
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ADAPTVISION: EFFICIENT VISION-LANGUAGE
MODELS VIA ADAPTIVE VISUAL ACQUISITION

Anonymous authors
Paper under double-blind review

ABSTRACT

Vision-Language Models (VLMs) have achieved remarkable success in visual ques-
tion answering tasks, but their reliance on large numbers of visual tokens introduces
significant computational overhead. While existing efficient VLM approaches re-
duce visual tokens through fixed-ratio compression, they operate passively and lack
the ability to adapt to varying task requirements. This motivates a fundamental
question: Can VLMs autonomously determine the minimum number of visual
tokens required for each sample? Inspired by human active vision mechanisms,
we introduce AdaptVision, a novel VLM paradigm that enables adaptive visual
token acquisition through a coarse-to-fine approach. Our model initially processes
compressed visual tokens from low-resolution images and selectively acquires addi-
tional visual information by invoking a bounding box tool to crop key regions when
necessary. We train AdaptVision using a reinforcement learning framework that
carefully balances accuracy and efficiency. Central to our approach is Decoupled
Turn Policy Optimization (DTPO), which decouples the learning objective into
two components: (1) tool learning, which optimizes correct tool utilization, and (2)
accuracy improvement, which refines the generated responses to improve answer
correctness. Based on this formulation, we further decouple advantage estimation
by computing separate advantages for tokens associated with each objective. This
formulation enables more effective optimization for AdaptVision compared to
vanilla GRPO. Comprehensive experiments across multiple VQA benchmarks
demonstrate that AdaptVision achieves superior performance while consuming
substantially fewer visual tokens than state-of-the-art efficient VLM methods.

1 INTRODUCTION

Recently, Vision-Language Models (VLMs) (Li et al., 2023a; Bai et al., 2023; Chen et al., 2024b)
have achieved significant breakthroughs in general visual question answering (VQA) and diverse
practical applications by projecting and adapting visual tokens into large language model (LLM)
space (Touvron et al., 2023; Achiam et al., 2023; Zhu et al., 2023; Bai et al., 2023). However, the
promising performance of VLMs largely relies on the large amount of vision tokens, inevitably
introducing a huge memory and computational overhead when compared to LLMs, particularly for
high-resolution images. For instance, a 2048× 1024 image yields 2,678 vision tokens in Qwen2.5-
VL (Bai et al., 2025). Therefore, it is crucial to avoid the excessive consumption of visual tokens.

Numerous studies have explored visual token compression to enhance VLM efficiency (Yang et al.,
2025a; Chen et al., 2024a; Wen et al., 2024; Shi et al., 2023; He et al., 2024; Jian et al., 2023;
Zhang et al., 2024b; Yang et al., 2025b). Existing works can be categorized into two main research
directions. The first prunes or merges a fixed number of visual tokens based on predetermined
thresholds, according to the importance and similarity of vision tokens (Yang et al., 2025a; Chen et al.,
2024a; Zhang et al., 2024b). The second dynamically processes distinct samples, where the system
adaptively switches between using 100% vision tokens for OCR-related tasks and 25% vision tokens
for simpler tasks by selectively employing quarter-resolution images (Yang et al., 2025b). However,
existing efficient VLM paradigms and methods are largely passive, as they can only reduce the
number of vision tokens by predefined ratios. This leads to a natural question: Can VLMs adaptively
determine the minimum number of vision tokens for each sample according to different scenarios?
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Figure 1: Our key motivations and AdaptVision performance and efficiency. Left: Coarse-
to-fine. Human visual attention mechanisms first guide the search for question-relevant regions
in images, which are then subjected to detailed analysis. Right: AdaptVision achieves superior
performance with significantly fewer visual tokens than previous efficient VLM methods.

Inspired by human visual processing mechanisms, cognitive neuroscience reveals that our visual
system operates not as a passive, uniform sensor but through an active, sequential, and adaptive
process known as active vision (Findlay & Gilchrist, 2003; Itti et al., 2005). Rather than processing
an entire scene at full resolution simultaneously, the human visual system first rapidly captures
low-spatial-frequency information (i.e., a coarse overview) to grasp the gist of the scene. It then
dynamically allocates attention and eye movements towards salient or task-relevant regions for more
detailed, finer-grained analysis (Navon, 1977). This coarse-to-fine processing mechanism enables
humans to efficiently parse complex visual inputs with minimal cognitive load.

In light of this, we argue that VLMs should similarly adopt an adaptive visual acquisition strategy
– one that dynamically adjusts the number of visual tokens based on input content and task, rather
than relying on fixed-ratio vision token compression. Such an approach would not only enhance
computational efficiency but also reflect a more biologically plausible and intelligent form of visual
processing. Fig. 1 provides an illustrative example.

In this paper, we propose AdaptVision, a novel and efficient VLM paradigm that leverages the
model’s inherent reasoning capabilities. Our model initially processes compressed visual tokens
from low-resolution images and adaptively acquires additional visual tokens by invoking a bounding
box tool to crop key regions from the original high-resolution image when necessary. The model is
trained via reinforcement learning to autonomously decide when to invoke the tool and which region
to crop. This is guided by a carefully designed reward function that balances accuracy and efficiency,
incentivizing the model to achieve high performance with minimal visual token consumption.

However, training this dual-objective policy with standard RL algorithms like Group Relative Pol-
icy Optimization (GRPO) (Shao et al., 2024) presents two key challenges: (1) Ambiguous credit
assignment: Vanilla GRPO assigns a single sequence-level reward to all generated tokens, failing to
distinguish the contribution of the decision to request additional visual tokens from that of generating
the final answer; (2) Imbalanced optimization: Since vanilla GRPO normalizes all tokens uniformly
in a sequence, it introduces an imbalance: compared to 1-turn direct-answer sequences, 2-turn tool-
invoking sequences receive imbalanced gradient signals, causing the latter to be under-optimized.

To address these challenges, we propose Decoupled Turn Policy Optimization (DTPO). First, to
mitigate optimization imbalance, we decouple the learning objective into two components based on
the functional roles of response tokens: (1) tool learning, which encourages correct tool use, and (2)
accuracy improvement, which refines the generated responses to improve answer correctness. Each
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objective is normalized separately to balance learning signals across different tokens. Second, to
enable precise credit assignment, we decouple advantage estimation by computing distinct advantages
for tokens associated with each objective, encouraging more efficient tool exploration. Experiments
on multiple VQA benchmarks demonstrate that AdaptVision achieves superior performance with
significantly fewer visual tokens than state-of-the-art efficient VLM methods, as shown in Fig. 1.

In summary, our contributions are:

1. We introduce AdaptVision, a novel and efficient VLM paradigm that enables coarse-to-fine visual
reasoning.

2. We propose a Decoupled Turn Policy Optimization (DTPO) algorithm alongside a tailored reward
function to enable the effective training of AdaptVision.

3. Extensive evaluation on multiple VQA benchmarks shows that AdaptVision achieves superior
performance with substantially reduced visual token consumption compared to existing efficient
VLM methods.

2 PRELIMINARY

2.1 REINFORCEMENT LEARNING FOR LARGE LANGUAGE MODELS

Recent studies (Guo et al., 2025; Jaech et al., 2024) have demonstrated Reinforcement Learning (RL)
effectively enhances the reasoning capabilities of large language models (LLMs). Recently, Group
Relative Policy Optimization (GRPO) (Shao et al., 2024) has been widely used in LLM reasoning.
Given a question x, GRPO generates G distinct responses {oi}Gi=1 from the current policy πθold

and obtains a group of rewards {Ri}Gi=1. GRPO optimizes the policy model πθ by maximizing the
following objective:

JGRPO(θ) = Ex,oi

[
1

G

G∑
i=1

(
1

Ni

Ni∑
t=1

Li,t(θ)− βDKL [πθ(·|x) ||πref(·|x)]

)]
, (1)

where Li,t(θ) denotes the token-level loss formally given by:

Li,t(θ) = min

(
πθ(oi,t | x, oi,<t)

πθold(oi,t | x, oi,<t)
Ai,t, clip

(
πθ(oi,t | x, oi,<t)

πθold(oi,t | x, oi,<t)
, 1− ϵ, 1 + ϵ

)
Ai,t

)
, (2)

Ai,t =
Ri − mean({Ri}Gi=1)

std({Ri}Gi=1)
, DKL(πθ||πref) =

πref(oi|q)
πθ(oi|q)

− log
πref(oi|q)
πθ(oi|q)

− 1, (3)

where DKL is the KL-divergence measure. ϵ and β are hyperparameters. The advantage estimate Ai

is computed using a group of rewards {Ri}Gi=1.

2.2 VISION LANGUAGE MODELS

The VLM architectures generally consist of three components: a visual encoder, a modality projector,
and a LLM. A commonly used approach for the visual encoder is to employ a pre-trained image
encoder like CLIP-VIT (Radford et al., 2021) that converts input images into visual tokens. The
modality projector adjusts the size of these visual tokens to match the embedding size of LLM and
to achieve semantic alignment, enabling the LLM to process visual data effectively. The LLM then
integrates the aligned visual and textual information to generate responses.

Existing works have revealed that the computational complexity of VLM is strongly influenced by
the sequence length (Yang et al., 2025a), where the sequence length is defined as n = nsys + nimg +
nquestion. In typical VLM tasks, the number of vision tokens nimg is often much larger than the
other two, sometimes by a factor of 20. Therefore, reducing the number of vision tokens is the key
for improving the efficiency of VLMs.
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Figure 2: FrameWork of AdaptVision. AdaptVision first processes a 1/4-resolution image. The
model then decides whether to answer directly or invoke the bounding box tool to crop a high-
resolution region for further analysis before generating the final answer.

3 METHODOLOGY

3.1 FRAMEWORK

We aim to develop an efficient VLM that minimizes visual token usage while maintaining high perfor-
mance by adaptively acquiring visual information based on question and image complexity. As shown
in Fig. 2, our method first processes a low-resolution image (Ilow), cutting visual token usage to 25%
of the original. The VLM then autonomously decides whether to answer directly or crop key regions
(Icrop) from the high-resolution image for more detail. To equip the VLM with the ability to generate
both direct answers and adaptive visual requests, we design specialized prompts (details in Ap-
pendix A.1). As shown in Fig. 2, given a low-resolution image Ilow and the question q, the model can
output a direct answer or invoke a tool call using <tool call>[x1, y1, x2, y2]</tool call>
to obtain Icrop before reasoning further and answering.

Although prompting enables different response styles, the VLM lacks a mechanism for deciding
which response style is most appropriate for a given input x = {xsys, Ilow, q}. We therefore frame
this as a reinforcement learning problem to optimize the following policy:

πθ(o|x) =
{
πθ(o1:N | x), direct answer,
πθ(o1:T | x)πθ(oT+1:N | x, o1:T , Icrop), tool call,

(4)

where N is the length of the entire generated sequence. In tool-call responses, o1:T represents tool
tokens in the first turn, and oT+1:N represents answer tokens in the second turn, as illustrated in Fig. 2.
Let nlow and ncrop be the number of visual tokens for Ilow and Icrop. 1tool is the indicator for tool-call
responses. Thus, the total number of visual tokens for each sample is: nimg = nlow + 1toolncrop.
Therefore, to minimize the number of visual tokens nimg, we aim to learn a policy πθ(o | x) that
can: (1) invoke the tool to request additional visual tokens only when necessary, and (2) acquire the
minimal additional visual information Icrop required to answer the question correctly.

3.2 REWARD DESIGN

To learn a policy that can optimally balance efficiency and accuracy, we design a reward function
that consists of two parts: (1) an Outcome Reward Roc that reflects answer correctness, response
format adherence and tool call frequency; (2) a Tool Reward Rtool that incentivizes effective tool
exploration to enhance coarse-to-fine visual reasoning. The reward function of AdaptVision is:

R = Roc +Rtool. (5)

Outcome Reward Roc. The outcome reward is the sum of three components. (1) Accuracy
reward Racc: Since VQA answers are typically open-ended, we use an LLM as judge to assign
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a binary reward (1 for correct, 0 for incorrect) for answer correctness. The judging prompt is in
Appendix A.1. (2) Format reward Rform: To maintain instruction-following capability, we enforce
formatting requirements: reasoning in <think> tags, answers in <answer> tags, and tool calls
in <tool call> tags with valid JSON. The format reward is 0.5 for full compliance with all
formatting requirements; otherwise, the reward is 0. (3) Balance reward Rbal: To prevent over-
reliance on tool calls, we introduce a balance reward. We apply a 0.1 penalty to correct answers that
invoke tool calls. Additionally, to discourage “lucky guesses” (Yang et al., 2025b), we impose a 0.1
penalty on direct answers when the probability of correct response from low-resolution images is low,
thereby encouraging appropriate tool usage. The design of this balance reward is as follows:

Rbal =

{
−0.1 · I(r < θ) · I(Racc = 1), direct answer,
−0.1 · I(Racc = 1), tool call,

r =
Cdirect

Cdirect + Ctool
, (6)

where Cdirect and Ctool represent the count of correct answers for direct-answer and tool-call
responses within a group, respectively. I is the indicator function. We set θ = 0.2 in this paper.

Tool Reward Rtool. When the model requests additional visual information via a tool call, the
cropped region Icrop must be both informative for answering and minimal in area to reduce visual
token usage. To achieve this balance, we introduce a tool reward Rtool, formulated as follows:

Rtool = Rcrop − α · Rarea, (7)

where Rcrop evaluates the correctness of the cropped region, Rarea denotes its relative area ratio,
and α is a hyperparameter balancing the two terms. In this paper we set α = 2. (1) The crop
reward Rcrop is determined by GPT-4o, which evaluates whether the cropped region Icrop contains
relevant information to answer the question, returning 1 if correct and 0 otherwise. The detailed
evaluation prompt is provided in Appendix A.1. (2) The relative area reward Rarea penalizes
oversized bounding boxes that contain irrelevant regions, formulated as follows:

Rarea = I(Racc = 1) · I(Rcrop = 1) · clip
(

rarea
µarea(G(a))

− 1, 0, 1

)
,

rarea =
(x2 − x1) · (y2 − y1)

Hlow ·Wlow
, (8)

where Hlow and Wlow denote the height and width of Ilow, and rarea is the area ratio of the cropped
region. Here, G(a) denotes a group of responses that yield both correct answers (Racc = 1) and
correct cropped regions (Rcrop = 1), and µarea(G(a)) is the mean measurement of rarea within
such a group. This area penalty incentivizes the model to select the smallest possible region that still
ensures correctness, thereby minimizing visual token usage while maintaining performance.

3.3 EFFICIENT LEARNING VIA DECOUPLED TURN POLICY OPTIMIZATION

Based on our reward design, we initially employ GRPO (Shao et al., 2024) for training. We aim
to train a VLM that (1) achieves high answering accuracy and (2) minimizes the number of visual
tokens used. However, training such a dual-objective policy with GRPO presents two key challenges.

Ambiguous credit assignment Vanilla GRPO provides a single, sequence-level reward to all
generated tokens, failing to distinguish between the contributions of two distinct types of actions –
the decision to request additional visual tokens and the generation of the final answer. This ambiguity
limits effective exploitation and exploration during policy learning. For instance, when the VLM
correctly generates bounding boxes while producing an incorrect answer, the model still receives a
positive reward for the answer tokens. This may steer the model towards a suboptimal optimization
direction. As we will show in the experiments, the model initially favors direct answers but then
rapidly collapses to excessive tool call, resulting in an unstable training process.

Imbalanced optimization As defined in Eq. 4, the policy model generates either a one-turn or
two-turn responses for each sample. Depending on their functional roles, the generated tokens can be
categorized into two types: Tool Tokens and Answer Tokens, as shown in Fig. 2. Accordingly, the
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Figure 3: Demonstration of vanilla GRPO and our DTPO. Our DTPO (1) decomposes the policy
loss by turns to separately optimize tool and answer tokens, and (2) computes distinct advantages for
tool and outcome rewards, enabling balanced optimization and precise credit assignment.

original GRPO objective in Eq. 2 can be decomposed into two components:

1

G

G∑
t=1

1

Ni

Ni∑
t=1

Li,t(θ) =
1

G

G∑
t=1

1

Ni

Ti∑
t=1

Li,t(θ)︸ ︷︷ ︸
Tool Token

+
1

G

G∑
t=1

1

Ni

Ni∑
t=Ti+1

Li,t(θ)︸ ︷︷ ︸
Answer Token

, (9)

where Ti denotes the number of tool tokens generated in the first turn, and Ni − Ti represents the
number of answer tokens in the second turn. If the model answers directly without tool calls, Ti is 0.
A closer examination of Eq. 9 reveals an inherent optimization imbalance. In two-turn sequences that
invoke tools, the gradient contributions from tool tokens are suppressed by the normalization factors
1
Ni

and 1
G , causing tool tokens to be under-optimized compared to answer tokens.

To address these challenges, we propose Decoupled Turn Policy Optimization (DTPO). First, we
decouple the policy loss by turns and normalize the contributions of tool and answer tokens separately.
This adjustment effectively resolves the under-optimization problem of tool tokens.

JDTPO(θ) = Ex,oi

[
1∑G

i=1 Ti

G∑
i=1

Ti∑
t=1

Li,t(θ)︸ ︷︷ ︸
Tool Token

+
1∑G

i=1(Ni − Ti)

G∑
i=1

Ni∑
t=Ti+1

Li,t(θ)︸ ︷︷ ︸
Answer Token

]
. (10)

Second, to enable more precise credit assignment, DTPO decouples the advantage estimation by
computing distinct advantages for tool and answer tokens, rather than using a single advantage for
the entire sequence. Specifically, we compute the advantage for the t-th token as follows:

Ai,t =

{
A

(i)
oc + λ ·A(i)

tool, direct answer,
A

(i)
oc + λ ·A(i)

tool · I(1 ≤ t ≤ Ti), tool call,

A
(i)
tool =

R(i)
tool − mean({R(i)

tool}Gi=1)

std({R(i)
tool}Gi=1)

, A(i)
oc =

R(i)
oc − mean({R(i)

oc }Gi=1)

std({R(i)
oc }Gi=1)

, (11)

where λ is a hyperparameter that trade-offs two advantages. We set λ = 0.3 in this paper. Fig. 3
compares the design of GRPO and DTPO.
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Table 1: Performance comparison with previous efficient VLM methods. Vanilla denotes the
Qwen2.5-VL-7B-Instruct model. Down-Sample uses a 1/4-resolution image as input to the Vanilla
model. “#Token” indicates the visual token consumption ratio relative to the vanilla model across all
benchmarks. “Avg.” denotes the average performance relative to the vanilla model on all benchmarks.

Method ChartQA OCRBench DocVQA MME MMVet RealWorldQA POPE MathVista MathVerse #Token↓ Avg.↑test test val test test test test testmini testmini

Retain 100% Visual Tokens Across All Benchmarks

Vanilla 79.8 81.5 95.1 2316 61.6 68.6 86.7 68.2 46.3 100% 100%100% 100% 100% 100% 100% 100% 100% 100% 100%

Retain 25% Visual Tokens Across All Benchmarks

Down-Sample 62.9 68.8 94.3 2270 54.5 68.8 82.8 62.2 43.1 25% 92.1%78.8% 84.4% 99.1% 98.0% 88.5% 100.3% 95.5% 91.2% 93.1%

Retain 50% Visual Tokens Across All Benchmarks

SparseVLM 73.2 75.6 66.8 2282 51.5 68.4 85.5 66.6 45.1 50% 92.2%91.7% 92.7% 70.2% 98.5% 83.6% 99.7% 98.6% 97.6% 97.4%

FastV 72.6 75.8 93.6 2308 52.8 68.8 84.7 63.7 45.0 50% 95.8%91.0% 93.0% 98.4% 99.6% 85.7% 100.3% 97.7% 93.4% 97.2%

VisionZip 71.5 70.5 93.8 2209 57.0 68.6 86.3 64.1 45.1 50% 94.8%89.6% 86.5% 98.6% 95.4% 92.5% 100% 99.5% 93.9% 97.4%

Dynamic Methods

VisionThink 73.6 76.8 92.9 2320 61.7 65.6 86.3 62.2 42.5 52% 95.8%92.2% 94.2% 97.7% 100.2% 100.2% 95.6% 99.5% 91.2% 91.8%

VisionThink† 73.88 80.8 93.7 2392 60.18 68.37 86.69 65.7 45.68 99% 98.4%92.6% 99.1% 98.5% 103.3% 97.7% 99.7% 100.0% 96.3% 98.7%

AdaptVision 75.92 76.9 92.6 2379 64.8 67.32 86.8 65.9 42.3 33% 97.9%95.1% 94.4% 97.4% 102.7% 105.2% 98.1% 100.1% 96.6% 91.4%

4 EXPERIMENT

4.1 EVALUATION SETUP

We conduct experiments on several general VQA benchmarks, including ChartQA (Masry et al.,
2022), OCRBench (Liu et al., 2024), DocVQA (Mathew et al., 2021), MME (Fu et al., 2024),
MMVet (Yu et al., 2023), RealWorldQA (xAI Team, 2024), POPE (Li et al., 2023b), MathVista (Lu
et al., 2023), MathVerse (Zhang et al., 2024a). AdaptVision is based on Qwen2.5-VL-7B-Instruct (Bai
et al., 2025). We employ veRL (Sheng et al., 2025) framework for RL training. During training,
we set the batch size as 512 and the mini-batch size as 32. We drop the KL term during policy
optimization. The initial learning rate of the policy model is 1e− 6. For each prompt, we sample
16 candidate responses using a temperature of 1.0. During inference, we use the vLLM framework
and set the temperature to 0. We use training data from Yang et al. (2025b)1, which contains VQA
samples that can be answered directly using low-resolution images, as well as samples that require
high-resolution images for accurate answering. See Appendix A.2 for more details.

4.2 MAIN RESULTS

We compare AdaptVision with existing vision token compression methods, including FastV (Chen
et al., 2024a), SparseVLM (Zhang et al., 2024b), VisionZip (Yang et al., 2025a), and Vision-
Think (Yang et al., 2025b). FastV, SparseVLM, and VisionZip are static methods that operate
with a pre-defined token retention ratio, while VisionThink and AdaptVision are dynamic methods
that vary visual token usage for each sample. For fair comparison, static methods are set to 50% token
retention. For VisionThink, we initially used the officially released model2 but found it consumed
substantially more visual tokens than our method, making the comparison unfair. We thus report two
versions: “VisionThink†” for the released model and “VisionThink” for our reproduction using the
public code. We also include the vanilla model (100% tokens, high-resolution) and the down-sample
model (25% tokens, 1/4 resolution). Results are shown in Table 1. Compared to previous vision token
compression methods, AdaptVision achieves superior average performance across all benchmarks
with significantly fewer visual tokens. Compared to the down-sample model, AdaptVision improves
accuracy by 5.8% with only 7% more visual tokens, highlighting its effective coarse-to-fine visual
reasoning. We also compare AdaptVision with previous methods in terms of inference time. We
report the end-to-end inference time for each dataset in Fig. 7 in Appendix A.3. Compared to the

1https://huggingface.co/datasets/Senqiao/VisionThink-Smart-Train
2https://huggingface.co/Senqiao/VisionThink-Efficient
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(a) Reward Ablation (b) Training curve of tool call ratio, outcome reward and tool reward

Figure 4: Policy-training comparison: (a) The influence of reward design. (b) GRPO vs. DTPO.

vanilla model and VisionThink†, AdaptVision demonstrates significantly reduced inference time due
to reduced visual token usage. While AdaptVision requires additional tokens for reasoning and tool
calls compared to the down-sample model, the increase in inference time remains acceptable.

4.3 TRAINING DYNAMICS IN RL

The Influence of Reward Design To investigate the impact of reward design on model behavior,
we conduct an ablation study on balance and tool rewards. As shown in Fig. 4a, the absence of the
balance reward causes the model to quickly collapse to excessive tool use. This occurs because the
tool reward incentivizes correct tool use, which generally improves accuracy as training progresses.
Conversely, with balance reward, the VLM learns to adaptively regulate tool usage based on the input.
Furthermore, the ablation of the tool reward reveals its necessity for exploration: without it, the model
collapses to direct answering and fails to invoke the tool after just 10 training steps. In contrast, with
the tool reward, the model successfully explores and leverages the tool to enhance performance.

GRPO vs. DTPO We compare the training processes of GRPO and DTPO in Fig. 4b. GRPO
exhibits an unstable training dynamic: During the early training phase, it struggles to optimize either
the tool or outcome reward, causing the tool call ratio to drop near zero and limiting exploration. After
approximately 20 steps, both rewards and the tool call ratio surge rapidly, shifting the model from
direct answering to excessive tool use, eventually collapsing to tool call. This instability stems from
GRPO’s ambiguous credit assignment and imbalanced optimization. In contrast, DTPO exhibits a
stable and efficient optimization process. Both rewards rise steadily from the start, reflecting effective
tool use exploration. The model subsequently converges to a reasonable tool call ratio, demonstrating
the effectiveness of DTPO. Furthermore, we compare the tool call ratios across different data types.
Fig. 10 in Appendix illustrates that our model learns to selectively invoke tools based on task difficulty,
while the model trained with GRPO calls tools on all samples, resulting in a 100% tool call ratio.

4.4 CASE STUDY

In this section, we present a case study to illustrate the efficient visual reasoning process of AdaptVi-
sion. We compare AdaptVision with the vanilla model and the down-sample model. As shown
in Fig. 5, the down-sample model, while reducing visual token usage, fails to answer correctly
due to insufficient information in the low-resolution image. The vanilla model, using the original
high-resolution image, yields a correct answer but at the cost of a large number of visual tokens.
In contrast, AdaptVision begins with the low-resolution image, analyzes the question and image,
recognizes the informational inadequacy, and then intelligently invokes the tool to crop the most
relevant region from the high-resolution image. By acquiring only this essential additional visual
information, it produces an accurate answer while minimizing visual token consumption. More cases
are provided in Appendix B.

5 RELATED WORK

Vision Language Model with Reasoning. Recent advances in reasoning LLMs such as OpenAI’s
o1 (Jaech et al., 2024) and DeepSeek R1 (Guo et al., 2025) have accelerated the use of RL to enhance

8
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Question: 
Is there a stop sign facing us?

<think>
The stop sign is clearly visible in the cropped region of the 
image. Therefore, there is a stop sign facing us. 
</think>
<answer>Yes</answer>

Qwen2.5-VL-7B-Instruct (vanilla): consumes 1768 visual tokens
From the image, I can see a red stop sign on the right side of the road. 
Therefore, the answer is Yes.

AdaptVision: consumes 442 + 1 visual tokens
<think> The image shows a street at night with a car approaching from the 
distance. There is a structure on the right side of the road that appears to be 
a stop sign, but it is not clearly visible. 
</think> 
<tool_call> {“name”: “request_local_region”, “arguments”: {“bbox_2d”: 
[419,189,439,214] } } 
</tool_call> 

✅

❌

Qwen2.5-VL-7B-Instruct (down-sample): consumes 442 visual tokens
From the image, I can not see any stop sign facing us. Therefore, the answer 
is No.

✅

Figure 5: Case study: (1) The vanilla model yields a correct answer but consumes a large number
of visual tokens; (2) The down-sample model reduces token usage but fails to answer correctly; (3)
AdaptVision smartly invokes the tool to produce a correct answer with minimal visual token cost.

reasoning capabilities. This trend has extended to VLMs (Tan et al., 2025; Shen et al., 2025; Liu
et al., 2025; Peng et al., 2025), where most work focuses on high-level semantic reasoning like tool
use or chain-of-thought explanation. A related direction explores active perception, equipping VLMs
with fine-grained control mechanisms (Wu & Xie, 2024; Huang et al., 2025; Su et al., 2025). Recent
systems such as DeepEyes (Zheng et al., 2025) and Mini-o3 (Lai et al., 2025) support operations
like zoom and crop, improving performance on detailed visual tasks. Unlike these approaches, our
method enables the VLM to autonomously determine the minimum number of visual tokens required
for a given task, thereby achieving efficient inference while maintaining performance.

Efficient VLM with Vision Token Compression. Reducing VLM computational cost by vision
token compression has become a popular research topic. Existing methods rely on predefined rules or
metrics to compress tokens. For instance, FastV (Chen et al., 2024a) prunes a fixed 50% of tokens
based on attention scores after the second layer. PyramidDrop (Xing et al., 2024) proposes progressive
token compression to reduce information loss. Other works leverage cross-modal relevance for token
selection, such as SparseVLM (Zhang et al., 2024b) and VisionZip (Yang et al., 2025a), which retain
semantically relevant visual tokens. A key limitation of these methods is their dependence on a fixed
compression ratio, which lacks adaptability across tasks. VisionThink (Yang et al., 2025b) uses RL to
decide whether to use a low-resolution or the original image, offering limited adaptability but still
restricting the model to coarse-grained decisions. In contrast, our approach enables the VLM to learn
coarse-to-fine ability and adaptively determine the minimum number of visual tokens for each task.

6 CONCLUSION

In this paper, we present AdaptVision, a novel paradigm that enables VLMs to autonomously
determine the minimum number of visual tokens via adaptive, coarse-to-fine visual reasoning. We
propose a Decoupled Turn Policy Optimization (DTPO) algorithm, which handles dual-objective
policy learning by decoupling the learning objective and advantage estimation. This leads to a more
balanced and effective training process than GRPO. Experiments on multiple VQA benchmarks show
that AdaptVision achieves superior performance using significantly fewer visual tokens than previous
efficient VLM methods. These results advance the development of computationally efficient and
biologically inspired VLMs.

Looking ahead, AdaptVision opens new avenues for research in adaptive visual processing and effi-
cient VLM architectures. The framework’s ability to dynamically adjust visual token usage based on
task requirements suggests promising directions for developing more intelligent and computationally
efficient VLM systems.

9
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ETHICS STATEMENT

Our research is committed to advancing AI responsibly. We exclusively use publicly available
datasets (e.g., ChartQA, OCRBench) and open-source base models (Qwen2.5-VL) for all experiments,
ensuring transparency and reproducibility. A primary goal of our work is to reduce the computational
costs associated with large VLMs, thereby promoting more accessible and sustainable AI. We
acknowledge that our model, being built upon a large language model, may inherit societal biases
present in its original training data. We encourage further research into the fairness and potential
societal impacts of such efficient VLM systems. Additionally, large language models were utilized as
a writing aid to improve the clarity and readability of this manuscript.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we provide the following details on our datasets, models,
and experiments:

• Experimental Setup: Detailed descriptions of our experimental settings and the baselines
used for AdaptVision are provided in Section 4.1 and Appendix A.2.

• Prompt Details: The complete set of prompts used in our method is available in Ap-
pendix A.1.

• Dataset and Models: The training dataset and base model are sourced from the open-source
community.

• Code Availability: Our source code, configuration files, and experiment scripts will be made
publicly available upon publication.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
arXiv preprint arXiv:2308.12966, 1(2):3, 2023.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang.
An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-
language models. In European Conference on Computer Vision, pp. 19–35. Springer, 2024a.

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Conghui He, Jiaqi Wang, Feng Zhao, and Dahua Lin.
Sharegpt4v: Improving large multi-modal models with better captions. In European Conference
on Computer Vision, pp. 370–387. Springer, 2024b.

John M Findlay and Iain D Gilchrist. Active vision: The psychology of looking and seeing. Number 37.
Oxford University Press, 2003.

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
Zheng, Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji. Mme: A comprehensive evaluation
benchmark for multimodal large language models, 2024. URL https://arxiv.org/abs/
2306.13394.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

10

https://arxiv.org/abs/2306.13394
https://arxiv.org/abs/2306.13394


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yefei He, Feng Chen, Jing Liu, Wenqi Shao, Hong Zhou, Kaipeng Zhang, and Bohan Zhuang.
Zipvl: Efficient large vision-language models with dynamic token sparsification and kv cache
compression. 2024.

Xinyu Huang, Yuhao Dong, Weiwei Tian, Bo Li, Rui Feng, and Ziwei Liu. High-resolution visual
reasoning via multi-turn grounding-based reinforcement learning. arXiv preprint arXiv:2507.05920,
2025.

Laurent Itti, Geraint Rees, and John K Tsotsos. Neurobiology of attention. Elsevier, 2005.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Yiren Jian, Tingkai Liu, Yunzhe Tao, Chunhui Zhang, Soroush Vosoughi, and Hongxia Yang.
Expedited training of visual conditioned language generation via redundancy reduction. arXiv
preprint arXiv:2310.03291, 2023.

Xin Lai, Junyi Li, Wei Li, Tao Liu, Tianjian Li, and Hengshuang Zhao. Mini-o3: Scaling up reasoning
patterns and interaction turns for visual search. arXiv preprint arXiv:2509.07969, 2025.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023a.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
object hallucination in large vision-language models, 2023b. URL https://arxiv.org/
abs/2305.10355.

Yuliang Liu, Zhang Li, Mingxin Huang, Biao Yang, Wenwen Yu, Chunyuan Li, Xu-Cheng Yin,
Cheng-Lin Liu, Lianwen Jin, and Xiang Bai. Ocrbench: on the hidden mystery of ocr in large
multimodal models. Science China Information Sciences, 67(12):220102, 2024.

Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi
Wang. Visual-rft: Visual reinforcement fine-tuning. arXiv preprint arXiv:2503.01785, 2025.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng,
Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning
of foundation models in visual contexts. arXiv preprint arXiv:2310.02255, 2023.

Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A bench-
mark for question answering about charts with visual and logical reasoning. arXiv preprint
arXiv:2203.10244, 2022.

Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. Docvqa: A dataset for vqa on document
images. In Proceedings of the IEEE/CVF winter conference on applications of computer vision,
pp. 2200–2209, 2021.

David Navon. Forest before trees: The precedence of global features in visual perception. Cognitive
psychology, 9(3):353–383, 1977.

Yingzhe Peng, Gongrui Zhang, Miaosen Zhang, Zhiyuan You, Jie Liu, Qipeng Zhu, Kai Yang,
Xingzhong Xu, Xin Geng, and Xu Yang. Lmm-r1: Empowering 3b lmms with strong reasoning
abilities through two-stage rule-based rl. arXiv preprint arXiv:2503.07536, 2025.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

11

https://arxiv.org/abs/2305.10355
https://arxiv.org/abs/2305.10355


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
Zhang, Kangjia Zhao, Qianqian Zhang, et al. Vlm-r1: A stable and generalizable r1-style large
vision-language model. arXiv preprint arXiv:2504.07615, 2025.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, pp. 1279–1297, 2025.

Dachuan Shi, Chaofan Tao, Ying Jin, Zhendong Yang, Chun Yuan, and Jiaqi Wang. Upop: Unified and
progressive pruning for compressing vision-language transformers. In International Conference
on Machine Learning, pp. 31292–31311. PMLR, 2023.

Alex Su, Haozhe Wang, Weiming Ren, Fangzhen Lin, and Wenhu Chen. Pixel reasoner: In-
centivizing pixel-space reasoning with curiosity-driven reinforcement learning. arXiv preprint
arXiv:2505.15966, 2025.

Huajie Tan, Yuheng Ji, Xiaoshuai Hao, Minglan Lin, Pengwei Wang, Zhongyuan Wang, and
Shanghang Zhang. Reason-rft: Reinforcement fine-tuning for visual reasoning. arXiv preprint
arXiv:2503.20752, 2025.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Yuxin Wen, Qingqing Cao, Qichen Fu, Sachin Mehta, and Mahyar Najibi. Efficient vision-language
models by summarizing visual tokens into compact registers. arXiv preprint arXiv:2410.14072,
2024.

Penghao Wu and Saining Xie. V?: Guided visual search as a core mechanism in multimodal llms.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
13084–13094, 2024.

xAI Team. Grok-1.5 vision preview, apr 2024. URL https://x.ai/blog/grok-1.5v.

Long Xing, Qidong Huang, Xiaoyi Dong, Jiajie Lu, Pan Zhang, Yuhang Zang, Yuhang Cao, Conghui
He, Jiaqi Wang, Feng Wu, et al. Pyramiddrop: Accelerating your large vision-language models via
pyramid visual redundancy reduction. arXiv preprint arXiv:2410.17247, 2024.

Senqiao Yang, Yukang Chen, Zhuotao Tian, Chengyao Wang, Jingyao Li, Bei Yu, and Jiaya Jia.
Visionzip: Longer is better but not necessary in vision language models. In Proceedings of the
Computer Vision and Pattern Recognition Conference, pp. 19792–19802, 2025a.

Senqiao Yang, Junyi Li, Xin Lai, Bei Yu, Hengshuang Zhao, and Jiaya Jia. Visionthink: Smart and
efficient vision language model via reinforcement learning. arXiv preprint arXiv:2507.13348,
2025b.

Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. arXiv
preprint arXiv:2308.02490, 2023.

Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou, Pan
Lu, Kai-Wei Chang, Yu Qiao, et al. Mathverse: Does your multi-modal llm truly see the diagrams
in visual math problems? In European Conference on Computer Vision, pp. 169–186. Springer,
2024a.

Yuan Zhang, Chun-Kai Fan, Junpeng Ma, Wenzhao Zheng, Tao Huang, Kuan Cheng, Denis Gu-
dovskiy, Tomoyuki Okuno, Yohei Nakata, Kurt Keutzer, et al. Sparsevlm: Visual token sparsifica-
tion for efficient vision-language model inference. arXiv preprint arXiv:2410.04417, 2024b.

Ziwei Zheng, Michael Yang, Jack Hong, Chenxiao Zhao, Guohai Xu, Le Yang, Chao Shen, and Xing
Yu. Deepeyes: Incentivizing” thinking with images” via reinforcement learning. arXiv preprint
arXiv:2505.14362, 2025.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
hancing vision-language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592, 2023.

12

https://x.ai/blog/grok-1.5v


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ADDITIONAL DETAILS

A.1 PROMPT DETAILS

AdaptVision utilizes three types of prompts. First, to equip the VLM with basic tool-using capability,
we follow the Qwen2.5-VL cookbook (Bai et al., 2025) to design prompts for the bounding box tool
(Table 3). Second, since VQA tasks are typically diverse and open-ended, we adopt an LLM-as-judge
approach to evaluate answer correctness. As shown in Table 4, following Yang et al. (2025b), we
design a judging prompt for GPT-4o to produce binary evaluations (1 for correct, 0 for incorrect).
Third, to encourage efficient tool exploration, we prompt GPT-4o to evaluate the relevance of cropped
regions, producing a binary reward for region correctness (Table 5).

A.2 TRAINING AND EVALUATION DETAILS

AdaptVision is based on Qwen2.5-VL-7B-Instruct (Bai et al., 2025). We employ veRL (Sheng et al.,
2025) framework for RL training. During training, we set the batch size as 512 with mixed-precision
(FP16) training. The mini-batch size is 32. We drop the KL term during policy optimization. For
each prompt, we sample 16 candidate responses (i.e., G = 16) using a temperature of 1.0. The upper
and lower clip ratios are 0.24 and 0.20, respectively. We set the maximum prompt length and the
maximum response length as 8192. All experiments were conducted on 4 nodes, each with 8 H20
GPUs. The model was trained for 80 steps, using the AdamW optimizer with a learning rate of 1e−6,
β = (0.9, 0.999), and a weight decay of 0.01. During inference, we use the vLLM framework and
set the temperature to 0.

A.3 ADDITIONAL RESULTS

We further compare AdaptVision with previous efficient VLM methods with different visual token
retention ratios. As shown in Fig. 6 and Table 2, while the performance of FastV, SparseVLM,
and VisionZip degrades with reduced token ratios, AdaptVision maintains superior performance
with significantly fewer visual tokens. Fig. 7 shows the comparison of inference time cost. Fig. 10
illustrates that our model learns to selectively invoke tools based on task difficulty, while the model
trained with GRPO calls tools on all samples, resulting in a 100% tool call ratio.

B QUALITATIVE RESULTS

We provide further case studies to illustrate AdaptVision’s adaptive token usage. As shown in Fig. 8, in
scenarios where a low-resolution image provides enough information, AdaptVision correctly chooses
to answer directly—matching the behavior of the Qwen2.5-VL Down-sample model. Conversely, in
cases where detailed visual information is essential (Fig. 9), the Down-sample model often fails due
to recognition errors caused by insufficient resolution (e.g., misreading “15” as “75”). Under the same
conditions, AdaptVision actively invokes the bounding box tool, accurately localizes informative
regions, and produces correct answers with only a marginal increase in visual token consumption
relative to the Down-sample model. These examples validate AdaptVision’s ability in coarse-to-fine
visual reasoning and its capacity to autonomously tailor visual token usage to each input.
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Figure 6: Performance comparison with different visual token retain ratios. AdaptVision achieves
superior performance with significantly fewer visual tokens than previous efficient VLM methods.

Figure 7: Comparison of Inference Time. (1) Compared to the vanilla model and VisionThink†,
AdaptVision demonstrates significantly reduced inference time due to reduced visual token usage. (2)
While AdaptVision requires additional generated tokens for reasoning and tool calls compared to the
down-sample model, the resulting increase in inference time remains acceptable.
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Table 2: Performance comparison with previous efficient VLM methods. Vanilla denotes the
Qwen2.5-VL-7B-Instruct model. Down-Sample uses a 1/4-resolution image as input to the Vanilla
model. “#Token” indicates the visual token consumption ratio relative to the vanilla model across all
benchmarks. “Avg.” denotes the average performance relative to the vanilla model on all benchmarks.
“Method (xx%)” denotes static methods retaining xx% visual tokens.

Method ChartQA OCRBench DocVQA MME MMVet RealWorldQA POPE MathVista MathVerse #Token↓ Avg.↑test test val test test test test testmini testmini

Retain 100% Visual Tokens Across All Benchmarks

Vanilla 79.8 81.5 95.1 2316 61.6 68.6 86.7 68.2 46.3 100% 100%100% 100% 100% 100% 100% 100% 100% 100% 100%

Retain 25% Visual Tokens Across All Benchmarks

Down-Sample 62.9 68.8 94.3 2270 54.5 68.8 82.8 62.2 43.1 25% 92.1%78.8% 84.4% 99.1% 98.0% 88.5% 100.3% 95.5% 91.2% 93.1%

Retain 50% Visual Tokens Across All Benchmarks

SparseVLM (50%) 73.2 75.6 66.8 2282 51.5 68.4 85.5 66.6 45.1 50% 92.2%91.7% 92.7% 70.2% 98.5% 83.6% 99.7% 98.6% 97.6% 97.4%

FastV (50%) 72.6 75.8 93.6 2308 52.8 68.8 84.7 63.7 45.0 50% 95.8%91.0% 93.0% 98.4% 99.6% 85.7% 100.3% 97.7% 93.4% 97.2%

VisionZip (50%) 71.5 70.5 93.8 2209 57.0 68.6 86.3 64.1 45.1 50% 94.8%89.6% 86.5% 98.6% 95.4% 92.5% 100% 99.5% 93.9% 97.4%

Retain 70% Visual Tokens Across All Benchmarks

SparseVLM (70%) 75.8 79.3 68.7 2276 53.7 68.5 85.4 66.3 45.1 70% 93.6%94.9% 97.3% 72.2% 98.3% 87.2% 99.8% 98.5% 97.2% 97.4%

FastV (70%) 71.2 82.2 94.4 2342 56.0 68.6 85.9 65.9 46.9 70% 98.4%96.7% 100.8% 99.3% 101.1% 90.9% 100% 99.1% 96.6% 101.3%

VisionZip (70%) 76.8 80.9 94.5 2334 60.0 68.2 86.4 68.9 45.8 70% 99.1%96.2% 99.3% 99.4% 100.8% 97.4% 99.4% 99.7% 101.0% 98.9%

Dynamic Methods

VisionThink 73.6 76.8 92.9 2320 61.7 65.6 86.3 62.2 42.5 52% 95.8%92.2% 94.2% 97.7% 100.2% 100.2% 95.6% 99.5% 91.2% 91.8%

VisionThink† 73.88 80.8 93.7 2392 60.18 68.37 86.69 65.7 45.68 99% 98.4%92.6% 99.1% 98.5% 103.3% 97.7% 99.7% 100.0% 96.3% 98.7%

AdaptVision 75.92 76.9 92.6 2379 64.8 67.32 86.8 65.9 42.3 33% 97.9%95.1% 94.4% 97.4% 102.7% 105.2% 98.1% 100.1% 96.6% 91.4%
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Table 3: Prompt Template for adaptively visual acquisition. Question will be replaced with the
specific question during training and inference.

SYSTEM PROMPT:
You are a helpful assistant.
# Tools
You may call the function tool shown below to assist with the user query.
You are provided with the function signature within <tools></tools> XML tags:
<tools>
{

"type": "function",
"function":{
"name for human": "request local region",
"name": "request local region",
"description": "Request a high-resolution local region of the current image and zoom

in",
"parameters": {
"properties": {
"bbox 2d": {
"type": "array",
"items": {
"type": "integer"

}
"minItems": 4,
"maxItems": 4,
"description":The bounding box of the region to crop, as [x1, y1, x2, y2], where

(x1, y1) is the top-left corner of the target region and (x2, y2) is the bottom-right corner of
the target region. The bounding box should be in the absolute pixel coordinates of the current
image.",

}
}

"required": ["bbox 2d"],
"type": "object",

},
"args format": "Format the arguments as a JSON object."
}

}
</tools>
For each function call, return a json object with the function name and the corresponding
argument within <tool call></tool call> XML tags:
<tool call>
{"name":<function-name>, "arguments":<args-json-object>}
</tool call>

USER PROMPT:
Answer the question based on the image provided. You must conduct reasoning within
<think> and </think> first in each of your reasoning steps. You may call ONE func-
tion tool per step to help you better solve the problem. Place the function tool within
<tool call> and </tool call> at the end of each step to perform a function call.
You should continue your reasoning process within <think> and </think> based on the
content returned by the function tool. Once you confirm your final answer, place the final
answer inside <answer> and </answer>. For mathematical or multiple-choice problem,
wrap the answer value or choice with \boxed{}. Here is the image and question: Question.
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Table 4: Prompt Template for LLM as Final Answer Judge. Question, Ground Truth and
Prediction are dynamically replaced with the specific question, ground truth and model prediction
during evaluation.

SYSTEM PROMPT:
You are an intelligent chatbot designed for evaluating the correctness of generative outputs for
question-answer pairs.
Your task is to compare the predicted answer with the correct answer and determine if they
match meaningfully. Here’s how you can accomplish the task:
INSTRUCTIONS:
- Focus on the meaningful match between the predicted answer and the correct answer.
- Consider synonyms or paraphrases as valid matches.
- Evaluate the correctness of the prediction compared to the answer.

USER PROMPT:
I will give you a question related to an image and the following text as inputs:
1. **Question Related to the Image**: Question
2. **Ground Truth Answer**: Ground Truth
3. **Model Predicted Answer**: Prediction
Your task is to evaluate the model’s predicted answer against the ground truth answer, based
on the context provided by the question related to the image. Consider the following criteria
for evaluation:
- **Relevance**: Does the predicted answer directly address the question posed, considering
the information provided by the given question?
- **Accuracy**: Compare the predicted answer to the ground truth answer. You need to
evaluate from the following two perspectives:
(1) If the ground truth answer is open-ended, consider whether the prediction accurately
reflects the information given in the ground truth without introducing factual inaccuracies. If
it does, the prediction should be considered correct.
(2) If the ground truth answer is a definitive answer, strictly compare the model’s prediction to
the actual answer. Pay attention to unit conversions such as length and angle, etc. As long as
the results are consistent, the model’s prediction should be deemed correct.
**Output Format**:
Your response should include an integer score indicating the correctness of the prediction: 1
for correct and 0 for incorrect. Note that 1 means the model’s prediction strictly aligns with
the ground truth, while 0 means it does not.
The format should be Score: 0 or 1
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Table 5: Prompt Template for Judging the Correctness of Bounding Box. Question are dynami-
cally replaced with the specific question during evaluation.

SYSTEM PROMPT:
**Your Role:** You are an AI agent that identifies relevant visual evidence.
**Your Goal:** Determine if an image CROP contains the **primary subject** of a given
question.
**Your Golden Rule:** Your main task is to check for **presence**, not completeness. As
long as the main object or area the question is asking about is clearly visible in the crop, it is
considered relevant.
**Criteria for ’Score: 0’ (Strictly Enforced):**
- The core subject of the question is completely absent from the image.
- The image is so blurry or corrupted that the subject is **unrecognizable**.
- The image shows something completely unrelated (e.g. question is about a car, image shows
a tree).
**Your Task:**
Now, analyze the user-provided image and question following this exact process. Your
response MUST only contain ’Score: 1’ or ’Score: 0’.

USER PROMPT:
Given a question and a cropped image region, answer with ’Score: 1’ if the cropped region
provide information to answer the question, otherwise answer ’Score: 0’. Question: Question.”

Question: 
Are all of the cats the same color?

AdaptVision:
<think> Observing the image, it is clear that the cats are not all 
the same color. There are variations in their fur patterns and 
colors. So the answer is no.
</think>
<answer>No</answer>

✅

✅
Qwen2.5-VL-7B-Instruct: 
There are several cats in the image; some are white and some 
are orange. Therefore, the answer is No.

Question: 
Can you give a short introduction to this person?

Qwen2.5-VL-7B-Instruct: 
Sir Isaac Newton FRS (25 December 1642 – 20 March 1726/27) 
was an English mathematician, physicist, astronomer, 
alchemist, theologian, and author who was described in his 
time as a natural philosopher. He was a key figure in the 
Scientific Revolution and the Enlightenment that followed. His 
pioneering book Mathematical Principles of Natural Philosophy, 
first published in 1687, consolidated many previous results 
and established classical mechanics. 

AdaptVision:
<think>
Based on the image, this appears to be a portrait of Sir Isaac 
Newton, a renowned English mathematician, physicist, 
astronomer, alchemist, and theologian. He is widely 
recognized for his contributions to the development of 
classical mechanics and his law of universal gravitation.
</think>
<answer>
This is a portrait of Sir Isaac Newton, an English mathematician, 
physicist, astronomer, alchemist, and theologian. He is 
renowned for his contributions to the development of classical 
mechanics, including his law of universal gravitation, and his 
work in optics. Newton is considered one of the most 
influential scientists in history.
</answer>

✅

✅

Figure 8: Case of direct answer in AdaptVision.
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Question: 
Is there a speed bump ahead?

<think>
The yellow sign indicates a “Speed Bump Ahead”. This 
confirms that there is indeed a speed bump ahead.
</think>
<answer>Yes</answer>

Qwen2.5-VL-7B-Instruct: 
The image shows a street and some cars. Since there are no 
visible signs for a speed bump, the answer is no.

AdaptVision:
<think> The image shows a street with parked cars and houses 
on the right side. There is a yellow sign on the right side of the 
road. The yellow sign is probably an indicator for a speed bump. 
</think> 
<tool_call> {“name”: “request_local_region”, “arguments”: 
{“bbox_2d”: [429, 168, 457, 200] } } 
</tool_call> 

❌

✅

Question: 
What is the number displayed on the motorcycle on the right?

<think>
The number displayed on the motorcycle on 
the right is 15. 
</think>
<answer>15</answer>

AdaptVision:
<think> 
To determine the number displayed on the motorcycle on the 
right, I need to zoom in on that specific motorcycle to read the 
number clearly.
</think> 
<tool_call> 
{“name”: “request_local_region”, “arguments”: {“bbox_2d”: 
[593,149,672,315] } } 
</tool_call> 

✅

❌
Qwen2.5-VL-7B-Instruct: 
The number displayed on the motorcycle on the right is 75.

Figure 9: Case of tool call in AdaptVision.

Figure 10: Training curve of tool call ratio on different types of data.
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