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ABSTRACT

Since its debut in 2016, ResNet has become arguably the most favorable architec-
ture in deep neural network (DNN) design. It effectively addresses the gradient
vanishing/exploding issue in DNN training, allowing engineers to fully unleash
DNN’s potential in tackling challenging problems in various domains. Despite
its practical success, an essential theoretical question remains largely open: how
well can ResNet approximate functions? In this paper, we provide answers to
this question. We first show that ResNet with bottleneck blocks (b-ResNet) can
approximate any d-dimensional monomial with degree p ≥ d to any accuracy
ε > 0 with O(p log(p/ε)) number of tunable weights. We extend the results to
show that smooth functions differentiable up to degree r can be approximated by
ResNet using O(c(d, r)ε−d/r log 1/ε) tunable weights, where c(d, r) is a constant
depending on d and r. This is a factor of d reduction in the number of tunable
weights compared with the classical results for ReLU networks. Furthermore, our
results are order-optimal in ε as they match a generalized lower bound derived
in this paper. Finally, we show that ResNet can approximate a class of smooth
functions, by leveraging the Kolmogorov Superposition Theorem, using O(d4ε−1)
tunable weights, which is only a polynomial (instead of exponential) function of d,
implying no curse of dimensionality for approximating this class of functions.

1 INTRODUCTION

One trend in deep learning in the past decade is the use of larger and deeper neural networks to
process higher-dimensional data. However, for very deep neural networks, training can lead to
serious optimization problems, such as gradient vanishing or exploding. In 2016, the emergence of
ResNet He et al. (2016) solved the problem of gradient vanishing or exploding encountered during
the training of deep neural networks and has shown outstanding performance in applications.

The practical success of ResNet naturally leads to an essential theoretical question: how well can
ResNet approximate functions? Along this line, a milestone result in Lin & Jegelka (2018) shows
universal approximation capability of ResNet (even with one neuron per layer): it can approximate
any Lebesgue-integrable function arbitrarily well as the number of tunable weights goes to infinity.
This result gives theoretical justification to using ResNet to approximate general functions and spurs
a number of follow-up studies. One of the most related works is Oono & Suzuki (2019) which
focuses on the approximation of ResNet-type convolutional neural networks (CNNs) but the results
can not apply to ResNet-type multilayer perceptrons(MLPs) in Lin & Jegelka (2018). See Sec. 1.1
for more discussions about the key differences in settings, results and methods with our work. In
this paper, unless otherwise specified, we will refer to ResNet as ResNet-type MLPs. (See Sec. 2
for specific math modeling.) Meanwhile, it remains largely open to characterize ResNet’s universal
approximation capability. That is, how many tunable weights are needed for ResNet with optimized
structures to approximate a function up to an error ε?

In this paper, we seek answers to the above question, by developing upper-/lower- bounds on tunable
weights for ResNet with bottleneck block (b-ResNet for short) to approximate several popular classes
of functions. We summarize the main contributions as follows:

▷ In Sec. 3, we explicitly establish the relationship between ResNet and feedforward networks
(FNNs) (see Proposition 1). We show that ResNet can be viewed as an FNN and thus derive lower
bounds on the number of tunable parameters for ResNet to approximate various classes of functions.

1



Under review as a conference paper at ICLR 2024

▷ In Sec. 4, we show that b-ResNet, by leveraging specific tunable weights, can approximate
various function classes. These include monomials with degree p, requiring the number of weights
O(p log p/ε), polynomials of degree p, needing O(p#terms log p/ε)1, and smooth functions differ-
entiable up to degree r, needing Od,r(ε

−d/r log 1/ε)2. In addition, we show ResNet with one neuron
per hidden layer can generate any continuous piece-wise linear function thereby approximating
continuous functions.

▷ In Sec. 5, we apply ResNet to approximate a distinctive class of functions derived from Kol-
mogorov Superposition Theorem (KST), using O(d4ε) tunable weights. This approach circumvents
the so-called curse of dimensionality. Subsequently, in Sec. 6, we give the simulation results that
validate the theoretical findings in this paper.

These findings add to the theoretical justifications for ResNet’s outstanding practical performance, and
shed light on neural network architecture and analysis for further research on NN design optimization.

1.1 RELATED WORK

In recent years, the expressive capabilities of various neural network architectures have garnered
increased attention, spurred by their remarkable and noteworthy successes. In this subsection, we
will discuss the previous research on various network architectures through the lens of approximation
theory. Due to space limitations, more detailed information on the related work can be found in
Appendix G.1.

Universality and Approximation Capabilities. The universality of neural networks is a topic of
considerable importance and substantial interest. Its exploration spans from shallow Cybenko (1989);
Pinkus (1999) to deep Hanin & Sellke (2017); Kidger & Lyons (2020) networks, and from MLPs
to other network structures including standard deep ReLU CNN Zhou (2018; 2020), deep ReLU
CNNs with classical structures He et al. (2022), continuous-time recurrent neural network (RNN) Li
et al. (2020; 2022b), continuous-time ResNet Li et al. (2022a), ResNet Lin & Jegelka (2018), and
ResNet for finite-sample classification tasks Hardt & Ma (2016). Over the past decades, there has
been substantial progress in enhancing our theoretical understanding of neural networks from various
views: the benefit of depth Arora et al. (2016); Eldan & Shamir (2016); Liang & Srikant (2016);
Telgarsky (2016); Yarotsky (2017); Poggio et al. (2017), combinatorics Montufar et al. (2014); Serra
et al. (2018); Arora et al. (2016), approximation capabilities Shen et al. (2022b); Yarotsky (2018;
2017); Lu et al. (2021); Montanelli & Du (2019); Wang et al. (2018); Schwab & Zech (2021).

Perspectives on the Curse of Dimensionality. The ’curse of dimensionality’ coined by Bellman
(1957) refers to a phenomenon that a model class will suffer an exponential increase in its complexity
as the input dimension increases. This impact is explicitly observed in ReLU networks, as well-
documented in Yarotsky (2017). Importantly, the curse of dimensionality, not limited to MLPs, is
also a challenge for almost all classes of function approximators aiming to uniformly approximate in
the Lipschitz domain (have sufficient regular boundary) on some compact subset of a metric space
due to the entropy limitation Kolmogorov & Tikhomirov (1959).

More specifically, any continuous function approximator3 will suffer the curse of dimension in the
smooth function space Cr DeVore et al. (1989) because the metric entropy of the unit ball in Cr

with respect to the uniform topology is Θ(ε−d/r). The property is applied to ReLU neural networks
in Thm. 3 Yarotsky (2017). In an attempt to mitigate the curse of dimensionality, initial strategies
involved the consideration of specialized function spaces whose metric entropy is expected to reduce
such as analytical functions Wang et al. (2018), bandlimited functions Montanelli et al. (2019),
Korobove space Montanelli & Du (2019).

1The notation ’#’ is an abbreviation of number and ’#terms’ refers to the number of terms in the polynomial.
2The notation a = O(g(ε)) means a ≤ Cg(ε) for sufficiently small ε where C is a constant independent

of ε. Importantly, throughout this paper, we employ the notation Od(·) to underscore the hidden constant C
depending on d.

3In the context, we aim to approximate all functions in a space F using a model class as an approximator
(e.g., neural networks). We achieve this by choosing different parameters for different functions, meaning the
parameters θ ∈ Θ can be seen as a mapping of the target functions, i.e., θ = h(f) where h : F → Θ. If this
mapping h is continuous, we refer to the approximator as a continuous approximator.
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More recently, researchers have shifted their focus toward the structure of neural networks, sug-
gesting a potential solution to circumvent the curse of dimensionality. One approach involves the
parameters-sharing method (e.g., repeated-composition structure Zhang et al. (2023), CNN Zhou
(2018)). Simultaneously, a more recent trend aims to serve neural networks as discontinuous function
approximators, thereby examining neural networks with novel activation functions (e.g. Shen et al.
(2020); Jiao et al. (2023); Shen et al. (2021; 2022a)). Meanwhile, some incorporate the Kolmogorov
Superposition Theorem (KST)(see Sec. 5) to tackle the curse of dimensionality, yielding promising
theoretical results: considering super-expressive activations Yarotsky (2021); Shen et al. (2022a) or
restricted function class derived from KST Lai & Shen (2021); He (2023) can be efficient strategies
to avoid the curse of dimensionality. However, the failure of these model classes in practice is due to
the discontinuity of the function approximators, wherein even minor perturbations in the training data
can lead to chaotic changes in the input-output relationship. Consequently, to circumvent the curse of
dimensionality, it is imperative to make appropriate choices within the unstable model class and the
restricted objective function space.

Relations with ResNet-type CNNs. Following the work of Lin & Jegelka (2018), both Oono
& Suzuki (2019) and our study focus on the approximation error of ResNet-type structure neural
networks. However, several key differences in the settings, results, and methodologies are worth
noting.

First, the settings and neural network architectures are different. Our work zeroes in on FNNs in
ResNet which aligns close to Lin & Jegelka (2018), while Oono & Suzuki (2019) investigates CNNs
in ResNet which is more closely aligned with Zhou (2018); Petersen & Voigtlaender (2020). FNN
and CNN possess distinct network structures, and our analysis, just like that of Oono & Suzuki
(2019), leverages the unique structures of FNN and CNN, respectively. Consequently, results derived
from one do not directly translate to the other.

Second, the approaches we adopted diverge significantly. Oono & Suzuki (2019) illustrates that any
block-sparse FNN can be realized by ResNet-type CNN, and they leverage this relationship to set
the upper bounds of the approximation capability of ResNet CNNs. In contrast, we demonstrate that
ResNet FNN can be implemented by ReLU FNN Prop. 1, and we utilize this relationship to set the
lower bounds on the approximation capability of ResNet FNN. We establish the upper bounds by
directly constructing ResNet FNN to approximate different function classes.

Third, the results are different. Our paper offers a novel construction of a simplified ResNet FNN
structure, known as b-ResNet, and comprehensively delineates both the lower and upper bounds
of its function approximation capability. Notably, we demonstrate that it achieves comparable
approximation accuracy to ReLU FNN but with a significantly reduced number of tunable weights
(a reduction by a factor of d, where d is the input dimension). In contrast, Oono & Suzuki (2019)
establishes that a ResNet CNN can attain the same approximation accuracy as block-sparse FNNs,
albeit with an order-wise equivalent number of tunable weights. However, it remains uncertain from
Oono & Suzuki (2019) whether a ResNet CNN would require fewer weights.

2 MATHEMATICAL MODELING OF RESNET AND PROOF IDEAS

2.1 MATHEMATICAL MODELING OF RESNET

ResNet’s original proposal He et al. (2016) includes complex structures such as convolutional layers.
In this paper, we focus on its basic structure which consists of residual blocks and identity shortcut
connections, and we show that it is enough to achieve a strong approximation capability. With the
basic notations of addition (f + g)(x) = f(x) + g(x) and composition f ◦ g(x) = f(g(x)) of
mappings f, g, a ResNet is a function R(x) from Rd to R given by

R(x) = L ◦ (T [L] + Id) ◦ · · · ◦ (T [1] + Id) ◦ Ak(x), (1)

where Ak : Rd → Rk and L : Rk → R are affine transformations, Id : z 7→ z is the identity
mapping, and T [i](i = 0, 1, ..., L) are basic residual blocks. Each block T [i] : Rk → Rk further
consists of two layers:

• an activation layer Rk → Rni : z 7→ σ(Wiz + bi) with ni neurons, and
• an identity layer Rni → Rk : σ(Wiz + bi) 7→ Viσ(Wiz + bi) with k neurons,
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Figure 1: An example of a ResNet from R2 to R belonging to RN (k = 3, N = 2, L = 3). Every
residual block is composed of an activation layer followed by an identity layer. The activation layer
neurons are colored yellow, while the identity layer neurons are grey. The maximum number of
neurons in each activation layer is 2, each identity layer has 3 neurons, and it has 3 blocks.

where parameters Wi ∈ Rni×k, Vi ∈ Rk×ni , b ∈ Rni (i = 1, 2, · · · , L), and σ(·) is the generalized
ReLU activation function for vector output, i.e., σ(x1, x2, · · · , xn) = (max 0, x1, · · · ,max 0, xn)
for x1, x2, · · · , xn ∈ R. To this end, we write T [i](z) = Viσ(Wiz + bi).

We use L to denote ResNet’s depth defined as the number of residual blocks, and its width N is
defined as the maximum number of activation layer neurons, i.e., max{n1, n2, · · · , nL}. For
conciseness of notation, we denote by RN (k,N,L) the set of ResNet functions from Rd to R,
with width N , depth L, and k neurons in each identity layer. To keep our study interesting, we
always assume that k ≥ d where d is the input dimension. Otherwise, the universality of the ResNet
does not hold. 4. For our later discussion, we define a ResNet as ResNet with bottleneck blocks
(b-ResNet) if it belongs to RN (k,N = C,L) where C is an absolute constant (much smaller than
and independent of input dimension d). We have an example of the ResNet structure defined above in
Fig. 1.

2.2 PROBLEM STATEMENT

Lin & Jegelka (2018) shows the universal approximation capability for ResNet with even one neuron
per activation layer in each block: it can approximate any Lebesgue-integrable function with arbitrary
error as the depth L goes to infinity. Thus, we need to characterize ResNet’s universal approximation
capability to solve the open question: how many tunable weights are needed for general ResNet to
approximate a function to an error. We give the following problem statement.

Given f⋆ : [0, 1]d → R belong to some function space F and fix d ∈ N+ and the ResNet model
H = RN (k,N,L), we are interested in the following two questions specifically.

▷ Lower bound. What is the minimum number of weights of ResNet required to approximate any
f⋆ ∈ F to an error ε?

▷ Upper bound. What is the number of weights of a ResNet architecture sufficient to approximate
any f⋆ ∈ F to an error ε? Or does there exists k,N,L such that inf f̃∈H

∥∥∥f̃ − f⋆
∥∥∥
∞

≤ ε holds with
relatively smaller number of tunable parameters?

Here tunable parameters refer to non-zero parameters in ResNet. Note the answer to the two questions
usually depends on the desired error ε, the input dimension d, and the function space F . In this paper,
we use uniform norms (∥ · ∥∞) to measure the distance between functions. Our main results show
that RN (k,N,L) with k = d+ c1, N = c2 (c1, c2 are absolute constants) and proper L can achieve
powerful approximation capability in various function classes. It can approximate specific functions
with fewer tunable functions than that of FNNs.

4If k < d, the ResNet with one neuron per activation layer belongs to the set of narrow networks with widths
smaller than or equal to d (Prop. 1). Therefore, the ResNet may lose the universality since narrow-width (smaller
than d+ 1) ReLU networks cannot approximate all Rd continuous functions Hanin & Sellke (2017).
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2.3 PROOF IDEAS AND NOVELTY

We outline the proof ideas as follows.

Lower Bound. We establish that ResNet can be conceptualized as a sparse FNN (Prop. 1), implying
that the lower bound of ResNet must exceed that of FNN. We then derive the generalized lower
bounds of ResNet on the approximation of various function class from the lower bounds of FNNs.

Upper Bound. Drawing inspiration from the work of Yarotsky (2017), where DNNs are constructed
to approximate the function x2 and xy, we construct ResNet to approximate these fundamental
functions. Then any polynomial can be expressed as a composition of the product function xy, and
smooth functions can be approximated by polynomials due to the local Taylor expansion property. By
constructing ResNet to approximate these functions, we can derive upper bounds on the approximation
of polynomials and smooth functions. Our results show that b-ResNet is enough to approximate these
smooth functions with fewer tunable weights than that of FNN.

Our novelty lies in the theoretical exploration of the approximation capabilities of ResNet, specifically
b-ResNet. Our proof utilizes a new construction of ResNet blocks for approximating primitive
functions x2 and x · y. Furthermore, the role of identity mappings is greatly leveraged in the
construction. Moreover, we extend the result that ResNet with one neuron per activation layer can
generate any step functions, to piecewise-linear function through constructive methods, then providing
an upper bound approximation for continuous functions. We uncover the extensive expressive power
of b-ResNet, providing theoretical guarantees and insights into the successful performance of ResNet.

3 LOWER BOUNDS ON RESNET’S FUNCTION APPROXIMATION CAPABILITY

In this section, we build the explicit relation between ResNet and FNNs to establish the lower bound
on the complexity of ResNet to approximate polynomials and other function classes including smooth
functions and continuous functions space. The lower bounds help us to analytically show our upper
bounds are optimal in terms of ε in Sec. 4.

First, we propose a key argument that a ResNet can be regarded as a special sparse ReLU network.

Proposition 1. For any ResNet R(x) ∈ RN (k,N,L) of the input x ∈ [0, 1]d with W number of
tunable parameters, there exists an equivalent ReLU FNN Φ(x) : [0, 1]d → R with width N + k,
depth 2L, Θ(W + kL) number of tunable parameters, such that R(x) = Φ(x), ∀x ∈ [0, 1]d.

This proposition implies that if a ResNet can approximate a function up to an error ε, then an FNN
with a larger size can also approximate the same function up to ε. Thus one can bound ResNet’s
universal approximation capability by studying that of a larger-size FNN (might have an increase in
tunable parameters by a factor of d). That said, the lower bound of the complexity of ResNet must be
larger than or equal to that of FNN in terms of ε when approximating the same function.

Thus, building on the above discussion, lower bounds for FNNs in the existing literature can be
applied to ResNets in terms of ε. We discuss in the following. Regarding the smooth space
Cr([0, 1]d), Yarotsky (2017) established lower bounds of Θr(ϵ

−d/r)5 for continuous ReLU network
approximators and Θr,d(ϵ

−d/2r) for unconstrained deep ReLU networks. Later, Yarotsky (2018)
demonstrated optimal error approximation rates of Od(ωf (W

−1/d)) for continuous ReLU network
approximators, and Od(ωf (W

−2/d)) for unconstrained deep ReLU networks, where W represents
the number of tunable weights and ωf (t) := sup |f(x)− f(y)| : |x− y| ≤ t is the modulus of
continuity. If f belongs to the Lipschitz continuous function class, the optimal upper bound for
the ReLU FNN is Od(ε

−d) for continuous weight selection, and Od(ε
−d/2) for unconstrained deep

networks. We will return to these discussions in the next section. Yet, for the polynomial function
space (a smaller space compared to continuous and smooth functions), the aforementioned lower
bound is not applicable and the lower bound on the approximation of polynomials is not available in
the existing literature although the proof is simple. Below we give the lower bound of the complexity
of ResNet on the approximation of polynomials where the purpose is to show the upper bound in
Thm. 4 is ε-order optimal in the next section.

5Here Θd(g(ε)) ∼ Cg(ε) for sufficient small ε where C is some constant which can not depend on ε but
depend on d. The subscript d on Θ emphasizes that the constant C may depend on d.
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We begin with some notations. Let x ∈ Rd and α = (α1, α2, · · · , αd) where αi ∈ N. Define xα =
xα1
1 xα2

2 · · ·xαd

d and this is called a monomial. The degree of the monomial is |α| := α1+α2+· · ·+αd.
Then a multivariate polynomial is a sum of several monomials and its degree is the highest degree
among these monomials. Then we give the theorem.

Theorem 2. Let x = [x1, x2, . . . , xd] ∈ [0, 1]d and P(d, p)(p ≥ d) be the set of d dimension
polynomial functions with degree p. If a ReLU FNN Ψ(x) : [0, 1]d → Rd with width N , depth L and
T = NL neurons can approximate any f ∈ P(d, p) to an error ε, i.e.

|Ψ(x)− f(x)| < ε,∀x ∈ [0, 1]d,

then we have T ≥ Θd(log 1/ε). Note this lower bound can also be applied to ResNet.

4 UPPER BOUNDS ON RESNET’S FUNCTION APPROXIMATION CAPABILITY

In this section, we present theoretical results on the approximation capability of ResNet. Our main
result is that b-ResNet can approximate polynomials and smooth functions with fewer tunable param-
eters than those of FNNs. Subsection 4.1 presents the upper bounds for ResNet on approximating
monomials. Subsequently in subsection 4.2 we extend the results to polynomials and smooth
functions in Sobolev space following the work of Yarotsky (2017). In subsection 4.3, the properties
of ResNet on approximating CPwL functions are discussed, followed by the upper bound of ResNet
on the approximation of continuous functions.

4.1 APPROXIMATING MONOMIALS

Our first key result shows that b-ResNet RN (k = O(d), N = C,L) can approximate any monomials
where L depends on d and the desired epsilon ε, and C is an absolute constant independent of d.
Moreover, this result explains why b-ResNet can approximate polynomials and smooth functions
with fewer tunable parameters.

Theorem 3. Let x = [x1, x2, · · · , xd] ∈ [−M,M ]d,M ≥ 1, α ∈ Nd and xα be any given monomial
with degree p, i.e., |α| = p. Then there exists a b-ResNet

R ∈ RN
(
d+ 3, 4,O(p log(p/ε) + p2 logM)

)
such that

∥R− xα∥C([−M,M ]d) < ε

while having O
(
p log (p/ε) + p2 logM

)
tunable weights.

Note that the number of total weights of R is O(dp log(p/ε)) when M = 1. However, in each
constructive residual block, there are only absolute constant non-zero weights as shown in our
constructive proof. Thus it is enough to adjust O(p log(p/ε)) weights. For M > 1, we have the same
analysis. Moreover, it is easy to see that the upper bound in the above theorem is independent of
d. Actually, the dimension d is embedded to p because any monomial with degree p can always be
viewed as a product function of dimension p. For example, x21x2x

2
3 = π(x1, x1, x2, x3, x3) where

π(x1, · · · , xd) = x1x2 · · ·xd is the product function.

We highlight several key observations and discussions from the analysis and results in the following.

ResNet vs FNNs. We show that ResNet is capable of approximating any monomial with degree p on
[0, 1]d with O (p log(p/ε)) number of tunable weights, surpassing the upper bound of ReLU FNNs.
According to DeVore et al. (2021), a ReLU network with width O(d) and depth O (p log(p/ε)) can
approximate any monomial with degree p, resulting in a total weight count of O

(
d2p log(p/ε)

)
.

According to their construction, there are O (dp log(p/ε)) tunable weights (non-zero weights). Thus,
our result has a reduction by a factor d. Notably, our upper bounds on the approximate value of
product functions and monomials are optimal to ε according to the lower bound in Theorem 2.

Root of reduction. Note that each identity mapping can be realized by 2d ReLU units (x =
[x]+ − [−x]+) but it only may lead to an ’additive’ reduction of d tunable weights compared to an
FNN. In our study, however, this additive reduction of d tunable weights, as seen in our b-ResNet
model, does translate into a multiplicative reduction by a factor of d. We establish this result by
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proving that a b-ResNet with a constant number of tunable weights per residual block can approximate
functions with the same accuracy as a ReLU FNN requiringO(d) tunable weights. For the reason why
identity mappings between layers play a big role in b-ResNet, we conduct a brief analysis. Assume
that the input of a block is a d-dimensional vector consisting of linearly independent elements. The
initial layer (activation layer) of a bottleneck block reduces the dimension to a smaller number
N ≪ d, and the following layer (identity layer) reinstates the width to d. The absence of identity
mapping will make the value of each neuron in the identity layer be the linear combination of N
neurons in the previous layer, thereby significantly reducing the effective width of this layer to N .
Nevertheless, the inclusion of identity mapping enables the recovery of linear independence for the d
neurons in this layer, thus endowing them with exceptional expressive capabilities even with fewer
weights. More constructive details can be found in Appendix C.

Deep vs Shallow. Shapira (2023) provide a lower bound on the complexity of shallow FNNs to
approximate any non-normalized monomial over [−M,M ]d which scales exponentially with d (refer
to Thm. 3 Shapira (2023)). By proposition 1, this lower bound also applies to shallow ResNet.
Conversely, Theorem 3 gives a mild upper bound for deep ResNet which scales polynomially with d.
This underscores the benefits of deep networks. The problem of depth-width tradeoffs in FNNs has
been discussed extensively in classical literature (e.g., Safran & Shamir (2017); Liang & Srikant
(2016)). However, in this paper, we have not delved into the depth-width tradeoffs for ResNets due
to our focus on constructing b-ResNets (with constant width). A more extensive exploration is a
valuable and interesting future direction.

4.2 APPROXIMATING POLYNOMIALS AND SMOOTH FUNCTIONS

Polynomials are the summation of monomials and a smooth function can be approximated by a
polynomial as per the local Taylor expansion. In this subsection, we display the upper bounds on the
approximation of polynomials (Thm. 4) and smooth functions (Thm. 5).
Theorem 4. Let x = [x1, x2, · · · , xd] ∈ [0, 1]d. For a multivariate polynomial P (x) with degree p,
i.e., P (x) =

∑
α∈E cαx

α where E = {α ∈ Nd : |α| ≤ p}, there exists a ResNet
R ∈ RN (d+ 4, 4,O (p|E| log (p/ε)))

such that
|R(x)− P (x)| < ε ·

∑
|α|∈E

|cα|, ∀x ∈ [0, 1]d.

Additionally, the ResNet has O(p|E| log(p/ε)) tunable weights.

Note |E| =
(
p+d
p

)
which exponentially increase in d when p or d is very large. Nonetheless, we can

see this upper bound is optimal in terms of ε according to Thm. 2.

The Sobolev space W r,∞([0, 1]d) is the set of functions belonging to Cr−1([0, 1]d) whose (r− 1)-th
order derivatives are Lipschitz continuous. Further definitions can be found in Appendix D. We then
give the upper bounds of ResNet’s complexity in the following theorem.
Theorem 5. Fix r, d ∈ N+. There is a ResNet R(x) ∈ RN (d+ 4, N = 4, L) that can approximate
any function from the unit ball of W r,∞([0, 1]d) to ε where L = Od,r(ε

−d/r log 1/ε).

The number of tunable parameters is still less than that of FNN by a factor d based on the polynomial
approximation methods. However, the hidden constant c(d, r) in Od,r(ε

−d/r log 1/ε) is very large in

d where an estimation is given as ( 2
d+1
r d
r )d < c(d, r) < ( 2

d+1
r d
r )ddr+2(d+r)r. Moreover, Yarotsky

(2017) established the lower bound Θr(ϵ
−d/r) of the tunable weights for continuous ReLU network

approximators on the approximation of the Sobolev space W r,∞([0, 1]d). Based on Prop. 1, the
lower bound can also apply to ResNet. Thus, we can see the upper bound in Thm. 5 is nearly tight
up to a log factor for ResNet. As a closing remark, we acknowledge that while the Sobolev space is
critical, it is a limited function class.

4.3 APPROXIMATING CONTINUOUS FUNCTIONS

In this subsection, we show that ResNet, a type of narrow network, can generate any continuous
piecewise linear (CPwL) functions, and furthermore, we establish the upper bound on ResNet’s
complexity to approximate continuous functions over [0, 1]d.
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Theorem 6. For any CPwL function f : Rd → R, there exists a ResNet R(x) ∈ RN (d+ 1, 1, L)
with L = O(Md) that can exactly represent f where M is an f -dependent number.

Moreover, for any given continuous function f : [0, 1]d → R, one can use ResNet with one neuron
per activation layer to approximate f within ε with Od(ωf (ε)

−d) tunable weights by piece-wise
spline approximation where

ωf (t) := sup{|f(x)− f(y)| : |x− y |≤ t}.

Note that M is implict which is an f -dependent number. It depends on the property of the input
CPwL function f including the number of pieces and linear components. More details about the
representation of CPwL functions can be found in Tarela & Martinez (1999); Wang & Sun (2005)
Moreover, a recent work Chen et al. (2022) derived a dimension-independent bound for ReLU
networks if the number of pieces and linear components of the target CPwL function is known. We
conjecture that ResNet can also satisfy the property by similar methods and leave it to future work.
Piecewise linear spline approximation holds a significant position in approximation theory, as it

is a basic method of approximating functions. Therefore, studying the expressive power of neural
networks for piecewise linear functions becomes particularly important. More discussions can be
found in Appendix E.2.

Theorem 6 provides another approach to demonstrating the universal theorem. While Lin & Jegelka
(2018) shows that ResNet with one neuron per activation layer can approximate any step function, we
extend step functions to any CPwL function. When we use a one neuron per activation layer ResNet
to approximate continuous functions over [0, 1]d, the weights are at most Od(ωf (ε)

−d). Based on
the discussion in Sec. 3, it is worth noting that the upper bound Od

(
ωf (ε)

−d
)

is tight to ε among
continuous approximators.

Finally, we briefly comment on the limitations of our results. In Sec. 3, we have discussed that
the optimal approximation rates in Sobolev space W r,∞([0, 1]d) and continuous function space
C([0, 1]d) achieved by unconstrained deep ReLU FNNs, should be O(W−2r/d) and O(ωf (W

−2/d))
respectively Yarotsky (2018); Yarotsky & Zhevnerchuk (2020); Shen et al. (2022b). Our results are
suboptimal by an exponential factor of 1/2 due to polynomial approximation methods compared
with these more modern quantization-based arguments. Even though b-ResNet can achieve the
suboptimal approximation rate, it remains uncertain whether it can reach the optimal approximation
rate. However, drawing from similar methods to Shen et al. (2022b) which are possible for ResNet
structure, we conjecture this non-trivial and important extension is feasible and we leave them in
future work.

5 APPLICATION ON KST STRUCTURE

Building on previous conclusions, we identify the curse of dimensionality in approximating poly-
nomials, smooth functions, and continuous functions. In this section, we present Kolmogorov
Superposition Theorem and illustrate how to leverage ResNet to avoid the curse of dimensionality
within a specific function class dense in C([0, 1]d).
Theorem 7 (Kolmogorov Superposition Theorem (KST),1957). Every continuous function f defined
on [0, 1]d can be represented in the form:

f (x1, · · · , xd) =
2d∑
q=0

g

(
d∑

i=1

λiϕq (xi)

)
(2)

where λp are constants for p = 1, · · · , d satifying 0 < λp,
∑d

p=1 λp ≤ 1, ϕq(x) are strictly
increasing Lipschitz functions (Lip < 1) (independent of f ) defined on [0, 1] for q = 0, · · · , 2d and
g(u) is a continuous function depending on f defined on [0, 1].

This version is from Theorem 1.1 of Chapter 17 in Lorentz et al. (1996). The KST theorem tells us that
a high-dimensional continuous function can be decomposed into a composition of one-dimensional
continuous functions. Thus, the analysis of high-dimensional functions can be reduced to analyzing
one-dimensional functions. More references about KST can be found in He (2023); Lai & Shen
(2021).
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In KST, g and ϕq(q = 1, 2, · · · , d) are termed as outer and inner functions respectively. The KST
structure, resembling a two-layer neural network with these functions as activation functions, prompts
an interesting question: can we circumvent the curse of dimensionality in a certain function class by
approximating the univariate inner and outer functions using neural networks? Noting the Lipschitz
continuity of inner functions, we examine this question. If each neural network approximates a
univariate Lipschitz function with an error of ε, each complexity is O(ε−1). Integrating these
networks into a KST structure results in an overall complexity of approximately O(d2), potentially
evading the curse of dimensionality. However, unlike the inner function, the outer function lacks
Lipschitz continuity. Thus, we could potentially avoid the curse of dimensionality in a function class
by ensuring Lipschitz continuity of the outer function. We Define

KC =
{
f ∈ C([0, 1]d) : the outer function gf is Lipschitz continuous with Lipschitz constant ≤ C

}
.

As stated in Lai & Shen (2021), KC is dense in C([0, 1]d) as C → ∞. The function in KC can be
represented by the form 2, where g, ϕq (q = 1, 2, · · · , d) are Lipschitz continuous. Consequently, we
can approximate Lipschitz continuous functions using linear spline functions and any n piece linear
spline can be expressed as a linear combination of n ReLU functions. However, as pointed out in Lai
& Shen (2021), it is not easy to judge if a function belongs to KC . The outer function g can vary
badly even though f is very smooth such as a linear polynomial. Regardless, ResNet enables us to
overcome the curse of dimensionality in KC . The precise result follows.
Theorem 8. For any f ∈ KC , there exists ResNet R(x) ∈ RN (d+ 2, n, L) from [0, 1]d to R with
n = O(d2ε−1) and L = O(d2) such that |R(x)− f(x)| < ε for any x ∈ [0, 1]d. Moreover, R has
O(d4ε−1) tunable parameters.

6 EXPERIMENTS

Figure 2: Comparison of testing MSE loss (top) and MAX loss (bottom).

In this section, we provide function approximation results to numerically validate the theoretical
results presented in Sec. 4. Specifically, we utilize the following function to test the universal
approximation capability of b-ResNet.

f(x) =

m∑
i=1

[ai
∏
j∈S1

i

xj + bi sin(
∏
k∈S2

i

xk)], (3)

where the parameter settings in equation 3 are included in Appendix H. We then compare b-ResNet
with fully connected NN for approximating the function in 3 with different dimensions. The results,
including the mean square error (MSE) and the infinite norm error (MAX) on testing samples, are
shown in Fig. 6 and 2, respectively.

The experiment results demonstrate (i) the exceptional approximation capability of b-ResNet for
learning complex functions, (ii) efficient structure design which highly reduces training parameters,
and (iii) strong scalability for approximating high-dimension functions.
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A NOTATIONS

In this appendix, we introduce some basic notations for use in subsequent proofs.

A.1 FEEDFORWARD NEURAL NETWORKS (FNN)

As is known to all, FNN is a function Φ : Rd :→ R which is formed as the alternating compositions
of ReLU function σ, and affine transformations A[i](y) = Uiy + vi with Ui ∈ Rdi×di−1 , vi ∈
Rdi , d0 = d for i = 1, 2, · · · , L. Specifically,

Φ (x) = L ◦ σ ◦ A[L] ◦ σ ◦ A[L−1] ◦ · · · ◦ σ ◦ A[1] (x)

where L is a linear transformation. Here L denotes the number of layers of the FNN, and the width
of the FNN is conventionally defined by max{d1, d2, · · · , dL} := K. The ReLU activation function
is defined by:

σ(x) := ReLU(x) = max (x, 0) = (x)+ , x ∈ R
and for x ∈ Rd, σ(x) := (σ(x1), · · · , σ(xd)). Typically, it is presumed that the number of neurons
in each layer of an FNN is the same, which is equal to the width K, as any neuron deficits in a layer
can be dealt with by adding K − dj neurons whose biases are zero in layer j. The weights between
these extra neurons are consequently assigned to zero.

A.2 RESNET

ResNet R(x) : Rd → R is a combination of an initial affine layer, multiple basic residual blocks with
identity mapping, and a final affine output layer:

R(x) = L ◦ (T [L] + Id) ◦ (T [L−1] + Id) ◦ · · · ◦ (T [1] + Id) ◦ Ak(x), (4)
where Ak : Rd → Rk and L : Rk → R are affine transformations. Besides, T [i](i = 0, 1, ..., L) are
basic residual blocks, i.e., T [i](z) = Viσ (Wiz + bi) where Wi ∈ Rni×k, Vi ∈ Rk×ni , bi ∈ Rni .

Concretely, we denote the output of the i-th block by z[i]. Then the outputs of each block can be
formulated as follows:

z[0] = Ak (x) =W0x+ b0,

T [i](z) = Viσ (Wiz + bi) ,

z[i] = T [i]
(
z[i−1]

)
+ z[i−1], i = 1, 2, · · · , L,

R(x) = L
(
z[L]
)
= Bz[L],

(5)

where W0 ∈ Rk×d, b0 ∈ Rk,Wi ∈ Rni×k, Vi ∈ Rk×ni , bi ∈ Rni , B ∈ R1×k and x ∈ Rd.

The ResNet’s depth, denoted by L, is defined as the number of residual blocks. The ResNet’s width is
the maximum number of neurons in the activation layer, that is max{n1, n2, ..., nL}. The subscript
k of Ak refers to the number of neurons in the identity layer. We denote by RN (k,N,L) the set of
ResNet functions width N , depth L and k neurons in each identity layer.

Additionally, we define

ζ [i] = T [i]
1 (z[i−1]) = σ(Wiz + bi),

γ[i] = T [i]
(
z[i−1]

)
= T [i]

2

(
ζ [i]
)
= Viζ

[i] = ViT [i]
1

(
z[i−1]

)
and

z[i] = z[i−1] + γ[i]

(6)

for i = 1, 2, · · · , L. See Figure 3 for an illustration.

Notation. Let column vectors ai ∈ Rmi , where i = 1, 2, · · · , n and mi ∈ N+ := {1, 2, · · · }.
To represent these vectors concisely, we use (a1, a2, · · · , an) to denote

[
aT1 , a

T
2 , · · · , aTn

]T ∈
Rm1+m2+···+mn . Here, aT denotes the transpose of a. Let a ∈ Rm. If we write a vector as
(Rl, a) ∈ Rm+l, this implies that the value of the vector in the position represented by ’Rl’ does
not matter. If l = 1, we always use ’-’ to substitute ’R’, i.e., (−, a) ∈ Rm+1 implies the value of
the position represented by ’-’ does not matter. For a vector v in Rm, vi is the i-th entry of v for
i = 1, 2, · · · ,m.
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Figure 3: An illustration figure for the notation. The yellow neurons are in the activation layer and
the grey neurons are in the identity layer.

B PROOF OF PROPOSITION 1 AND THEOREM 2

In this appendix, we provide the proofs of conclusions in Sec. 3.

B.1 PROOF OF PROPOSITION 1

For a ResNet in RN (k,N,L) from [0, 1]d to R defined by the formula 4, 5 and 6, we now construct
a special network with depth L and width N + k having the same output. We first suppose the input
of the network is y[0] = Ak(x) = z[0] and denote the output of the i-th layer by y[i]. What’s more, we
assume in each layer the bottom k neurons of each layer are ReLU-free, i.e., the activation function
of them is identity mapping σ(x) = x. The activation of the rest of neurons are ReLU. Then by
assigning some weights to the first layer, we can have y[1] = (ζ [1], z[0]). In the next layer, we can
easily compute z[1] = V1ζ

[1]+ z[0]. Then we have y[2] = (RN , z[1]). Now assume y[2i] = (RN , z[i]).
Then in the first N neurons of the next layer, we compute T [i+1]

1 (z[i]) = ReLU(Wi+1z
[i] + bi). In

the bottom k ReLU-free neurons, we copy z[i]. Then y[i+1] =
(
ζ [i+1], z[i]

)
. Then in the next layer,

we can compute
z[i+1] = Vi+1ζ

[i+1] + z[i]

i.e., y[2(i+1)] = (RN , z[i+1]). By induction, we have found a special 2L deep network with top N
ReLU neurons and bottom k ReLU-free neurons having the same output as the ResNet. This process
can be seen in Figure 4.

Next, we construct a real ReLU network Φ that has the same size and output as the special Network.
Because the domain [0, 1]d is compact, there exists Ci ∈ Rk such that z[i] + Ci > 0 for all
i = 0, 1, 2, · · · , L. Now, we suppose the first layer of Φ is u[0] = ReLU(Ak(x)+C0) = ReLU(z[0]+
C0). Denote the j-th layer of Φ is u[j−1]. In each subsequent layer of Φ, the width is N + k. We
denote u[i] = (u

[i]
(N), u

[i]
(k)) where u[i](N) is the value of top N neurons and u[i](k) is the value of bottom

k neurons in the layer i+ 1. Then note T [1]
1 (z[0]) = ReLU(W1z

[0] + b1). We can compute

u
[1]
(N) = ReLU

(
W1(u

[0] − C0) + b1

)
= ReLU(W1z

[0] + b1) = ζ [1]

and u[1](k) = u[0] = ReLU(z[0] + C0). Note z[i] = ReLU(z[i] − Ci) + Ci. We can compute

u
[2]
(k) = ReLU

(
V1u

[1]
(N) + u

[1]
(k) − C0 + C1

)
= ReLU

(
V1ζ

[1] + z[0] + C1

)
= ReLU(z[1] + C1).

Now, we suppose u[2j] = (RN ,ReLU(z[j] + Cj)). Then we can compute

u
[2j+1]
(N) = ReLU

(
Wj+1(u

[2j] − Cj) + bj+1

)
= ReLU(Wj+1z

[j]+bj+1) = T [j+1]
1 (z[j]) = ζ [j+1]
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Figure 4: ResNet (top) can be generated by a special FNN (bottom). All grey neurons are ReLU-free
and all yellow neurons are with ReLU activation. Moreover, for ResNet, the yellow neurons are in
the activation layer and the grey neurons are in the identity layer.

and u[j+1]
(k) = ReLU(u

[j]
(k)) = ReLU(z[0] + C0). Then in the next layer,

u
[2j+2]
(k) = ReLU

(
Vj+1u

[2j+1]
(N) + u

[2j+1]
(k) − Cj + Cj+1

)
= ReLU

(
Vj+1T [j+1]

1 (z[j]) + z[j] + Cj+1

)
= ReLU(z[j+1] + Cj+1).

By induction, we can output z[L] in the last layer, i.e., u[2L] = (RN ,ReLU(z[L]+CL)). Then output
z[L] by some affine transformation A(u[2L]) = ReLU(z[L] + CL)− CL = z[L].

From the construction of the ReLU network, we can see the FNN has Θ(W + kL) non-zero training
weights.

B.2 PROOF OF THEOREM 2

Because the product function f(x) = x1x2 · · ·xd belongs to P(d, p), it suffices to show the lower
bound of the complexity of an FNN on the approximation of f is Θd(log 1/ε). Let x ∈ [0, 1]. Define
Ψ̃(x) = Ψ(x, x, · · · , x) and f̃(x) = f(x, x, · · · , x) = xd. Then by the assumption, we have∣∣∣Ψ̃(x)− f̃(x)

∣∣∣ < ε, x ∈ [
1

2
, 1].

In the interval [1/2, 1], f̃ is strictly convex because

f̃ ′′(x) = d(d− 1)xd ≥ d(d− 1)(
1

2
)d := c1 > 0.

By lemma 2.1 in Telgarsky (2015), Ψ̃ is a CPwL function over [0, 1] with at most (2N)L linear
pieces, i.e. [1/2, 1] is partitioned into at most (2N)L intervals for which Ψ̃ is linear. Now, we divide
[1/2, 1] into (2N)L intervals. Thus, there exists an interval [a, b] ⊂ [1/2, 1] with b − a ≥ 1

2(2N)L

over which Ψ̃ is linear. Then define

G(x) = f̃(x)− Ψ̃, x ∈ [a, b].

Then |G(x)| < ε and G′′(x) ≥ c1 > 0 for any x ∈ [a, b] due to the linearity of f̃ . Then we consider
x ∈ [a, b] and local taylor expansion at (a+ b)/2:

G(x) = G(
a+ b

2
) +G′(

a+ b

2
)(x− a+ b

2
) +

G′′

2
(ξ)(x− a+ b

2
)2 whereξ ∈ [a, b].
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Then let x = a and x = b, we have

G(a) = G(
a+ b

2
)−G′(

a+ b

2
)(
b− a

2
) +

G′′

2
(ξ)(

b− a

2
)2, ξ ∈ [a,

a+ b

2
] and

G(b) = G(
a+ b

2
) +G′(

a+ b

2
)(
b− a

2
) +

G′′

2
(η)(

b− a

2
)2, η ∈ [

a+ b

2
, b].

It follows that
max{G(a), G(b)} ≥ G(

a+ b

2
) +

c1
2
(
b− a

2
)2.

Thus, by noting b− a ≥ 1
2(2N)L

we have

2ε > max{G(a), G(b)} −G(
a+ b

2
) ≥ c1

2
(
b− a

2
)2 ≥ c1

2

(
1

4(2N)L

)2

.

Then
(2N)2L ≥ c

ε
where c is a constant depending on d. It follows from the number of neurons T = NL that

log
2T

L
≥ 1

2L
log

c

ε

⇐⇒ 4T ≥ u

log u
log

c

ε
≥ log

c

ε
where u =

2T

L
.

Therefore, the number of neurons must be at least the order log 1/ε.

C PROOF OF THEOREM 3 AND THEOREM 4

Our ideas in this appendix are from DeVore et al. (2021). It should be noted that while DeVore
et al. (2021) inspired our approach to polynomial approximation, there are big differences in the
construction details. Significantly, our main contribution is the successful demonstration of ResNet’s
construction proof.

The discussion in Subsection C.1 commences with a consideration of the fundamental functions,
ranging from x2 to xy, which we use to construct our approximation using ResNet. Subsequently, in
Subsection C.2, we begin by establishing Theorem 3 for the case [0, 1]d. This is then extended to the
case [−M,M ]d for M > 1 in Subsection C.3.

C.1 PRELININARIES

We recall that the so-called hat function h is defined by

h(x) = 2(x)+ − 4

(
x− 1

2

)
+

+ 2(x− 1)+. (7)

Let hm(x) be the m-fold composition of the function h, i.e. hm = h ◦ h ◦ · · · ◦ h︸ ︷︷ ︸
m times

which is the

so-called sawtooth function. Then
x2 = x−

∑
m≥1

4−mhm(x), x ∈ [0, 1].

Next, we define

S(x) := x2 and Sn(x) := x−
n∑

m=1

4−mhm(x), n ≥ 1, x ∈ [0, 1].

We then have

|S(x)− Sn(x)| ≤
∞∑

k=n+1

4−k ≤ 1

3
· 4−n, x ∈ [0, 1]. (8)

Sn(x) is a piecewise linear interpolation of S on [0, 1], using 2n+1 uniformly distributed breakpoints,
as indicated in Yarotsky (2017) (see Proposition 1). Using equation 8, we can generate Sn and
approximate x2.
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Proposition 9. There exists a ResNet R(x) ∈ RN (2, 4, L) with L = O(log 1/ε) such that∣∣R(x)− x2
∣∣ < ε, x ∈ [0, 1]

while having O(log 1/ε) neurons. Especially, R(x) ∈ RN (4, 2, n) generate Sn exactly.

Proof. It suffices to construct a ResNet required to represent Sn. Then we let the right-hand side
of (8) equal to ε, i.e., 1

34
−n = ε. We then have n = O(log 1/ε). Next, we construct a ResNet

R(x) ∈ RN (4, 2, n) generating Sn(x) exactly.

Figure 5: Illustration for the constructive first block (left) and the m-th block (right). Grey represents
the identity layer and yellow represents the activation layer.

Let z[0] = A2(x) = (x, 0). Then by equation (7), we can use three ReLU units to store (x)+, (x−
1/2)+ and (x− 1)+ and hence compute h(x). At the same layer, use one ReLU unit to copy x. Then
in the first residual block, we can compute

γ[1] = T [1](z[0]) = (−x− h(x)/4, x− h(x)/4)

so that

z[1] = γ[1] + z[0] = (−x− h(x)/4, x− h(x)/4) + (x, 0) = (−h(x)/4, S1(x)).

See Figure 5 (left) for illustration.

Now we assume the output of the m-th block is z[m] = (−4mhm(x), Sm(x)). Also by (7) and
assigning appropriate weights, we can use three units to compute h(hm(x)) = hm+1(x) and use one
unit to copy −4mhm(x) by a = −(−a)+. Thus, we can output

γ[m+1] = T [m+1](z[m]) = (−4m+1hm+1(x)− 4mhm(x),−4m+1hm+1(x))

in the next block so that

z[m+1] = (−4m+1hm+1(x)−4mhm(x),−4m+1hm+1(x))+z
[m] = (−4m+1hm+1(x), Sm+1(x)).

See Figure 5 (right) for illustration. By induction, we complete our proof. Concretely, z[n] =
(−4nhn(x), Sn(x)) and R(x) = L(z[n]) = Sn(x) by letting L(x1, x2) = x2.

Let x, y ∈ [0, 1]. We can approximate the product function xy by using the equality xy = ( |x+y|
2 )2−

( |x−y|
2 )2. Define

πn(x, y) = Sn(
|x+ y|

2
)− Sn(

|x− y|
2

). (9)

It then follows from equation (8),

|πn(x, y)− xy| ≤ 4−n, ∀x, y ∈ [0, 1]. (10)

For the later rigorous derivation, we also need to prove the following lemma:

Lemma 10.
πn(x, y) ∈ [0, 1], ∀x, y ∈ [0, 1]. (11)
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Proof. According to the definition of Sn, we have

x2 ≤ Sn(x) ≤ x, for x ∈ [0, 1].

Then

πn(x, y) = Sn(
x+ y

2
)− Sn(

|x− y|
2

)

≤ x+ y

2
− (x− y)2

4

=
1

4
(x(2− x) + y(2− y) + 2xy)

≤ 1

4
(1 + 1 + 2) = 1.

Next, we show πn(x, y) ≥ 0. We start from

πn(x, y) = Sn(
x+ y

2
)− Sn(

|x− y|
2

)

=
x+ y

2
−

n∑
i=1

4−ihi(
x+ y

2
)− |x− y|

2
+

n∑
i=1

4−ihi(
|x− y|

2
)

= min{x, y}+
n∑

i=1

4−i

(
hi(

|x− y|
2

)− hi(
x+ y

2
)

)
.

(12)

Now we introduce the function

ζ(x) := 2min{|x− s| : s ∈ Z}, x ∈ R.
Then for x ∈ [0, 1] we have

h(x) = ζ(x) and hm(x) = ζ(2m−1x),m ≥ 2.

Since ζ is subadditive, i.e. ζ (t+ t′) ≤ ζ(t) + ζ (t′), we have

hi(
x+ y

2
) = hi(

|x− y|
2

+ min{x, y})

= ζ(2i−1(
|x− y|

2
+ min{x, y}))

≤ ζ(2i−1 |x− y|
2

) + ζ(2i−1 min{x, y})

= hi(
|x− y|

2
) + hi(min{x, y}).

(13)

Namely,

hi(
|x− y|

2
)− hi(

x+ y

2
) ≥ −hi(min{x, y}).

From (12), we then have

πn(x, y) ≥ min{x, y} −
n∑

i=1

4−i (min{x, y}) = Sn(min{x, y}) ≥ min{x, y}2 ≥ 0.

For x, y ∈ [−M,M ], we can approximate xy by the following remark.
Remark 11. If x, y ∈ [−M,M ], we can approximate xy by using the equality xy =

M2
[
( |x+y|

2M )2 − ( |x−y|
2M )2

]
. Because the domain of Sn is [0, 1], we define

π̂n(x, y) =M2πn(
x

M
,
y

M
) =M2

[
Sn(

|x+ y|
2M

)− Sn(
|x− y|
2M

)

]
. (14)

We have
|π̂n(x, y)− xy| ≤M24−n,∀x, y ∈ [−M,M ]. (15)
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Now we show ResNet can approximate the product function xy.
Proposition 12. Let x, y ∈ [−M,M ]. There exists a ResNet

R ∈ RN (3, (4, L))

from [−M,M ] to R with L = O(logM/ε) such that

|R(x, y)− xy| < ε, x, y ∈ [−M,M ]

while having O(logM/ε) neurons and tunable weights. Especially, the ResNet R(x, y) with width 4
and depth 2n can generate πn(x, y) exactly.

Proof. It suffices to construct a ResNet required to output πn(x, y). Let the right-hand side of (15)
equal ε. We can get n = O(logM/ε). Now, we construct a ResNet with width 4 and depth 2n to
represent πn(x, y).

Let A3(x) = (x+y
2M , x−y

2M , 0). Next, we can use the first block to output z[1] = ( |x+y|
2M , |x−y|

2M , 0) by
the simple observation |a| = (a)+ + (−a)+. See Figure 6 for illustration.

Figure 6: Illustration for computing |x| by a residual block.

Then, it follows from the proof of 9 that we can use the first n layers and 4 units in each layer to
output z[n+1] = (−, |x−y|

2M , Sn(
|x+y|
2M )) while keeping the value of the second neuron in each identity

layer unchanged. Next, by the same operation, we use the next n blocks to output

z[2n+1] = (−,−, Sn(
x+ y

2
)− Sn(

|x− y|
2

)) = (−,−, πn(x, y)/M2).

Thus, R(x, y) = L(−,−, πn(x, y)/M2) = πn(x, y) by letting L(x1, x2, x3) =M2x3. See Figure
7 for illustration.

Figure 7: Illustration for generating πn(x, y) by the constructive ResNet. Grey represents the identity
layer and yellow represents the activation layer.

Moreover, we can approximate the multiple product function x1x2 · · ·xd where x1, x2, · · · , xd ∈
[0, 1]. We can well-define by (11) that

πm
n (x1, x2, · · · , xm) = πn

(
πm−1
n (x1, x2, · · · , xm−1) , xm

)
,m = 3, 4, · · · for x1, · · · , xd ∈ [0, 1]

(16)
and π2

n(x1, x2) = πn(x1, x2). Then we have
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Proposition 13.
|πm

n (x1, x2, · · · , xm)− x1x2 · · ·xm| ≤ em4−n, x1, x2, · · · , xm ∈ [0, 1] (17)
as long as n ≥ 1 + log2m.

Proof. First, It follows from the definition of Sn and S(x) = x2 that

S(x)− Sn(x) = −
∞∑

m=n+1

4−mhm(x).

Note hm has the Lipschitz norm 2m. We have

∥S′ − S′
n∥L∞([0,1]) ≤ |

∞∑
m=n+1

4−m| · ∥h′m(x)∥L∞([0,1])

≤ |
∞∑

m=n+1

4−m2m|

≤ 2−n, n ≥ 1.

S′(x) = 2x so we have
S′
n(x) = 2x+ δ where δ ≤ 2−n. (18)

Define π(x, y) := xy. We have

∂1πn (x, y) = S′
n

(
x+ y

2

)
− 1

2
· 1{x≥y}S

′
n

(
x− y

2

)
+

1

2
· 1{x<y}S

′
n

(
y − x

2

)
=

1

2
(x+ y + δ)− 1

2
· 1{x≥y} (x− y + δ1) +

1

2
· 1{x<y} (y − x+ δ2)

= y + δ − 1{x≥y}δ1 + 1{x<y}δ2

= ∂1π (x, y) + δ − 1{x≥y}δ1 + 1{x<y}δ2,

(19)

where δ, δ1, δ2 ≤ 2−n. Moreover, it is the same when considering about ∂2πn(x, y). Thus, we have

∥∂iπ − ∂iπn∥L∞([0,1]2) ≤ 2−n+1, where ∂i := ∂xi
, i = 1, 2. (20)

Define πm(x1, x2, · · · , xm) = x1x2 · · ·xm. Now we assume

∥πj − πj
n∥C([0,1]j) ≤ cj4

−n (21)
holds for all j ≤ m − 1. Note, the inequality literally holds for j = 2 by letting c2 = 1. Then we
have
∥πm − πm

n ∥C([0,1]m) ≤ ∥π
(
xm, π

m−1
)
− πn

(
xm, π

m−1
)
∥C([0,1]m) + ∥πn

(
xm, π

m−1
)
− πn

(
xm, π

m−1
n

)
∥C([0,1]m)

≤ 4−n + ∥∂2πn∥L∞([0,1]2)

∥∥πm−1 − πm−1
n

∥∥
C([0,1]m−1)

≤ 4−n +
(
1 + 2−n+1cm−1

)
4−n

= (1 + αncm−1) · 4−n.

By induction, we have proved
∥πm − πm

n ∥C([0,1]m) ≤ cm4−n

where cm satisfies the recurrence formula cm = 1+ αncm−1,m ≥ 3, with initial value C2 = 1. The
solution is

cm =

m−2∑
j=0

αj
n ≤ (m− 1)αm−2

n .

If m ≤ 2n−1, we have

cm ≤ (m− 1)

(
1 +

1

2n−1

)m−2

< m

(
1 +

1

m

)m

< em.

Then we complete the proof and get
∥πm − πm

n ∥C([0,1]m) ≤ em4−n

for m = 3, 4, 5, · · · , as long as n ≥ 1 + log2m.
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C.2 PROOF OF THEOREM 3 OVER [0, 1]d

Now, we are ready to prove Theorem 3 over [0, 1]d. For the completeness, we show the following
theorem.
Theorem 14 (Theorem 3). Let x = (x1, x2, · · · , xd) ∈ [0, 1]d, α ∈ Nd and xα be any given
monomial with degree p. Then

(1) there is a ResNet R1 ∈ RN (d+ 1, 4,O(d log(d/ε))) such that
∥R1 − x1x2 · · ·xd∥C([0,1]d) < ε

while having O(d log(d/ε)) tunable weights. Moreover, there is a ResNet belonging to
R1 ∈ RN (d+ 1, 4,O(nd)) can generate πd

n(x1, x2, · · · , x3) exactly.

(2) there is a ResNet R2 ∈ RN (d+ 3, 4,O(p log(p/ε))) such that
∥R2 − xα∥C([0,1]d) < ε

while having O (p log (p/ε)) tunable weights.

Proof. We prove (1) first. Let the right-hand side of inequality 17 equal to ε and note m = d under
the condition of (1). Then, n is the order log d/ε. Now we construct a ResNet required with width 4
and depth O(nd) generating πd

n (x1, x2, · · · , xd).
Let Ad+1 = (x1, x2, · · · , xd, 0). It follows from the proof of proposition 12 that we can assign some
weights for the first 2n blocks to output

z[2n] = (−,−, x3, x4, · · · , xd, πn(x1, x2))
while only changing the value of the first, second, and last neurons in each activation layer. In the
next block, we set the value of the first and second neurons to zero by using identity mapping. In the
next block, we then can output

z[2n+1] = (0, 0, x3, x4, · · · , xd, πn(x1, x2)).
The zero-value neuron in the activation layer is ready to store the results in the next phase. Then in
the next 2n blocks we can compute π3

n(x1, x2, x3). Concretely, by the proof of proposition 12, we
can have

z[4n+1] = (0, π3
n(x1, x2, x3),−, x4, · · · , xd,−).

By repeatedly doing the operation above, we can use about (2n+1)(d−1) blocks totally with width 4
to approximate πd

n(x1, x2, · · · , xd). Moreover, there are about 4d+4 weights in each building block.
However, from the operation above, we can see only a constant number of weights are non-zero.
Therefore, this network has at most cdn tunable weights where c is an absolute constant.

For (2), if p ≤ d, the case can be the same with (1). Let’s assume p > d. We just need to note
xα1
1 xα2

2 · · ·xαd

d can be approximated by

πd
n(π

α1
n (x1, · · · , x1), · · · , παd

n (xd, · · · , xd)) = πp
n(x1, · · · , x1︸ ︷︷ ︸

α1 times

, x2, · · · , x2︸ ︷︷ ︸
α2 times

, · · · , αd, · · · , αd︸ ︷︷ ︸
αd times

).

(22)
Thus, we must store the value of x1, · · · , xd in each building block. However, in the proof of (1), if
we complete the output of πn(x1, x2), we will lose the value of x1 and x2 in the neurons. That’s why
we need d+ 3 neurons in the identity layer in this case. The two more neurons in the identity layer
can help us preserve x1, · · · , xd in each identity layer. Here we briefly show a constructive ResNet
generating 22 exactly.

Let Ad+3 = (x, x1, x1, 0). By the proof of proposition 12, we can compute πn(x1, x1) using
2n blocks and get z[2n] = (x,−,−, πn(x1, x1)) in the 2n-th block. In the next block, we com-
pute z[2n+1] = (x, 0, x1, πn(x1, x1)). Then in the next 2n block, we compute π3

n(x1, x1, x1) =
π2
n(x1, πn(x1, x1)) and hence get z[4n+1] = (x, π3

n(x1, x1, x1),−,−). Then by doing it repeatedly,
we can use O(pn) blocks to generate (22). Similarly by the inequality (17) where m = p, we can get
the depth is O(p log p

ε ) if the desired accuracy is ε. Moreover, note there is only a constant number
of weights being non-zero in each block. Thus, the total number of the non-zero weights (tunable
weights) is O(p log p

ε ). We can see an illustration in Figure 8.
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Figure 8: Illustration for generating πd
n(x1, · · · , xd) by the constructive ResNet. The topmost d

neurons are used for storing values. Grey represents the identity layer and yellow represents the
activation layer.

Following this theorem, we supplement some discussions about why are monomials important.
Monomials are the essential constituents of polynomials, which serve an integral role in both theory
and applications. Additionally, monomials possess a straightforward mathematical structure, which
aids in analyzing and comparing the approximation capabilities of neural networks. Numerous
intriguing studies have been conducted in this field. Both deep Yarotsky (2017) and shallow
Blanchard & Bennouna (2021) ReLU networks can efficiently approximate monomials over [0, 1]d
with poly(d) neurons. However, for monomials over [0,M ]d (M > 1), shallow ResLU networks
will at least cost exp(d) neurons approximating it to ε Shapira (2023). Further, the cost of shallow
networks will be reduced to poly(d) if the monomial is normalized over [0,M ]d (multiplied by some
normalization constant M−p). More comprehensive discussion can be found in Shapira (2023).

C.3 PROOF OF THEOREM 3

In this subsection, we extend Thm, 14 to [−M,M ]d where M > 1. First, we extend the lemma 10
to the [−1, 1].

Lemma 15. Let x, y ∈ [−1, 1]. Then πn(x, y) ∈ [−1, 1]

Proof. Since x, y ∈ [−1, 1], it suffices to show

|πn(x, y)| =
∣∣∣∣Sn(

|x+ y|
2

)− Sn(
|x− y|

2
)

∣∣∣∣ ≤ 1. (23)

First, we show that Sn(x) is monotone incresing over [0, 1]. For any 0 ≤ x ≤ y ≤ 1,

Sn(x)− Sn(y) = x− y +

n∑
i=1

4−i (hi(y)− hi(x)) .

Then by

hi(x) = hi(y+ x− y) = ζ(2i−1(y+ x− y)) ≤ ζ(2i−1y) + ζ(2i−1(x− y))) = hi(y) + hi(x− y)

we have

Sn(x)− Sn(y) = x− y +

n∑
i=1

4−i (hi(y)− hi(x)) ≥ x− y −
n∑

i=1

4−ihi(x− y) ≥ (x− y)2 ≥ 0.

Note |x+ y| ≥ |x− y| is equivalent to xy ≥ 0. So we only care about the following case to show 23:
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• x, y ≤ 0.

πn(x, y) = Sn(
|x+ y|

2
)− Sn(

|x− y|
2

)

≤ |x|+ |y|
2

− (x− y)2

4

=
1

4
(|x|(2− |x|) + |y|(2− |y|) + 2xy)

≤ 1

4
(1 + 1 + 2) = 1.

• xy ≤ 0.

πn(x, y) = Sn(
|x− y|

2
)− Sn(

|x+ y|
2

)

≤ |x|+ |y|
2

− (x+ y)2

4

=
1

4
(|x|(2− |x|) + |y|(2− |y|)− 2xy)

≤ 1

4
(1 + 1 + 2) = 1.

Thus, πm
n can be well-defined over [−1, 1] (equation 16). Next, we show that Proposition 13 holds

for x1, x2, · · · , xd ∈ [−1, 1], i.e.,

Proposition 16.

|πm
n (x1, x2, · · · , xm)− x1x2 · · ·xm| ≤ em4−n, x1, x2, · · · , xm ∈ [−1, 1] (24)

as long as n ≥ 1 + log2m.

Proof. For x, y ∈ [−1, 1], the only change of the proof is equation 19. We note

S′
n(

|x+ y|
2

) = 1{x+y≥0}
1

2
(x+ y + ε1)− 1{x+y<0}

1

2
(−x− y + ε2) =

1

2
(x+ y + ε)

where ε1, ε2, ε ≤ 2−n. Then we can still get

∥∂iπ − ∂iπn∥L∞([−1,1]2) ≤ 2−n+1, where ∂i := ∂xi , i = 1, 2. (25)

Then we can show the result following the proof of C.1.

Then Thm. 3 can be easily showed by the following remark.

Remark 17 (Theorem 3). Let x1, x2, · · · , xm ∈ [−M,M ]. To approximate x1x2 · · ·xm, we con-
sider a function defined by π̂m

n (x1, . . . , xm) := Mmπm
n (|x1|/M, . . . , |xm|/M) with the approxi-

mation accuracy

|x1x2 · · ·xm − π̂m
n (x1, · · · , xm)| ≤ emMm · 4−n, ∀x1, x2, · · · , xm ∈ [−M,M ] (26)

as long as n ≥ 1 + log2m. Moreover π̂m
n can be generated by a ResNet R(x) ∈

RN (m+ 1, 4,O(mn)) while having at most O(mn) tunable weights.

Proof. The remark is the direct corollary from the proof of Theorem 14. By letting the right hand
side of Equation 26 equal to ε where m = p and p is the degree of the monomial, we complete the
proof of Theorem 3.
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C.4 PROOF OF THEOREM 4

Proof. By Theorem 3, for each xα : α ∈ E, we can use a ResNet with width 4, depth O(p log p/ε)
and d+ 3 neurons in each identity layer to output Rα(x) such that

|Rα(x)− xα| < ε, x ∈ [0, 1]d.

Thus,
|
∑
α∈E

cαRα(x)−
∑
α∈E

cαx
α| < ε ·

∑
|α|∈E

|cα|, x ∈ [0, 1]d.

Then Let Ad+4 = (x, x1, x1, 0, 0). To generate each Rα(x), we need 4 more computational
units in each identity layer and depth O(p log p/ε) while having O(p log p/ε) non-zero weights.
Then store the value of Rα(x) in the last neuron in each identity layer. Then we can output
(x,−,−,−,

∑
α∈E cαRα(x)) finally with depth O(p|E| log(p/ε)) while having O(p|E| log(p/ε))

non-zero weights totally.

D PROOF OF THEOREM 5

In this section, we prove Theorem 5. Before that, we will give the definition supplement about
Sobolev space in subsection 4.2.

D.1 DEFINITION SUPPLEMENT OF SOBOLEV SPACES

For α = (α1, . . . , αd) ∈ Nd and x = (x1, . . . , xd) ∈ [0, 1]d, define

Dαf =
∂|α|f

∂xα1
1 · · · ∂xαd

d

where |α| = α1 + · · ·+ αd. Let r ∈ N+. The Sobolev space W r,∞([0, 1]d) is the set of functions
belonging to Cr−1([0, 1]d) whose (r−1)-th order derivatives are Lipschitz continuous with the norm

∥f∥W r
∞

:= max
α:|α|≤r

esssupx∈[0,1]d |Dαf(x)| <∞.

We denote by Ur([0, 1]d) the unit ball of W r,∞([0, 1]d), i.e. Ur([0, 1]d) = {f ∈ W r,∞([0, 1]d) :
∥f∥W r

∞
≤ 1}. Note

ess sup f = inf{a ∈ R : µ({x : f(x) > a}) = 0}

where µ is Lebesgue measure.

D.2 PROOF OF THEOREM 5

We follow the proof of theorem 1 in Yarotsky (2017). In our proof, we skip some details and focus
on the constructions of ResNet. The details can be found in theorem 1 of Yarotsky (2017). Now let
f ∈ Ur([0, 1]d) and α ∈ Nd.

LetN be a positive integer to be determined and m = (m1, . . . ,md) ∈ {0, 1, . . . , N}d. The function
ϕm is defined as the product

ϕm(x) =

d∏
k=1

ψ
(
3N
(
xk − mk

N

))
where

ψ(x) =


1, |x| < 1,

0, 2 < |x|,
2− |x|, 1 ≤ |x| ≤ 2.

Let
f1(x) =

∑
m∈{0,...,N}d

∑
α:|α|<r

am,αϕm(x)
(
x− m

N

)α
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where am,α are some specific coefficients when considering the locally Taylor expansion of f . Then
by choosing

N =

⌈(
r!

2ddr
ε

2

)−1/r
⌉

(27)

where ⌈·⌉ is the celling function, we have

∥f − f1∥∞ ≤ ε

2
.

Now, we consider to approximate ϕm(x)
(
x− m

N

)α
by ResNet.

The following lemma follows directly from remark 17 that
Lemma 18. Let x ∈ [0, 1]d and g1(x1), · · · , g2(xd) ∈ [−1, 1]. Then∣∣πd

n (g1(x1), g2(x2), · · · , gd(xd))− g1(x1)g2(x2) · · · gd(xd)
∣∣ ≤ ed4−n, n ≥ 1 + log2 d

for all x1, x2, · · · , xd ∈ [−1, 1].

Moreover, we need the following lemma for the construction.
Lemma 19. There is a ResNet R(x) ∈ RN (k = 1, N = 3, L = 4) such that R(x) = ψ(x) for any
x ∈ R.

Proof of lemma 19. Lin & Jegelka (2018) has shown that the following operations are realizable by
a single basic residual block of ResNet with one neuron: (a) Shifting by a constant: R+ = R+ c for
any c ∈ R. (b) Min or Max with a constant: R+ = min{R, c} or R+ = max{R, c} for any c ∈ R.
(c) Min or Max with a linear transformation: R+ = min{R,αR+ β} (or max) for any α, β ∈ R.

For the ResNet, z[0] = x. In the first layer, we use one computational unit to compute ReLU(x+ 2)
and two units to compute x = (x)+ − (−x)+. Then we output z[1] = ReLU((x + 2) − x + x =
ReLU(x+ 2) in the first layer. In the remaining layers, we only need one neuron per layer. we can
output z[2] = z[1] − 2(z[1] − 2), z[3] = min{z[2], 1} and z[4] = max{z[3], 0} = ψ(x).

Then now we define

Rm,α(x) = π2d
n

(
ψ(3Nx1 − 3m1), · · · , ψ(3Nxd − 3md), π

α1
n (x1 −

m1

N
), · · · , παd

n (xd −
md

N
)
)

= πd+|α|
n

ψ(3Nx1 − 3m1), · · · , ψ(3Nxd − 3md), x1 −
m1

N
, · · · , x1 −

m1

N︸ ︷︷ ︸
α1times

, · · · , xd −
md

N
, · · · , xd −

md

N︸ ︷︷ ︸
αdtimes

 .

By lemma 18 and note

|ψ(3Nxi − 3mi)| ≤ 1 and |xi −
mi

N
| ≤ 1 for i = 1, 2, · · · , d

, we have

|Rm,α(x)− ϕm(x)
(
x− m

N

)α
| < e(r + d)4−n = ε0, x ∈ [0, 1]d, (28)

by letting n = O(log e(r+d)
ε0

). Then with similar proof of Theorem 3 and lemma 19, we have a ResNet
with k = d+ 3 to generate Rm,α(x) such (28) satisfies while having O(d(r + d) log e(r + d)/ε0)
weights. It follows from the proof of Theorem 4, we have a ResNet with k = d+ 4 can generate

f̃(x) =
∑

m∈{0,...,N}d

∑
α:|α|<r

am,αRm,α (x)

while having

O
(
(N + 1)ddrd(d+ r) log

e(r + d)

ε0

)
(29)
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weights. From the proof of theorem 1 in Yarotsky (2017) we then have

|f̃(x)− f1(x)| ≤ 2ddrε0.

Let ε0 = ε/(2d+1dr). We have ∥f̃ − f1∥∞ ≤ ε/2. Thus,

∥f − f̃∥∞ ≤ ∥f − f1∥∞ + ∥f1 − f̃∥∞ ≤ ε.

Now, substitute ε0 = ε/(2d+1dr) and N with equation 27 into (29), the upper bound on the total
weights of the ResNet are

O

((
r!

2ddr
ε

2

)−d/r

dr+1(d+ r) log
e(r + d)2ddr

ε

)
= Od,r

(
ε−

d
r log

1

ε

)
.

By the well-known Stirling’s approximation

√
2πr

(r
e

)r
e

1
12r+1 < r! <

√
2πr

(r
e

)r
e

1
12r , (30)

the hidden constant c(d, r) in the Od,r notation can be bounded by

(
2

d+1
r d

r
)d < c(d, r) < (

2
d+1
r d

r
)ddr+2(d+ r)r (31)

where C is an absolute constant.

E PROOF OF THEOREM 6

In this appendix, we give the proof of Theorem 6. The proof of Theorem 6 is mainly based on the
following lemma.

Lemma 20. Fix the integer d ≥ 1 and let f : Rd → R be a CPwL function. Then there exist affine
functions pα, qβ : Rd → R such that f can be written as the difference of positive convex functions:

f = p− q, where p := max
1≤α≤P

pα, q := max
1≤β≤Q

qβ

where P,Q are some positive numbers.

Proof. For any CPwL function f : Rd → R, by theorem 1 in Wang & Sun (2005), there exists a
finite set of affine linear functions ℓ1, . . . , ℓk and a finite integer M such that

f =

M∑
j=1

σj

(
max
i∈Sj

ℓi

)
where Sj ⊆ {1, . . . , k}, |Sj | ≤ d+ 1 and σi ∈ {+1,−1} for all i = 1, 2, · · · ,M . We write

f =

M∑
j=1

σj

(
max
i∈Sj

ℓi

)
=
∑

j:σj=1

max
i∈Sj

ℓi −
∑

j:σj=−1

max
i∈Sj

ℓi = p− q.

The last equation holds by the fact that the sum of convex functions is convex and the sum of CPwL
functions is also CPwL. We can easily see P,Q is bounded by Md. However, M is an implicit
number that may depend on the property of the CPwL function (e.g., the number of pieces, and the
number of linear components). More details can be found in the proof details in Tarela & Martinez
(1999); Wang & Sun (2005).

Now we are ready for the proof of Theorem 6.
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E.1 PROOF OF THEOREM 6

The proof is based on the observation

max{x, y} = y +ReLU(x− y)

Now we construct a single-neuron per hidden layer ResNet with k = d + 1 to output f exactly.
We use the same notation as lemma 20. Let z[0] = Ad+1(x) = (x, p1(x)). In the next block, we
compute ζ [1] = T [1]

1 (z[0]) = ReLU(p2(x) − p1(x)) in the activation layer and γ[1]T [1]
2 (z[0]) =

(0,ReLU(p2(x)− p1(x))) in the identity layer by choosing the appropriate weights. Then we can
output

z[1] = γ[1] + z[0] = (0,ReLU(p2(x)− p1(x)) + z[0] = (x,max{p1, p2}).
By repeatedly doing this, we can output z[P ] = (x,max1≤α≤P {pα}) in the P -th block. In the next
two block, we output z[P+2] = (x, p(x)− q1(x)). Here we use two single-neuron blocks to compute
q1(x) = (q1)+ − (−q1)+. Then by the same operation, we can get the result z[P+Q+2] = (x, p− q)
in the (P +Q+ 2)-th block. Then the ResNet outputs f = p− q exactly.

To approximate continuous functions, we give the following precise result.

Corollary 21. For any continuous function f : [0, 1]d → R, there is a ResNet

R(x) ∈ RN (d+ 1, 1, L)

with L = Od(ωf (ε)
−d) such that ∥f −R∥C([0,1]d) < ε where

ωf (t) := sup{|f(x)− f(y)| : |x− y |≤ t}.

The proof is directly from the proof of equation (6), (7) of theorem 1 in Hanin (2019). One point
of difference is that the continuous functions are assumed to be from [0, 1]d to R+ in that paper.
Actually, the domain [0, 1]d of f is compact so there exists a constant C such that f + C ≥ 0. Then
our assumption can be converted into the same as theirs. Here we just briefly talk about their proof
ideas.

They first sub-divide [0, 1]d into at most ωf (ε)
−d cubes of side length at most ωf (ε). Then, they

subdivide each such smaller cube into d ! copies of the standard simplex {Pj}j (which has volume
1/d !) rescaled to have side length ωf (ε). Then define a CPwL function fε which equals to f on the
vertices of P| and is affine on their interiors. Then

∥f − fε∥C([0,1]d) ≤ ε.

Then by Lemma 20 and Theorem 6. We can use ResNet belonging to RN (d+ 1, 1, L) to generate
fε where L = O(ωf (ε)

−d).

E.2 SOME DISCUSSIONS

Piecewise linear interpolation holds a significant position in approximation theory, as it is a basic
method of approximating functions. Therefore, studying the expressive power of neural networks for
piecewise linear functions becomes particularly important. Every ReLU FNN is a CPwL function,
bringing forth intriguing questions about the relationship between ReLU neural networks and CPwL
functions, such as the network size required to represent an arbitrary CPwL function. According to
Arora et al. (2016), any CPwL function from Rd to R can be represented by a deep ReLU network
with depth at most ⌈log2(d+ 1)⌉ + 1 and sufficient width. Later, Hanin (2019) and DeVore et al.
(2021) revealed that a ReLU network of fixed width (d+ 3 and d+ 2 respectively) can generate any
CPwL function with sufficiently large depth. In our new result for ResNet, Theorem 6 shows that a
ResNet with one neuron per activation layer can represent any CPwL function over Rd given enough
depth. While Lin & Jegelka (2018) demonstrated the construction of ResNet for approximating step
constant functions, its methods are limited to generating CPwL functions. Our Proposition 1 aligns
with DeVore et al. (2021) and shows that a sufficiently deep ReLU network with width d + 2 can
generate any CPwL function over [0, 1]d. However, ResNet, with the same number of neurons, offers
fewer tunable parameters, and superior training efficiency for very deep networks due to its ability to
solve the issue of gradient exploding/vanishing.
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F PROOF OF THEOREM 8

Before proceeding to the proof of Thm. 8, we first discuss more explanations and a conclusion.

To approximate function f (x1, · · · , xd) =
∑2d

q=0 g
(∑d

i=1 λiϕq (xi)
)
∈ KC i.e., g and ϕq(q =

1, 2, · · · , d) are Lipschitz continuous functions, one can use piecewise linear splines to approximate
g and ϕq . Concretely,

g̃(x) =

n∑
k=1

ωkσ(x− yk) ≈ g(x) and ϕ̃q,i(xi) =

n∑
j=1

cqj,iσ(xi − yqj,i) ≈ λiϕq(xi)

for any x ∈ [0, 1] where wk, cqj ∈ R, yk ∈ [0, 1], yqj ∈ [0, 1]. Then we can use

f (x1, · · · , xd) =
2d∑
q=0

g̃

(
d∑

i=1

ϕ̃q,i (xi)

)
∈ Kn,n

to approximate f and can achieve the approximation rate in Theorem 22.
Theorem 22 (Theorem 4, Lai & Shen (2021)). We have

sup
f∈KC

inf
s∈Kn,n

∥f − s∥C([0,1]d) ≤
C(2d+ 1)2

n

where

Kn,n =


2d∑
q=0

n∑
k=1

wkσ

 d∑
i=1

n∑
j=1

cqjσ (xi − yqj)− yk

 , wk, cqj ∈ R, yk ∈ [0, 1], yqj ∈ [0, 1]

 .

We then ready to prove Thm. 8.

F.1 PROOF OF THEOREM 8

Figure 9: Illustration for generating the KST structure in Kn,n. Grey represents the identity layer and
yellow represents the activation layer.

Based on the above discussion, it suffices to show ResNetR(x) ∈ RN (d+ 2, n, L) with L = O(d2)
can generate any function in Kn,n using O(d2n) non-zero weights. We then get the conclusion by
Theorem 22.

Assume x ∈ [0, 1]d. For a ResNet, let z[0] = (x, 0, 0). Then we can output

ζ [1] = T [1]
1 (z[0]) = (σ(x1 − y11,1), σ(x1 − y12,1), · · · , σ(x1 − y1n,1)).

in the next layer. By choosing some weights, we can compute

γ[1] = V1ζ
[1] =



0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

c11,1 c12,1 · · · c1n,1
0 0 · · · 0


d+2,n

· ζ [1] = (0d, ϕ̃1,1(x1), 0).
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Thus, the output of the first block is z[1] = z[0] + γ[1] = (x, ϕ̃1,1(x1), 0). By repeatedly doing this in
the next d blocks, we can generate

z[d] = (x,

d∑
i=1

ϕ̃1,i, 0).

In the next layer, we compute

ζ [d+1] = T [d+1]
1 (z[d]) = (σ(z

[d]
d+1 − y1), σ(z

[d]
d+1 − y2), · · · , σ(z[d]d+1 − yn)).

Then by choosing some appropriate weights, we have

z[d+1] =

(
x, 0, g̃

(
d∑

i=1

ϕ̃1,i (xi)

))
.

Also by repeatedly doing the operation, we can get in the (d2 + 2d+ 1)-th block that

z[(d+1)2] =

(
x,−,

2d∑
q=0

g̃

(
d∑

i=1

ϕ̃q,i (xi)

))
.

See Figure 9 for an illustration.

Moreover, in each block, only O(n) weights are non-zero. Thus, the total tunable weights of this
neural network is O(d2n)

G SUPPLEMENTARY DISCUSSIONS

G.1 RELATED WORK

These are supplementary details to the related work section (Sec. 1.1) of this paper.

Universality. The universality of a function family implies that this family is dense in the space of
continuous functions, meaning it can approximate any continuous function with arbitrary precision.
In the earlier years, Cybenko (1989) made a groundbreaking argument by demonstrating that shallow
neural networks equipped with sigmoid activation functions possess universal approximation prop-
erties. This activation condition was further expanded by Pinkus (1999) who showed that shallow
networks employing non-polynomial activation functions also exhibit universal approximation ca-
pabilities. In recent years, the universality of narrow deep networks has also attracted considerable
attention. Hanin & Sellke (2017) determined that a deep ReLU neural network must have a minimum
width of d+ 1 to ensure universality, where d is the input dimension. Kidger & Lyons (2020) then
showed that deep narrow networks with any continuous activation function can achieve universality,
provided that the activation satisfies a very mild condition. Over the past decades, a variety of
network architectures have been developed to cater to diverse tasks and objectives, extending beyond
feedforward ReLU networks. The universal approximation theorem has been proven for multiple
network architectures, including: standard deep ReLU CNN Zhou (2018; 2020), deep ReLU CNNs
with classical structures He et al. (2022), continuous-time recurrent neural network (RNN) Li et al.
(2020; 2022b), continuous-time ResNet Li et al. (2022a), ResNet Lin & Jegelka (2018), and ResNet
for finite-sample classification tasks Hardt & Ma (2016).

Approximation Capabilities. There has been substantial progress in enhancing our theoretical
understanding of neural networks. Some studies have focused on comparing the expressive power
of both shallow and deep neural networks, examining their respective capabilities (e.g., Arora et al.
(2016); Eldan & Shamir (2016); Liang & Srikant (2016); Telgarsky (2016); Yarotsky (2017); Poggio
et al. (2017)). Some others have quantified the number of linear regions within deep neural networks,
casting light on their complexity (e.g., Montufar et al. (2014); Serra et al. (2018); Arora et al.
(2016)). Moreover, constructive methods have been utilized to probe the approximation capabilities
across different function classes. Notably, researchers have delved into the optimal approximation
of continuous functions (e.g., Shen et al. (2022b); Yarotsky (2018)), the optimal approximation
of smooth functions (e.g., Yarotsky (2017); Lu et al. (2021); Montanelli & Du (2019)), and the
approximation of analytic functions (e.g., Wang et al. (2018); Schwab & Zech (2021)). These diverse
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investigations collectively deepen our understanding of both the potential and constraints of neural
networks in approximating various types of functions.

Perspectives on the Curse of Dimensionality. The ’curse of dimensionality’ coined by Bellman
(1957) refers to a phenomenon that a model class will suffer an exponential increase in its complexity
as the input dimension increases. This impact is explicitly observed in ReLU networks, as well-
documented in Yarotsky (2017). Importantly, the curse of dimensionality, not limited to MLPs, is
also a challenge for almost all classes of function approximators aiming to uniformly approximate in
the Lipschitz domain (have sufficient regular boundary) on some compact subset of a metric space
due to the entropy limitation Kolmogorov & Tikhomirov (1959).

More specifically, any continuous function approximator6 will suffer the curse of dimension in
the smooth function space Cr DeVore et al. (1989) because the metric entropy of the unit ball in
Cr with respect to the uniform topology is Θ(ε−d/r). The property is applied to ReLU neural
networks in Thm. 3 Yarotsky (2017). In an attempt to mitigate the curse of dimensionality,
initial strategies involved the consideration of specialized function spaces whose metric entropy is
expected to reduce such as analytical functions Wang et al. (2018), bandlimited functions Montanelli
et al. (2019), Korobove space Montanelli & Du (2019). Specifically, for analytical functions on
[−1 + δ, 1− δ]d (Wang et al. (2018)), ReLU networks can achieve the exponential approximation
rate of O(exp{−dδ(e−1L1/2d − 1)}) for any small δ > 0. For band-limited functions, Montanelli
et al. (2019) shows that ReLU networks with a depth of Of (log

2 1
ε )

7 and a width of Of (
1
ε2 log

2 1
ε )

can achieve an ε-approximation. Additionally, Montanelli & Du (2019) demonstrates that ReLU
networks with a total neuron count of O(ε−1/2(log 1/ε)

3
2 (d−1)+1 log d) can approximate any function

in Korobov space using a sparse grids structure.

More recently, researchers have shifted their focus toward the structure of neural networks, suggesting
a potential solution to circumvent the curse of dimensionality. Some researchers consider the
parameters-sharing method (e.g., repeated-composition structure Zhang et al. (2023), CNN Zhou
(2018)). A more recent trend aims to serve neural networks as discontinuous function approximators,
thereby examining neural networks with novel activation functions (e.g., ReLU-floor activation Shen
et al. (2020), ReLU-sine-exponential activation Jiao et al. (2023), floor-exponential-step activation
Shen et al. (2021), activation composed of triangular-wave and softsign function Shen et al. (2022a)).
Meanwhile, they incorporate the Kolmogorov Superposition Theorem (KST)(see Sec. 5) to tackle
the curse of dimensionality, yielding promising theoretical results. For instance, Yarotsky (2021) and
Shen et al. (2022a) show that deep networks with particular activation can approximate any continuous
functions over [0, 1]d with complexity O(d2). Moreover, Lai & Shen (2021) and He (2023) show
that ReLU networks can overcome the curse of dimensionality within a special function class derived
from KST. However, the failure of these model classes in practice is due to the discontinuity of the
function approximators, wherein even minor perturbations in the training data can lead to chaotic
changes in the input-output relationship. Consequently, to circumvent the curse of dimensionality, it
is imperative to make appropriate choices within the unstable model class and the restricted objective
function space.

G.2 RELATIONS WITH DYNAMIC SYSTEMS

ResNet shares a deep correlation with dynamic systems, to the point where one could consider ResNet
as a form of discrete dynamic system. In this subsection, we will briefly discuss the relationship
between ResNet and dynamic systems.

Dynamic systems is generally described by an ordinary differential equation (ODE):

d

dt
z(t) = fθ(t)(z(t)), θ(t) ∈ Θ, t ∈ [0, T ], z(0) = x ∈ Rn.

6In the context, we aim to approximate all functions in a space F using a model class as an approximator
(e.g., neural networks). We achieve this by choosing different parameters for different functions, meaning the
parameters θ ∈ Θ can be seen as a mapping of the target functions, i.e., θ = h(f) where h : F → Θ. If this
mapping h is continuous, we refer to the approximator as a continuous approximator.

7The subscript f implies the hidden constant depends on f including the domain and the dimension. More
detail can be found in the paper.
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where fθ(t) : Rn → Rn is the dynamics function of this dynamical system, and Θ is the parameter
space. z(T ) can be regarded as a function of x, denoted by φθ(x) which is known as the flow map.
Then we can use L ◦ φθ(x) ◦ A to approximate a target function f : Rd → R where L,A are affine
transformations.

By using the Euler method to discretize the ODE, we have zs+1 = zs+δ·fθs (zs) for some small δ >
0 for s = 1, 2, · · · , S−1 where T = δS. In our results, fθs (zs) can be realized by a shallow constant-
neuron ReLU network block, in which the number of tunable parameters can be absolute constant
which is independent of d. Then we can have zS ≈ z(T ) = φθ(x).

Thus, our results reveal that a continuous-depth network generated via a dynamical system possesses
significant approximation capabilities even if its dynamics function is dimension-independent and
realized by a shallow constant-neuron ReLU network block. Moreover, there is a comprehensive
review of the correlations between deep learning and dynamic systems in the recent work Zhang
et al. (2023).

H EXPERIMENTS

In this appendix, we specify the experiment setting in Section 6. First, we assume that an appropriate
algorithm can effectively manage the optimization error (e.g., Adam optimizer (Kingma & Ba, 2014)).
We then choose a sufficiently complex target function to ensure that the approximation error is the
dominant factor. Specifically, we utilize the following function to test the universal approximation
capability of b-ResNet.

f(x) =

m∑
i=1

[ai
∏
j∈S1

i

xj + bi sin(
∏
k∈S2

i

xk)], (32)

where x ∈ [−1, 1]d, S1
i and S1

j are the index sets randomly sampled from {1, ..., d} with replacement,
ai and bi are constant coefficients, and m is the total number of terms. Specifically, we set the
parameters for the defined function as d ∈ {100, 200, 300}, m = d/10, card(S1

i ) ≤
√
d, card(S2

i ) ≤√
d, ai = 1 and bi = 0.1. We then compare b-ResNet with fully connected NN for approximating

the defined function, with network structure as RN (d+ 1, n, d/10) for n ∈ {10, 20, 30}, and
NN (d+ 1, d/10), respectively. Next, We conduct Quasi Monte Carlo sampling over [−1, 1]d with
1000 · d samples and use 90% for training and 10% for testing. We optimize the network parameters
using Adam (Kingma & Ba, 2014) with a learning rate of 1e−3 and present the test performance over
iteration.

The results include the mean square error (MSE) and the infinite norm error (MAX) on testing
samples. Further, we also compared the testing performance under different training losses, including
MSE and MAX, are shown in the following figures.
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Figure 10: Comparison of testing MSE loss by training with MSE loss.

Figure 11: Comparison of testing MSE loss by training with MAX loss.

Figure 12: Comparison of testing MAX loss by training with MSE loss.

Figure 13: Comparison of testing MAX loss by training with MAX loss.
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