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Abstract

Domain generalization aims to develop models that
are robust to distribution shifts. Existing meth-
ods focus on learning invariance across domains
to enhance model robustness, and data augmenta-
tion has been widely used to learn invariant pre-
dictors, with most methods performing augmenta-
tion in the input space. However, augmentation
in the input space has limited diversity whereas in
the feature space is more versatile and has shown
promising results. Nonetheless, feature seman-
tics is seldom considered and existing feature aug-
mentation methods suffer from a limited variety of
augmented features. We decompose features into
class-generic, class-specific, domain-generic, and
domain-specific components. We propose a cross-
domain feature augmentation method named XDo-
mainMix that enables us to increase sample diver-
sity while emphasizing the learning of invariant
representations to achieve domain generalization.
Experiments on widely used benchmark datasets
demonstrate that our proposed method is able to
achieve state-of-the-art performance. Quantitative
analysis indicates that our feature augmentation ap-
proach facilitates the learning of effective models
that are invariant across different domains. Our
code is available at https://github.com/NancyQuris/
XDomainMix.

1 Introduction
Deep learning methods typically assume that training and
testing data are independent and identically distributed. How-
ever, this assumption is often violated in the real world, lead-
ing to a decrease in model performance when faced with a
different distribution [Torralba and Efros, 2011]. The field of
domain generalization aims to mitigate this issue by learning
a model from one or more distinct yet related training do-
mains, with the goal of generalizing effectively to domains
that have not been previously encountered. Studies suggest
that the poor generalization on unseen distributions can be at-
tributed to the failure of learning the invariance across differ-
ent domains during the training phase [Muandet et al., 2013;
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Figure 1: Samples of images reconstructed from features produced
by DSU [Li et al., 2022] and the proposed XDomainMix. The
elephant reconstructed from XDomainMix’s features shows a more
complex background. The horse reconstructed from XDomainMix’s
features displays different characteristics such as a white belly. The
top floor of the house generated by XDomainMix’s features shows
solid walls, instead of glass walls in the original. In contrast, images
reconstructed from DSU’s features have limited diversity and appear
largely similar to the original images.

Li et al., 2018]. To tackle this, research has focused on rep-
resentation learning and data augmentation as key to learning
invariance.

Invariant representation learning aims to align represen-
tation across domains [Shi et al., 2022], and learn invari-
ant causal predictors [Arjovsky et al., 2019]. They usually
impose regularization, which may result in a hard optimiza-
tion problem [Yao et al., 2022a]. In contrast, data augmen-
tation techniques propose to generate additional samples for
the learning of invariance, and avoid the complexities in the
regularization approach [Mancini et al., 2020]. Data augmen-
tation can be generally classified into two types: input space
and feature space augmentation. The former often encounters
limitations due to a lack of diversity in the augmented data [Li
et al., 2021b], while the latter offers more versatility and has
yielded promising outcomes [Zhou et al., 2021].
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Despite the versatility of feature space augmentation, exist-
ing methods such as MixStyle [Zhou et al., 2021] and DSU
[Li et al., 2022] do not consider feature semantics during the
augmentation process. Instead, they alter feature statistics
which often leads to a limited range of diversity. This lack
of diversity in the generated features motivates us to decom-
pose the features according to feature semantics. We build
on prior research which suggests that the features learned for
each class can be viewed as a combination of class-specific
and class-generic components [Chu et al., 2020]. The class-
specific component carries information unique to a class,
while the class-generic component carries information that
is shared across classes. We observe that, even within the
same class, features of samples from different domains can
be distinguished, indicating that these features may contain
domain-specific information. As such, we broaden our under-
standing of features to include domain-specific and domain-
generic components.

We introduce a method called XDomainMix that changes
domain-specific components of a feature while preserving
class-specific components. With this, the model is able to
learn features that are not tied to specific domains, allowing it
to make predictions based on features that are invariant across
domains. Figure 1 shows samples of original images and re-
constructed images based on existing feature augmentation
technique (DSU) and the proposed XDomainMix. We visu-
alize the augmented features using a pre-trained autoencoder
[Huang and Belongie, 2017]. From the reconstructed im-
ages, we see that DSU’s augmented features remain largely
the same as that of the original image feature. On the other
hand, the images reconstructed from the features obtained us-
ing XDomainMix have richer variety while preserving the
salient features of the class.

Results of experiments on benchmark datasets show the
superiority of XDomainMix for domain generalization. We
quantitatively measure the invariance of learned representa-
tion and prediction to show that the models trained with XDo-
mainMix’s features are more invariant across domains com-
pared to state-of-the-art feature augmentation methods. Our
measurement of the divergence between original features and
augmented features shows that XDomainMix results in more
diverse augmentation.

2 Related Work
To learn invariance, existing domain generalization ap-
proaches can be categorized into representation learning
methods and data augmentation methods. Works on learning
invariant representation employ regularizers to align repre-
sentations or gradients [Sun and Saenko, 2016; Li et al., 2020;
Kim et al., 2021; Mahajan et al., 2021; Shi et al., 2022; Rame
et al., 2022; Yao et al., 2022b] across different domains, en-
force the optimal classifier on top of the representation space
to be the same across all domains [Arjovsky et al., 2019;
Ahuja et al., 2021], or uses distributionally robust optimiza-
tion [Sagawa et al., 2020]. However, the use of regularization
terms during learning of invariant representation could make
the learning process more complex and potentially limit the
model’s expressive power.

Another approach is to employ data augmentation to learn
invariance. Existing work that operates in the input space
includes network-learned transformation [Zhou et al., 2020;
Li et al., 2021a], adversarial data augmentation [Volpi et al.,
2018; Shankar et al., 2018], mixup [Mancini et al., 2020; Yao
et al., 2022a], and Fourier-based transformation [Xu et al.,
2021]. Each of these techniques manipulates the input data in
different ways to create variations that help the model learn
invariant features. However, the range of transformations that
can be applied in the input space is often limited.

On the other hand, feature augmentation can offer more
flexibility and potential for learning more effective invari-
ant representations. Prior work has generated diverse dis-
tributions in the feature space by changing feature statistics
[Zhou et al., 2021; Jeon et al., 2021; Wang et al., 2022;
Li et al., 2022; Fan et al., 2023], adding noise [Li et
al., 2021b], or mixing up features from different domains
[Mancini et al., 2020; Qiao and Peng, 2021]. For exam-
ple, MixStyle [Zhou et al., 2021] synthesizes new domains
by mixing the feature statistics of two features. DSU [Li et
al., 2022] extends the idea by modeling feature statistics as a
probability distribution and using new feature statistics drawn
from the distribution to augment features. In addition to gen-
erating diverse distributions, RSC [Huang et al., 2020] adopts
a different approach by discarding the most activated features
instead of generating diverse data. This encourages the model
to use less-activated features that might be associated with la-
bels relevant to data outside the domain.

In contrast to existing methods, our work carefully consid-
ers feature semantics by leveraging class-label information
and domain information to augment features. This increases
intra-class variability and helps the model to learn a broader
understanding of each class, thus improving its ability to han-
dle new, unseen data.

3 Proposed Method
We consider the problem where we have a set of source do-
mains DS = {S1, · · · , SN}, N > 1 and a set of unseen
domains DU . Each source domain Si = {(x(i)

j , y
(i)
j )}ni

j=1 has
a joint distribution on the input x and the label y. Domains
in DU have distinct joint distributions from those of the do-
mains in DS . We assume that all domains in DS and DU

share the same label space but the class distribution across
domains need not be the same. The goal is to learn a map-
ping g : x → y using the source domains in DS such that the
error is minimized when g is applied to samples in DU .

In deep learning, g is typically realized as a composition
of two functions: a feature extractor f : x → Z that maps
input x to Z in the latent feature space, followed by a clas-
sifier c : Z → y that maps Z to the output label y. Ide-
ally, f should extract features that are domain invariant yet
retain class-specific information. The features of a given in-
put can be decomposed into two components: class-specific
and class-generic. The class-specific component consists of
feature semantics that are strongly correlated with class la-
bels, making them more important in discriminating a target
class from other classes.

Furthermore, features can also be decomposed into



Figure 2: Overview of XDomainMix. To perform augmentation, the feature of an input is decomposed into four components based on the
semantics’ correlation with class and domain. Afterward, features of other two samples from different domains, one from the same class and
one from a different class are used to augment features by changing domain-specific feature components.

domain-specific and domain-generic components. This is be-
cause samples from different domains, even if they belong to
the same class, possess unique feature characteristics to their
respective domains. We extend these notions to decompose
the features extracted by f into four distinct components:
class-specific domain-specific (Zc,d), class-specific domain-
generic (Zc,¬d), class-generic domain-specific (Z¬c,d), and
class-generic domain-generic (Z¬c,¬d) component.

We determine whether an extracted feature contains infor-
mation that is specific to a class or a domain by its importance
to the prediction of the class and domain respectively. In other
words, if a feature is important to the prediction of a specific
class and a specific domain, it is considered a class-specific
domain-specific component. If a feature is crucial in class
prediction but not domain prediction, it falls into the class-
specific domain-generic category. Similarly, features that are
important for domain but not class predictions are categorized
as class-generic domain-specific, and those not significant to
either are labeled as class-generic domain-generic.

Our proposed feature augmentation strategy, XDomain-
Mix, performs augmentation in the feature space by modify-
ing the domain-specific component of features in a way that
preserves class-related information. To discourage the use
of domain-specific features for class prediction and encour-
age the exploitation of less activated features, class-specific
domain-specific component is discarded with some probabil-
ity during training. Details of feature decomposition and aug-
mentation are described in the following subsections. Figure
2 shows an overview of our proposed method.

3.1 Feature Decomposition

Suppose the feature extractor f extracts Z = f(x) ∈ RK .
Let zk be the kth dimension of Z. We determine whether
zk is class-specific or class-generic via the class importance
score, which is computed as the product of feature value and
the derivative of class classifier c’s predicted logit vc of x’s
ground truth class [Selvaraju et al., 2017; Chu et al., 2020] as

they show how much zk contributes to vc:

class score(zk) =
∂vc
∂zk

zk (1)

To determine if zk is domain-specific, we employ a domain
classifier d that has an identical architecture as the class clas-
sifier c. d is trained to predict domain labels of features ex-
tracted by the feature extractor. Similar to Equation 1, domain
importance score is computed using the derivative of d’s pre-
dicted logit vd of x’s ground truth domain:

domain score(zk) =
∂vd
∂zk

zk (2)

Let τc and τd be predefined thresholds for filtering fea-
ture dimensions that are class-specific and domain-specific
respectively. We obtain a class-specific mask Mc ∈ RK and
a domain-specific mask Md ∈ RK on Z for {zk}Kk=1 where
their respective kth entries are given as follows:

Mc[k] =

{
1 if class score(zk) > τc
0 otherwise

,

Md[k] =

{
1 if domain score(zk) > τd
0 otherwise

(3)

Complementary class-generic mask and domain-generic
mask are obtained by 1−Mc and 1−Md where 1 is the tensor
of values 1 and of the same size as Z. Class-specific domain-
specific (Zc,d), class-specific domain-generic (Zc,¬d), class-
generic domain-specific (Z¬c,d), and class-generic domain-
generic (Z¬c,¬d) feature components are obtained by

Zc,d = Mc ⊙Md ⊙ Z

Zc,¬d = Mc ⊙ (1−Md)⊙ Z

Z¬c,d = (1−Mc)⊙Md ⊙ Z

Z¬c,¬d = (1−Mc)⊙ (1−Md)⊙ Z

(4)

where ⊙ is element-wise multiplication. Note that Zc,d +
Zc,¬d + Z¬c,d + Z¬c,¬d = Z.



3.2 Cross Domain Feature Augmentation
To achieve domain invariance and reduce reliance on domain-
specific information presented in training domains during
prediction, we manipulate domain-specific feature compo-
nents to enhance diversity from a domain perspective. Fur-
ther, the augmentation should increase feature diversity while
preserving class semantics using existing data. This is
achieved by mixing the class-specific domain-specific fea-
ture component of a sample with the class-specific domain-
specific feature component of a same-class sample from other
domains. For class-generic domain-specific feature compo-
nent, it is mixed with the class-generic domain-specific fea-
ture component of a different-class sample from other do-
mains, introducing further diversity.

Specifically, for the feature Z extracted from input x, we
randomly sample two inputs xi and xj whose domains are
different from x. Further, xi has the same class label as x
while xj is from a different class. Let Zi be the feature ex-
tracted from input xi and Zj be the feature extracted from xj .
Then we have

Z̃c,d = λ1Zc,d + (1− λ1)Zic,d,

Z̃¬c,d = λ2Z¬c,d + (1− λ2)Zj¬c,d

(5)

where λ1 and λ2 are the mixup ratios independently sampled
from a uniform distribution U(0, 1).

A new feature Z̃ with the same class label as Z is generated
by replacing the domain-specific component in Z as follows:

Z̃ = Z̃c,d + Z̃¬c,d + Zc,¬d + Z¬c,¬d (6)

To further encourage the model to focus on domain-
invariant features and exploit the less activated feature dur-
ing class prediction, we discard the class-specific domain-
specific feature component with some probability pdiscard as
follows:

Z̃ =

{
Z̃¬c,d + Zc,¬d + Z¬c,¬d if p ≤ pdiscard

Z̃c,d + Z̃¬c,d + Zc,¬d + Z¬c,¬d otherwise
(7)

where p is randomly sampled from a uniform distribution
U(0, 1).

3.3 Training Procedure
Prior research has shown that empirical risk minimization
(ERM) [Vapnik, 1999] is a competitive baseline [Gulrajani
and Lopez-Paz, 2021; Wiles et al., 2022]. The objective func-
tion of ERM is given by

Lerm =
1

N

N∑
i=1

1

ni

ni∑
j=1

ℓ(ŷ
(i)
j , y

(i)
j ) (8)

where ℓ is the loss function to measure the error between the
predicted class ŷ(i)j and the ground truth y

(i)
j . N is the number

of training domains and ni is the number of training samples
in domain i.

We train the model in two phases. During the warm-up
phase, the feature extractor f and class classifier c are trained
on the original dataset for class label prediction following

Lerm. The domain classifier d is trained using Z, the fea-
tures extracted by f , to predict domain labels. The objective
function of d is given by

Ld =
1

N

N∑
i=1

1

ni

ni∑
j=1

ℓ(d(Z
(i)
j ), i) (9)

where ℓ is the loss function to measure the error between the
predicted domain d(Z

(i)
j ) and the ground truth i.

When the warm-up phase is completed, we use Equation 4
to decompose the features obtained from f . Augmented fea-
tures are then derived using Equation 7. Both feature extrac-
tor f and class classifier c are trained using the original and
augmented features with the following objective function:

Laug =
1

N

N∑
i=1

1

2ni

ni∑
j=1

[
ℓ(c(Z

(i)
j ), y

(i)
j ) + ℓ(c(Z̃

(i)
j ), y

(i)
j )

]
(10)

where Z̃
(i)
j is the augmented feature derived from Z

(i)
j .

c(Z
(i)
j ) is the predicted class given Z

(i)
j , and c(Z̃

(i)
j ) is the

predicted class given Z̃
(i)
j . y(i)j is the ground truth class.

We also train the domain classifier d using Ld. Note that
the domain classifier d is not trained using this set of aug-
mented features, as the augmented features do not have as-
signed domain labels since they need not follow the distribu-
tion of existing domains.

4 Performance Study
We implement our proposed solution using PyTorch 1.12.0
and perform a series of experiments on NVIDIA Tesla V100
GPU to evaluate the effectiveness of the proposed XDomain-
Mix. The following benchmark datasets are used:

• Camelyon17 [Bandi et al., 2018] from Wilds [Koh et al.,
2021]. This dataset contains 455,954 tumor and normal
tissue slide images from 5 hospitals (domains). Distri-
bution shift arises from variations in patient population,
slide staining, and image acquisition.

• FMoW [Christie et al., 2018] from Wilds. This dataset
contains 141,696 satellite images from 62 land use cate-
gories across 16 years from 5 regions (domains).

• PACS [Li et al., 2017]. This dataset contains 9,991 im-
ages of 7 objects in 4 visual styles (domains): art paint-
ing, cartoon, photo, and sketch.

• TerraIncognita [Beery et al., 2018]. The dataset contains
24,788 images from 10 categories of wild animals taken
from 4 different locations (domains).

• DomainNet [Peng et al., 2019]. This dataset contains
586,575 images from 365 classes in 6 visual styles (do-
mains): clipart, infograph, painting, quickdraw, real, and
sketch.

The class importance thresholds τc and domain importance
thresholds τd in Equation 3 are set as follows: τc is set to
be the 50%-quantile of the class importance scores of {zk}



Method Camelyon17 FMoW PACS TerraIncognita DomainNet
ERM 70.3±6.4 32.3±1.3 85.5±0.2 46.1±1.8 43.8±0.1
GroupDRO 68.4±7.3 30.8±0.8 84.4±0.8 43.2±1.1 33.3±0.2
RSC 77.0±4.9ˆ 32.6±0.5ˆ 85.2±0.9 46.6±1.0 38.9±0.5
MixStyle 62.6±6.3ˆ 32.9±0.5ˆ 85.2±0.3 44.0±0.7 34.0±0.1
DSU 69.6±6.3ˆ 32.5±0.6ˆ 85.5±0.6ˆ 41.5±0.9ˆ 42.6±0.2ˆ
LISA 77.1±6.5 35.5±0.7 83.1±0.2ˆ 47.2±1.1ˆ 42.3±0.3ˆ
Fish 74.7±7.1 34.6±0.2 85.5±0.3 45.1±1.3 42.7±0.2
XDomainMix 80.9±3.2 35.9±0.8 86.4±0.4 48.2±1.3 44.0±0.2

Table 1: Domain generalization performance of XDomainMix compared with state-of-the-art methods performance published in [Yao et al.,
2022a; Gulrajani and Lopez-Paz, 2021; Cha et al., 2021]. Results with ˆ are produced by us.

in a feature Z so that 50% dimensions are considered class-
specific, while the remaining 50% are class-generic. τd con-
trols the strength of the augmentation as it determines the
identification of domain-specific feature components. We
employ a cyclic changing scheme for τd to let the model learn
gradually from weak augmentation to strong augmentation
and give the domain classifier more time to adapt to a more
domain-invariant feature extractor. The value is initially set
to be 90%-quantile of domain importance scores of {zk} in a
feature Z. As the training proceeds, τd is decreased by 10%
quantile for every n step until it reaches the 50%-quantile,
where it also remains for n steps. The same cycle is repeated
where τd is set to be 90%-quantile again. Input xi, xj used in
augmentation (Equation 5) are samples from the same train-
ing batch. pdiscard is set to 0.2.

For Camelyon17 and FMoW datasets, we follow the setup
in LISA [Yao et al., 2022a]. Non-pretrained DenseNet-121 is
used for Canmelyon17 and pretrained DenseNet-121 is used
for FMoW. We use the same partitioning in Wilds [Koh et al.,
2021] to obtain the training, validation, and test domains. The
batch size is set to 32, and the model is trained for 2 epochs
for Camelyon17 and 5 epochs for FMoW. The learning rate
and weight decay are set to 1e-4 and 0. The warm-up phase is
set to 4000 steps. We tune the step n in {100, 500} for chang-
ing τd. The best model is selected based on its performance
in the validation domain.

For PACS, TerraIncognita and DomainNet datasets, we
follow the setup in DomainBed [Gulrajani and Lopez-Paz,
2021], and use a pre-trained ResNet-50. Each domain in the
dataset is used as a test domain in turn, with the remaining
domains serving as training domains. The batch size is set
to 32 (24 for DomainNet), and the model is trained for 5000
steps (15000 steps for DomainNet). We tune the learning rate
in {2e-5, 3e-5, 4e-5, 5e-5, 6e-5} and weight decay in (1e-6,
1e-2) using the DomainBed framework. The warm-up phase
is set to 3000 steps and n is set to 100 steps. The best model
is selected based on its performance on the validations split
of the training domains.

4.1 Domain Generalization Performance
We compare our proposed XDomainMix with ERM [Vapnik,
1999] and the following state-of-the-art methods:

• GroupDRO [Sagawa et al., 2020] minimizes worst-case
loss for distributionally robust optimization.

• RSC [Huang et al., 2020] discards features that have

higher activation to activate the remaining features ap-
pear to be applicable to out-of-domain data.

• MixStyle [Zhou et al., 2021] synthesizes new domains
by mixing feature statistics of two features.

• DSU [Li et al., 2022] synthesizes new domains by re-
normalizing feature statistics of features with the ones
drawn from a probability distribution.

• LISA [Yao et al., 2022a] selectively mixes up samples
to learn an invariant predictor.

• Fish [Shi et al., 2022] aligns gradients across domains
by maximizing the gradient inner product.

Classification accuracy, which is the ratio of the number of
correct predictions to the total number of samples is reported.
Following the instruction of datasets, average accuracy on
the test domain over 10 runs is reported for the Camelyon17
dataset; worst-group accuracy on the test domain over 3 runs
is reported for the FMoW dataset. For PACS, TerraIncognita
and DomainNet datasets, the averaged accuracy of the test
domains over 3 runs is reported.

Table 1 shows the results. Our method consistently
achieves the highest average accuracy across all the datasets,
outperforming SOTA methods. This result suggests that
XDomainMix is able to train models with good domain gen-
eralization ability.

4.2 Model Invariance
One advantage of XDomainMix is that is able to learn invari-
ance across training domains. We quantify the invariance in
terms of representation invariance and predictions invariance.
Representation invariance refers to the disparity between rep-
resentations of the same class across different domains. The
distance between second-order statistics (covariances) [Sun
and Saenko, 2016] can be used to measure representation in-
variance. Prediction invariance considers the variation in pre-
dictions across different domains. We employ risk variance
[Yao et al., 2022a] which measures how similar the model
performs across domains.

Let {Z(i)
j |y(i)j = yc} be the set of representations of class

label yc from domain i. We use C(i)
yc to denote the covariance

matrix of the representations. Given the set of class labels Y
and the set of training domains DS , the measurement result is
given by 1

|Y||DS |
∑

yc∈Y
∑

i,i′∈DS
||C(i)

yc −C
(i′)
yc ||2F . ||·||2F de-

notes the squared matrix Frobenius norm. A smaller distance



Method Camelyon17 FMoW PACS TerraIncognita DomainNet
ERM 0.47±0.18 0.35±0.09 0.69±0.12 0.50±0.09 3.60±0.38
GroupDRO 0.21±0.02 0.40±0.04 0.77±0.16 0.43±0.05 2.13±0.09
RSC 0.32±0.17 0.55±0.14 42.3±12.8 29.9±3.02 17.3±1.43
MixStyle 0.28±0.26 0.36±0.05 0.69±0.03 0.38±0.09 3.39±0.17
DSU 0.07±0.02 0.32±0.02 0.33±0.04 9.18±1.84 4.61±0.24
LISA 0.19±0.05 0.29±0.05 0.04±0.00 0.13±0.01 0.72± 0.06
Fish 3.95±3.28 0.47±0.02 0.64±0.34 0.34±0.04 2.60±0.26
XDomainMix 0.19±0.07 0.28±0.01 0.02±0.00 0.04±0.00 0.11±0.02

(a) Representation invariance measured by distance of covariance matrix of same class representations across domains.

Method Camelyon17 FMoW PACS TerraIncognita DomainNet
ERM 1.55±0.27 139±50.0 9.89±2.09 12.7±2.6 553±26.5
GroupDRO 0.93±0.11 161±171 398±65.1 603±22.3 668±17.9
RSC 1.90±0.50 181±70.8 6.34±0.91 10.3±3.6 631±7.06
MixStyle 1.67±0.91 110±88.9 6.51±1.20 9.10±0.56 563±4.68
DSU 3.85±1.30 237±136 16.2±5.24 10.6±1.5 567±21.1
LISA 1.81±1.14 111±15.2 3.02±0.47 9.39±0.51 520±11.9
Fish 5.68±1.81 251±45.3 9.08±5.38 9.37±1.59 567±13.2
XDomainMix 0.90±0.28 109±11.7 2.10±0.21 8.22±1.05 504±15.8

(b) Prediction invariance measured by variance of risk across domains. The results are reported in the unit of 1e-3.

Table 2: Results of model invariance.

Method Camelyon17 FMoW PACS TerraIncognita DomainNet
MixStyle 6.65±0.18 8.58±0.50 3.11±0.34 3.20±0.26 2.81±0.11
DSU 26.77±2.53 20.93±1.87 6.97±0.03 10.85±0.32 5.75±0.01
XDomainMix 38.82±0.28 34.06±0.11 14.82±0.11 14.36±0.12 10.27±0.02

Table 3: Divergence of the augmented feature and original feature measured by MMD in the unit of 1e-2.

suggests that same-class representations across domains are
more similar.

Let Ri be the loss in predicting the class labels of inputs
from domain i. The risk variance is given by the variance
among training domains, Var{R1, R2, ..., R|DS |}. Lower
risk variance suggests a more consistent model performance
across domains.

Table 2 shows the results. We see that our method has
the smallest covariance distance in the FMoW, PACS, Ter-
raIncognita, and DomainNet dataset, and the second-smallest
in the Camelyon17 dataset. The results indicate that the rep-
resentations of the same class learned by our method have
the least divergence across domains. Additionally, XDomain-
Mix has the lowest risk variance, suggesting that it is able
to maintain consistent performance in predictions across do-
mains. Overall, the results demonstrate that our approach is
able to learn invariance at both the representation level and
the prediction level.

4.3 Diversity of Augmented Features
To show that XDomainMix can generate more diverse fea-
tures, we measure the distance between the original and aug-
mented features using maximum mean discrepancy (MMD).
A higher MMD suggests that the distance between the origi-
nal and augmented features is further. The same set of orig-
inal features is used to ensure fairness and comparability of
the measurement result. Average and standard deviation over

three runs are reported. Table 3 shows the results. Features
augmented by XDomainMix consistently have the highest
MMD compared to MixStyle and DSU which are two SOTA
feature augmentation methods. This suggests that the fea-
tures augmented by XDomainMix exhibit the most deviation
from the original features, leading to a more varied augmenta-
tion. Visualization of sample images reconstructed from aug-
mented features are given in Supplementary.

4.4 Experiments on the Identified Features
In this set of experiments, we demonstrate that XDomainMix
is able to identify features that are important for class and
domain prediction. We evaluate the model performance for
class or domain prediction after eliminating those features
with the highest importance score computed in Equations 1
and 2. A decrease in accuracy suggests that the features that
have been removed are important for the predictions.

For comparison, we implement two alternative selection
strategies: a random method that arbitrarily selects features
to remove, and a gradient norm approach, where features are
chosen for removal based on the magnitude of the gradient in
the importance score computation. Samples in the validation
set of PACS dataset are used in this experiment.

Figure 3 shows the results. Our method shows the largest
drop in both class prediction and domain prediction accura-
cies compared to random removal and gradient norm meth-
ods. This indicates that XDomainMix is able to identify fea-



Figure 3: Prediction accuracy after removing x% of features with
the highest importance scores.

(a) Class-related features

(b) Domain-related features

Figure 4: Visualization of features from different classes/domains,
indicated by the different colors.

tures that are specific to the domain and class effectively.
To visualize the extracted features, we map the high di-

mensional feature vectors obtained by f to a lower dimen-
sional space, This transformation is carried out using two lin-
ear layers, as described in [Zhang et al., 2021]. Figure 4(a)
provides a visualization for the model that is trained on the
PACS dataset, with Art as the unseen domain. We see that
the features identified as class-specific are well separated by
class. This is in contrast to the features that are generic across
classes, which are not as clearly delineated.

Similarly, we also visualize the extracted domain-specific

and domain-invariant features. As shown in Figure 4(b), the
domain-specific features are noticeably better separated com-
pared to the domain-invariant features.

4.5 Ablation Study
To understand the contribution of each component in the aug-
mentation, we perform ablation studies on Camelyon17 and
FMoW datasets. Table 4 shows the result. Compared to the
baseline, mixing class-specific domain-specific feature com-
ponents (Zc,d) only, or mixing class-generic domain-specific
feature components (Z¬c,d) only in the augmentation can im-
prove the performance. This suggests that by manipulating
domain-specific feature components, models that are better
at domain generalization can be learned. Mixing Z¬c,d leads
to greater improvement, indicating that enriching diversity by
content from other classes is more helpful than simply intra-
class augmentation.

Augmenting both Zc,d and Z¬c,d does not consistently lead
to performance improvement, possibly due to dataset-specific
characteristics. Probabilistically discarding Zc,d seems to en-
courage the model to use less domain-specific information
and exploit less activated features in prediction, which im-
proves the domain generalization performance.

mix mix discard Camelyon17 FMoW
Zc,d Z¬c,d Zc,d

70.3±6.4 32.3±1.3
✓ 78.3±5.5 32.9±2.2

✓ 79.1±6.0 33.6±1.1
✓ ✓ 79.6±7.0 31.9±0.4
✓ ✓ ✓ 80.9±3.2 35.9±0.8

Table 4: Ablation study.

5 Conclusion and Future Work
In this work, we have developed a feature augmentation
method to address the domain generalization problem. Our
approach aims to enhance data diversity within the feature
space for learning models that are invariant across domains
by mixing domain-specific components of features from dif-
ferent domains while retaining class-related information. We
have also probabilistically discarded domain-specific features
to discourage the model from using such features for their
predictions, thereby achieving good domain generalization
performance. Our experiments on multiple datasets demon-
strate the effectiveness of the proposed method.

While our method presents a promising approach to solv-
ing the domain generalization problem, there are several lim-
itations. Our method needs more than one training domain
to perform cross-domain feature augmentation. Our method
assumes that the datasets across different domains share the
same label space and similar class distributions, and its per-
formance may be affected if this is not the case. Our method
is mainly empirically validated, and a theoretical analysis or
guarantee of its performance is still lacking. Further research
is needed to provide a deeper theoretical understanding of the
proposed method and its performance bounds.
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A Comparison with Sharpness-aware
Methods

Apart from learning invariance across domains, learning a flat
minimum is another approach to improve domain generaliza-
tion, as recent work suggests that flat minima bring better
generalization than sharp minima. As a result, several do-
main generalization works seek flat minima by optimization
that leads to flatter loss landscapes.

Here we compare the performance of XDomainMix with
two sharpness-aware methods:

• SAM [Foret et al., 2021] seeks parameters that lie in
neighborhoods that have uniformly low loss.

• SAGM [Wang et al., 2023] aligns the gradient direction
between the SAM loss and the empirical risk.

The results are shown in Table 5. We follow the same
experiment and reporting protocol as that in Table 1. XDo-
mainMix outperforms SAM and SAGM on Camelyon17 and
FMoW datasets. On the PACS and TerraIncognita datasets,
XDomainMix comes as a close second to SAGM. The result
is expected as the superiority of considering sharpness in do-
main generalization has been empirically demonstrated.

It is worth mentioning that sharpness-aware methods can
be easily incorporated into XDomainMix to learn a flatter
minimum. We see that XDomainMix+SAM achieves better
performance on Camelyon17, FMoW, PACS, and Domain-
Net datasets, indicating that incorporating sharpness-related
strategies can further boost the performance of XDomainMix.

B Additional Results on Experiments of the
Identified Features

We present the results of eliminating features with the high-
est importance score computed in Equations 1 and 2 on
other datasets in Figure 5. As that we see on the PACS
dataset, XDomainMix outperforms random selection and gra-
dient norm methods by exhibiting the most significant de-
cline in both class and domain prediction accuracies on other
datasets. This highlights its effective identification of class
and domain-specific features.

C Scalability
Large-scale foundation models have emerged as a prominent
trend. XDomainMix can be applied to any model architec-
ture that allows for the decomposition of its features, includ-
ing larger and more complex models like Vision Transformer
[Dosovitskiy et al., 2020]. We applied the ViT-B/16 CLIP
model [Radford et al., 2021] to XDomainMix by using its im-
age encoder to extract features and fine-tuning the classifier.
Feature augmentation is performed on the features extracted
by the image encoder.

We compared with CLIP’s zero-shot prediction and ERM
fine-tuning of the classifier. We use the prompt template “a
photo of a {class name}” for zero-shot prediction. For ERM
and XDomainMix fine-tuning, the image encoder is frozen,
and only the classifier is updated. We follow the same exper-
iment and reporting protocol as that in Table 1 for finetun-
ing. Table 6 shows the result. On the Camelyon17 dataset,

(a) Camelyon17

(b) FMoW

(c) TerraIncognita

(d) DomainNet

Figure 5: Prediction accuracy after removing x% of features with
the highest importance scores on additional datasets.

CLIP’s zero-shot prediction achieves fair performance. Fine-
tuning the classifier further improves the performance, and



Method Camelyon17 FMoW PACS TerraIncognita DomainNet
SAM 75.8±5.9 35.4±1.4 85.8±0.2 43.3±0.7 44.3±0.0
SAGM 80.0±2.9 31.0±1.6 86.6±0.2 48.8±0.9 45.0±0.2
XDomainMix 80.9±3.2 35.9±0.8 86.4±0.4 48.2±1.3 44.0±0.2
XDomainMix+SAM 81.4±3.1 36.1±1.3 86.7±0.4 44.4±0.4 45.1±0.1

Table 5: Domain generalization performance of XDomainMix compared with sharpness-aware methods.

XDomainMix gives better result than ERM. On the FMoW
dataset, XDomainMix finetuning gives the best performance.
CLIP’s subpar zero-shot prediction suggests that the image
encoder may not be optimal for FMoW. While finetuning en-
hances performance, it falls short of achieving the levels seen
in Table 1.

Method Camelyon17 FMoW
zero-shot 68.2 12.9
ERM 86.4±0.3 26.6±0.4
XDomainMix 86.6±0.3 26.9±0.2

Table 6: Domain generalization performance with ViTB/16 CLIP.

D Visualization of Augmented Features
We visualize the augmented features by employing a pre-
trained autoencoder [Huang and Belongie, 2017] 1 to map
these features back in the input space. Figure 6 shows the
reconstructed images using both the original and augmented
features generated from the Camelyon17 dataset.

Cell nuclei and the general structural features of the tissue
are highlighted by the stain. In general, tumor cells are larger
than normal cells [Bandi et al., 2018]. For both classes, XDo-
mainMix is able to generate augmented features with greater
diversity, while DSU’s augmented features show only limited
differences. In addition, XDomainMix also preserves class
semantics as no large cells are included in the generated re-
sults for the normal class. This demonstrates the effectiveness
of using XDomainMix for diverse feature augmentation.

Additionally, we also visualize the XDomainMix aug-
mented features in a lower dimensional space (see Figure 7).
The augmented features clearly lie in the same cluster formed
by the original features of their respective classes, indicating
that XDomainMix is able to preserve class-specific informa-
tion.

E Alternative Design of XDomainMix
Sample selection in the interpolation of class-generic
domain-specific Feature Component To augment the fea-
ture Z extracted from input x, we randomly sample two in-
puts xi and xj whose domains are different from x. xi has
the same class label as x and is used to interpolate Zc,d. xj

is from a different class and is used to interpolate Z¬c,d. We
select xj from a different class and a different domain so that
the augmented feature has greater diversity, compared to sam-
ples from the same class or domain.

1Weights are from https://github.com/naoto0804/pytorch-
AdaIN.

Original DSU XDomainMix

(a) Normal tissues
Original DSU XDomainMix

(b) Tumor tissues

Figure 6: Visualization of images reconstructed using augmented
features obtained from DSU and XDomainMix. Features from XDo-
mainMix result in samples that are more diverse than DSU method.

We compare the maximum mean discrepancy (MMD) be-
tween the original and augmented features on the Came-
lyon17 dataset when different xj selection strategies are used
in the interpolation of Z¬c,d. A higher MMD suggests that
the features are more diverged. Table 7 shows the result.
When same-class or same-domain inputs are sampled, the
augmented features always have a lower divergence. Select-
ing samples from different classes and different domains re-
sults in the highest MMD, which implies the greatest diver-
sity.

Training domain classifier with augmented features We
performed an experiment to train the domain classifier with
and without augmented features when Zc,d is not discarded.



Figure 7: Visualization of original and augmented features.

Sample used MMD (1e-2)
same as xi 35.94±0.11
same class different domain (not xi) 36.00±0.03
different class same domain 38.24±0.23
different class different domain 38.82±0.28

Table 7: Feature divergence of different sample selection in the aug-
mentation of Z¬c,d on Camelyon17 dataset

We give each augmented feature Z̃ a soft domain label.
Suppose N domains are present in training. the original fea-
ture Z is from domain d. Zi is from domain di and Zj is
from domain dj . The ratio to interpolate Zc,d with Zic,d is
λ1, and the ratio to interpolate Z¬c,d with Zjc,d is λ2. The
domain label of Z̃, d̃ ∈ RN at position d is λ1+λ2

2 . The value
of d̃ at position di is 1−λ1

2 , and at position dj is 1−λ2

2 . Other
positions are set to 0. Binary cross-entropy loss is used in the
training.

Table 8 shows the results on the Camelyon17 dataset. Clas-
sification accuracy on the test domain is reported. It suggests
that training the domain classifier with augmented features
could harm the domain generalization performance. Aug-
mented features may not follow the distribution of existing
domains.

Training domain classifier Test domain accuracy
with aug features 77.4±7.1
without aug features 79.6±7.0

Table 8: Training domain classifier with and without augmented fea-
tures on the Camelyon17 dataset.

F Additional Results on Domain
Generalization Performance

We include the domain generalization performance of XDo-
mainMix on two more datasets, VLCS and OfficeHome.

• VLCS [Fang et al., 2013]. This dataset contains 10,729
photos of 5 classes from 4 existing datasets (domains).

• OfficeHome [Venkateswara et al., 2017]. This dataset
contains 15,588 images of 65 office and home objects

in 4 visual styles (domains): art painting, clipart, prod-
uct (images without background), and real-world (im-
ages captured with a camera).

In addition, we include the results of two methods that were
proposed earlier.

• CORAL [Sun and Saenko, 2016] aligns the second-
order statistics of the representations across different do-
mains.

• IRM [Arjovsky et al., 2019] learns a representation such
that the optimal classifier matches all domains.

To perform experiments on VLCS and OfficeHome, We
follow the setup in DomainBed, and use a pre-trained ResNet-
50. Each domain in the dataset is used as a test domain in
turn, with the remaining domains serving as training domains.
Hyperparameters are the same as what we used for PACS and
TerraIncognita. The best model is selected based on its per-
formance on the validations split of the training domains. The
averaged classification accuracy of the test domains over 3
runs is reported.

Table 9 shows the result. Our method does not perform
well on VLCS and ranks third on the OfficeHome dataset.
Overall, our method still yields the highest average perfor-
mance on benchmark datasets.

G Domain Generalization Experiment Details
Details of the domain generalization experiments of state-of-
the-art methods produced by us are as below.
Camelyon17 and FMoW dataset We run the experiments
of RSC, MixStyle, and DSU in the testbed provided by LISA.
Following the instruction of the publisher of the datasets, non-
pretrained DenseNet-121 is used as the backbone for Came-
lyon17. Pretrained DenseNet-121 is used as the backbone for
FMoW.

Our implementation of RSC follows that in DomainBed.
The drop factors are set to 1/3, the value recommended in
RSC.

For MixStyle, our implementation is based on the code
published by the author. MixStyle module is inserted after
the first and second DenseBlock. All hyperparameters are
set to be the value recommended by the author. The MixStyle
mode is random, which means that feature statistics are mixed
from two randomly drawn features. The probability of using
MixStyle is set to 0.5. α, the parameter of the Beta distribu-
tion is set to 0.1. The scaling parameter to avoid numerical
issues, ϵ is set to 1e-6.

We implement DSU following the published code by the
author. All hyperparameters are set to be the value recom-
mended by the author. DSU module is inserted after the first
convolutional layer, first maxpool layer, and every transition
block. The probability of using DSU is set to 0.5. The scaling
parameter to avoid numerical issues, ϵ is set to 1e-6.

For the three experiments, the batch size is set to 32, and
the model is trained for the same number of epochs as we
used to train our method. We tune the learning rate in {1e-4,
1e-3, 1e-2} and select the optimal learning rate based on the
performance on the validation domain. Weight decay is set to
0.



Method Camelyon17 FMoW PACS VLCS OfficeHome TerraIncognita DomainNet Average
ERM 70.3±6.4 32.3±1.3 85.5±0.2 77.5±0.4 66.5±0.3 46.1±1.8 43.8±0.1 60.3
CORAL 59.5±7.7 32.8±0.7 86.2±0.3 78.8±0.6 68.7±0.3 47.6±1.0 41.5±0.1 59.3
IRM 64.2±8.1 30.0±1.4 83.5±0.2 78.5±0.5 64.3±2.2 47.6±0.8 33.9±2.8 57.4
GroupDRO 68.4±7.3 30.8±0.8 84.4±0.8 76.7±0.6 66.0±0.7 43.2±1.1 33.3±0.2 57.5
RSC 77.0±4.9ˆ 32.6±0.5ˆ 85.2±0.9 77.1±0.5 65.5±0.9 46.6±1.0 38.9±0.5 60.4
MixStyle 62.6±6.3ˆ 32.9±0.5ˆ 85.2±0.3 77.9±0.5 60.4±0.3 44.0±0.7 34.0±0.1 56.7
DSU 69.6±6.3ˆ 32.5±0.6ˆ 85.5±0.6ˆ 77.2±0.5ˆ 65.7±0.4ˆ 41.5±0.9ˆ 42.6±0.2ˆ 59.2
LISA 77.1±6.5 35.5±0.7 83.1±0.2ˆ 76.8±1.0ˆ 67.4±0.2ˆ 47.2±1.1ˆ 42.3±0.3ˆ 61.3
Fish 74.7±7.1 34.6±0.2 85.5±0.3 77.8±0.3 68.6±0.4 45.1±1.3 42.7±0.2 61.3
XDomainMix 80.9±3.2 35.9±0.8 86.4±0.4 76.3±0.5 68.1±0.2 48.2±1.3 44.0±0.2 62.8

Table 9: Performance of XDomainMix compared with state-of-the-art methods performance. Results with ˆ are produced by us.

PACS, VLCS, OfficeHome, TerraIncognita and Domain-
Net dataset We use DomainBed as the testbed to experi-
ment DSU and LISA. ResNet-50 pretrained on ImageNet is
used as the backbone.

Our implementation of LISA is based on the code pub-
lished by the author. Following the author’s suggestion,
CuMix is used to mix up input samples. The mix up alpha
is set to 2.

The official code of DSU for ResNet-50 is used. Other
settings are the same as what we used for Camelyon17 and
FMoW experiments.

The model is trained for the same number of steps as we
used to train our method. We tune the learning rate, weight
decay, and batch size in the range listed by DomainBed. The
learning rate is tuned in (1e-5, 1e-3.5). The weight decay is
tuned in (1e-6, 1e-2). The batch size is tuned in [32, 45] (24
for DomainNet). 20 groups of hyperparameters are searched.
The optimal hyperparameters are selected based on the per-
formance of the validation split of training domains.
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