ADAPTVISION: EFFICIENT VISION-LANGUAGE MODELS VIA ADAPTIVE VISUAL ACQUISITION

Anonymous authors

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

023

024

025

026

027

028

029

035

037

040

041

042

043

044

046

047

048

050

051

052

Paper under double-blind review

ABSTRACT

Vision-Language Models (VLMs) have achieved remarkable success in visual question answering tasks, but their reliance on large numbers of visual tokens introduces significant computational overhead. While existing efficient VLM approaches reduce visual tokens through fixed-ratio compression, they operate passively and lack the ability to adapt to varying task requirements. This motivates a fundamental question: Can VLMs autonomously determine the minimum number of visual tokens required for each sample? Inspired by human active vision mechanisms, we introduce AdaptVision, a novel VLM paradigm that enables adaptive visual token acquisition through a coarse-to-fine approach. Our model initially processes compressed visual tokens from low-resolution images and selectively acquires additional visual information by invoking a bounding box tool to crop key regions when necessary. We train AdaptVision using a reinforcement learning framework that carefully balances accuracy and efficiency. Central to our approach is Decoupled Turn Policy Optimization (DTPO), which decouples the learning objective into two components: (1) tool learning, which optimizes correct tool utilization, and (2) accuracy improvement, which refines the generated responses to improve answer correctness. Based on this formulation, we further decouple advantage estimation by computing separate advantages for tokens associated with each objective. This formulation enables more effective optimization for AdaptVision compared to vanilla GRPO. Comprehensive experiments across multiple VQA benchmarks demonstrate that AdaptVision achieves superior performance while consuming substantially fewer visual tokens than state-of-the-art efficient VLM methods.

1 Introduction

Recently, Vision-Language Models (VLMs) (Li et al., 2023a; Bai et al., 2023; Chen et al., 2024b) have achieved significant breakthroughs in general visual question answering (VQA) and diverse practical applications by projecting and adapting visual tokens into large language model (LLM) space (Touvron et al., 2023; Achiam et al., 2023; Zhu et al., 2023; Bai et al., 2023). However, the promising performance of VLMs largely relies on the large amount of vision tokens, inevitably introducing a huge memory and computational overhead when compared to LLMs, particularly for high-resolution images. For instance, a 2048×1024 image yields 2,678 vision tokens in Qwen2.5-VL (Bai et al., 2025). Therefore, it is crucial to avoid the excessive consumption of visual tokens.

Numerous studies have explored visual token compression to enhance VLM efficiency (Yang et al., 2025a; Chen et al., 2024a; Wen et al., 2024; Shi et al., 2023; He et al., 2024; Jian et al., 2023; Zhang et al., 2024b; Yang et al., 2025b). Existing works can be categorized into two main research directions. The first prunes or merges a fixed number of visual tokens based on predetermined thresholds, according to the importance and similarity of vision tokens (Yang et al., 2025a; Chen et al., 2024a; Zhang et al., 2024b). The second dynamically processes distinct samples, where the system adaptively switches between using 100% vision tokens for OCR-related tasks and 25% vision tokens for simpler tasks by selectively employing quarter-resolution images (Yang et al., 2025b). However, existing efficient VLM paradigms and methods are largely *passive*, as they can only reduce the number of vision tokens by predefined ratios. This leads to a natural question: *Can VLMs adaptively determine the minimum number of vision tokens for each sample according to different scenarios?*

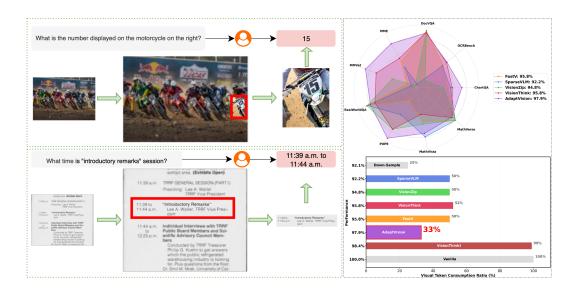


Figure 1: Our key motivations and AdaptVision performance and efficiency. Left: Coarse-to-fine. Human visual attention mechanisms first guide the search for question-relevant regions in images, which are then subjected to detailed analysis. **Right:** AdaptVision achieves superior performance with significantly fewer visual tokens than previous efficient VLM methods.

Inspired by human visual processing mechanisms, cognitive neuroscience reveals that our visual system operates not as a passive, uniform sensor but through an active, sequential, and adaptive process known as *active vision* (Findlay & Gilchrist, 2003; Itti et al., 2005). Rather than processing an entire scene at full resolution simultaneously, the human visual system first rapidly captures low-spatial-frequency information (i.e., a coarse overview) to grasp the gist of the scene. It then dynamically allocates attention and eye movements towards salient or task-relevant regions for more detailed, finer-grained analysis (Navon, 1977). This *coarse-to-fine* processing mechanism enables humans to efficiently parse complex visual inputs with minimal cognitive load.

In light of this, we argue that VLMs should similarly adopt an adaptive visual acquisition strategy – one that dynamically adjusts the number of visual tokens based on input content and task, rather than relying on fixed-ratio vision token compression. Such an approach would not only enhance computational efficiency but also reflect a more biologically plausible and intelligent form of visual processing. Fig. 1 provides an illustrative example.

In this paper, we propose AdaptVision, a novel and efficient VLM paradigm that leverages the model's inherent reasoning capabilities. Our model initially processes compressed visual tokens from low-resolution images and adaptively acquires additional visual tokens by invoking a bounding box tool to crop key regions from the original high-resolution image when necessary. The model is trained via reinforcement learning to autonomously decide when to invoke the tool and which region to crop. This is guided by a carefully designed reward function that balances accuracy and efficiency, incentivizing the model to achieve high performance with minimal visual token consumption.

However, training this dual-objective policy with standard RL algorithms like Group Relative Policy Optimization (GRPO) (Shao et al., 2024) presents two key challenges: (1) *Ambiguous credit assignment*: Vanilla GRPO assigns a single sequence-level reward to all generated tokens, failing to distinguish the contribution of the decision to request additional visual tokens from that of generating the final answer; (2) *Imbalanced optimization*: Since vanilla GRPO normalizes all tokens uniformly in a sequence, it introduces an imbalance: compared to 1-turn direct-answer sequences, 2-turn tool-invoking sequences receive imbalanced gradient signals, causing the latter to be under-optimized.

To address these challenges, we propose Decoupled Turn Policy Optimization (DTPO). First, to mitigate optimization imbalance, we decouple the learning objective into two components based on the functional roles of response tokens: (1) *tool learning*, which encourages correct tool use, and (2) *accuracy improvement*, which refines the generated responses to improve answer correctness. Each

objective is normalized separately to balance learning signals across different tokens. Second, to enable precise credit assignment, we decouple advantage estimation by computing distinct advantages for tokens associated with each objective, encouraging more efficient tool exploration. Experiments on multiple VQA benchmarks demonstrate that AdaptVision achieves superior performance with significantly fewer visual tokens than state-of-the-art efficient VLM methods, as shown in Fig. 1.

In summary, our contributions are:

- We introduce AdaptVision, a novel and efficient VLM paradigm that enables coarse-to-fine visual reasoning.
- 2. We propose a Decoupled Turn Policy Optimization (DTPO) algorithm alongside a tailored reward function to enable the effective training of AdaptVision.
- Extensive evaluation on multiple VQA benchmarks shows that AdaptVision achieves superior
 performance with substantially reduced visual token consumption compared to existing efficient
 VLM methods.

2 PRELIMINARY

2.1 REINFORCEMENT LEARNING FOR LARGE LANGUAGE MODELS

Recent studies (Guo et al., 2025; Jaech et al., 2024) have demonstrated Reinforcement Learning (RL) effectively enhances the reasoning capabilities of large language models (LLMs). Recently, Group Relative Policy Optimization (GRPO) (Shao et al., 2024) has been widely used in LLM reasoning. Given a question x, GRPO generates G distinct responses $\{o_i\}_{i=1}^G$ from the current policy $\pi_{\theta_{old}}$ and obtains a group of rewards $\{R_i\}_{i=1}^G$. GRPO optimizes the policy model π_{θ} by maximizing the following objective:

$$\mathcal{J}_{GRPO}(\theta) = \mathbb{E}_{x,o_i} \left[\frac{1}{G} \sum_{i=1}^{G} \left(\frac{1}{N_i} \sum_{t=1}^{N_i} \mathcal{L}_{i,t}(\theta) - \beta \mathbb{D}_{KL} \left[\pi_{\theta}(\cdot|x) \mid\mid \pi_{ref}(\cdot|x) \right] \right) \right], \tag{1}$$

where $\mathcal{L}_{i,t}(\theta)$ denotes the token-level loss formally given by:

$$\mathcal{L}_{i,t}(\theta) = \min\left(\frac{\pi_{\theta}(o_{i,t} \mid x, o_{i, < t})}{\pi_{\theta_{\text{old}}}(o_{i,t} \mid x, o_{i, < t})} A_{i,t}, \text{clip}\left(\frac{\pi_{\theta}(o_{i,t} \mid x, o_{i, < t})}{\pi_{\theta_{\text{old}}}(o_{i,t} \mid x, o_{i, < t})}, 1 - \epsilon, 1 + \epsilon\right) A_{i,t}\right), \quad (2)$$

$$A_{i,t} = \frac{R_i - \text{mean}(\{R_i\}_{i=1}^G)}{\text{std}(\{R_i\}_{i=1}^G)}, \qquad \mathbb{D}_{\text{KL}}(\pi_\theta || \pi_{\text{ref}}) = \frac{\pi_{\text{ref}}(o_i | q)}{\pi_\theta(o_i | q)} - \log \frac{\pi_{\text{ref}}(o_i | q)}{\pi_\theta(o_i | q)} - 1, \qquad (3)$$

where \mathbb{D}_{KL} is the KL-divergence measure. ϵ and β are hyperparameters. The advantage estimate A_i is computed using a group of rewards $\{R_i\}_{i=1}^G$.

2.2 VISION LANGUAGE MODELS

The VLM architectures generally consist of three components: a visual encoder, a modality projector, and a LLM. A commonly used approach for the visual encoder is to employ a pre-trained image encoder like CLIP-VIT (Radford et al., 2021) that converts input images into visual tokens. The modality projector adjusts the size of these visual tokens to match the embedding size of LLM and to achieve semantic alignment, enabling the LLM to process visual data effectively. The LLM then integrates the aligned visual and textual information to generate responses.

Existing works have revealed that the computational complexity of VLM is strongly influenced by the sequence length (Yang et al., 2025a), where the sequence length is defined as $n = n_{sys} + n_{img} + n_{question}$. In typical VLM tasks, the number of vision tokens n_{img} is often much larger than the other two, sometimes by a factor of 20. Therefore, reducing the number of vision tokens is the key for improving the efficiency of VLMs.

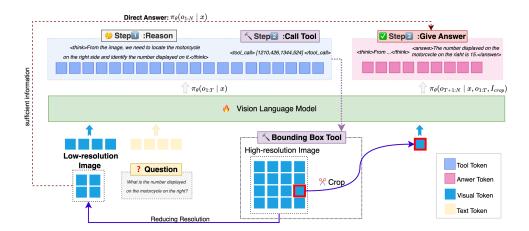


Figure 2: **FrameWork of AdaptVision.** AdaptVision first processes a 1/4-resolution image. The model then decides whether to answer directly or invoke the bounding box tool to crop a high-resolution region for further analysis before generating the final answer.

3 METHODOLOGY

3.1 Framework

We aim to develop an efficient VLM that minimizes visual token usage while maintaining high performance by adaptively acquiring visual information based on question and image complexity. As shown in Fig. 2, our method first processes a low-resolution image (I_{low}) , cutting visual token usage to 25% of the original. The VLM then autonomously decides whether to answer directly or crop key regions (I_{crop}) from the high-resolution image for more detail. To equip the VLM with the ability to generate both direct answers and adaptive visual requests, we design specialized prompts (details in Appendix A.1). As shown in Fig. 2, given a low-resolution image I_{low} and the question q, the model can output a direct answer or invoke a tool call using $<tool_call>[x_1,y_1,x_2,y_2]</tool_call>$ to obtain I_{crop} before reasoning further and answering.

Although prompting enables different response styles, the VLM lacks a mechanism for deciding which response style is most appropriate for a given input $x = \{x_{sys}, I_{low}, q\}$. We therefore frame this as a reinforcement learning problem to optimize the following policy:

$$\pi_{\theta}(o|x) = \begin{cases} \pi_{\theta}(o_{1:N} \mid x), & \text{direct answer,} \\ \pi_{\theta}(o_{1:T} \mid x) \, \pi_{\theta}(o_{T+1:N} \mid x, o_{1:T}, I_{crop}), & \text{tool call,} \end{cases}$$
(4)

where N is the length of the entire generated sequence. In tool-call responses, $o_{1:T}$ represents tool tokens in the first turn, and $o_{T+1:N}$ represents answer tokens in the second turn, as illustrated in Fig. 2. Let n_{low} and n_{crop} be the number of visual tokens for I_{low} and I_{crop} . $\mathbf{1}_{tool}$ is the indicator for tool-call responses. Thus, the total number of visual tokens for each sample is: $n_{img} = n_{low} + \mathbf{1}_{tool} n_{crop}$. Therefore, to minimize the number of visual tokens n_{img} , we aim to learn a policy $\pi_{\theta}(o \mid x)$ that can: (1) invoke the tool to request additional visual tokens only when necessary, and (2) acquire the minimal additional visual information I_{crop} required to answer the question correctly.

3.2 REWARD DESIGN

To learn a policy that can optimally balance efficiency and accuracy, we design a reward function that consists of two parts: (1) an Outcome Reward \mathcal{R}_{oc} that reflects answer correctness, response format adherence and tool call frequency; (2) a Tool Reward \mathcal{R}_{tool} that incentivizes effective tool exploration to enhance coarse-to-fine visual reasoning. The reward function of AdaptVision is:

$$\mathcal{R} = \mathcal{R}_{oc} + \mathcal{R}_{tool}. \tag{5}$$

Outcome Reward \mathcal{R}_{oc} . The outcome reward is the sum of three components. (1) *Accuracy reward* \mathcal{R}_{acc} : Since VQA answers are typically open-ended, we use an LLM as judge to assign

a binary reward (1 for correct, 0 for incorrect) for answer correctness. The judging prompt is in Appendix A.1. (2) Format reward \mathcal{R}_{form} : To maintain instruction-following capability, we enforce formatting requirements: reasoning in <think> tags, answers in <answer> tags, and tool calls in <tool_call> tags with valid JSON. The format reward is 0.5 for full compliance with all formatting requirements; otherwise, the reward is 0. (3) Balance reward \mathcal{R}_{bal} : To prevent overreliance on tool calls, we introduce a balance reward. We apply a 0.1 penalty to correct answers that invoke tool calls. Additionally, to discourage "lucky guesses" (Yang et al., 2025b), we impose a 0.1 penalty on direct answers when the probability of correct response from low-resolution images is low, thereby encouraging appropriate tool usage. The design of this balance reward is as follows:

$$\mathcal{R}_{bal} = \begin{cases} -0.1 \cdot \mathbb{I}(r < \theta) \cdot \mathbb{I}(\mathcal{R}_{acc} = 1), & \text{direct answer,} \\ -0.1 \cdot \mathbb{I}(\mathcal{R}_{acc} = 1), & \text{tool call,} \end{cases} \qquad r = \frac{C_{direct}}{C_{direct} + C_{tool}}, \tag{6}$$

where C_{direct} and C_{tool} represent the count of correct answers for direct-answer and tool-call responses within a group, respectively. \mathbb{I} is the indicator function. We set $\theta = 0.2$ in this paper.

Tool Reward \mathcal{R}_{tool} . When the model requests additional visual information via a tool call, the cropped region I_{crop} must be both informative for answering and minimal in area to reduce visual token usage. To achieve this balance, we introduce a tool reward \mathcal{R}_{tool} , formulated as follows:

$$\mathcal{R}_{tool} = \mathcal{R}_{crop} - \alpha \cdot \mathcal{R}_{area}, \tag{7}$$

where \mathcal{R}_{crop} evaluates the correctness of the cropped region, \mathcal{R}_{area} denotes its relative area ratio, and α is a hyperparameter balancing the two terms. In this paper we set $\alpha=2$. (1) The *crop reward* \mathcal{R}_{crop} is determined by GPT-40, which evaluates whether the cropped region I_{crop} contains relevant information to answer the question, returning 1 if correct and 0 otherwise. The detailed evaluation prompt is provided in Appendix A.1. (2) The *relative area reward* \mathcal{R}_{area} penalizes oversized bounding boxes that contain irrelevant regions, formulated as follows:

$$\mathcal{R}_{area} = \mathbb{I}(\mathcal{R}_{acc} = 1) \cdot \mathbb{I}(\mathcal{R}_{crop} = 1) \cdot \text{clip}\left(\frac{r_{area}}{\mu_{area}(\mathcal{G}(a))} - 1, 0, 1\right),$$

$$r_{area} = \frac{(x_2 - x_1) \cdot (y_2 - y_1)}{H_{low} \cdot W_{low}},$$
(8)

where H_{low} and W_{low} denote the height and width of I_{low} , and r_{area} is the area ratio of the cropped region. Here, $\mathcal{G}(a)$ denotes a group of responses that yield both correct answers ($\mathcal{R}_{acc}=1$) and correct cropped regions ($\mathcal{R}_{crop}=1$), and $\mu_{area}(\mathcal{G}(a))$ is the mean measurement of r_{area} within such a group. This area penalty incentivizes the model to select the smallest possible region that still ensures correctness, thereby minimizing visual token usage while maintaining performance.

3.3 EFFICIENT LEARNING VIA DECOUPLED TURN POLICY OPTIMIZATION

Based on our reward design, we initially employ GRPO (Shao et al., 2024) for training. We aim to train a VLM that (1) achieves high answering accuracy and (2) minimizes the number of visual tokens used. However, training such a dual-objective policy with GRPO presents two key challenges.

Ambiguous credit assignment Vanilla GRPO provides a single, sequence-level reward to all generated tokens, failing to distinguish between the contributions of two distinct types of actions – the decision to request additional visual tokens and the generation of the final answer. This ambiguity limits effective exploitation and exploration during policy learning. For instance, when the VLM correctly generates bounding boxes while producing an incorrect answer, the model still receives a positive reward for the answer tokens. This may steer the model towards a suboptimal optimization direction. As we will show in the experiments, the model initially favors direct answers but then rapidly collapses to excessive tool call, resulting in an unstable training process.

Imbalanced optimization As defined in Eq. 4, the policy model generates either a one-turn or two-turn responses for each sample. Depending on their functional roles, the generated tokens can be categorized into two types: *Tool Tokens* and *Answer Tokens*, as shown in Fig. 2. Accordingly, the

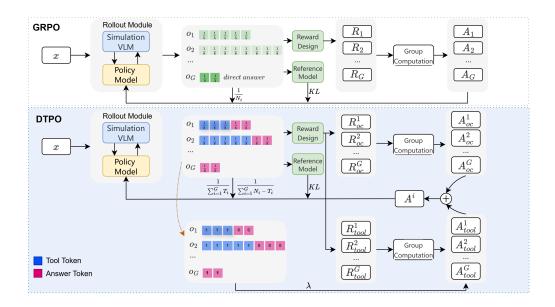


Figure 3: **Demonstration of vanilla GRPO and our DTPO.** Our DTPO (1) decomposes the policy loss by turns to separately optimize tool and answer tokens, and (2) computes distinct advantages for tool and outcome rewards, enabling balanced optimization and precise credit assignment.

original GRPO objective in Eq. 2 can be decomposed into two components:

$$\frac{1}{G} \sum_{t=1}^{G} \frac{1}{N_i} \sum_{t=1}^{N_i} \mathcal{L}_{i,t}(\theta) = \underbrace{\frac{1}{G} \sum_{t=1}^{G} \frac{1}{N_i} \sum_{t=1}^{T_i} \mathcal{L}_{i,t}(\theta)}_{\text{Tool Token}} + \underbrace{\frac{1}{G} \sum_{t=1}^{G} \frac{1}{N_i} \sum_{t=T_i+1}^{N_i} \mathcal{L}_{i,t}(\theta)}_{\text{Answer Token}}, \tag{9}$$

where T_i denotes the number of tool tokens generated in the first turn, and $N_i - T_i$ represents the number of answer tokens in the second turn. If the model answers directly without tool calls, T_i is 0. A closer examination of Eq. 9 reveals an inherent optimization imbalance. In two-turn sequences that invoke tools, the gradient contributions from tool tokens are suppressed by the normalization factors $\frac{1}{N_i}$ and $\frac{1}{G}$, causing tool tokens to be under-optimized compared to answer tokens.

To address these challenges, we propose Decoupled Turn Policy Optimization (DTPO). First, we decouple the policy loss by turns and normalize the contributions of tool and answer tokens separately. This adjustment effectively resolves the under-optimization problem of tool tokens.

$$\mathcal{J}_{\text{DTPO}}(\theta) = \mathbb{E}_{x,o_i} \left[\underbrace{\frac{1}{\sum_{i=1}^{G} T_i} \sum_{i=1}^{G} \sum_{t=1}^{T_i} \mathcal{L}_{i,t}(\theta)}_{\text{Tool Token}} + \underbrace{\frac{1}{\sum_{i=1}^{G} (N_i - T_i)} \sum_{i=1}^{G} \sum_{t=T_i+1}^{N_i} \mathcal{L}_{i,t}(\theta)}_{\text{Answer Token}} \right]. \tag{10}$$

Second, to enable more precise credit assignment, DTPO decouples the advantage estimation by computing distinct advantages for tool and answer tokens, rather than using a single advantage for the entire sequence. Specifically, we compute the advantage for the *t*-th token as follows:

$$A_{i,t} = \begin{cases} A_{oc}^{(i)} + \lambda \cdot A_{tool}^{(i)}, & \text{direct answer,} \\ A_{oc}^{(i)} + \lambda \cdot A_{tool}^{(i)} \cdot \mathbb{I}(1 \le t \le T_i), & \text{tool call,} \end{cases}$$

$$A_{tool}^{(i)} = \frac{\mathcal{R}_{tool}^{(i)} - \text{mean}(\{\mathcal{R}_{tool}^{(i)}\}_{i=1}^{G})}{\text{std}(\{\mathcal{R}_{tool}^{(i)}\}_{i=1}^{G})}, \quad A_{oc}^{(i)} = \frac{\mathcal{R}_{oc}^{(i)} - \text{mean}(\{\mathcal{R}_{oc}^{(i)}\}_{i=1}^{G})}{\text{std}(\{\mathcal{R}_{oc}^{(i)}\}_{i=1}^{G})}, \quad (11)$$

where λ is a hyperparameter that trade-offs two advantages. We set $\lambda=0.3$ in this paper. Fig. 3 compares the design of GRPO and DTPO.

Table 1: **Performance comparison with previous efficient VLM methods.** Vanilla denotes the Qwen2.5-VL-7B-Instruct model. Down-Sample uses a 1/4-resolution image as input to the Vanilla model. "#Token" indicates the visual token consumption ratio relative to the vanilla model across all benchmarks. "Avg." denotes the average performance relative to the vanilla model on all benchmarks.

Method	ChartQA test	OCRBench test	DocVQA val	MME test	MMVet test	RealWorldQA test	POPE test	MathVista testmini	MathVerse testmini	#Token↓	Avg.↑
			Rei	tain 100%	Visual Toke	ns Across All Bend	chmarks				
Vanilla	79.8 100%	81.5 100%	95.1 100%	2316 100%	61.6 100%	68.6 100%	86.7 100%	68.2 100%	46.3 100%	100%	100%
			Re	tain 25%	Visual Toker	ns Across All Benc	hmarks				
Down-Sample	62.9 78.8%	68.8 84.4%	94.3 99.1%	2270 98.0%	54.5 88.5%	68.8 100.3%	82.8 95.5%	62.2 91.2%	43.1 93.1%	25%	92.1%
			Re	tain 50%	Visual Toker	ns Across All Benc	hmarks				
SparseVLM	73.2 91.7%	75.6 92.7%	66.8 70.2%	2282 98.5%	51.5 83.6%	68.4 99.7%	85.5 98.6%	66.6 97.6%	45.1 97.4%	50%	92.2%
FastV	72.6 91.0%	75.8 93.0%	93.6 98.4%	2308 99.6%	52.8 85.7%	68.8 100.3%	84.7 97.7%	63.7 93.4%	45.0 97.2%	50%	95.8%
VisionZip	71.5 89.6%	70.5 86.5%	93.8 98.6%	2209 95.4%	57.0 92.5%	68.6 100%	86.3 99.5%	64.1 93.9%	45.1 97.4%	50%	94.8%
					Dynamie	: Methods					
VisionThink	73.6 92.2%	76.8 94.2%	92.9 97.7%	2320 100.2%	61.7 100.2%	65.6 95.6%	86.3 99.5%	62.2 91.2%	42.5 91.8%	52%	95.8%
VisionThink [†]	73.88 92.6%	80.8 99.1%	93.7 98.5%	2392 103.3%	60.18 97.7%	68.37 99.7%	86.69 100.0%	65.7 96.3%	45.68 98.7%	99%	98.4%
AdaptVision	75.92 95.1%	76.9 94.4%	92.6 97.4%	2379 102.7%	64.8 105.2%	67.32 98.1%	86.8 100.1%	65.9 96.6%	42.3 91.4%	33%	97.9%

4 EXPERIMENT

4.1 EVALUATION SETUP

We conduct experiments on several general VQA benchmarks, including ChartQA (Masry et al., 2022), OCRBench (Liu et al., 2024), DocVQA (Mathew et al., 2021), MME (Fu et al., 2024), MMVet (Yu et al., 2023), RealWorldQA (xAI Team, 2024), POPE (Li et al., 2023b), MathVista (Lu et al., 2023), MathVerse (Zhang et al., 2024a). AdaptVision is based on Qwen2.5-VL-7B-Instruct (Bai et al., 2025). We employ veRL (Sheng et al., 2025) framework for RL training. During training, we set the batch size as 512 and the mini-batch size as 32. We drop the KL term during policy optimization. The initial learning rate of the policy model is 1e-6. For each prompt, we sample 16 candidate responses using a temperature of 1.0. During inference, we use the vLLM framework and set the temperature to 0. We use training data from Yang et al. $(2025b)^1$, which contains VQA samples that can be answered directly using low-resolution images, as well as samples that require high-resolution images for accurate answering. See Appendix A.2 for more details.

4.2 MAIN RESULTS

We compare AdaptVision with existing vision token compression methods, including FastV (Chen et al., 2024a), SparseVLM (Zhang et al., 2024b), VisionZip (Yang et al., 2025a), and VisionThink (Yang et al., 2025b). FastV, SparseVLM, and VisionZip are static methods that operate with a pre-defined token retention ratio, while VisionThink and AdaptVision are dynamic methods that vary visual token usage for each sample. For fair comparison, static methods are set to 50% token retention. For VisionThink, we initially used the officially released model² but found it consumed substantially more visual tokens than our method, making the comparison unfair. We thus report two versions: "VisionThink†" for the released model and "VisionThink" for our reproduction using the public code. We also include the vanilla model (100% tokens, high-resolution) and the down-sample model (25% tokens, 1/4 resolution). Results are shown in Table 1. Compared to previous vision token compression methods, AdaptVision achieves superior average performance across all benchmarks with significantly fewer visual tokens. Compared to the down-sample model, AdaptVision improves accuracy by 5.8% with only 7% more visual tokens, highlighting its effective coarse-to-fine visual reasoning. We also compare AdaptVision with previous methods in terms of inference time. We report the end-to-end inference time for each dataset in Fig. 7 in Appendix A.3. Compared to the

¹https://huggingface.co/datasets/Senqiao/VisionThink-Smart-Train

²https://huggingface.co/Senqiao/VisionThink-Efficient

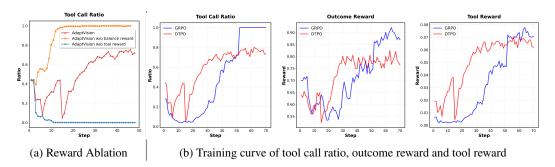


Figure 4: Policy-training comparison: (a) The influence of reward design. (b) GRPO vs. DTPO.

vanilla model and VisionThink[†], AdaptVision demonstrates significantly reduced inference time due to reduced visual token usage. While AdaptVision requires additional tokens for reasoning and tool calls compared to the down-sample model, the increase in inference time remains acceptable.

4.3 TRAINING DYNAMICS IN RL

The Influence of Reward Design To investigate the impact of reward design on model behavior, we conduct an ablation study on balance and tool rewards. As shown in Fig. 4a, the absence of the balance reward causes the model to quickly collapse to excessive tool use. This occurs because the tool reward incentivizes correct tool use, which generally improves accuracy as training progresses. Conversely, with balance reward, the VLM learns to adaptively regulate tool usage based on the input. Furthermore, the ablation of the tool reward reveals its necessity for exploration: without it, the model collapses to direct answering and fails to invoke the tool after just 10 training steps. In contrast, with the tool reward, the model successfully explores and leverages the tool to enhance performance.

GRPO vs. DTPO We compare the training processes of GRPO and DTPO in Fig. 4b. GRPO exhibits an unstable training dynamic: During the early training phase, it struggles to optimize either the tool or outcome reward, causing the tool call ratio to drop near zero and limiting exploration. After approximately 20 steps, both rewards and the tool call ratio surge rapidly, shifting the model from direct answering to excessive tool use, eventually collapsing to tool call. This instability stems from GRPO's ambiguous credit assignment and imbalanced optimization. In contrast, DTPO exhibits a stable and efficient optimization process. Both rewards rise steadily from the start, reflecting effective tool use exploration. The model subsequently converges to a reasonable tool call ratio, demonstrating the effectiveness of DTPO. Furthermore, we compare the tool call ratios across different data types. Fig. 10 in Appendix illustrates that our model learns to selectively invoke tools based on task difficulty, while the model trained with GRPO calls tools on all samples, resulting in a 100% tool call ratio.

4.4 CASE STUDY

In this section, we present a case study to illustrate the efficient visual reasoning process of AdaptVision. We compare AdaptVision with the vanilla model and the down-sample model. As shown in Fig. 5, the down-sample model, while reducing visual token usage, fails to answer correctly due to insufficient information in the low-resolution image. The vanilla model, using the original high-resolution image, yields a correct answer but at the cost of a large number of visual tokens. In contrast, AdaptVision begins with the low-resolution image, analyzes the question and image, recognizes the informational inadequacy, and then intelligently invokes the tool to crop the most relevant region from the high-resolution image. By acquiring only this essential additional visual information, it produces an accurate answer while minimizing visual token consumption. More cases are provided in Appendix B.

5 RELATED WORK

Vision Language Model with Reasoning. Recent advances in reasoning LLMs such as OpenAI's o1 (Jaech et al., 2024) and DeepSeek R1 (Guo et al., 2025) have accelerated the use of RL to enhance

Figure 5: **Case study:** (1) The vanilla model yields a correct answer but consumes a large number of visual tokens; (2) The down-sample model reduces token usage but fails to answer correctly; (3) AdaptVision smartly invokes the tool to produce a correct answer with minimal visual token cost.

reasoning capabilities. This trend has extended to VLMs (Tan et al., 2025; Shen et al., 2025; Liu et al., 2025; Peng et al., 2025), where most work focuses on high-level semantic reasoning like tool use or chain-of-thought explanation. A related direction explores active perception, equipping VLMs with fine-grained control mechanisms (Wu & Xie, 2024; Huang et al., 2025; Su et al., 2025). Recent systems such as DeepEyes (Zheng et al., 2025) and Mini-o3 (Lai et al., 2025) support operations like zoom and crop, improving performance on detailed visual tasks. Unlike these approaches, our method enables the VLM to autonomously determine the minimum number of visual tokens required for a given task, thereby achieving efficient inference while maintaining performance.

Efficient VLM with Vision Token Compression. Reducing VLM computational cost by vision token compression has become a popular research topic. Existing methods rely on predefined rules or metrics to compress tokens. For instance, FastV (Chen et al., 2024a) prunes a fixed 50% of tokens based on attention scores after the second layer. PyramidDrop (Xing et al., 2024) proposes progressive token compression to reduce information loss. Other works leverage cross-modal relevance for token selection, such as SparseVLM (Zhang et al., 2024b) and VisionZip (Yang et al., 2025a), which retain semantically relevant visual tokens. A key limitation of these methods is their dependence on a fixed compression ratio, which lacks adaptability across tasks. VisionThink (Yang et al., 2025b) uses RL to decide whether to use a low-resolution or the original image, offering limited adaptability but still restricting the model to coarse-grained decisions. In contrast, our approach enables the VLM to learn coarse-to-fine ability and adaptively determine the minimum number of visual tokens for each task.

6 CONCLUSION

In this paper, we present AdaptVision, a novel paradigm that enables VLMs to autonomously determine the minimum number of visual tokens via adaptive, coarse-to-fine visual reasoning. We propose a Decoupled Turn Policy Optimization (DTPO) algorithm, which handles dual-objective policy learning by decoupling the learning objective and advantage estimation. This leads to a more balanced and effective training process than GRPO. Experiments on multiple VQA benchmarks show that AdaptVision achieves superior performance using significantly fewer visual tokens than previous efficient VLM methods. These results advance the development of computationally efficient and biologically inspired VLMs.

Looking ahead, AdaptVision opens new avenues for research in adaptive visual processing and efficient VLM architectures. The framework's ability to dynamically adjust visual token usage based on task requirements suggests promising directions for developing more intelligent and computationally efficient VLM systems.

ETHICS STATEMENT

Our research is committed to advancing AI responsibly. We exclusively use publicly available datasets (e.g., ChartQA, OCRBench) and open-source base models (Qwen2.5-VL) for all experiments, ensuring transparency and reproducibility. A primary goal of our work is to reduce the computational costs associated with large VLMs, thereby promoting more accessible and sustainable AI. We acknowledge that our model, being built upon a large language model, may inherit societal biases present in its original training data. We encourage further research into the fairness and potential societal impacts of such efficient VLM systems. Additionally, large language models were utilized as a writing aid to improve the clarity and readability of this manuscript.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we provide the following details on our datasets, models, and experiments:

- Experimental Setup: Detailed descriptions of our experimental settings and the baselines used for AdaptVision are provided in Section 4.1 and Appendix A.2.
- Prompt Details: The complete set of prompts used in our method is available in Appendix A.1.
- Dataset and Models: The training dataset and base model are sourced from the open-source community.
- Code Availability: Our source code, configuration files, and experiment scripts will be made publicly available upon publication.

REFERENCES

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
- Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities. arXiv preprint arXiv:2308.12966, 1(2):3, 2023.
- Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*, 2025.
- Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang. An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-language models. In *European Conference on Computer Vision*, pp. 19–35. Springer, 2024a.
- Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Conghui He, Jiaqi Wang, Feng Zhao, and Dahua Lin. Sharegpt4v: Improving large multi-modal models with better captions. In *European Conference on Computer Vision*, pp. 370–387. Springer, 2024b.
- John M Findlay and Iain D Gilchrist. *Active vision: The psychology of looking and seeing*. Number 37. Oxford University Press, 2003.
- Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu Zheng, Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji. Mme: A comprehensive evaluation benchmark for multimodal large language models, 2024. URL https://arxiv.org/abs/2306.13394.
- Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

- Yefei He, Feng Chen, Jing Liu, Wenqi Shao, Hong Zhou, Kaipeng Zhang, and Bohan Zhuang. Zipvl: Efficient large vision-language models with dynamic token sparsification and kv cache compression. 2024.
 - Xinyu Huang, Yuhao Dong, Weiwei Tian, Bo Li, Rui Feng, and Ziwei Liu. High-resolution visual reasoning via multi-turn grounding-based reinforcement learning. *arXiv preprint arXiv:2507.05920*, 2025.
 - Laurent Itti, Geraint Rees, and John K Tsotsos. Neurobiology of attention. Elsevier, 2005.
 - Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint arXiv:2412.16720*, 2024.
 - Yiren Jian, Tingkai Liu, Yunzhe Tao, Chunhui Zhang, Soroush Vosoughi, and Hongxia Yang. Expedited training of visual conditioned language generation via redundancy reduction. *arXiv* preprint arXiv:2310.03291, 2023.
 - Xin Lai, Junyi Li, Wei Li, Tao Liu, Tianjian Li, and Hengshuang Zhao. Mini-o3: Scaling up reasoning patterns and interaction turns for visual search. *arXiv preprint arXiv:2509.07969*, 2025.
 - Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language models. In *International conference on machine learning*, pp. 19730–19742. PMLR, 2023a.
 - Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object hallucination in large vision-language models, 2023b. URL https://arxiv.org/abs/2305.10355.
 - Yuliang Liu, Zhang Li, Mingxin Huang, Biao Yang, Wenwen Yu, Chunyuan Li, Xu-Cheng Yin, Cheng-Lin Liu, Lianwen Jin, and Xiang Bai. Ocrbench: on the hidden mystery of ocr in large multimodal models. *Science China Information Sciences*, 67(12):220102, 2024.
 - Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi Wang. Visual-rft: Visual reinforcement fine-tuning. *arXiv preprint arXiv:2503.01785*, 2025.
 - Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of foundation models in visual contexts. *arXiv* preprint arXiv:2310.02255, 2023.
 - Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A benchmark for question answering about charts with visual and logical reasoning. *arXiv preprint arXiv:2203.10244*, 2022.
 - Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. Docvqa: A dataset for vqa on document images. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*, pp. 2200–2209, 2021.
 - David Navon. Forest before trees: The precedence of global features in visual perception. *Cognitive psychology*, 9(3):353–383, 1977.
 - Yingzhe Peng, Gongrui Zhang, Miaosen Zhang, Zhiyuan You, Jie Liu, Qipeng Zhu, Kai Yang, Xingzhong Xu, Xin Geng, and Xu Yang. Lmm-r1: Empowering 3b lmms with strong reasoning abilities through two-stage rule-based rl. *arXiv* preprint arXiv:2503.07536, 2025.
- Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *International conference on machine learning*, pp. 8748–8763. PmLR, 2021.
 - Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

- Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun Zhang, Kangjia Zhao, Qianqian Zhang, et al. Vlm-r1: A stable and generalizable r1-style large vision-language model. *arXiv preprint arXiv:2504.07615*, 2025.
 - Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In *Proceedings of the Twentieth European Conference on Computer Systems*, pp. 1279–1297, 2025.
 - Dachuan Shi, Chaofan Tao, Ying Jin, Zhendong Yang, Chun Yuan, and Jiaqi Wang. Upop: Unified and progressive pruning for compressing vision-language transformers. In *International Conference on Machine Learning*, pp. 31292–31311. PMLR, 2023.
 - Alex Su, Haozhe Wang, Weiming Ren, Fangzhen Lin, and Wenhu Chen. Pixel reasoner: Incentivizing pixel-space reasoning with curiosity-driven reinforcement learning. *arXiv* preprint *arXiv*:2505.15966, 2025.
 - Huajie Tan, Yuheng Ji, Xiaoshuai Hao, Minglan Lin, Pengwei Wang, Zhongyuan Wang, and Shanghang Zhang. Reason-rft: Reinforcement fine-tuning for visual reasoning. *arXiv preprint arXiv:2503.20752*, 2025.
 - Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.
 - Yuxin Wen, Qingqing Cao, Qichen Fu, Sachin Mehta, and Mahyar Najibi. Efficient vision-language models by summarizing visual tokens into compact registers. *arXiv preprint arXiv:2410.14072*, 2024.
 - Penghao Wu and Saining Xie. V?: Guided visual search as a core mechanism in multimodal llms. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 13084–13094, 2024.
 - xAI Team. Grok-1.5 vision preview, apr 2024. URL https://x.ai/blog/grok-1.5v.
 - Long Xing, Qidong Huang, Xiaoyi Dong, Jiajie Lu, Pan Zhang, Yuhang Zang, Yuhang Cao, Conghui He, Jiaqi Wang, Feng Wu, et al. Pyramiddrop: Accelerating your large vision-language models via pyramid visual redundancy reduction. *arXiv preprint arXiv:2410.17247*, 2024.
 - Senqiao Yang, Yukang Chen, Zhuotao Tian, Chengyao Wang, Jingyao Li, Bei Yu, and Jiaya Jia. Visionzip: Longer is better but not necessary in vision language models. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 19792–19802, 2025a.
 - Senqiao Yang, Junyi Li, Xin Lai, Bei Yu, Hengshuang Zhao, and Jiaya Jia. Visionthink: Smart and efficient vision language model via reinforcement learning. *arXiv preprint arXiv:2507.13348*, 2025b.
 - Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang, and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. *arXiv* preprint arXiv:2308.02490, 2023.
 - Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou, Pan Lu, Kai-Wei Chang, Yu Qiao, et al. Mathverse: Does your multi-modal llm truly see the diagrams in visual math problems? In *European Conference on Computer Vision*, pp. 169–186. Springer, 2024a.
 - Yuan Zhang, Chun-Kai Fan, Junpeng Ma, Wenzhao Zheng, Tao Huang, Kuan Cheng, Denis Gudovskiy, Tomoyuki Okuno, Yohei Nakata, Kurt Keutzer, et al. Sparsevlm: Visual token sparsification for efficient vision-language model inference. *arXiv preprint arXiv:2410.04417*, 2024b.
 - Ziwei Zheng, Michael Yang, Jack Hong, Chenxiao Zhao, Guohai Xu, Le Yang, Chao Shen, and Xing Yu. Deepeyes: Incentivizing" thinking with images" via reinforcement learning. *arXiv* preprint arXiv:2505.14362, 2025.
 - Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing vision-language understanding with advanced large language models. *arXiv preprint arXiv:2304.10592*, 2023.

A ADDITIONAL DETAILS

A.1 PROMPT DETAILS

 AdaptVision utilizes three types of prompts. First, to equip the VLM with basic tool-using capability, we follow the Qwen2.5-VL cookbook (Bai et al., 2025) to design prompts for the bounding box tool (Table 3). Second, since VQA tasks are typically diverse and open-ended, we adopt an LLM-as-judge approach to evaluate answer correctness. As shown in Table 4, following Yang et al. (2025b), we design a judging prompt for GPT-40 to produce binary evaluations (1 for correct, 0 for incorrect). Third, to encourage efficient tool exploration, we prompt GPT-40 to evaluate the relevance of cropped regions, producing a binary reward for region correctness (Table 5).

A.2 TRAINING AND EVALUATION DETAILS

AdaptVision is based on Qwen2.5-VL-7B-Instruct (Bai et al., 2025). We employ veRL (Sheng et al., 2025) framework for RL training. During training, we set the batch size as 512 with mixed-precision (FP16) training. The mini-batch size is 32. We drop the KL term during policy optimization. For each prompt, we sample 16 candidate responses (i.e., G=16) using a temperature of 1.0. The upper and lower clip ratios are 0.24 and 0.20, respectively. We set the maximum prompt length and the maximum response length as 8192. All experiments were conducted on 4 nodes, each with 8 H20 GPUs. The model was trained for 80 steps, using the AdamW optimizer with a learning rate of 1e-6, $\beta=(0.9,0.999)$, and a weight decay of 0.01. During inference, we use the vLLM framework and set the temperature to 0.

A.3 ADDITIONAL RESULTS

We further compare AdaptVision with previous efficient VLM methods with different visual token retention ratios. As shown in Fig. 6 and Table 2, while the performance of FastV, SparseVLM, and VisionZip degrades with reduced token ratios, AdaptVision maintains superior performance with significantly fewer visual tokens. Fig. 7 shows the comparison of inference time cost. Fig. 10 illustrates that our model learns to selectively invoke tools based on task difficulty, while the model trained with GRPO calls tools on all samples, resulting in a 100% tool call ratio.

B QUALITATIVE RESULTS

We provide further case studies to illustrate AdaptVision's adaptive token usage. As shown in Fig. 8, in scenarios where a low-resolution image provides enough information, AdaptVision correctly chooses to answer directly—matching the behavior of the Qwen2.5-VL Down-sample model. Conversely, in cases where detailed visual information is essential (Fig. 9), the Down-sample model often fails due to recognition errors caused by insufficient resolution (e.g., misreading "15" as "75"). Under the same conditions, AdaptVision actively invokes the bounding box tool, accurately localizes informative regions, and produces correct answers with only a marginal increase in visual token consumption relative to the Down-sample model. These examples validate AdaptVision's ability in coarse-to-fine visual reasoning and its capacity to autonomously tailor visual token usage to each input.

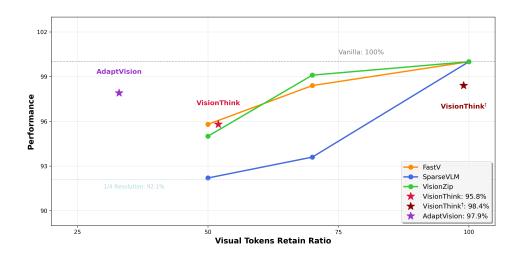


Figure 6: **Performance comparison with different visual token retain ratios.** Adapt Vision achieves superior performance with significantly fewer visual tokens than previous efficient VLM methods.

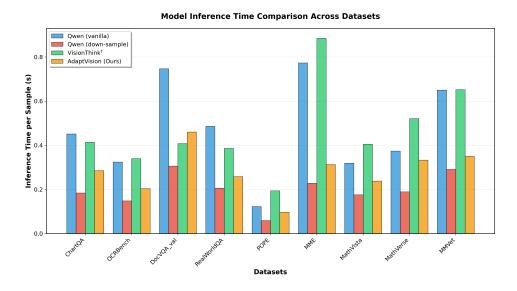


Figure 7: **Comparison of Inference Time.** (1) Compared to the vanilla model and VisionThink[†], AdaptVision demonstrates significantly reduced inference time due to reduced visual token usage. (2) While AdaptVision requires additional generated tokens for reasoning and tool calls compared to the down-sample model, the resulting increase in inference time remains acceptable.

Table 2: **Performance comparison with previous efficient VLM methods.** Vanilla denotes the Qwen2.5-VL-7B-Instruct model. Down-Sample uses a 1/4-resolution image as input to the Vanilla model. "#Token" indicates the visual token consumption ratio relative to the vanilla model across all benchmarks. "Avg." denotes the average performance relative to the vanilla model on all benchmarks. "Method (xx%)" denotes static methods retaining xx% visual tokens.

Method	ChartQA test	OCRBench test	DocVQA val	MME test	MMVet test	RealWorldQA test	POPE test	MathVista testmini	MathVerse testmini	#Token↓	Avg.↑
			Retai	n 100% Vi	sual Tokens	Across All Benchi	narks				
Vanilla	79.8 100%	81.5 100%	95.1 100%	2316 100%	61.6 100%	68.6 100%	86.7 100%	68.2 100%	46.3 100%	100%	100%
			Reta	in 25% Vis	ual Tokens	Across All Benchn	ıarks				
Down-Sample	62.9 78.8%	68.8 84.4%	94.3 99.1%	2270 98.0%	54.5 88.5%	68.8 100.3%	82.8 95.5%	62.2 91.2%	43.1 93.1%	25%	92.1%
			Reta	in 50% Vis	ual Tokens	Across All Benchn	ıarks				
SparseVLM (50%)	73.2 91.7%	75.6 92.7%	66.8 70.2%	2282 98.5%	51.5 83.6%	68.4 99.7%	85.5 98.6%	66.6 97.6%	45.1 97.4%	50%	92.2%
FastV (50%)	72.6 91.0%	75.8 93.0%	93.6 98.4%	2308 99.6%	52.8 85.7%	68.8 100.3%	84.7 97.7%	63.7 93.4%	45.0 97.2%	50%	95.8%
VisionZip (50%)	71.5 89.6%	70.5 86.5%	93.8 98.6%	2209 95.4%	57.0 92.5%	68.6 100%	86.3 99.5%	64.1 93.9%	45.1 97.4%	50%	94.8%
			Reta	in 70% Vis	ual Tokens	Across All Benchn	ıarks				
SparseVLM (70%)	75.8 94.9%	79.3 97.3%	68.7 72.2%	2276 98.3%	53.7 87.2%	68.5 99.8%	85.4 98.5%	66.3 97.2%	45.1 97.4%	70%	93.6%
FastV (70%)	71.2 96.7%	82.2 100.8%	94.4 99.3%	2342 101.1%	56.0 90.9%	68.6 100%	85.9 99.1%	65.9 96.6%	46.9 101.3%	70%	98.4%
VisionZip (70%)	76.8 96.2%	80.9 99.3%	94.5 99.4%	2334 100.8%	60.0 97.4%	68.2 99.4%	86.4 99.7%	68.9 101.0%	45.8 98.9%	70%	99.1%
					Dynamic M	1ethods					
VisionThink	73.6 92.2%	76.8 94.2%	92.9 97.7%	2320 100.2%	61.7 100.2%	65.6 95.6%	86.3 99.5%	62.2 91.2%	42.5 91.8%	52%	95.8%
VisionThink [†]	73.88 92.6%	80.8 99.1%	93.7 98.5%	2392 103.3%	60.18 97.7%	68.37 99.7%	86.69 100.0%	65.7 96.3%	45.68 98.7%	99%	98.4%
AdaptVision	75.92 95.1%	76.9 94.4%	92.6 97.4%	2379 102.7%	64.8 105.2%	67.32 98.1%	86.8 100.1%	65.9 96.6%	42.3 91.4%	33%	97.9%

813

814 815

816

817

818

819

820

821 822

823

824

825

827

828

829

830

831

832

833 834

835

836

837

838

839 840 841

843

845 846 847

848

849

850

851

852 853

854

855

856

857

858

859

861 862 863

Table 3: **Prompt Template for adaptively visual acquisition.** Question will be replaced with the specific question during training and inference.

```
SYSTEM PROMPT:
You are a helpful assistant.
# Tools
You may call the function tool shown below to assist with the user query.
You are provided with the function signature within <tools></tools> XML tags:
<tools>
   "type": "function",
   "function":{
     "name_for_human": "request_local_region",
     "name": "request_local_region",
     "description": "Request a high-resolution local region of the current image and zoom
in",
        "parameters": {
        "properties": {
          "bbox_2d": {
            "type": "array",
            "items": {
               "type": "integer"
            "minItems": 4,
            "maxItems": 4,
            "description": The bounding box of the region to crop, as [x1, y1, x2, y2], where
(x1, y1) is the top-left corner of the target region and (x2, y2) is the bottom-right corner of
the target region. The bounding box should be in the absolute pixel coordinates of the current
image.",
       "required": ["bbox_2d"],
        "type": "object",
   "args_format": "Format the arguments as a JSON object."
</tools>
For each function call, return a json object with the function name and the corresponding
argument within <tool_call></tool_call> XML tags:
<tool_call>
{ "name" : <function-name>, "arguments" : <args-json-object>}
</tool_call>
```

USER PROMPT:

Answer the question based on the image provided. You must conduct reasoning within <think> and </think> first in each of your reasoning steps. You may call ONE function tool per step to help you better solve the problem. Place the function tool within <tool_call> and </tool_call> at the end of each step to perform a function call. You should continue your reasoning process within <think> and </think> based on the content returned by the function tool. Once you confirm your final answer, place the final answer inside <answer> and </answer>. For mathematical or multiple-choice problem, wrap the answer value or choice with \boxed{}. Here is the image and question: Question.

Table 4: **Prompt Template for LLM as Final Answer Judge.** Question, Ground Truth and Prediction are dynamically replaced with the specific question, ground truth and model prediction during evaluation.

SYSTEM PROMPT:

 You are an intelligent chatbot designed for evaluating the correctness of generative outputs for question-answer pairs.

Your task is to compare the predicted answer with the correct answer and determine if they match meaningfully. Here's how you can accomplish the task:

INSTRUCTIONS:

- Focus on the meaningful match between the predicted answer and the correct answer.
- Consider synonyms or paraphrases as valid matches.
- Evaluate the correctness of the prediction compared to the answer.

USER PROMPT:

I will give you a question related to an image and the following text as inputs:

- 1. **Question Related to the Image**: Question
- 2. **Ground Truth Answer**: Ground Truth
- 3. **Model Predicted Answer**: Prediction

Your task is to evaluate the model's predicted answer against the ground truth answer, based on the context provided by the question related to the image. Consider the following criteria for evaluation:

- **Relevance**: Does the predicted answer directly address the question posed, considering the information provided by the given question?
- **Accuracy**: Compare the predicted answer to the ground truth answer. You need to evaluate from the following two perspectives:
- (1) If the ground truth answer is open-ended, consider whether the prediction accurately reflects the information given in the ground truth without introducing factual inaccuracies. If it does, the prediction should be considered correct.
- (2) If the ground truth answer is a definitive answer, strictly compare the model's prediction to the actual answer. Pay attention to unit conversions such as length and angle, etc. As long as the results are consistent, the model's prediction should be deemed correct.
- **Output Format**:

Your response should include an integer score indicating the correctness of the prediction: 1 for correct and 0 for incorrect. Note that 1 means the model's prediction strictly aligns with the ground truth, while 0 means it does not.

The format should be Score: 0 or 1

Table 5: **Prompt Template for Judging the Correctness of Bounding Box.** Question are dynamically replaced with the specific question during evaluation.

SYSTEM PROMPT:

- **Your Role: ** You are an AI agent that identifies relevant visual evidence.
- **Your Goal:** Determine if an image CROP contains the **primary subject** of a given question.
- **Your Golden Rule:** Your main task is to check for **presence**, not completeness. As long as the main object or area the question is asking about is clearly visible in the crop, it is considered relevant.
- **Criteria for 'Score: 0' (Strictly Enforced):**
- The core subject of the question is completely absent from the image.
- The image is so blurry or corrupted that the subject is **unrecognizable**.
- The image shows something completely unrelated (e.g. question is about a car, image shows a tree).
- **Your Task:**

Now, analyze the user-provided image and question following this exact process. Your response MUST only contain 'Score: 1' or 'Score: 0'.

USER PROMPT:

Given a question and a cropped image region, answer with 'Score: 1' if the cropped region provide information to answer the question, otherwise answer 'Score: 0'. Question: Question."

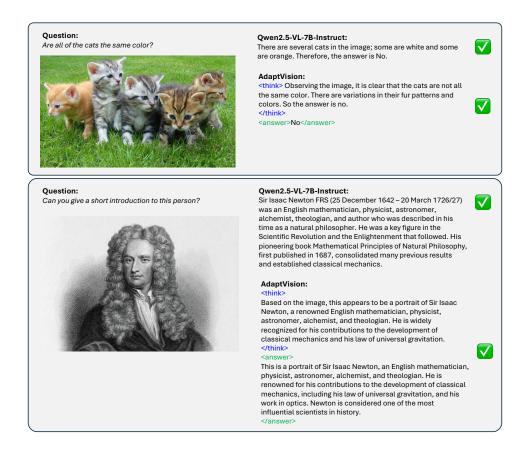


Figure 8: Case of direct answer in AdaptVision.

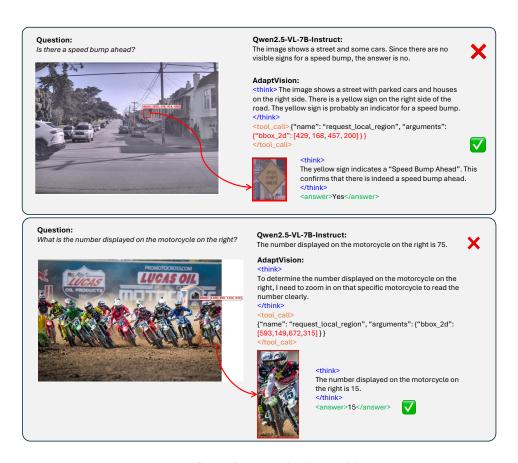


Figure 9: Case of tool call in AdaptVision.

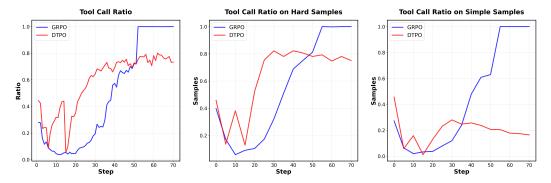


Figure 10: Training curve of tool call ratio on different types of data.