant regulatory
elements and predict expression with epigenomic guidance.
Despite these advances, current research tends to focus pre-
dominantly on modeling distal regulatory elements through
long sequence architectures, rather than optimizing the uti-
lization of biologically interrelated epigenomic signals that
directly influence gene regulation.

3. Method
3.1. Problem Formulation

Given a gene sequence X = [z1,Z2,..., 2], where for
eachi € {1,2,...,L}, z; € R represents the one-hot en-

coding of a nucleotide base from the set V = {A, T, C, G},
and L denotes the sequence length surrounding the gene’s
TSS (Lin et al., 2024; Su et al., 2025). For each X, there
are associated epigenomic signals S = [s1,82,...,8L],
where s; € R? with d representing the number of epige-
nomic signals. Our approach first employs a signal en-
coder gy : RE*4 — RL*4" with parameters 6 to map the
raw epigenomic signals S into a higher-dimensional feature
space H = gy(S), where d’ represents the dimensionality
of this enriched representation following (Su et al., 2025).
We then use a predictor network hg : (R4 REX) 5 R
with parameters ¢ that integrates both sequence information
X and encoded epigenomic features H to predict gene ex-
pression levels Y € R. To optimize our model parameters
{6, ¢}, we define the following objective function:

»Cl = dlSt(h¢(X799(S))7Y)7 (1)

where dist(-, -) is a distance metric measuring the discrep-
ancy between predicted and true gene expression values.

3.2. Structural Causal Model

In Section 1, we categorize H3K27ac
as foreground signal and DNase/Hi-
C as background signals. However,
instead of relying on this biology-
informed categorization, we intro-
duce a more general confounder
C representing background epige-
nomic regulation as a combined ef-
fect of different signal types. Draw-
ing inspiration from computer vision, where CNNs trans-
form RGB images into feature maps with channel combina-
tions representing various background information (Qiang
et al., 2022; Zhou et al., 2016), we model C' in the high-
dimensional latent space of encoded epigenomic signals H.
The implementation of C is detailed in Section 3.4.

Figure 2. The pro-
posed SCM.

Biologically, C' represents background regulatory states
with genome-wide effects, such as global chromatin acces-
sibility. These background factors simultaneously influence
both the epigenomic landscape and gene expression with-
out participating in gene-specific regulation. For instance,
broadly accessible chromatin regions correlate with higher
expression across many genes, confounding the true causal
relationship between specific regulatory elements and their
targets (Schreiber et al., 2020).

Figure 2 depicts our SCM showing relationships between H,
C, and Y. For clarity, we omit X from the graph, though
our model ultimately uses both X and H for prediction.
H — Y: High-dimensional epigenomic signals H are used
to predict gene expression Y, utilizing both foreground and
background information. H <+ C' — Y: Background
information C' directly contributes to observed signals H
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Figure 3. Architecture of INFER

and reflects the co-occurrence of open chromatin and highly
expressed genes, creating a confounding effect.

An ideal prediction model should capture the true causal
relationship between H and Y. We expect Y to be pri-
marily influenced by foreground signals directly indicating
regulatory activity, not merely by broadly accessible chro-
matin. However, our SCM reveals that P(Y'|H) includes
both the direct path H — Y and spurious correlations
via H < C' — Y. This explains our observation in Fig-
ure 1 (c), where removing background signals during testing
significantly reduces performance, indicating excessive de-
pendency on these signals.

3.3. Causal Intervention via Backdoor Adjustment

To capture true causal relationships, we must estimate the
interventional distribution P(Y |do(H )) rather than the con-
ditional distribution P(Y'|H). The do operator (Pearl et al.,
2016) represents an intervention that sets the value of H
while removing its dependency on confounders, enabling
us to isolate the direct causal effect of epigenomic signals
on gene expression. Specifically, we can stratify the back-
ground information confounder C' into n different back-
ground epigenomic regulation, i.e., C = {C4,Cy,...,Cy }
where 7 is a hyperparameter. Each C; represents a distinct
background regulatory pattern. Formally, we can formulate
the backdoor adjustment for our proposed SCM as:

P(Y|do(H)) = zn: P(Y|H,C =C)P(C=C)). ()

i=1

This intervention allows us to estimate the direct causal
effect of epigenomic signals on gene expression, indepen-
dent of shared background regulatory patterns. To make
this computation tractable, we adopt the assumption that
the latent confounding variable C' follows a uniform distri-
bution (Qiang et al., 2022): P(C = C;) = % vC; € C,
where n is the number of different background regulatory
patterns we model.

3.4. Implementation of Confounder

While the concept of background epigenomic regulation
represented by C; is sound, directly identifying specific cel-
lular states through biological priors (Section 1) would be
oversimplified, as the actual background regulatory informa-
tion is likely a combination of different epigenomic signals.
Instead, we implement a data-driven approach inspired by
computer vision techniques, where different channels can
extract hierarchical background information (Qiang et al.,
2022; Zhou et al., 2016).

Shown in Figure 3, We employ a confounder encoder
g : REX4 5 R7Xd with parameters w to extract po-
tential background patterns from the epigenomic signals .S.
This network produces weight vectors A = [a1, ag, . . ., ap],
where each a; € R? represents a different weighting
scheme over the epigenomic signal dimensions. Note that
these weights are gene-wise rather than position-wise, as
we assume the background regulatory patterns are shared
across the entire gene region. Each weight vector a; effec-
tively models a distinct background regulatory state C; by
capturing a specific combination of epigenomic signal con-
tributions. For example, one weight vector might emphasize
chromatin accessibility signals for genes in active cell cycle
states, while another might highlight three-dimensional or-
ganizational features in quiescent cells. Through learning
these diverse weighting schemes, our model can represent
the complex, multifaceted nature of background epigenomic
regulation that acts as confounders in gene expression pre-
diction. Following our backdoor adjustment formula, we
directly compute:

P(Y |do(H)) = Zn: P(Y|H,C = C;)P(C = )

= %Z@(X,H@ai). 3)
i=1

We include X in this formulation because we assume DNA

sequence X and epigenomic features /1 are independent (Su

et al., 2025), which is why X does not appear in our SCM.

Each weighted version of H is then processed through our

predictor to approximate the interventional distribution. We
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Table 1. Performance on Gene Expression CAGE Prediction with Standard Deviation for Cell Types K562 and GM12878.

| K562 | GM12878

| MSE | MAE | Pearson T | MSE | MAE | Pearson 1
Enformer 0.2920 + 0.0050  0.4056 4 0.0040  0.7961 & 0.0019 | 0.2889 = 0.0009  0.4185 + 0.0013  0.8327 + 0.0025
HyenaDNA 0.2265 + 0.0013  0.3497 4 0.0012  0.8425 4 0.0008 | 0.2217 & 0.0018  0.3562 £ 0.0012  0.8729 + 0.0010
Mamba 0.2241 +0.0027  0.3416 4 0.0026  0.8412 & 0.0021 | 0.2145 £ 0.0021  0.3446 +0.0022  0.8788 + 0.0011
Caduceus 0.2197 +0.0038  0.3327 4+ 0.0070  0.8475 & 0.0014 | 0.2124 & 0.0037  0.3436 + 0.0031  0.8819 + 0.0009

Caduceus w/ signals ‘ 0.1959 + 0.0036  0.3187 4+ 0.0036

0.8630 £ 0.0008 ‘ 0.1942 £+ 0.0058

0.3269 + 0.0048  0.8928 + 0.0017

EPInformer ‘ 0.2140 = 0.0042  0.3291 +£ 0.0031

0.8473 £ 0.0017 ‘ 0.1975 £ 0.0031

0.3246 + 0.0025  0.8907 £ 0.0011

MACS3 ‘ 0.2195 +0.0023  0.3455 £ 0.0018

0.8435 4+ 0.0013 ‘ 0.2340 £ 0.0028

0.3654 4 0.0017  0.8634 + 0.0020

Seq2Exp-hard
Seq2Exp-soft

0.1863 + 0.0051
0.1856 + 0.0032

0.3074 £ 0.0036
0.3054 4+ 0.0024

0.8682 £ 0.0045
0.8723 4 0.0012

0.1890 £ 0.0045
0.1873 4 0.0044

0.3199 + 0.0040
0.3137 &+ 0.0028

0.8916 + 0.0027
0.8951 + 0.0038

InFER ‘ 0.1789 + 0.0041  0.3000 -+ 0.0058

0.8751 + 0.0036 ‘ 0.1759 + 0.0054

0.3054 + 0.0048  0.9016 + 0.0024

incorporate this interventional prediction as a regularization
term, forming our second loss component:

AR
Ly = dist (n;hqg(X,H@al),Y), )
which follows the same structure as our standard prediction
loss in Equation 1 but operates on the interventional pre-
dictions after backdoor adjustment. The complete training
objective is detailed in Appendix E. The algorithm workflow
is in Appendix F.

4. Experiments

Detailed experimental setup, baseline descriptions, and ad-
ditional ablation studies are in Appendix G. Here we present
the main results. Table 1 presents performance results
across all methods for the K562 and GM 12878 cell types,
respectively. All baseline results are directly cited from
Seq2Exp (Su et al., 2025) to ensure fair comparison. Addi-
tionally, all results reported include the mean and standard
deviation from five runs using different random seeds: {2,
22, 222, 2222, 22222} following (Su et al., 2025). The
best-performing method for each metric is highlighted in
bold, with the second-best underlined. Notably, our InFER
consistently outperforms the previous SOTA Seq2Exp-soft
across all datasets and metrics.

5. Conclusion

In this work, we introduce InFER. Our causal intervention
approach through backdoor adjustment effectively distin-
guishes genuine regulatory relationships from spurious cor-
relations, achieving SOTA performance using only short
sequences.
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A. Related Works

Sequence-to-function models are designed to predict functional genomic signals directly from DNA sequences.
DeepSEA (Zhou & Troyanskaya, 2015) established this approach by utilizing convolutional neural networks (CNN5s)
to extract sequence features for multi-task prediction. The field has evolved through architectural innovations and expanded
training datasets (Kelley et al., 2018; Zhou et al., 2018; Chen et al., 2022). Currently, Enformer (Avsec et al., 2021)
represents the leading methodology, achieving exceptional performance through its hybrid Transformer-CNN architecture.
While these models simultaneously predict various outputs including epigenomic signals and gene expression levels, they
typically lack specialized mechanisms for leveraging epigenomic data to enhance expression prediction specifically, treating
all prediction targets as parallel outputs rather than considering their biological interdependencies.

Unsupervised DNA foundation models leverage the successful paradigm of unsupervised pre-training established in
natural language processing. DNABERT (Ji et al., 2021) was the first to adapt this approach to genomics, applying
BERT-like (Devlin et al., 2019) techniques to learn transferable DNA representations. Subsequent models have expanded
upon this foundation (Zhou et al., 2024; Dalla-Torre et al., 2024; Li et al., 2024; Sanabria et al., 2024). In parallel, generative
frameworks like Evo (Nguyen et al., 2024a) have emerged (Nguyen et al., 2024b; Brixi et al., 2025), enabling functional
element design applications (Linder et al., 2025; Yang et al., 2025). Despite these advances, such models’ effectiveness
for gene expression prediction remains limited due to their exclusive reliance on DNA sequence information, without
incorporating the critical epigenomic context that modulates gene activity.

Gene expression prediction represents a fundamental challenge in bioinformatics (Segal et al., 2002). Early approaches
like Enformer (Avsec et al., 2021) attempted to predict gene expression directly from DNA sequences, facing inherent
limitations, while GraphReg (Karbalayghareh et al., 2022) enhanced performance by incorporating epigenomic information
through graph attention networks to model physical interactions between genomic regions. More recent methods have
progressed toward integrating both sequence and epigenomic information, with Creator (Li et al., 2023) and EPInformer (Lin
et al., 2024) demonstrating improved performance through this combined approach. However, these models typically rely on
pre-identified regulatory elements, overlooking potential contributions from unannotated regions. Seq2Exp (Su et al., 2025)
addressed this limitation through an end-to-end, data-driven methodology that simultaneously learns to identify relevant
regulatory elements and predict expression with epigenomic guidance. Despite these advances, current research tends to
focus predominantly on modeling distal regulatory elements through long sequence architectures, rather than optimizing the
utilization of biologically interrelated epigenomic signals that directly influence gene regulation.

B. Shortening Input Sequence Length at Test Time

In Figure 1 (a) of Section 1, we have confirmed that training with longer sequences from scratch does not provide additional
benefits. Further, we aim to investigate whether shortening the input length at test time would decrease the performance
of a model pre-trained on longer sequences. Specifically, we tested the Seq2Exp model (Su et al., 2025) pre-trained on
200k sequences to evaluate if reducing context during inference affects performance. As shown in Table 2, we found that
Seq2Exp, despite being trained on 200k inputs, shows minimal performance degradation when extra context is removed
during testing. The performance difference between using 2100 tokens and 200k tokens is negligible. Interestingly, however,
there is a significant performance drop when inputs are shortened to 2000 tokens.

Table 2. Performance of Seq2Exp (Su et al., 2025) when testing with shortened input sequences on the K562 cell line.
Input Length | MAE| MSE | Pearson

2000 0.6485 0.6183 0.8084
2100 0.3471  0.2301 0.8603
2500 03174 0.1996  0.8674
3000 0.3134  0.1943 0.8698
8000 0.3082 0.1864  0.8747

10000 0.3074  0.1855 0.8751
200000 0.3054 0.1856  0.8723

Based on these observations and comparing with Figure 1 (b), we can conclude that input context length has a much
smaller impact on model performance than epigenomic signals. Removing epigenomic signals during testing substantially
hurts performance, while shortening sequence length has minimal effect. This finding motivates our focus on modeling
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epigenomic information effectively.

C. Experimental Data of Table 1

We provide comprehensive numerical results corresponding to Figure 1 in the main text, including complete performance
metrics and ablation studies.

C.1. Sequence Length Sensitivity

Table 3 compares the performance stability of Seq2Exp and Caduceus across different input lengths.

Table 3. Performance comparison with varying input lengths (left: Seq2Exp (Su et al., 2025), right: Caduceus (Schiff et al., 2024))

Length MAE MSE  Pearsonr Length MAE MSE  Pearsonr
100 0.3394 0.2233  0.8441 100 0.3385 0.2200  0.8449
500 0.3096 0.1879  0.8744 500 0.3096 0.1889  0.8716
2000 0.3150 0.1971  0.8678 2000 0.3036 0.1831  0.8747
5000 0.3098 0.1949  0.8703 5000 0.3170  0.1941 0.8692
10000  0.3088 0.1897  0.8719 10000  0.3235 0.2029  0.8550

C.2. Epigenomic Signal Contributions

Table 4 demonstrates that combining all epigenomic signals yields optimal performance, with H3K27ac showing the
strongest individual impact.

Table 4. Caduceus performance with different epigenomic signal configurations
Configuration MSE  MAE  Pearsonr

No signals 0.2163 0.3325  0.8485
+H3K27ac 0.1873 0.3080  0.8628
+DNase 0.2089 0.3227  0.8497
+Hi-C 0.2135 0.3264  0.8530
All signals 0.1886 0.3079  0.8652

C.3. Ablation Study

Table 5 reveals critical signal dependencies. Removing H3K27ac during testing from a model trained on all signals degrades
performance most severely (22.3% MAE increase), while Hi-C removal has minimal effect (4.7% MAE increase).

Table 5. Performance degradation from signal removal (trained with all signals)

Condition MAE MSE  Pearsonr
Drop H3K27ac 0.5653 0.6115 0.6964
Drop DNase 0.3890 0.2962  0.8189
Drop Hi-C 0.3548 0.2280 0.8467

Baseline (all signals) 0.3078 0.1886  0.8652

D. Case Study Revealing the Existence of Background Confounding Factors

To further support our hypothesis that background epigenomic signals (e.g. DNase and Hi-C) act as confounders rather
than direct regulators of gene expression, we present a representative case (Figure 4). In this region, both DNase and Hi-C
signals exhibit broad and high activation suggests strong chromatin accessibility and extensive three dimensional genome
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Figure 4. A representative genomic locus(Entrez ID: ENSG00000080561) where DNase and Hi-C signals are broadly active, but H3K27ac
shows no enrichment. Despite strong chromatin accessibility and spatial contacts, gene expression remains low (0.6021), suggesting
that background epigenomic signals alone are insufficient to drive transcription. This supports the hypothesis that such signals act as
confounders rather than causal regulators.

interactions. However, H3K27ac, a known marker of active enhancers and promoters, shows little to no enrichment at the
same locus. Notably, the gene expression level is very low (0.6021)

This case demonstrates that high background signal activity alone is insufficient to drive gene expression. Despite an
accessible chromatin state (DNase and spatial proximity enabled by chromatin looping Hi-C), the absence of H3K27ac
likely indicates that key regulatory elements are inactive, resulting in minimal transcriptional output.

Such case may reflect a permissive but not necessarily active regulatory environment. They also reinforce the necessity
of discausal foreground signals like H3K27ac from background confounders when designing gene expression prediction
models. This motivates our approach of modeling background signals through a Structural Causal Model and applying
backdoor adjustment to correct for their confounding effects, thereby improving interpret ability and prediction accuracy.

E. Training Objective

To ensure that our model captures diverse and meaningful background patterns, we encourage the weight vectors to be
distinct from each other through a uniform loss function (Wang & Isola, 2020). This loss penalizes similarity between
background representations, promoting diversity in the learned weights:

L3 = log Z exp(2t - aZTaj —-2t) |, 5)
i#]
where ¢ is a temperature parameter that controls the sharpness of the penalty.

Our final training objective combines the standard prediction loss, intervention-based regularization, and uniform diversity
loss:
L=L1+als+ ﬁﬁg, (6)

where « and [ are hyperparameters controlling the relative importance of the intervention regularization and uniform
diversity constraint, respectively. By jointly optimizing these three objectives, our model learns to make accurate predictions
while effectively disentangling gene-specific regulatory signals from background confounding effects. The complete
algorithm workflow for our InFER framework is provided in Appendix F.

F. Algorithm Workflow

Here we provide the complete algorithm workflow for our InFER framework in Algorithm 1. The algorithm initializes three
neural networks: the signal encoder gy, the predictor network h,,, and the confounder encoder g,,. During training, we
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compute both standard and interventional predictions, then optimize the model using three objectives: prediction loss £,
intervention loss Lo, and uniform diversity loss L3.

Algorithm 1 Interventional Framework for Gene Expression Prediction (InFER)

Require: Gene sequence X, epigenomic signals .S, gene expression Y, hyperparameters «, 3, t, n
Ensure: Trained model parameters 6, v, w
Initialize parameters 6, ¢, w randomly
while not converged do
Forward Pass:

H = gy(5) {Encode epigenomic signals}
Y = hy(X, H) {Standard prediction}
A= g,(5) {Extract background patterns}
Interventional Prediction:

Vit = %L S he(X, H ®a;) {Apply backdoor adjustment}
Loss Computation:

£y =dist(Y,Y) {Standard prediction loss}
Ly = dist(Vip, Y) {Intervention loss}
L3 =log (Z” exp(2t- ATA — 2t)) {Uniform diversity loss}
L=L+als+ (L3 {Total loss}

Backward Pass:
Update parameters 6, 1, w using gradient descent on £
end while

G. Experiments Setup and More Results
G.1. Experimental Setup

Datasets. To evaluate gene expression prediction, we adopt Cap Analysis of Gene Expression (CAGE) values as our
prediction proxy, in line with established approaches (Avsec et al., 2021; Lin et al., 2024; Su et al., 2025). Our study focuses
on two well-characterized human cell lines that represent distinct cellular lineages: K562 and GM 12878, both of which are
extensively characterized in genomic research. We use CAGE measurements obtained from the ENCODE (Consortium
et al., 2012). Following the experimental framework established in previous studies (Lin et al., 2024; Su et al., 2025), we
evaluate our model across 18,377 protein-coding genes.

For input data, we utilize both DNA sequences and epigenomic signals. The DNA sequences are derived from the human
genome HG38 project, while the epigenomic signals were carefully selected to capture different aspects of gene regulation:
H3K27ac marks histone acetylation at active enhancers and promoters. Our experiments in Section 1 identify this as the
most influential signal that directly pinpoints regulatory elements, thus we classify it as a foreground signal. DNase measures
chromatin accessibility in genomic regions, often coinciding with but not causally determining regulatory elements. Our
experiments confirm this, showing smaller performance improvements from DNase compared to H3K27ac. Hi-C quantifies
contact frequencies between genomic positions and the target TSS, processed using the ABC pipeline (Fulco et al., 2019).
Like DNase, we categorize Hi-C as a background signal representing the broader chromatin environment rather than specific
regulatory elements.

Furthermore, we incorporate additional features such as mRNA half-life and promoter activity from previous studies (Lin
et al., 2024) following (Lin et al., 2024; Su et al., 2025). These features are simply concatenated to the final linear predictor
and are not part of our core modeling approach for epigenomic signals. Detailed data processing procedures can be found
in (Lin et al., 2024; Su et al., 2025).

Baselines. We benchmark our InFER against the following baselines: Enformer (Avsec et al., 2021), a CNN-Transformer
hybrid architecture designed to predict epigenomic signals and gene expression from sequences, here used solely for CAGE
prediction; HyenaDNA (Nguyen et al., 2024b), Mamba (Gu & Dao, 2023), and Caduceus (Schiff et al., 2024), three recently
developed DNA foundation models leveraging efficient long-sequence modeling capabilities through SSMs as prediction
backbones; EPInformer (Lin et al., 2024), which extends the Activity-By-Contact (ABC) model (Fulco et al., 2019) by
utilizing DNase-seq peaks to define potential regulatory regions and applying attention mechanisms to aggregate enhancer
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signals; and Seq2Exp (Su et al., 2025), a recent SOTA method that applies information bottleneck principles to learn
regulatory element masks, available in hard (binary) and soft (continuous) encoding variants.

We also include Caduceus w/signal, which incorporates epigenomic signals directly into Caduceus’s encoder, and
MACS3 (Zhang et al., 2008), which differs from Seq2Exp by using MACS3-identified regulatory elements instead of
learned masks. Most baseline models process raw DNA sequences from the input region, while EPInformer operates on
potential enhancer candidates extracted based on DNase-seq measurements following the ABC model (Fulco et al., 2019).

Evaluation Metrics. We assess model performance using three complementary metrics following (Su et al., 2025): Mean
Squared Error (MSE) for measuring prediction variance with emphasis on larger errors; Mean Absolute Error (MAE) for
quantifying average prediction deviation in expression units; and Pearson Correlation for evaluating how well models
capture expression patterns and gene rankings regardless of absolute scale. These metrics together provide a balanced
assessment of both prediction accuracy and pattern preservation capabilities.

Implementation Details. We partition datasets by chromosome for training, validation, and testing, following (Su et al.,
2025). Specifically, chromosomes 3 and 21 serve as the validation set, while chromosomes 22 and X are reserved for testing.
The inclusion of chromosome X provides a more stringent evaluation of model robustness due to its distinct biological
characteristics compared to autosomes.

Our signal encoder gy is implemented as a simple linear layer, while the confounder encoder g, utilizes a lightweight
1D-CNN, with detailed configurations in Appendix H. For the predictor h, we adopt Caduceus (Schiff et al., 2024) as our
backbone model, following Seq2Exp (Su et al., 2025). Notably, we maintain the same training hyperparameters (learning
rate, batch size, and other configurations) established in Seq2Exp (Su et al., 2025). Further performance gains could likely
be achieved through hyperparameter fine-tuning specific to our approach. We use the L1 function as our prediction loss
function, while the best model is selected based on the MSE metric on the validation set following (Su et al., 2025). All
experiments were conducted on NVIDIA A40 and A100 GPUs. While most baseline models process inputs of length 200k,
our InFER implementation operates on sequences of just 2k base pairs. We also present results for Caduceus w/signal at 2k
length in Section G.2. Additional experimental details can be found in Appendix H.

G.2. Ablation Study

Our method introduces several hyperparameters: the number of confounder patterns n, and coefficients « and 3 in the
training objective (Equation 6) that balance different loss components. We conducted ablation studies on the K562 cell
type to evaluate our model’s sensitivity to these hyperparameters. First, we fixed @« = 8 = 1.0 and varied the number
of confounder patterns with n € {1,2,4}. As shown in Table 6 (a), n = 2 yields the best performance. Given that
computational overhead increases with larger values of n, we selected n = 2 for our final model. Next, we examined the
impact of a € {0.0,0.01,0.1, 1.0, 10.0}, which controls the weight of the intervention loss. Note that « = 0.0 disables our
proposed InNFER framework, and its mediocre performance demonstrates the effectiveness of our approach. Table 6 (b) shows
that performance deteriorates significantly when oo = 10.0 (excessive intervention weight) and o = 0.0 (no intervention).
The model performs comparably for intermediate values, leading us to select o = 1.0 for our final configuration. Finally,
we investigated the influence of 3, which encourages diversity among learned confounder weights. Table 6 (c) reveals that
B = 0.0 (no diversity constraint) produces the worst results, likely due to weight collapse where all patterns converge to
similar values. Once the diversity constraint is applied, the model demonstrates robust performance across different 3 values.
We therefore selected 5 = 1.0 for our final implementation.

Table 6. Ablation studies on hyperparameters of InFER: (a) number of confounder patterns n, (b) intervention loss weight o, and (c)
diversity constraint weight 3.

o |MSE| MAE| Pearson? B | MSE| MAE| Pearson
n | MSE| MAE] Pearson f 00 | 01910 03077  0.8691 00 | 0.1893 03107 08714
101847 03047  0.8740 001 | 0.1829 03046  0.8738 001 | 0.1854 03039  0.8741
2 [ 0.1789 03000  0.8751 0.1 | 0.1843 03055 08750 0.1 | 0.1807 03074 08723
410184 03079 08710 10 | 01789 03000  0.8751 10 | 0.1789 03000  0.8751
(@) Patterns 11 (a=3=1.0) 10.0 | 0.1974 03215  0.8695 10.0 | 0.1860 03019  0.8725
(b) Weight « (n=2, 5=1.0) (c) Weight 8 (n=2, a=1.0)
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Table 7. Exploring the performance of Caduceus w/signal on short inputs for Cell Type K562
| MSE | MAE | Pearson 1

Caduceus w/ signals (200k input) | 0.1959 £ 0.0036  0.3187 £ 0.0036  0.8630 = 0.0008
Caduceus w/ signals (2k input) 0.1863 £ 0.0035 0.3092 + 0.0050 0.8713 £ 0.0023

Seq2Exp-soft ‘ 0.1856 4+ 0.0032  0.3054 £ 0.0024  0.8723 + 0.0012
InFER ‘ 0.1789 £+ 0.0041  0.3000 £ 0.0058 0.8751 + 0.0036

G.3. Do we really need more input length?

In Figure 1 (a), our preliminary experiments demonstrate that for Caduceus, performance plateaus at 2k sequence length,
with further extensions leading to performance degradation. This limitation likely stems from the inherent inability of
linear models like SSMs to effectively model long sequences - as input length increases, the model progressively loses
focus on critical proximal regions. Even Seq2Exp (Su et al., 2025), which learns additional masks to mitigate performance
degradation on long sequences, fails to derive benefits from extended inputs. To further investigate this phenomenon, we
conducted a fair comparison between Caduceus w/signals (2k), Caduceus w/signals (200k), Seq2Exp-soft, and our InFER
model. Shown in Table 7, the results reveal that Seq2Exp-soft shows negligible improvement over Caduceus w/signals (2k),
while our InFER demonstrates significant performance gains. This finding reinforces our hypothesis that blindly extending
sequence length yields diminishing returns with current SSM-based architectures. Instead, the critical factor for improved
performance lies in effectively leveraging epigenomic signals rather than processing longer genomic contexts.

G.4. Parameter Overhead

Our confounder encoder is designed to be lightweight
while delivering substantial performance improvements.

We compare the additional parameters introduced by In- Table 8. Parameter comparison between models.
FER and Seq2Exp (Su et al., 2025) relative to the base Model Trainable Parameters
Caduceus (Schiff et al., 2024). As shown in Table 8, Caduceus wisignals 574K
InFER adds only 11K trainable parameters to the base

del. Our lightweight confounder encoder g,, intro- Seq2Exp-soft I.IM
model. W InFER 585K

duces minimal parameter overhead, whereas Seq2Exp’s
mask generator causes its parameter count to double com-
pared to Caduceus. Notably, our approach outperforms Seq2Exp across all metrics while maintaining an almost unchanged
parameter count compared to Caduceus.

H. More Implementation Details
H.1. Training Settings

Our training framework is implemented using PyTorch Lightning. All training-related hyperparameters were adopted directly
from Seq2Exp (Su et al., 2025), which means we did not perform extensive parameter tuning for our specific approach.
Consequently, there is potential for further performance improvements through careful hyperparameter optimization. The
complete set of hyperparameters used in our experiments is presented in Table 9.

H.2. Implementation Details of Confounder Encoder
Our confounder encoder g, is implemented as a lightweight 1D-CNN that maps raw epigenomic signals S € RZ* to
weight vectors A € R"*% . The architecture consists of a three-layer CNN followed by a projection layer:

¢ Layer 1: ConvlD (in_channels=d, out_channels=8, kernel_size=7) followed by BatchNorm, ReLLU, and MaxPool

(kernel_size=4)

e Layer 2: Convl1D (in_channels=8, out_channels=16, kernel_size=5) followed by BatchNorm, ReLU, and MaxPool
(kernel _size=4)
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Table 9. Hyperparameter values following Seq2Exp (Su et al., 2025).

Hyperparameters Values
Layers of Generator 4
Hidden dimensions 128
Max training steps 50000

Batch size 8
Learning rate Se-4
Scheduler strategy CosineLLR with Linear Warmup
Initial warmup learning rate le-5
Min learning rate le-4
Warmup steps 5,000
Validation model selection criterion validation MSE

e Layer 3: Conv1D (in_channels=16, out_channels=32, kernel_size=3) followed by BatchNorm, ReLLU, and MaxPool
(kernel_size=4)

¢ Global Pooling: AdaptiveAvgPooll1D(1) followed by Flatten

* Projection: Linear layer mapping the flattened features (32 dimensions) to n x d’ dimensions

The progressive reduction in sequence length through max pooling operations (by a factor of 64 in total) efficiently captures
patterns at different genomic scales while significantly reducing the computational overhead. After obtaining the raw
weights, we apply a sigmoid activation function to constrain the values between 0 and 1, making them suitable for weighting
the epigenomic signals via the Hadamard product operation. This lightweight design adds minimal parameters to the overall
model while effectively modeling the background epigenomic regulatory patterns. The entire encoder requires only 11K
parameters, which is negligible compared to the backbone model’s parameter count.

I. Limitations

Our framework has two main limitations. First, we did not explore scaling up the model parameters (e.g., deeper layers
or wider hidden dimensions) to assess if larger architectures could further boost performance. Second, the experiments
were limited to two cell types (K562 and GM12878), and broader validation across diverse cell lines or tissues is needed to
confirm generalizability. Future work should address these constraints to strengthen the method’s applicability.
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