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ABSTRACT

In the quest to unravel the complexities of dynamical systems, the initial imper-
ative is to unveil their inherent topological structure, a key determinant of sys-
tem organization. Achieving this necessitates the deployment of robust structural
inference techniques capable of deriving this structure from observed system be-
haviors. However, these methods are often tailor-made for specific domains and
datasets, lacking a unified and objective framework for comparative assessment.
In response to this pressing challenge, we present a comprehensive benchmarking
study encompassing 12 structural inference methodologies sourced from diverse
disciplines. Our evaluation protocol spans dynamical systems generated via two
distinct simulation paradigms and encompasses 11 distinct interaction graph ty-
pologies. We gauge the methods’ performance in terms of accuracy, scalability,
robustness, and sensitivity to graph properties. Key findings emerge: 1) Deep
learning techniques excel in the context of multi-dimensional data, 2) classical
statistics and information-theory-based methods exhibit exceptional accuracy and
resilience, and 3) method performance correlates positively with the average short-
est path length of the graph. Our benchmark not only aids researchers in method
selection for specific problem domains but also serves as a catalyst for inspiring
novel methodological advancements in the field.

1 INTRODUCTION

Dynamical systems are ubiquitous in various domains, from celestial bodies’ gravitational inter-
actions to intricate chemical reactions. These systems are often represented as agents engaged in
interactions, forming what we term an interaction graph. Within this graph, nodes represent agents,
edges denote interactions, and the adjacency matrix reveals the concealed underlying structure. This
concept extends to physical systems (Kwapień & Drożdż, 2012; Ha & Jeong, 2021), multi-agent
systems (Brasó & Leal-Taixé, 2020; Li et al., 2022), and biological systems (Tsubaki et al., 2019;
Pratapa et al., 2020b), where understanding the structure of interaction graphs is paramount for
uncovering the systems’ mechanisms and enhancing predictability.

In many scenarios, only observable node features within a specific timeframe are available, con-
cealing the structure of the underlying interaction graph amidst complex dynamics. Examples in-
clude inferring gene regulatory networks (Pratapa et al., 2020a), deducing gene co-expression net-
works (Cingiz et al., 2021), reconstructing chemical reaction networks (Bentriou, 2021), road map
reconstruction (Bentriou, 2021), and inferring financial networks (Millington & Niranjan, 2019). To
uncover the hidden architecture, an approach known as structural inference is required. It involves
compiling a trajectory from the observed node features over time, facilitating the understanding and
modeling of interactions in dynamical systems.

The realm of structural inference resides prominently within statistics, with numerous algorithms de-
veloped under the Bayesian network framework (Margaritis, 2003; Tsamardinos et al., 2003; 2006;
Russell, 2010; Colombo et al., 2014). A breakthrough in genome sequencing in 2005 spurred re-
search into gene regulatory networks (GRNs) (Shendure et al., 2005) and various structural inference
methods (Margolin et al., 2006; Faith et al., 2007; Huynh-Thu et al., 2010; Haury et al., 2012; Aibar
et al., 2017; Matsumoto et al., 2017b; Papili Gao et al., 2018). Recent advances in deep learning
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have extended the scope to general dynamical systems (Kipf et al., 2018; Webb et al., 2019; Wu
et al., 2020; Löwe et al., 2022; Chen et al., 2021; Wang & Pang, 2022).

However, existing methods have often been assessed on distinct datasets and specific graph types,
each with its own underlying data assumptions from various research domains. Concepts and in-
sights are scattered across methods from different fields, prompting us to take the initiative of creat-
ing a unified and impartial benchmark for assessing techniques across diverse domains. Our effort
involves consolidating established and state-of-the-art methods and subjecting them to a compre-
hensive evaluation covering performance, scalability, robustness, and responsiveness to varied graph
properties. Our objective is to provide researchers with a guide for selecting suitable structural in-
ference methods and to offer a practical tool for objectively evaluating their contributions.

In this paper, we introduce a unified and objective benchmark comprising 12 structural inference
methods, covering a range of domains. To overcome the challenges of collecting real-world datasets,
which is extremely time-consuming and expensive, we meticulously curate a synthetic dataset with
over 213,444 trajectories. This dataset encompasses trajectories with one-dimensional and multi-
dimensional features and introduces noise at varying levels. Our exhaustive experimental frame-
work, necessitating over 704,000 CPU hours and 185,600 GPU hours, enables us to assess method
performance, scalability, robustness, and data efficiency. These observations and insights pave the
way for future advancements in structural inference research.

2 PRELIMINARIES

In this section, we delve into the intricacies of structural inference of dynamical systems. We concep-
tualize a dynamical system as a directed underlying interaction graph, wherein the system’s agents
translate to nodes, and the directed interactions among these agents manifest as edges in the graph.
Denoted as G = (V, E), the directed graph consists of V , the feature set of n nodes represented by
{Vi, 1 ≤ i ≤n}, and E , the set of edges. The temporal evolution of nodes’ features is encapsulated
in trajectories: V = {V 0, V 1, . . . , V T }, spanning T + 1 time steps, with V t signifying the feature
set of all n nodes at time step t: V t = {V t

1 , V
t
2 , . . . , V

t
n}. The feature vector at time t for node i,

denoted as V t
i ∈ Rk, 1 ≤ t ≤ T , is k-dimensional.

In our assumptions, the nodes are observed in their entirety, and E remains immutable during the
observation. From E , we derive an asymmetric adjacency matrix denoted as A ∈ Rn×n. Within A,
each element aij ∈ {0, 1} indicates the presence (aij = 1) or absence (aij = 0) of an edge from
node i to node j. An alternative representation for the graph structure is an edge list, where each
entry [i, j] in the list signifies a directed edge originating from node i and terminating at node j.
Given the node features observed over a time interval in V , the primary focus of this paper centers
on the challenge of structural inference. This challenge involves the unsupervised reconstruction of
either the asymmetric adjacency matrix A or the edge list that encapsulates the underlying inter-
action graph. It is important to note that this problem is distinct from link prediction tasks, where
connections are at least partially observable (Zhang & Chen, 2018; Guo et al., 2023).

3 METHODS FOR STRUCTURAL INFERENCE

3.1 METHODS BASED ON CLASSICAL STATISTICS

Statistical methods prioritize inference accuracy and uncertainty. Its results are interpreted conser-
vatively, making it widely applicable across diverse scenarios:
⋆ ppcor (Kim, 2015): ppcor method computes semi-partial correlations between pairs of nodes,

quantifying the specific portion of variance attributed to the correlation between two nodes while
accounting for the influence of other nodes. This computation draws on both Pearson and Spear-
man correlations.

⋆ TIGRESS (Haury et al., 2012): Contrasting with other structural inference methods, which re-
move redundant edges from predicted edges, TIGRESS focuses on feature selection by iteratively
adding more nodes to predict the target node using least angle regression and bootstrapping.
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3.2 METHODS BASED ON INFORMATION THEORY

Mutual information (MI) is a probabilistic measure of dependency described by the equation:
I(X;Y ) = H(X) + H(Y ) − H(X,Y ), where X,Y are random variables, H(·) and H(·, ·)
are the entropy and joint entropy, respectively. MI possesses the ability to capture nonlinear
interactions (Dionisio et al., 2004), rendering it widely used in various fields including neuro-
science (Pereda et al., 2005; Jeong et al., 2001), bioinformatics (Zhang et al., 2012), and machine
learning (Bennasar et al., 2015). However, despite direct interactions, indirect interactions and data
noise can introduce complexity and challenges. Different methods were proposed to tackle it:

⋆ ARACNe (Margolin et al., 2006): ARACNe is one of the most popular methods in GRN in-
ference. The algorithm initiates by calculating pairwise MI subsequently employing the Data
Processing Inequality principle to eliminate indirect interactions.This principle posits that the MI
between two nodes connected by an indirect interaction should not surpass the MI of either node
connected directly to a third node.

⋆ CLR (Faith et al., 2007): Similar to ARACNe, CLR employs pairwise MI but differs in the inter-
pretation of calculated MI. CLR assumes a background noise distribution for MI and subsequently
identifies interactions as MI outliers after both row- and column-wise standardization.

⋆ PIDC (Chan et al., 2017): Partial Information Decomposition (PID) (Williams & Beer, 2010)
undertakes the decomposition of MI into redundant, synergistic, and unique information. PIDC
adopts the concept of PID to GRN inference and interprets aggregated unique information as the
strength of interaction between genes.

⋆ Scribe (Qiu et al., 2020): Scribe utilizes Restricted Directed Information (Rahimzamani & Kan-
nan, 2016) and its variants (Rahimzamani & Kannan, 2017) to quantify causality within the struc-
ture by considering the influence of confounding factors.

3.3 METHODS BASED ON TREE ALGORITHMS

The decision tree is a powerful supervised method that divides the feature space into subspaces and
uses linear regressions within each. Despite its versatility across data types (Otukei & Blaschke,
2010), decision trees can overfit, prompting strategies like boosting and bagging. Examples in-
clude AdaBoost (Freund & Schapire, 1997), random forests (Ho, 1995), extremely randomized
trees (Geurts et al., 2006), XGBoost (Chen & Guestrin, 2016), and LightGBM (Ke et al., 2017).
Yet, applying tree-based methods directly to structural inference is constrained by the unsupervised
task nature. GENIE3 (Huynh-Thu et al., 2010), using random forests, addresses this, succeeding
in modeling gene regulatory networks (GRNs). GENIE3 models gene dynamics using other genes’
behavior, revealing how supervised methods can aid structural inference.

⋆ dynGENIE3 (Huynh-Thu & Geurts, 2018): dynGENIE3 extends GENIE3 by concentrating on
the temporal aspect, employing ordinary differential equations to model time series dynamics. In
this approach, a random forest is employed for each gene to capture the derivatives in time series.

⋆ XGBGRN (Ma et al., 2020): XGBGRN aligns with the principles of dynGENIE3, though it
diverges in its choice of algorithm. Specifically, XGBGRN leverages XGBoost, in place of random
forests, to model the derivatives of the time series data.

3.4 METHODS BASED ON VAES

Contemporary structural inference methods (Kipf et al., 2018; Löwe et al., 2022; Chen et al.,
2021; Wang & Pang, 2022) build on the information bottleneck (IB) principle (Tishby et al.,
1999; Tishby & Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017) and leverage variational autoen-
coders (VAEs), which are a specific form of variational IB approximation (Alemi et al., 2017).
As detailed in (Wang & Pang, 2022), our VAE-based structural inference method is framed as:
Z = argminZ I(Z;V t,A)− u · I(Z;V t+1). Here, Z denotes the latent feature space, V t captures
node features at time t, A stands for the known or sampled graph adjacency matrix, and u serves as
the Lagrangian multiplier to balance sufficiency and minimality. This approach extracts the dynam-
ical system’s structure (graph adjacency matrix) through sampling from the VAE’s latent space. The
inclusion of neural networks equips VAE-based structural inference with the capacity to effectively
handle both one-dimensional and multi-dimensional features, a capability lacking in the previously
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mentioned non-VAE methods tailored solely to one-dimensional features. Prominent VAE-based
structural inference methods encompass:

⋆ NRI (Kipf et al., 2018): NRI stands as a pioneering structural inference method that employs a
VAE. Its encoder integrates node-to-edge and edge-to-node processes to collect node features and
acquire edge features. Notably, NRI assumes a fixed fully connected A within the encoder.

⋆ ACD (Löwe et al., 2022): ACD introduces a probabilistic approach to amortized causal discovery
for learning the causal graph from time series. This method also addresses latent confounding
issues by predicting an additional variable and implementing structural bias.

⋆ MPM (Chen et al., 2021): MPM, distinct from typical message-passing approaches, utilizes rela-
tional interaction in the encoder and spatio-temporal message-passing in the decoder. This alter-
ation comprehensively captures relationships and enhances the grasp of dynamical rules.

⋆ iSIDG (Wang & Pang, 2022): iSIDG diverges from other VAE-based methods by iteratively
updating A based on direction information deduced from the adjacency matrix. Its goal centers on
inferring the authentic interaction graph by removing indirect edges that contribute to confusion.

3.5 MORE RELATED WORKS

Other structural inference methods. In addition to the structural inference methods discussed
above, there are other works that can perform or be adapted to the task of inferring the structure of
interacting dynamical systems. fNRI (Webb et al., 2019) factorizes the inferred latent interaction
graph into a multiplex graph, where each layer represents a different type of interaction. A method
based on modular meta-learning is proposed in (Alet et al., 2019), which encodes time invariance
implicitly and infers relationships in relation to each other rather than independently. A related
field, causal structural discovery, has also emerged (Vowels et al., 2023). However, many methods
in this field rely on interventional data (Zhou, 2011; Gu et al., 2019; Zhang et al., 2020; Yang et al.,
2021) or impose strong assumptions (Cummins et al., 2015; Breskin et al., 2018; Jaber et al., 2020;
Bhattacharya et al., 2021), which are not readily available or applicable to our problem settings.

Other benchmarks for structural inference. To the best of our knowledge, this work represents the
first endeavor to establish a unified, objective, and reproducible benchmark in the realm of structural
inference for interacting dynamical systems. While earlier studies have assessed diverse methods
within specific research domains, such as the inference of gene regulatory networks in single-cell
data (Pratapa et al., 2020a), gene co-expression networks (Cingiz et al., 2021), map inference al-
gorithms (Biagioni & Eriksson, 2012), methods for deducing chemical reaction networks (Loskot
et al., 2019), and functional connectivity (Ciric et al., 2017), our benchmark sets a new standard by
providing a comprehensive and reproducible evaluation framework that spans various domains. It is
noteworthy that while benchmarks within the field of causal discovery have surfaced (Assaad et al.,
2022; Menegozzo et al., 2022), these works often operate under different assumptions than ours. By
establishing a benchmark that is unified, objective, and reproducible, our intention is to contribute to
the progress of structural inference methodologies and to facilitate meaningful comparisons among
a diverse array of approaches spanning distinct research domains.

4 DATASETS FOR BENCHMARKING

There are some domain-specific datasets for structural inference, such as the Boolean models
in (Pratapa et al., 2020a), and the miRNA-target genes datasets in (Cingiz et al., 2021). How-
ever, these datasets are either too specific to a domain, too limited in sample size, or too hard to
interpret. Therefore, there is a big gap in the research field of structural inference regarding a unified
dataset with interpretable dynamics and inspectable disturbance. This inspires our work to create
the Dataset for Structural Inference (DoSI). The creation process consists of two steps: 1) the cre-
ation of underlying interaction graphs and 2) the simulation of dynamical systems. We explain the
creation of DoSI in the next sections.

4.1 UNDERLYING INTERACTION GRAPHS

Our main goal is to evaluate structural inference methods using synthetic data. To ensure the re-
alism of our synthetic graphs, we’ve integrated properties from 11 diverse real-world graph types,
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including brain networks (BN), food webs (FW), and social networks (SN), among others. These
properties encompass metrics such as clustering coefficient C, average shortest path length d, degree
distribution exponent γ, average degree ⟨k⟩, density δ, and in/out-degree distribution exponents γin

and γout. The ranges of these properties are provided in Table 1 in the Appendix. The substantial
variations in these properties highlight the need to consider graph diversity when assessing structural
inference methods. Additionally, we’ve considered the scale of the graphs, generating sizes ranging
from 15 to 250 nodes based on relevant literature (Kipf et al., 2018; Chen et al., 2021; Löwe et al.,
2022; Wang & Pang, 2022). Tailored creation pipelines for different graph types, accounting for
their unique properties and structural biases from the literature, are detailed in Appendix B.1.

4.2 DYNAMICAL SYSTEMS SIMULATION

We utilize the generated graphs as the interaction graphs for simulating dynamical systems. In a
dynamical system simulation, the features of each node are computed over time, taking into account
both the interaction graph and the dynamic function. The interaction graph specifies the nodes that
interact with one another, while the dynamic function quantifies the impact of these interactions
on each node. We employ two commonly used simulations, “Springs” and “NetSims” (Kipf et al.,
2018; Webb et al., 2019; Chen et al., 2021; Löwe et al., 2022; Wang & Pang, 2022), to generate
trajectories in DoSI. In the following paragraphs, we elucidate the functionality of these simulations
and outline the modifications made for our specific purposes. Subsequently, we elaborate on the
process of generating trajectories with varying levels of Gaussian noise. For more details about the
dynamical simulations, please refer to Appendix B.2.

Springs simulation. Following the approach by Kipf et al. (2018), we simulate spring-connected
particles’ motion in a 2D box using the Springs simulation. In this setup, nodes represent particles,
and edges correspond to springs governed by Hooke’s law. Interaction graphs from the previous
section determine spring connections, and we generate trajectories with varied initial conditions.
The Springs simulation’s dynamics are described by a second-order ordinary differential equation:
mi ·x′′i(t) =

∑
j ∈ Ni−k ·

(
xi(t)−xj(t)

)
. Here, mi represents particle mass (assumed as 1), k is

the fixed spring constant (set to 1), and Ni is the set of neighboring nodes with directed connections
to node i. We integrate this equation to compute x′

i(t) and subsequently xi(t) for each time step
t. The resulting values of x′

i(t) and xi(t) create 4D node features at each time step. Training
and validation use trajectories with 49 time steps, while 100-time-step trajectories are generated for
testing, in line with previous work (Kipf et al., 2018; Wang & Pang, 2022). Each interaction graph
provides 8,000 training trajectories, 2,000 for validation, and 2,000 for testing.

NetSims simulation. The NetSim dataset Smith et al. (2011) offers simulations of blood-oxygen-
level-dependent (BOLD) imaging data in various human brain regions. Nodes in the dataset rep-
resent spatial regions of interest from brain atlases or functional tasks. Interaction graphs from the
previous section determine connections between these regions. Dynamics are governed by a first-
order ODE model: x′

i(t) = σ ·
∑

j∈Ni
xj(t)−σ ·xi(t)+C ·ui, where σ controls temporal smoothing

and neural lag (set to 0.1 based on Smith et al. (2011)), and C regulates external input interactions
(set to zero to minimize external input noise) (Smith et al., 2011). 1D node features at each time
step are obtained from the sampled xi(t). Trajectories, following the same time steps and count as
the Springs simulation, are generated with varying initial conditions.

Addition of Gaussian noise. Furthermore, to assess the performance of the structural inference
methods under noisy conditions, we add Gaussian noise at various levels to the generated trajecto-
ries. The node features with added noises ṽti can be summarized as: ṽti = vti+ζ ·0.02·∆, where ζ ∼
N (0, 1), vti is the original feature vector of node i at time t, and ∆ is the noise level. The noise levels
range from 1 to 5 to all the original trajectories.

5 BENCHMARKING SETUP

To compare the structural inference methods in a unified, objective, and reproducible manner across
different domains, we design three sets of experiments. These experiments are outlined as follows:

1. Evaluation on Original Trajectories: We assess all the methods using the original trajectories
without any added noise. The objective is to examine the influence of the underlying interaction
graph’s property on the results of structural inference methods.

5



Under review as a conference paper at ICLR 2024

BN CRNA FW GCN GRN IN LN MMO RNLO SN VN

NRI 98.99 73.19 76.07 91.03 90.15 88.56 90.46 85.07 78.96 81.36 93.37

ACD 99.46 73.95 75.72 92.81 89.04 87.88 91.07 91.14 86.15 80.76 91.52

MPM 99.64 73.15 75.74 90.57 89.29 88.77 91.15 90.48 84.73 79.29 88.97

iSIDG 99.69 74.57 76.31 92.30 90.26 89.47 90.66 90.63 84.16 81.40 93.42

Springs

NetSims

Rank:    Low High

ppcor 98.11 90.28 74.80 97.99 88.57 96.38 90.15 98.29 98.21 94.26 98.38

TIGRESS 96.50 72.20 58.51 84.55 84.38 87.68 89.43 99.96 99.95 79.80 99.54

ARACNe 96.79 77.33 63.26 93.30 70.18 85.69 76.67 95.39 96.05 80.37 98.03

CLR 97.17 84.50 68.08 96.43 75.88 90.51 95.00 98.12 97.99 87.71 98.38

PIDC 93.01 78.66 60.89 92.73 62.70 85.31 90.58 66.76 68.79 86.17 87.25

Scribe 62.32 52.28 52.49 49.39 46.08 51.63 53.76 38.12 38.10 52.23 55.36

dynGENIE3 97.61 51.93 49.63 48.65 59.21 61.66 54.81 27.40 30.34 54.60 96.33

XGBGRN 100.00 87.01 64.83 95.42 82.96 99.63 97.26 69.34 78.43 99.56 98.83

NRI 87.46 49.80 49.03 49.40 62.29 58.16 54.02 62.12 65.02 52.39 75.89

ACD 89.92 49.57 50.31 46.46 66.64 57.60 56.77 63.38 59.55 54.56 70.85

MPM 93.50 50.38 51.99 58.83 66.71 59.35 54.58 63.58 63.00 55.37 76.44

iSIDG 93.63 50.85 51.41 53.05 61.66 58.59 55.85 63.60 63.10 56.63 77.94

Figure 1: Average AUROC values (in %) of investigated structural inference methods on noise-free
trajectories, clustered by the type of interaction graphs and the type of simulations.

2. Scalability Analysis: Building upon the noise-free structural inference results, this experiment
focuses on investigating the scalability of the structural inference methods. By examining their
performance under varying computational resources and graph sizes, we gain insights into the
scalability characteristics of each method.

3. Evaluation on Noisy Trajectories: We evaluate all the methods using trajectories that incorporate
different levels of Gaussian noise. This experiment aims to assess the robustness of the methods
by observing their performance in the presence of noise.

Additionally, we conduct experiments where we evaluate all the methods on shorter trajectories,
exploring the data efficiency of the methods, and providing insights into their performance when
faced with limited data. The results of this experiment can be found in Appendix D.3. Furthermore,
we also conduct experiments on trajectories generated by a third dynamical simulation, which is
characterized by quadratic dependencies on locations of the nodes. The results of this experiment
can be found in Appendix D.5.

To maintain the integrity of classical statistical, information theory, and tree algorithm-based meth-
ods, we limit our evaluation to trajectories generated via NetSims simulation. We employ the Area
Under the Receiver Operating Characteristic Curve (AUROC) as our performance metric. AUROC
gauges inference accuracy and the ability to distinguish true from false edges in interaction graphs.
A higher AUROC denotes greater accuracy with more true positives, while a lower value suggests
more false positives. To ensure objectivity, we report average results from three runs on labeled
trajectory sets (”r1,” ”r2,” and ”r3”) and an additional run on the set with the lowest AUROC value.
This rigorous approach offers robust performance assessment. AUROC, preferred for its robustness
and ability to handle imbalanced datasets, comprehensively evaluates method performance across
varying classification thresholds. Further metric details can be found in Appendix D.4.

6 BENCHMARKING OVER DIFFERENT INTERACTION GRAPHS

6.1 IMPLEMENTATION DETAILS

To assess the structural inference methods discussed in Sections 3.1 - 3.4, we conducted tests on
trajectories generated from all 11 types of underlying interaction graphs detailed in Section 4.1.
These tests encompassed both simulation types and were conducted without introducing any noise.
Due to our computational resources, we limited our evaluations to graphs with a maximum of 100
nodes. It’s noteworthy that despite these limitations, the cumulative computational effort expended
amounted to 704,000 CPU hours and 185,600 GPU hours.
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Appendix C provides a comprehensive discussion of the implementation details for each method,
including the implementation itself, resource utilization, and hyperparameter tuning. In this section,
we also present a clustering analysis of the AUROC results, categorizing them by the type of under-
lying interaction graph and simulation. Fig.1 displays the average AUROC values for each cluster.
For detailed experimental data, please consult Appendix D.1. Additionally, Fig.2 presents a heat-
map illustrating the correlations between the average AUROC values of each structural inference
method and the properties of the underlying interaction graphs, as described in Section 4.1.

6.2 EXPERIMENTAL OBSERVATIONS

𝑪𝑪 𝒅𝒅 γ 𝒌𝒌 𝜹𝜹 γ𝒊𝒊𝒊𝒊 γ𝒐𝒐𝒐𝒐𝒐𝒐

NRI

ACD

MPM

iSIDG

Springs

NetSims

Correlation: 

ppcor

TIGRESS

ARACNe

CLR

PIDC

Scribe

dynGENIE3

XGBGRN

NRI

ACD

MPM

iSIDG

-0.75 -0.50 -0.25 0.00 0.25 0.50

Figure 2: Correlations between
the AUROC and the properties of
the interaction graphs.

Obs. 1. VAE-based methods generally demonstrate strong
performance on multi-dimensional data. As depicted in the
top and bottom boxes of Fig. 1, when comparing the results of
VAE-based methods on trajectories generated using the same
type of underlying interaction graphs but different dynamical
simulations, the results obtained with Springs are significantly
higher than those obtained with NetSims. For example, the mar-
gin between the results on Springs and NetSims for NRI on GCN
is 46.35%, and for ACD on LN is 34.30%. This observation sug-
gests that multi-dimensional features at a given time-step offer
richer information for VAE-based methods to learn from, conse-
quently enhancing their performance. Therefore, the interrela-
tionships between different feature dimensions at a given time-
step are crucial and cannot be disregarded in the context of struc-
tural inference tasks.

Obs. 2. Methods based on classical statistics consistently
perform well on all types of graphs. As depicted in the bot-
tom box of Fig. 1, ppcor and TIGRESS exhibit relatively sta-
ble ranks compared to other methods, consistently falling within
the medium to high rank region across various underlying in-
teraction graphs. This observation highlights the insensitivity
of ppcor and TIGRESS to the type of interaction graphs, while

maintaining moderate to high accuracy in structural inference. It suggests that when confronted
with trajectories whose underlying interaction graph does not easily align with the specific types
mentioned in this work, opting for ppcor or TIGRESS would be a reliable choice.

Obs. 3. There exists a nearly positive correlation between the performance of all investigated
structural inference methods and the average shortest path length of the underlying interac-
tion graph. This correlation is evident in both boxes of Fig. 2, as indicated by the second column.
Additionally, as shown in the fourth column of Fig. 2, most results exhibit a negative correlation
with the average degree of the graphs. These observations suggest that the majority of the investi-
gated methods excel in structural inference when applied to trajectories generated by sparse and less
connected graphs, where the average shortest path length is longer. On the other hand, performance
tends to decrease when applied to denser graphs with higher average degrees.

7 BENCHMARKING OVER SCALABILITY

7.1 IMPLEMENTATION DETAILS

Based on the same raw results and implementation of every method mentioned in Section 6, we
perform clustering analysis according to the number of nodes in the underlying interaction graphs.
This clustering allows us to focus on evaluating the scalability of the investigated structural inference
methods. The results of this analysis are presented in Fig. 3.

7.2 EXPERIMENTAL OBSERVATIONS

Obs. 4. The performance of the majority of the methods deteriorates as the dynamical sys-
tems become larger. For most of the methods, Fig. 3 demonstrates a consistent trend of lower

7



Under review as a conference paper at ICLR 2024

performance on larger dynamical systems. However, PIDC and dynGENIE3 show surprising im-
provements in their inference results for larger systems. These methods leverage information from
all nodes in the system to determine connections between two nodes, allowing them to effectively
utilize the available residual information in larger graphs. This finding suggests that larger dy-
namical systems offer richer information, but it also highlights the need for careful consideration in
extracting and utilizing this information to enhance the performance of structural inference methods.

n15 n30 n50 n100

NRI 93.42 86.39 85.37 80.52

ACD 92.07 88.66 83.91 81.36

MPM 94.26 87.63 82.93 81.18

iSIDG 94.62 88.36 85.68 81.37

Springs

NetSims

Rank:    Low High

ppcor 93.22 93.59 93.30 92.51

TIGRESS 89.11 87.61 86.15 83.49

ARACNe 85.71 85.27 84.95 83.36

CLR 90.27 91.19 90.54 87.91

PIDC 76.73 77.63 79.50 83.54

Scribe 52.47 51.10 49.30 47.76

dynGENIE3 54.92 56.90 56.51 61.55

XGBGRN 90.47 91.89 89.15 82.40

NRI 65.73 61.06 57.46 56.85

ACD 65.21 58.81 58.60 57.27

MPM 70.70 67.06 61.83 58.69

iSIDG 68.18 61.88 61.06 58.43

Figure 3: Average AUROC values (in %),
clustered by the size of interaction graphs
and the type of simulations.

Obs. 5. All of the investigated VAE-based methods
exhibit strong sensitivity to the size of the graphs. In
comparison to other methods, particularly those meth-
ods based on classical statistics, VAE-based methods
demonstrate a higher degree of sensitivity to the size
of the graphs. For instance, as illustrated in Fig. 3, the
decrease in AUROC values for ppcor between graphs
with 100 nodes and those with 15 nodes is merely
0.71%. Conversely, among all VAE-based methods,
the smallest decrease is 7.94%. This observation sug-
gests that while VAE-based methods are capable of han-
dling trajectories generated by both types of simula-
tions, thereby showcasing their versatility, their scala-
bility remains a challenge.

Obs. 6. Methods based on classical statistics are the
most scalable among all investigated methods. Fig. 3
reveals that: ppcor and TIGRESS consistently maintain
stable ranks across different node counts, consistently
falling within the medium to high-rank range. This,
combined with Obs. 2, highlights the robustness and
reliability of ppcor and TIGRESS in providing consis-
tent structural inference results across diverse underly-
ing interaction graphs, regardless of graph size. Conse-
quently, ppcor and TIGRESS emerge as the most scal-

able structural inference methods among the investigated approaches, displaying remarkable consis-
tency irrespective of variations in the underlying interaction graphs and the number of nodes.

8 BENCHMARKING OVER ROBUSTNESS

8.1 IMPLEMENTATION DETAILS
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Figure 4: Performance drops (in %) on BN
trajectories with different levels of added
Gaussian noise.

The robustness of structural inference methods is vi-
tal for real-world applications where data often con-
tain noise. To assess their robustness, we generated
noisy BN trajectories with different levels of Gaus-
sian noise using NetSims simulations. The aver-
age AUROC results for each method are presented
in Appendix D.2. We calculated the differences
in AUROC values, denoted as ∆AUROC, between
the noisy and noise-free data. These differences,
along with their standard deviations (demonstrated
as shadings), are summarized in Fig. 4.

8.2 EXPERIMENTAL OBSERVATIONS

Obs. 7. Methods based on classical statis-
tics and information theory exhibit robustness

against added Gaussian noise. The findings in Fig. 4 highlight the resilience of methods based
on classical statistics and information theory in the presence of varying levels of added Gaussian
noise. Unlike other methods, these approaches maintain their performance levels despite the noise.
This suggests that their ability to uncover latent information through correlations or mutual informa-
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tion between node pairs allows them to compensate for perturbations such as Gaussian noise. These
insights hold promise for guiding the future design of robust structural inference methods.

Obs. 8. Methods based on tree algorithms and VAEs exhibit differing sensitivities to added
Gaussian noise. While both tree-based methods and VAE-based methods are adversely affected
by Gaussian noise, their responses vary distinctly. Gaussian noise impacts both the average and
standard deviations of tree-based methods, whereas VAE-based methods maintain consistently low
standard deviations. This discrepancy suggests that VAE-based methods struggle to disentangle the
effects of Gaussian noise from actual data perturbations. Consequently, the presence of noise leads
to a decrease in the average performance of VAE-based methods.

In addition, observations 9 to 11, which pertain to the data efficiency of the investigated structural
inference methods, are detailed in Appendix D.3.

9 CONCLUSION

In this study, we conducted a comprehensive benchmarking of 12 distinct structural inference meth-
ods using trajectories generated from 2 types of dynamical simulations and a wide range of under-
lying interaction graphs. Our analysis yielded several key insights:

• Leveraging correlations: Our findings, as highlighted in Obs. 2 and 6, indicate that methods
based on classical statistics exhibit superior performance in terms of stability and accuracy. These
methods leverage the correlations between nodes, particularly the features of nodes represented
as time series. The ability of these methods to capture valuable information from time series data
contributes to their remarkable accuracy in structural inference. Furthermore, as demonstrated in
Obs. 7 and 11 (in Appendix D.3), these methods exhibit robustness in handling noisy and short
trajectories, showcasing their potential in overcoming challenging data conditions.

• Dimension matters: Obs. 1 highlights the superiority of VAE-based methods in handling tra-
jectories with multi-dimensional features compared to one-dimensional features. This finding
emphasizes the significance of collecting diverse and multi-dimensional data to capture node dy-
namics from multiple perspectives, leading to improved accuracy in structural inference tasks.
However, as suggested by Obs. 2 and 6 when only one-dimensional features are accessible, clas-
sical statistical methods emerge as a suitable choice.

• Inference on sparse and less connected graphs: All the evaluated methods perform better in
inferring structural properties from trajectories generated by sparse and less connected graphs
(Obs. 3). While this insight may not directly facilitate structural inference, it opens avenues for
the development of methods to estimate underlying graph properties without prior knowledge.

• Leveraging mutual information against noise: Obs. 7 reveals that methods based on informa-
tion theory exhibit relative robustness against Gaussian noise. The ability of these methods to
utilize mutual information metrics provides valuable insights for the design of robust structural
inference algorithms capable of overcoming the detrimental effects of noise.

However, this work has several limitations. Firstly, the analysis relies on static graph assumptions,
potentially missing the nuances of real-world system dynamics. Furthermore, the evaluation concen-
trates on a specific subset of methods, possibly excluding a broader spectrum of structural inference
techniques. For a comprehensive view of these limitations, please consult Appendix E.

Outlook. Our findings underscore the importance of correlations and mutual information in struc-
tural inference. However, current methods based on these principles are tailored for one-dimensional
feature trajectories and assume static structures in dynamical systems. To overcome these con-
straints, future research could concentrate on innovative approaches that harness correlations and
mutual information while accommodating both one-dimensional and multi-dimensional feature tra-
jectories. One potential solution involves employing neural networks to learn feature representations
and execute correlation and mutual information calculations using these learned representations. By
leveraging the flexibility of neural networks, these methods can transcend the limitations of one-
dimensional feature trajectories and extend their applicability to multi-dimensional feature trajec-
tories. This research direction could yield more versatile and comprehensive structural inference
algorithms capable of handling diverse data types and delivering accurate outcomes in a variety of
application scenarios. Moreover, exploring structural inference on real-world dynamical systems
with dynamic structures presents a promising avenue for further inquiry.

9
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REPRODUCIBILITY STATEMENT

All results in this benchmark paper can be easily reproduced. The DoSI dataset can be downloaded
at: https://structinfer.github.io/download/, while the code of all evaluated meth-
ods and with our implementation can be found by the link provided in the supplementary documents.
The implementation details in Appendix C will guide the reproduction of the benchmark results.
Please also refer to StructInfer-docs.pdf in the supplementary documents for reproduction.

REFERENCES
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A DATASET DOCUMENTATION

Here we provide documentation for our dataset in the common datasheets format (Gebru et al.,
2021).

A.1 MOTIVATION

Q1 For what purpose was the dataset created? Was there a specific task in mind? Was there
a specific gap that needed to be filled? Please provide a description.

We produced the dataset to evaluate the structural inference methods mentioned in
this work. To the best of our knowledge, it is the first dataset that includes the trajectories
based on eleven different types of underlying interacting graph structures. Further-
more, it is also the first dataset that provides trajectories of both one-dimensional and
multi-dimensional features for structural inference. Comprehensive evaluation of the
performance of structural inference methods originating from different research disci-
plines requires an objective and unified dataset containing both trajectories of different
dimensions and trajectories based on different underlying interacting graphs. Our goal was
to create a dataset that could be utilized for this purpose.

Q2 Who created the dataset (for example, which team, research group) and on behalf of
which entity (for example, company, institution, organization)?

The dataset was a joint effort by the authors. Due to the double-blind review pro-
cess, we have concealed this information and will provide an update in the camera-ready
version of the paper.

Q3 Who funded the creation of the dataset? If there is an associated grant, please provide
the name of the grantor and the grant name and number.

Due to the double-blind review process, we have concealed this information and
will provide an update in the camera-ready version of the paper.

Q4 Any other comments?

No.

A.2 COMPOSITION

Q5 What do the instances that comprise the dataset represent (for example, documents,
photos, people, countries)? Are there multiple types of instances (for example, movies,
users, and ratings; people and interactions between them; nodes and edges)? Please
provide a description.

The instances represent time-series features of nodes (trajectories) in a period of
time, and the corresponding ground-truth interaction graph. The instances are all .npy
files. Each time-series feature of nodes was produced by the simulation of dynamical
systems with the simulation code included in the GitHub repository.

Q6 How many instances are there in total (of each type, if appropriate)?

The dataset has a total of 20,856 .npy files.

Q7 Does the dataset contain all possible instances or is it a sample (not necessarily
random) of instances from a larger set? If the dataset is a sample, then what is the larger
set? Is the sample representative of the larger set (for example, geographic coverage)?
Is the sample representative of the larger set (e.g., geographic coverage)? If so, please
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describe how this representativeness was validated/verified. If it is not representative of
the larger set, please describe why not (e.g., to cover a more diverse range of instances,
because instances were withheld or unavailable).

The dataset contains all possible instances.

Q8 What data does each instance consist of? ”Raw” data (for example, unprocessed text or
images) or features? In either case, please provide a description.

The instance consists of ”Raw” data of node features in a time period and the un-
derlying ground-truth interaction graphs. Both are in .npy format.
The composition of the whole dataset consists of eleven folders representing eleven types
of underlying interacting graphs, namely

– brain networks,
– chemical reaction networks in atmosphere,
– food webs,
– gene coexpression networks,
– gene regulatory networks,
– intercellular networks,
– landscape networks,
– man-made organic reaction networks,
– reaction networks inside living organism,
– social networks,
– vascular networks.

Each of these folders has a subfolder named either directed or undirected, which
contains the trajectories for either directed graphs or undirected graphs based on the type
of the graphs. Then in these subfolders, the data can be divided into two groups based on
the type of dynamical simulations: Springs or NetSims. So every subfolder only contains
the data generated by either simulation:

– Generated by Springs simulation. (The subfolder is named as springs.) For in-
stance, for a graph of K nodes and noted as the R-th repetition of its group, the in-
stances in the same subfolder which belong to this simulation are:

* Trajectories for training:
loc train springsKrR.npy, vel train springsKrR.npy,

* Groundtruth graphs for training:
edges train springsKrR.npy,

* Trajectories for validation:
loc valid springsKrR.npy, vel valid springsKrR.npy,

* Groundtruth graphs for validation:
edges valid springsKrR.npy,

* Trajectories for test:
loc test springsKrR.npy, vel test springsKrR.npy,

* Groundtruth graphs for test:
edges test springsKrR.npy.

– Generated by NetSims simulation. (The subfolder is named as netsims.) For in-
stance, for a graph of K nodes and noted as the R-th repetition of its group, the in-
stances in the same subfolder which belong to this simulation are:

* Trajectories for training:
bold train netsimsKrR.npy,

* Groundtruth graphs for training:
edges train netsimsKrR.npy,

* Trajectories for training:
bold valid netsimsKrR.npy,

* Groundtruth graphs for training:
edges valid netsimsKrR.npy,
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* Trajectories for test:
bold test netsimsKrR.npy,

* Groundtruth graphs for test:
edges test netsimsKrR.npy.

For trajectories with L level of Gaussian noise, they are marked with additional subscripts
nL at the end of its corresponding noise-free trajectories (before .npy).

Q9 Is there a label or target associated with each instance? If so, please provide a
description.

Each instance has a corresponding ground-truth interaction graph that is used to
generate the set of trajectories.

Q10 Is any information missing from individual instances? If so, please provide a descrip-
tion.

No.

Q11 Are relationships between individual instances made explicit (for example, users’
movie ratings, social network links)? If so, please describe how these relationships are
made explicit.

We divided the files into groups on the basis of the type of underlying interacting
graph, and subsequently on the dynamic functions of the trajectories generation.

Q12 Are there recommended data splits (for example, training, development/validation,
testing)? If so, please provide a description of these splits, explaining the rationale behind
them.

We have already split the data into training sets, validation sets, and testing sets
with ratios of 8: 2: 2 based on the counts of trajectories. All of them are open to audiences.

Q13 Are there any errors, sources of noise, or redundancies in the dataset? If so, please
provide a description.

Yes, besides the generated raw trajectories, we also provided noisy trajectories. The
noisy trajectories are the raw ones added with Gaussian noises of different levels. For
example, the files with “xx n5.npy” are the noisy trajectories obtained from “xx.npy” with
5 levels of additive Gaussian noise. The noises were only added to the trajectories, not the
ground-truth interaction graphs.

Q14 Is the dataset self-contained, or does it link to or otherwise rely on external re-
sources (for example, websites, tweets, other datasets)? If it links to or relies on
external resources, a) are there guarantees that they will exist, and remain constant,
over time; b) are there official archival versions of the complete dataset (i.e., including
the external resources as they existed at the time the dataset was created); c) are there
any restrictions (e.g., licenses, fees) associated with any of the external resources that
might apply to a future user? Please provide descriptions of all external resources and
any restrictions associated with them, as well as links or other access points, as appropriate.

Yes, the dataset is self-contained.

Q15 Does the dataset contain data that might be considered confidential (for example,
data that is protected by legal privilege or by doctor-patient confidentiality, data that
includes the content of individuals’ non-public communications)? If so, please provide
a description.
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We allow free distribution of the dataset.

Q16 Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? If so, please describe why.

No.

A.3 COLLECTION PROCESS

Q17 How was the data associated with each instance acquired? Was the data directly ob-
servable (for example, raw text, movie ratings), reported by subjects (for example, survey
responses), or indirectly inferred/derived from other data (for example, part-of-speech
tags, model-based guesses for age or language)? If the data was reported by subjects or
indirectly inferred/derived from other data, was the data validated/verified? If so, please
describe how.

We first generated ground-truth interaction graphs following the sampled ranges of
properties of eleven types of real-world graphs, which include: brain networks, chemical
reaction networks in the atmosphere, food webs, gene coexpression networks, gene
regulatory networks, intercellular networks, landscape networks, man-made organic
reaction networks, reaction networks inside living organism, social networks, and vascular
networks. Among these, the graphs from gene coexpression networks and landscape
networks are undirected, while the rest are directed. We generated the graphs with different
counts of nodes: 15, 30, 50, 100, 150, 200, and 250. And we generated graphs of each size
with 3 repetitions while ensuring that the three were not identical. In total, we generated
231 ground truth interacting graphs.
Then we ran simulations based on the generated ground truth interaction graphs. There
were two types of dynamic simulations, ”Springs” and ”NetSims”. Every ground truth
interaction graph joined the simulation and in total, we obtained 462 sets of trajectories.
After that, we created another set of trajectories with the addition of Gaussian noises.
The Gaussian noises were added to the generated trajectories with 5 different amplifying
levels. In total, we generated 2310 sets of trajectories with Gaussian noises.

Q18 What mechanisms or procedures were used to collect the data (for example, hardware
apparatuses or sensors, manual human curation, software programs, software APIs)?
How were these mechanisms or procedures validated?

The whole data generation process was run on Amazon EC2 C7g.2xlarge instances,
which are powered by AWS Graviton3 processors. We first ran a Python script for graph
generation, over 32 vCPUs of C7g.2xlarge instances, and with 128 GB RAM. Then we fed
the generated graphs to the Python script for dynamic simulations with the same hardware
settings. The generated graphs were validated by manual inspection and post-processed
with the computation of statistics on the degrees, connectivity, number of self-loops,
clustering coefficients, and average shortest paths.

Q19 If the dataset is a sample from a larger set, what was the sampling strategy (for
example, deterministic, probabilistic with specific sampling probabilities)?

No. The dataset is not a sample from a larger set.

Q20 Who was involved in the data collection process (for example, students, crowdwork-
ers, contractors) and how were they compensated (for example, how much were
crowdworkers paid)?

No crowdworkers were used in the curation of the dataset. One of the authors of
this paper was involved in the data collection process. Due to the double-blind review pro-
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cess, we have concealed this information and will provide an update in the camera-ready
version of the paper.

Q21 Over what timeframe was the data collected? Does this timeframe match the creation
timeframe of the data associated with the instances (for example, recent crawl of old
news articles)? If not, please describe the timeframe in which the data associated with the
instances was created.

The data was collected in the period from December 15, 2022 to March 3, 2023.

Q22 Were any ethical review processes conducted (for example, by an institutional review
board)? If so, please provide a description of these review processes, including the
outcomes, as well as a link or other access point to any supporting documentation.

No, such processes were unnecessary in our case.

Q23 Does the dataset relate to people? If not, you may skip the remaining questions in this
section.

No.

A.4 PREPROCESSING/CLEANING/LABELING

Q24 Was any preprocessing/cleaning/labeling of the data done (for example, discretization
or bucketing, tokenization, part-of-speech tagging, SIFT feature extraction, removal
of instances, processing of missing values)? If so, please provide a description. If not,
you may skip the remainder of the questions in this section.

No preprocessing, cleaning, or labeling was done.

A.5 USES

Q25 Has the dataset been used for any tasks already?

No. The dataset has not been used for any tasks yet.

Q26 Is there a repository that links to any or all papers or systems that use the dataset? If
so, please provide a link or other access point.

No. The dataset has not been used for any tasks yet.

Q27 What (other) tasks could the dataset be used for?

The dataset could be used for time-series prediction and possibly the task of graph
completeness.

Q28 Is there anything about the composition of the dataset or the way it was collected and
preprocessed/cleaned/labeled that might impact future uses? For example, is there
anything that a future user might need to know to avoid uses that could result in unfair
treatment of individuals or groups (e.g., stereotyping, quality of service issues) or other
undesirable harms (e.g., financial harms, legal risks) If so, please provide a description. Is
there anything a future user could do to mitigate these undesirable harms?

We do not think the composition of the dataset or the way it was collected or pre-
processed/cleaned/labeled could impact future uses.
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Q29 Are there tasks for which the dataset should not be used? If so, please provide a
description.

Due to the known biases of the dataset, under no circumstance should any methods
be put into production using the dataset as is. It is neither safe nor responsible. As it stands,
the dataset should be solely used for research purposes in its uncurated state. Likewise,
this dataset should not be used to aid in military or surveillance tasks.

Q30 Any other comments?

No.

A.6 DISTRIBUTION

Q31 Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created? If so, please
provide a description.

Yes, the dataset will be open-source.

Q32 How will the dataset be distributed (e.g., tarball on website, API, GitHub)? Does the
dataset have a digital object identifier (DOI)?

The data will be available through the website of this benchmark (https:
//structinfer.github.io/download/).

Q33 When will the dataset be distributed?

May 31, 2023 and onward.

Q34 Will the dataset be distributed under a copyright or other intellectual property (IP)
license, and/or under applicable terms of use (ToU)? If so, please describe this license
and/or ToU, and provide a link or other access point to, or otherwise reproduce, any
relevant licensing terms or ToU, as well as any fees associated with these restrictions.

CC-BY-4.0

Q35 Have any third parties imposed IP-based or other restrictions on the data associated
with the instances? If so, please describe these restrictions, and provide a link or other
access point to, or otherwise reproduce, any relevant licensing terms, as well as any fees
associated with these restrictions.

No.

Q36 Do any export controls or other regulatory restrictions apply to the dataset or to
individual instances? If so, please describe these restrictions, and provide a link or other
access point to, or otherwise reproduce, any supporting documentation.

No.

Q37 Any other comments?

We managed to upload the part of DoSI that are essential for the reproduction of
the results in this benchmark paper. However, as the total size of the DoSI exceeds 7.8 TB,
we are communicating with our grant provider on the publishing of the remaining dataset.
The whole dataset will be made public for sure before the ICLR 2024 conference.
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A.7 MAINTENANCE

Q38 Who will be supporting/hosting/maintaining the dataset?

Due to the double-blind review process, we have concealed this information and
will provide an update in the camera-ready version of the paper.

Q39 How can the owner/curator/manager of the dataset be contacted (e.g., email address)?

Due to the double-blind review process, we have concealed this information and
will provide an update in the camera-ready version of the paper.

Q40 Is there an erratum? If so, please provide a link or other access point.

There is no erratum for our initial release. Errata will be documented as future re-
leases on the dataset website.

Q41 Will the dataset be updated (e.g., to correct labeling errors, add new instances,
delete instances)? If so, please describe how often, by whom, and how updates will be
communicated to users (e.g., mailing list, GitHub)?

We are planning to extend the dataset to ensure benchmark results with the highest
statistical credibility. Such updates will be rare, as they involve subjective evaluation
— a time-consuming task that requires extensive preparation. Also, we understand the
problems that consumers can face during updates. But after updates become public, they
will receive notification primarily through the mailing list, and all the new information will
be on the benchmark website.

Q42 If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances (e.g., were individuals in question told that their data
would be retained for a fixed period of time and then deleted)? If so, please describe
these limits and explain how they will be enforced.

No, the dataset does not relate to people.

Q43 Will older versions of the dataset continue to be supported/hosted/maintained? If so,
please describe how. If not, please describe how its obsolescence will be communicated to
users.

We will continue to support the older versions as long as we have enough funds.

Q44 If others want to extend/augment/build on/contribute to the dataset, is there a mech-
anism for them to do so? If so, please provide a description. Will these contributions
be validated/verified? If so, please describe how. If not, why not? Is there a process for
communicating/distributing these contributions to other users? If so, please provide a
description.

We encourage everyone to share their ideas on extending our dataset to cover more
compression cases and provide more reliable results. Our method of subjective quality
evaluation, however, is set; we recommend researchers contact the authors. Due to the
double-blind review process, we have concealed this information and will provide an
update in the camera-ready version of the paper.

Q45 Any other comments?

No.
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B FURTHER DETAILS OF DATASETS

In this section, we provide more details about the datasets used in this work.

B.1 UNDERLYING INTERACTION GRAPHS

The sampled properties of each type of graph are summarised in Table 1. Some values are missing
because they were not reported in the literature (Barzel et al., 2012; Barabási, 2013; Estrada, 2011).
In the next paragraphs, we briefly describe the generation of the underlying interaction graphs and

Table 1: Sampled properties of 11 types of real-world graphs.

Graphs Properties

C d γ ⟨k⟩ δ γout

BN - - - [1.8, 2.0] [0.002, 0.25] -
CRNA [0.25, 0.62] [1.5, 2.8] - - [0.02, 0.32] -

FW - [1.5, 2.5] - - - -
GCN [0.05, 0.45] [2.5, 5.2] [1.2, 2.4] - - -
GRN [0.08, 0.25] [1.7, 4.0] - - - -

IN - [2.0, 3.4] - - - -
LN [0.6, 0.8] - - - - -

MMO - - - [2.0, 3.6] - [1.5, 2.6]
RNLO - - - [2.1, 3.0] - -

SN [0.09, 0.20] [2.0, 4.2] - - [0.095, 0.15] -
VN - - [3.7, 3.8] [1.5, 2.2] - -

the corresponding implementation. Each paragraph will discuss the generation and implementation
of each type of underlying interaction graph, respectively. We use N to denote the number of nodes.

Brain Networks (BN). BNs are the networks that represent the connectivity of brain regions,
which can be determined by anatomical tracts or by functional associations (Estrada, 2011). In
addition to the collected properties presented in Table 1, the structure of brain networks also shows
remarkable hierarchical structure. Therefore, we generate the directed BN graphs of the total number
of nodes equal N by first creating a set of growing networks, each with 5 nodes. Then, we randomly
connect the growing networks to obtain a connected graph. The pipeline is implemented with the
Python Package NetworkX (Hagberg et al., 2008). Specifically, we use the gn graph function
for growing network creation and the k edge augmentation function for connecting growing
networks. Since there are many hyperparameters in the pipeline, we create a search space for these
parameters and record the first three graphs whose properties are within the range of the ones in
Table 1.

Chemical Reaction Networks in the Atmosphere (CRNA). A CRNA models the complex net-
work of reaction transformations in the atmosphere of planets. There is a link from chemical i to
chemical j if the former is a reactant and the latter is a product in at least one chemical reaction.
CRNAs exhibit both small-worldness and randomness (Estrada, 2011). In this work, the directed
CRNA graphs are generated by using the directed Erdös-Rényi graph generator of NetworkX (Hag-
berg et al., 2008): erdos renyi graph. The argument n of the function is set to the total number
of nodes N , and the argument p is set to a value from the search space [0.05, 0.75]. During the
search, we record the first three graphs whose properties are in the ranges shown in Table 1.

Food Webs (FW). FWs are networks that describe the ‘networks of feeding interactions among di-
verse co-occurring species in a particular habitat’ (Steele, 2009). It is widely accepted that ‘empirical
food webs’ display exponential or uniform degree distributions. Therefore, in this work, the directed
FW graphs are generated with a two-step procedure. We first sample the in-/out-degree sequences
from an exponential function (random.exponential from Python library NumPy (Harris et al.,
2020)) with different scales. The scales are computed by dividing N by a hyperparameter from
a search space. Then the in-/out-degree sequences are given to the directed configuration model
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generator of NetworkX: directed configuration model. During the search, we record the
first three graphs whose properties are within the range shown in Table 1.

Gene Coexpression Networks (GCN). Two genes that have similar expression profiles are likely
to have similar functions. Gene coexpression networks are built by calculating a similarity score for
each pair of genes. The nodes of the networks represent the genes, and two genes are linked if their
similarity is above a certain threshold. GCNs are characterized by both ‘small-worldness’ and ‘scale-
freeness’ features (Estrada, 2011). The undirected GCN graphs in this work are generated with
three steps. We first sample the sequence of node degrees from utils.powerlaw sequence
of NetworkX. The argument exponent is a hyperparameter with value from the search space
[1.4, 2.8]. Then, the sequence is given to configuration model of NetworkX to generate a
graph. However, the generated graph might have multiple disconnected components. We use the
k edge augmentation function of NetworkX to connect the components with the argument k
as another hyperparameter from the search space [1, 10]. During the search, we record the first three
graphs whose properties are within the ranges shown in Table 1.

Gene Regulatory Networks (GRN). GRN is another type of gene network in which the con-
nections are between transcription factors and the genes that they regulate. In this work, the di-
rected GRN graphs are generated by an open-source Python package: https://github.com/
zhivkoplias/network_generation_algo. The package implements a graph generation
algorithm with boosted feed-forward loop motif, which is known to be important for network dy-
namics. We change the final size argument in the script to match N . Since there is a random
process incorporated in the generation process, we run the script several times until we obtain three
graphs whose properties fall in the ranges shown in Table 1.

Intercellular Networks (IN). IN was studied to describe the topological organization produced by
the spatial relationship among cells in different tissues. In this work, we follow the setup-principle
of probabilistic cell graphs (Estrada, 2011), where a link between two cells is established with a
probability function of the Euclidean distance between them. In this work, we follow a simplified
process. The directed IN graphs are generated by calling the directed Erdős-Rényi graph generator
of NetworkX: erdos renyi graph. The argument n of the function is set to the total count of
nodes N , and the argument p is set to a value from the search space [0.05, 0.75]. During the search,
we record the first three graphs for each whose properties fall in the ranges shown in Table 1.

Landscape Networks (LN). LNs are used to model the interconnectivity among the spatial
pattern of scattered habitat patches in the landscape. They are similar to the random geomet-
ric networks (Estrada, 2011). In this work, the undirected LN graphs are generated using the
geographical threshold graph function of NetworkX. The argument theta is set to a
value computed with the multiplication of N and a hyperparameter, which is selected from the
search space [0.5, 2.0]. During the search, we record the first three graphs whose properties are
within the range shown in Table 1.

Man-made Organic Reaction Networks (MMO). A chemical reaction transforms one or more
reactants into one or more products. A chemical i is linked to a chemical j if they are a reactant and a
product, respectively, in any chemical reaction. It is observed that the in-degree and out-degree of the
molecules follow power-law distributions (Estrada, 2011). We use the scale free graph gener-
ator of NetworkX to generate directed MMO graphs based on this property. We set alpha, beta,
delta in, and delta out as hyperparameters with search spaces of [0.01, 0.97], [0.01, 0.98],
[0.01, 0.4], and [0, 0.15], respectively. We calculate gamma by 1−alpha−beta. We convert the
raw graphs to directed graphs using the DiGraph function. We select the first three directed graphs
that match the properties in Table 1.

Reaction Networks inside Living Organisms (RNLO). The RNLO graphs and MMO graphs
have many similar properties, because they are both chemical reaction networks. We generate the
directed RNLO graphs using the same pipeline as MMO, but with different property ranges pre-
sented in Table 1.
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Social Networks (SN). An SN is conceptualized as a graph, that is, a set of vertices (or nodes,
units, points) representing social actors and a set of lines representing one or more social relations
among them (de Nooy, 2009). We use the gnp random graph generator of NetworkX to generate
directed SN graphs. We set p as a hyperparameter with a search space of [0.01, 0.99]. We select the
first three directed graphs that match the properties in Table 1.

Vascular Networks (VN). A VN is a graph where nodes represent the junctions of channels and
edges represent the connections between them. VNs have power-law degree distributions (Estrada,
2011). We generate directed VN graphs by first creating a tree with a power-law degree distribution
using the random powerlaw tree generator of NetworkX, where we set gamma as a hyper-
parameter with a search space of [1.5, 4.9]. We then convert the trees to directed graphs using the
DiGraph function. We select the first three directed graphs that match the properties in Table 1.

We summarize the properties of the underlying interaction graphs mentioned in this work in Tables 2
- 12. The graphs are aligned in accordance with the type of graphs they belong to. The names of
the graphs are represented as “number of nodes in the graph” + “repetition number”. For example,
the second repetition of the graph with 15 nodes is represented as 15r2. In the tables, # Nodes
denotes the number of nodes in the graph, # Edges denotes the number of edges in the graph, C is
the average clustering coefficient, d is the average shortest path length, γ is the power-law exponent
of the degree distribution, ⟨k⟩ is the average node degree, δ is the density, and γin and γout are the
power-law exponents of the in-degree/out-degree distributions, respectively. Among these metrics,
# Nodes, # Edges, C, d, and δ are calculated by built-in functions of NetworkX. ⟨k⟩ is calculated
by averaging over all node degrees in the graph, which is obtained by calling .degree with Net-
workX. The power-law exponents are calculated by fitting the corresponding degree sequences with
powerlaw.Fit of Python package powerlaw, then by outputting the .powerlaw.alpha vari-
ables of the obtained distributions. It is worth mentioning that some exponents are missing, where
powerlaw could not find a suitable powerlaw function to fit or where the sampled degree sequence
is too short for fitting. As shown in Tables 2 - 12, the properties of the graphs vary significantly,
and the investigation of to which extent the different underlying graphs influence the performance
of structural inference methods is worth studying.

Table 2: Properties of underlying interaction graphs of brain networks.

Name Properties

# Nodes # Edges C d γ ⟨k⟩ δ γin γout

15r1 15 14 0.0 2.88 3.43 1.87 0.07 2.09 -
15r2 15 14 0.0 2.99 3.32 1.87 0.07 6.87 -
15r3 15 14 0.0 2.95 3.43 1.87 0.07 6.87 -

30r1 30 29 0.0 4.51 4.43 1.93 0.03 3.04 41.40
30r2 30 29 0.0 4.09 3.35 1.93 0.03 14.44 41.40
30r3 30 29 0.0 4.27 3.16 1.93 0.03 2.81 41.40

50r1 50 49 0.0 5.90 5.96 1.96 0.02 4.91 34.90
50r2 50 49 0.0 5.71 3.19 1.96 0.02 3.73 34.90
50r3 50 49 0.0 6.01 3.01 1.96 0.02 5.05 34.90

100r1 100 99 0.0 9.13 3.07 1.98 0.01 2.60 35.26
100r2 100 99 0.0 9.05 3.11 1.98 0.01 2.72 35.26
100r3 100 99 0.0 9.11 3.07 1.98 0.01 16.68 35.26

150r1 150 149 0.0 12.56 3.04 1.99 0.007 4.55 26.43
150r2 150 149 0.0 12.75 13.63 1.99 0.007 11.44 26.43
150r3 150 149 0.0 12.76 8.77 1.99 0.007 5.56 26.43

200r1 200 199 0.0 16.07 11.74 1.99 0.005 5.29 28.27
200r2 200 199 0.0 15.96 2.99 1.99 0.005 8.15 28.27
200r3 200 199 0.0 15.98 2.96 1.99 0.005 8.15 28.27

250r1 250 249 0.0 19.37 24.77 1.992 0.004 21.91 29.49
250r2 250 249 0.0 19.21 3.06 1.992 0.004 19.82 29.49
250r3 250 249 0.0 19.31 2.99 1.992 0.004 7.39 29.49
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Table 3: Properties of underlying interaction graphs of chemical reaction networks in the atmo-
sphere.

Name Properties

# Nodes # Edges C d γ ⟨k⟩ δ γin γout

15r1 15 40 0.26 2.78 3.02 5.33 0.19 4.57 2.29
15r2 15 46 0.25 2.22 12.00 6.13 0.22 6.84 5.17
15r3 15 54 0.26 2.00 4.82 7.2 0.26 4.76 28.42

30r1 30 208 0.26 1.90 5.77 13.87 0.24 7.29 9.57
30r2 30 205 0.26 1.93 5.82 13.67 0.24 4.70 4.87
30r3 30 203 0.25 1.97 7.52 13.53 0.23 11.27 4.24

50r1 50 591 0.25 1.80 15.90 23.64 0.24 10.63 9.77
50r2 50 611 0.25 1.79 11.16 24.44 0.25 7.67 11.19
50r3 50 605 0.25 1.79 11.07 24.2 0.25 8.52 17.02

100r1 100 2,510 0.26 1.75 14.90 50.2 0.25 10.54 14.50
100r2 100 2,485 0.25 1.75 33.90 49.7 0.25 7.21 195.98
100r3 100 2,527 0.25 1.75 16.34 50.54 0.26 21.52 11.60

150r1 150 5,729 0.26 1.74 22.89 76.39 0.26 19.25 19.53
150r2 150 5,804 0.26 1.74 15.83 77.39 0.26 28.46 12.55
150r3 150 5,614 0.25 1.75 17.12 74.85 0.26 17.11 20.10

200r1 200 10,108 0.25 1.75 38.65 101.08 0.25 17.15 21.61
200r2 200 10,337 0.26 1.74 66.57 103.37 0.26 31.54 284.48
200r3 200 10,254 0.26 1.74 26.23 102.54 0.26 17.98 48.32

250r1 250 15,944 0.26 1.74 40.62 127.55 0.26 22.35 26.00
250r2 250 16,119 0.26 1.74 28.17 128.95 0.26 19.57 22.78
250r3 250 15,938 0.26 1.74 56.66 127.50 0.26 24.15 20.49

The corresponding code for graph generation can be found at /src/graphs in the provided
Anonymous GitHub repository.The corresponding scripts for the generation of each graph type are
summarized in Table 13.

B.2 DYNAMICAL SYSTEM SIMULATIONS

The corresponding code for the simulations of interacting dynamical systems can be found at
/src/simulations in the provided Anonymous GitHub repository. The corresponding scripts
for every simulation are summarized in Table 13.

The details on the simulations of “Springs” and “NetSims” are presented in the following para-
graphs.

Springs simulation. We simulate the motion of spring-connected particles in a 2D box using
the springs simulation, where the nodes are represented as particles, and the edges correspond to
springs following Hooke’s law for force calculations. Inspired by (Kipf et al., 2018), we simulate
N particles (point masses) within a 2D box in the absence of external forces. Elastic collisions with
the box are accounted for. The interaction graphs obtained from the previous section are employed
to determine the spring connections. The particles are interconnected through springs with forces
governed by Hooke’s law, given by Fij(t) = −k(xi(t) − xj(t)), where Fij(t) represents the force
exerted on particle i by particle j at time t, k is the spring constant, and xi(t) is the 2D location
vector of particle i at time t. The dynamic function of the Springs simulation is characterized by a
second-order ODE which can be represented as follows:

mi · x′′
i (t) =

∑
j∈Ni

−k ·
(
xi(t)− xj(t)

)
, (1)

Here, mi represents the mass of node i, assumed to be 1 for simplicity. The spring constant, denoted
as k, is fixed at 1. Ni refers to the set of neighboring nodes with directed connections to node i.
We integrate this equation to compute x′

i(t) and subsequently xi(t) for each time step. The sampled
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Table 4: Properties of underlying interaction graphs of food webs.

Name Properties

# Nodes # Edges C d γ ⟨k⟩ δ γin γout

15r1 15 96 0.51 1.69 3.73 20.13 0.46 29.47 48.46
15r2 15 100 0.49 1.72 7.02 20.4 0.48 20.61 1.87
15r3 15 88 0.58 1.73 23.76 17.6 0.42 2.40 20.93

30r1 30 404 0.51 1.57 12.22 41.27 0.46 98.48 117.97
30r2 30 309 1.42 1.86 12.24 33.27 0.36 16.15 13.28
30r3 30 329 0.47 1.86 3.25 36.53 0.38 10.47 3.93

50r1 50 1,084 0.51 1.61 4.18 68.6 0.44 19.66 18.47
50r2 50 1,005 0.52 1.73 23.17 65.24 0.41 19.41 29.10
50r3 50 1,081 0.50 1.60 32.83 68.2 0.44 85.54 34.72

100r1 100 4,161 0.50 1.63 61.69 134.96 0.42 58.86 35.41
100r2 100 3,978 0.50 1.67 29.08 127.26 0.40 35.08 25.24
100r3 100 4,092 0.48 1.62 3.92 129.96 0.41 64.89 53.87

150r1 150 8,658 0.48 1.67 51.93 181.85 0.39 35.03 21.72
150r2 150 9,355 0.4 1.60 24.08 196.67 0.42 102.89 55.11
150r3 150 8,924 0.48 1.65 89.06 188.59 0.40 78.48 138.23

200r1 200 16,885 0.50 1.60 73.29 268.35 0.42 45.44 57.85
200r2 200 17,279 0.51 1.58 80.59 274.72 0.43 65.31 55.84
200r3 200 15,069 0.49 1.65 43.84 243.89 0.38 86.15 40.40

250r1 250 23,669 0.46 1.63 86.40 300.02 0.38 58.10 22.70
250r2 250 25,569 0.49 1.62 91.49 327.32 0.41 89.91 55.57
250r3 250 24,596 0.48 1.63 3.59 315.344 0.40 56.17 54.21

Table 5: Properties of underlying interaction graphs of gene coexpression networks.

Name Properties

# Nodes # Edges C d γ ⟨k⟩ δ

15r1 15 22 0.069 2.55 2.18 2.93 0.21
15r2 15 22 0.069 2.55 2.18 2.93 0.21
15r3 15 23 0.24 2.50 2.28 3.07 0.22

30r1 30 60 0.21 2.66 1.98 4.0 0.14
30r2 30 53 0.16 2.58 2.19 3.53 0.12
30r3 30 54 0.15 2.77 2.12 3.6 0.12

50r1 50 128 0.26 2.56 2.20 5.12 0.10
50r2 50 160 0.28 2.52 1.77 6.4 0.13
50r3 50 112 0.30 2.55 2.05 4.48 0.09

100r1 100 342 0.28 2.63 1.78 6.84 0.07
100r2 100 364 0.33 2.61 1.80 7.28 0.074
100r3 100 364 0.34 2.61 1.80 7.28 0.073

150r1 150 729 0.35 2.51 2.01 9.72 0.065
150r2 150 729 0.34 2.51 2.01 9.72 0.065
150r3 150 670 0.33 2.70 1.84 8.93 0.06

200r1 200 1,018 0.34 2.55 1.79 10.18 0.05
200r2 200 1,018 0.34 2.55 1.78 10.18 0.05
200r3 200 1,041 0.34 2.54 2.04 10.42 0.05

250r1 250 1,596 0.35 2.54 1.80 12.77 0.05
250r2 250 1,596 0.35 2.54 1.80 12.77 0.05
250r3 250 1,627 0.35 2.53 1.90 13.02 0.05
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Table 6: Properties of underlying interaction graphs of gene regulatory networks.

Name Properties

# Nodes # Edges C d γ ⟨k⟩ δ γin γout

15r1 15 32 0.26 2.02 3.43 4.27 0.15 5.38 6.10
15r2 15 32 0.26 2.02 3.64 4.27 0.15 14.44 4.04
15r3 15 38 0.25 1.78 5.47 5.07 0.18 3.36 2.74

30r1 30 84 0.17 2.11 3.38 5.6 0.10 5.58 3.19
30r2 30 76 0.21 2.23 4.00 5.07 0.09 14.04 2.84
30r3 30 80 0.20 2.20 4.51 5.33 0.09 5.71 3.26

50r1 50 132 0.13 2.49 4.03 5.28 0.05 7.60 3.12
50r2 50 136 0.13 2.60 3.61 5.44 0.06 4.61 3.65
50r3 50 133 0.17 2.37 4.14 5.32 0.05 9.13 3.09

100r1 100 273 0.17 2.38 3.67 5.46 0.03 3.88 3.31
100r2 100 273 0.19 2.45 3.37 5.46 0.03 3.20 3.96
100r3 100 267 0.13 2.60 3.67 5.34 0.03 3.13 3.00

150r1 150 421 0.13 2.54 3.83 5.61 0.02 3.36 3.15
150r2 150 394 0.09 3.74 3.54 5.25 0.18 4.65 3.15
150r3 150 407 0.12 2.57 3.45 5.43 0.018 4.29 2.92

200r1 200 538 0.19 2.54 3.31 5.38 0.01 6.68 2.66
200r2 200 561 0.16 2.57 3.58 5.61 0.014 5.50 3.26
200r3 200 548 0.088 2.80 3.52 5.48 0.014 7.78 2.79

250r1 250 698 0.20 2.52 2.87 5.58 0.011 6.22 3.22
250r2 250 687 0.16 2.59 3.57 5.50 0.011 5.19 3.17
250r3 250 693 0.18 2.54 3.56 5.54 0.011 4.30 3.39

Table 7: Properties of underlying interaction graphs of intercellular networks.

Name Properties

# Nodes # Edges C d γ ⟨k⟩ δ γin γout

15r1 15 24 0.066 2.57 15.32 3.2 0.11 13.33 6.05
15r2 15 27 0.15 2.12 11.73 3.6 0.13 4.45 2.35
15r3 15 25 0.13 2.21 5.27 3.33 0.12 6.32 8.40

30r1 30 42 0.0 3.22 12.10 2.8 0.048 11.92 8.53
30r2 30 52 0.050 2.74 8.79 3.47 0.060 14.90 8.37
30r3 30 106 0.12 2.59 19.01 7.07 12.18 5.23 5.59

50r1 50 122 0.041 2.59 27.89 4.88 0.050 10.54 6.20
50r2 50 136 0.045 2.50 11.00 5.44 0.056 39.39 8.59
50r3 50 110 0.062 2.73 22.02 4.4 0.045 13.92 41.33

100r1 100 511 0.057 2.99 9.97 10.22 0.052 25.92 7.46
100r2 100 500 0.049 2.25 8.89 10.0 0.051 9.92 13.84
100r3 100 464 0.050 2.31 10.73 9.28 0.047 16.17 22.80

150r1 150 1,173 0.052 2.08 10.90 15.64 0.052 49.92 7.30
150r2 150 1,103 0.049 2.72 7.65 14.71 0.049 6.82 9.19
150r3 150 1,117 0.048 2.69 12.75 14.89 0.050 20.21 8.80

200r1 200 2,023 0.052 2.54 18.64 20.23 0.051 7.19 7.68
200r2 200 1,924 0.048 2.58 23.10 19.24 0.048 14.98 10.42
200r3 200 2,004 0.052 2.55 21.82 20.04 0.050 10.32 5.11

250r1 250 3,121 0.049 2.46 9.03 24.97 0.050 10.09 13.40
250r2 250 3,144 0.050 2.46 18.56 25.15 0.051 10.79 8.13
250r3 250 3,101 0.050 2.47 8.19 24.81 0.050 39.61 7.07
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Table 8: Properties of underlying interaction graphs of landscape networks.

Name Properties

# Nodes # Edges C d γ ⟨k⟩ δ

15r1 15 46 0.72 1.71 4.72 6.0 0.44
15r2 15 61 0.85 1.42 5.60 8.13 0.58
15r3 15 52 0.78 1.54 5.28 6.93 0.50

30r1 30 103 0.69 2.27 4.95 6.8 0.24
30r2 30 144 0.72 1.83 28.31 9.6 0.33
30r3 30 136 0.76 1.79 4.57 9.07 0.31

50r1 50 254 0.71 2.12 4.01 10.16 0.21
50r2 50 251 0.71 2.29 5.10 10.04 0.20
50r3 50 222 0.74 2.21 5.96 8.88 0.18

100r1 100 542 0.70 3.03 4.52 10.82 0.11
100r2 100 453 0.68 3.39 4.03 9.06 0.092
100r3 100 423 0.72 3.74 8.02 8.46 0.085

150r1 150 784 0.67 3.71 5.23 10.43 0.070
150r2 150 824 0.69 3.53 5.06 10.99 0.074
150r3 150 806 0.67 3.41 5.80 10.75 0.072

200r1 200 1,162 0.71 4.04 6.04 11.61 0.058
200r2 200 1,025 0.68 4.22 4.17 10.24 0.052
200r3 200 1,019 0.69 4.33 5.23 10.19 0.051

250r1 250 1,492 0.67 4.03 3.74 11.92 0.048
250r2 250 1,217 0.66 4.69 5.62 9.73 0.039
250r3 250 1,409 0.67 4.59 4.80 11.26 0.045

Table 9: Properties of underlying interaction graphs of man-made organic reaction networks.

Name Properties

# Nodes # Edges C d γ ⟨k⟩ δ γin γout

15r1 15 15 0.067 1.86 4.73 2.0 0.071 - 2.17
15r2 15 15 0.045 1.96 4.44 2.0 0.071 - 1.94
15r3 15 15 0.044 1.96 4.44 2.0 0.070 - 1.94

30r1 30 30 0.002 2.43 5.36 2.0 0.034 - 2.27
30r2 30 30 0.0028 2.28 5.62 2.0 0.034 - 2.59
30r3 30 30 0.017 2.22 6.08 2.0 0.034 - 1.60

50r1 50 50 0.0035 2.29 7.92 2.0 0.020 - 1.65
50r2 50 50 0.00037 2.50 6.99 2.0 0.020 - 2.58
50r3 50 50 0.0018 2.36 7.60 2.0 0.020 - 1.77

100r1 100 100 9.37 2.40 11.26 2.0 0.010 - 2.57
100r2 100 100 7.29 2.48 10.96 2.0 0.010 - 2.35
100r3 100 100 0.00026 2.36 11.71 2.0 0.010 - 1.80

150r1 150 150 5.36 2.63 12.68 2.0 0.0067 - 1.74
150r2 150 150 2.81 2.71 11.47 2.0 0.0067 - 2.14
150r3 150 150 0.00016 2.58 11.52 2.0 0.0067 - 1.58

200r1 200 200 3.59e-5 2.46 15.75 2.0 0.0050 - 1.97
200r2 200 200 0.0025 2.30 14.31 2.0 0.0050 - 1.66
200r3 200 200 2.44e-5 2.43 13.67 2.0 0.0050 - 1.63

250r1 250 250 7.24e-5 3.00 9.33 2.0 0.0040 - 1.75
250r2 250 250 8.52e-6 2.58 12.95 2.0 0.0040 - 1.88
250r3 250 250 2.95e-6 2.89 10.30 2.0 0.0040 - 1.79
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Table 10: Properties of underlying interaction graphs of reaction networks inside living organisms.

Name Properties

# Nodes # Edges C d γ ⟨k⟩ δ γin γout

15r1 15 16 0.049 2.21 3.47 2.13 0.076 22.64 3.01
15r2 15 15 0.0071 2.30 3.81 2.0 0.071 - 5.77
15r3 15 15 0.037 2.11 4.19 2.0 0.071 - 1.81

30r1 30 30 0.0073 2.15 6.06 2.0 0.034 - 1.94
30r2 30 30 0.0032 2.36 5.52 2.0 0.034 - 2.04
30r3 30 30 0.0021 2.39 5.41 2.0 0.034 - 2.33

50r1 50 50 0.00058 2.45 7.16 2.0 0.020 71.69 2.22
50r2 50 50 0.010 2.28 8.25 2.0 0.020 - 2.78
50r3 50 50 0.00056 2.57 6.00 2.0 0.020 35.62 2.66

100r1 100 102 0.0117 2.53 8.49 2.04 0.010 36.35 3.47
100r2 100 100 0.00013 2.35 11.50 2.0 0.010 - 2.39
100r3 100 100 0.00012 2.51 10.47 2.0 0.010 143.83 1.41

150r1 150 150 3.57e-5 2.56 12.44 2.0 0.0067 107.76 1.43
150r2 150 151 0.0039 2.51 13.42 2.01 0.0068 108.48 1.53
150r3 150 152 0.0067 2.75 9.22 2.03 0.0068 30.88 5.21

200r1 200 201 0.0025 2.75 12.70 2.01 0.0051 72.05 2.92
200r2 200 202 1.57e-5 2.99 13.04 2.02 0.0051 96.70 2.57
200r3 200 202 0.0050 2.45 12.32 2.02 0.0051 41.19 1.63

250r1 250 254 0.0080 2.63 15.92 2.03 0.0041 72.85 19.98
250r2 250 251 0.0020 2.58 17.02 2.01 0.0040 120.26 2.42
250r3 250 250 9.37e-6 2.55 18.98 2.0 0.0040 360.23 1.39

Table 11: Properties of underlying interaction graphs of social networks.

Name Properties

# Nodes # Edges C d γ ⟨k⟩ δ γin γout

15r1 15 28 0.14 3.14 14.44 3.73 0.13 14.56 14.56
15r2 15 28 0.15 3.49 11.08 3.73 0.13 10.10 2.98
15r3 15 27 0.18 4.17 6.89 3.6 0.13 3.52 3.09

30r1 30 107 0.13 2.68 7.52 7.13 0.12 4.30 3.97
30r2 30 106 0.14 2.68 14.16 7.07 0.12 16.69 18.35
30r3 30 116 0.14 2.50 6.44 7.73 0.13 70.79 33.44

50r1 50 249 0.13 2.62 1.89 9.96 0.10 5.53 4.15
50r2 50 269 0.14 2.49 4.92 10.76 0.11 5.17 9.11
50r3 50 294 0.13 2.36 7.58 11.76 0.12 11.28 12.44

100r1 100 1,260 0.13 2.05 9.86 25.2 0.13 7.73 117.97
100r2 100 1,273 0.13 2.05 17.86 25.46 0.13 14.01 7.19
100r3 100 1,236 0.13 2.06 12.84 24.72 0.12 8.94 10.31

150r1 150 2,133 0.09 2.14 13.05 28.44 0.095 8.31 22.29
150r2 150 2,136 0.097 2.13 12.03 28.48 0.096 25.24 15.80
150r3 150 2,148 0.094 2.13 12.35 28.64 0.096 24.48 16.70

200r1 200 3,788 0.096 2.06 20.18 37.88 0.096 6.71 10.94
200r2 200 3,803 0.094 2.05 10.99 38.03 0.096 20.36 18.15
200r3 200 3,793 0.094 2.06 17.29 37.93 0.095 11.07 23.29

250r1 250 5,921 0.097 2.00 24.09 47.37 0.095 17.50 16.24
250r2 250 5,937 0.095 2.00 23.11 47.50 0.095 28.61 13.97
250r3 250 5,942 0.096 2.00 17.19 47.54 0.095 11.40 12.24
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Table 12: Properties of underlying interaction graphs of vascular networks.

Name Properties

# Nodes # Edges C d γ ⟨k⟩ δ γin γout

15r1 15 14 0.0 3.2 3.43 1.87 0.067 - 3.34
15r2 15 14 0.0 3.28 3.28 1.87 0.067 - 4.64
15r3 15 14 0.0 3.56 4.47 1.87 0.067 - 3.52

30r1 30 29 0.0 6.58 5.08 1.93 0.033 - 3.75
30r2 30 29 0.0 7.37 6.39 1.93 0.033 - 4.61
30r3 30 29 0.0 5.40 3.83 1.93 0.033 - 2.99

50r1 50 49 0.0 11.09 5.94 1.96 0.02 - 4.31
50r2 50 49 0.0 7.90 3.15 1.96 0.02 - 3.82
50r3 50 49 0.0 11.04 5.76 1.96 0.02 - 4.15

100r1 100 99 0.0 18.32 4.65 1.98 0.01 - 3.77
100r2 100 99 0.0 15.84 5.02 1.98 0.01 - 4.28
100r3 100 99 0.0 17.33 4.73 1.98 0.01 - 4.25

150r1 150 149 0.0 25.47 5.45 1.99 0.0067 - 4.45
150r2 150 149 0.0 24.43 4.45 1.99 0.0067 - 3.19
150r3 150 149 0.0 25.22 4.46 1.99 0.0067 - 3.97

200r1 200 199 0.0 29.01 4.66 1.99 0.005 - 4.21
200r2 200 199 0.0 29.51 4.18 1.99 0.005 - 3.44
200r3 200 199 0.0 36.12 4.92 1.99 0.005 - 4.23

250r1 250 249 0.0 40.51 5.11 1.992 0.004 - 4.24
250r2 250 249 0.0 40.60 4.56 1.992 0.004 - 3.37
250r3 250 249 0.0 41.30 3.91 1.992 0.004 - 3.41

Table 13: The scripts for the graph generation.

Graph Script

BN generate brain networks hierarchical.py
CRNA generate chemical reactions in atmosphere.py
FW generate food webs.py
GCN generate gene coexpression networks.py
GRN /network generation algo/src/test.py
IN generate intercellular networks.py
LN generate landscape networks.py
MMO generate man made organic reaction networks.py
RNLO generate reaction networks inside living organism.py
SN generate social networks latest.py
VN generate vascular networks.py

Table 14: The scripts for the simulation of interacting dynamical systems.

Simulation Script

Springs & NetSims generate trajectories.py
Springs & NetSims w. Noise generate noisy trajectories.py

values of x′
i(t) and xi(t) form the 4D node features at each time step. The initial locations are sam-

pled from a Gaussian distribution N (0, 0.5), and the initial velocities, also 2D vectors, are randomly
generated with a norm of 0.5. Starting from these initial locations and velocities in two dimensions,
we simulate the trajectories by solving Newton’s equations of motion. The simulation is performed
using leapfrog integration with a minor time step size of 0.001 seconds, and the trajectories are
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sampled every 100 minor time steps. Consequently, the feature representation of each node at every
minor time step in this case is a 4D vector comprising 2D locations and 2D velocities.

We implement the simulation in such a way that the next value of a feature of each particle depends
on the current value of the feature and the interactions with other particles. This design allows us
to accommodate theoretically asymmetric interaction graphs, as the spring force is disentangled for
each individual particle. Given a set of initial locations and velocities, we generate trajectories for
the current interacting dynamical system, encompassing all feature vectors of the particles within the
specified time period. Specifically, we generate trajectories comprising 49 time points (obtained with
integration over 4,900 minor time steps) for training and validation purposes, while trajectories with
100 time steps are generated for testing to align with the requirements in (Kipf et al., 2018; Wang &
Pang, 2022). For each interaction graph, we generate a total of 8,000 trajectories for training, 2,000
trajectories for validation, and 2,000 trajectories for testing.

NetSims simulation. The NetSim dataset, described in (Smith et al., 2011), simulates blood-
oxygen-level-dependent (BOLD) imaging data across different regions within the human brain. It
has been extensively utilized in structural inference experiments as documented in (Löwe et al.,
2022; Wang & Pang, 2022). In (Löwe et al., 2022), NetSims were initially adopted as the dataset
for structural inference experiments. In this simulation, each node corresponds to a spatial region
of interest derived from brain atlases or functional tasks. The node feature represents the 1D neural
signal at each time step. To enhance the diversity and complexity of the data, we generate additional
NetSims following the procedure outlined in (Smith et al., 2011). The dynamics of the NetSims are
modeled using dynamic causal modeling (Friston et al., 2003), and follow a first-order ODE model
for the 1D BOLD signal of each node i at time step t:

x′
i(t) = σ ·

∑
j∈Ni

xj(t)− σ · xi(t) + C · ui, (2)

where σ governs the within-node temporal smoothing and neural lag between nodes, and is set to
0.1 based on (Smith et al., 2011). C represents weights controlling the interaction of external inputs
with the network and is set to zero here to minimize noise from external inputs ui (Smith et al.,
2011). The off-diagonal terms in A determine the interactions between nodes, while the diagonal
elements are set to −1 to model within-node temporal decay. The 1D node features at each time
step are formed using the sampled xi(t).

The initial features are sampled from a Gaussian distribution N (0, 0.5). For each initial feature, we
generate a trajectory. The trajectory collection settings used in this study are consistent with those
employed in the “Springs” simulation.

B.3 BRIDGING THE GAP BETWEEN SYNTHETIC DATA AND REAL DATA

All the data for benchmarking are synthetic with some real statistics being components. However,
great difficulties lie there to challenge us from collecting and sampling reliable real-world datasets
for structural inference. Yet we carefully designed the benchmarking pipeline to encounter this
challenge:

• Challenges with Real Datasets: We acknowledge that real datasets offer invaluable insights into
real-world scenarios. However, the main challenge lies in the unavailability of verified ground
truth structures. This is particularly pronounced in complex systems, where interactions are often
not directly observable or are influenced by numerous unaccounted variables.

• Synthetic Data with Realistic Components: Given these challenges, our study primarily uses
synthetic datasets that incorporate real statistical components. This approach allows us to simulate
real-world dynamics while maintaining control over the ground truth for evaluation purposes. Our
synthetic datasets are designed to mimic real-world characteristics as closely as possible, including
the incorporation of noise, variability, and complex interaction patterns.

• Bridging the Gap with Hybrid Approaches: To make our datasets more realistic, we are ex-
ploring hybrid approaches that combine both synthetic and real-world elements. For instance, we
can generate synthetic data based on statistical properties derived from real-world datasets, for ex-
ample, from single-cell data. This method can help in approximating real-world conditions while
retaining the clarity of a known ground truth structure.
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• Future Research Directions: We believe that an interesting direction for future research would
be to develop methodologies for inferring ground truth structures from real datasets. This could
involve advanced machine learning techniques or collaborative efforts across disciplines to piece
together known information about system interactions.

C FURTHER IMPLEMENTATION DETAILS OF STRUCTURAL INFERENCE
METHODS

In this section, we demonstrate the implementation details of the structural inference methods in this
work. For every method, we show the implementation, computational resources, and if possible, the
choice of hyperparameters.

The TIGRESS method, information-theory-based methods, and tree-based methods assumed an in-
put of normalized 1D gene expression level, so we performed an extra hyperparameter search of
the normalization method on top of the original method implementation. Among “NetSims” and
“Springs” simulations, only the former gives 1D feature, so all methods are tested only on “Net-
Sims” dataset. For each trajectory, we denote vti as the scalar neural signal for node i at time t. The
normalization methods included:

• None: no normalization,
• Symlog: symmetrically shifted logarithm transform with equation f(vti) = sign(vti)log(1 +
|vti |),

• Unitary: L2 normalization on the node dimension, and
• Z-score: standardization using standard deviation on the node dimension.

C.1 PPCOR

Implementation. We use the official implementation of ppcor from the R package ppcor (Kim,
2015) with a customized wrapper. Our wrapper will parse multiple arguments to select a set
of targeted trajectories for inference, transform trajectories into a suitable format, feed each tra-
jectory into the ppcor algorithm, and store the output into designated directories. Our imple-
mentation can be found at /src/models/ppcor in the provided Anonymous GitHub repos-
itory.The method is implemented by ppcor (Kim, 2015) in R with the help of NumPy (Har-
ris et al., 2020) Python package to store generated trajectories, reticulate from https:
//github.com/rstudio/reticulate to load Python variables into the R environment,
stringr from https://stringr.tidyverse.org for string operation, and optparse
from https://github.com/trevorld/r-optparse to produce Python-style argument
parser.

Computational resources. We infer networks on Amazon EC2 C7g.2xlarge instances equipped
with 64 vCPUs powered by AWS Graviton3 processors and 128 GB RAM. Each inference took one
vCPU to run.

Hyperparameters. The hyperparameters that are being considered during implementation are (1)
the normalization method, (2) the correlation statistics, and (3) the function to compute partial or
semi-partial correlation. The corresponding search spaces are:

• the normalization method: None, Symlog, Unitary, Z-score,

• the correlation statistics: pearson, spearman,

• the function to compute partial or semi-partial correlation: spcor, pcor.

We search for the values of these hyperparameters on the NetSims simulation trajectories of CRNA
graph of 15 nodes, and we find the best hyperparameters to be: (1) the normalization method: None,
(2) the MI estimation method: spearman, and (3) the function to compute partial or semi-partial
correlation: pcor. Due to computational requirements, we do not perform the hyperparameter
search on every trajectory but use this set of choices for all of the experiments. We argue that there
might be other possible values, but the effect on the structural inference results is minor.
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C.2 TIGRESS

Implementation. We use the official implementation of TIGRESS by the author at https:
//github.com/jpvert/tigress with a customized wrapper. Our wrapper will parse mul-
tiple arguments to select a set of targeted trajectories for inference, transform trajectories into
a suitable format, feed each trajectory into the TIGRESS algorithm, and store the output into
designated directories. Our implementation can be found at /src/models/TIGRESS in the
provided Anonymous GitHub repository. The method is implemented in R with the help of
NumPy (Harris et al., 2020) Python package to store generated trajectories, reticulate from
https://github.com/rstudio/reticulate to load Python variables into the R en-
vironment, stringr from https://stringr.tidyverse.org for string operation, and
optparse from https://github.com/trevorld/r-optparse to produce Python-style
argument parser.

Computational resources. We infer networks on our clusters with 128 AMD Epyc ROME 7H12
@ 2.6 GHz CPUs and 256 GB RAM. Each inference took the whole cluster to run.

Hyperparameters. The hyperparameters that are being considered during implementation are (1)
the normalization method, (2) the noise level in stability selection, (3) the number of steps in least
angle regression (LARS), (4) the number of random subsampling in stability selection, (5) the scor-
ing method in stability selection, and (6) the Boolean to perform node-level standardization. The
corresponding search spaces are:

• the normalization method: None, Symlog, Unitary, Z-score,
• the noise level in stability selection: 0.1, 0.2, 0.5,
• the number of steps in LARS: 3, 5, 8, 10,
• the number of random subsampling in stability selection: 50, 100, 200, 500,
• the scoring method in stability selection: area, max,
• the Boolean to perform node-level standardization: True, False.

We search for the values of these hyperparameters on the NetSims simulation trajectories of CRNA
graph of 15 nodes, and we find the best hyperparameters to be: (1) the normalization method:
Symlog, (2) the noise level in stability selection: 0.5, (3) the number of steps in LARS: 5, (4)
the number of random subsampling in stability selection: 500, (5) the scoring method in stability
selection: area, and (6) the Boolean to perform node-level standardization: True. Due to compu-
tational requirements, we do not perform the hyperparameter search on every trajectory but use this
set of choices for all of the experiments. We argue that there might be other possible values, but the
effect on the structural inference results is minor.

C.3 ARACNE

Implementation. We use the implementation of ARACNe by the Bioconductor (Huber et al., 2015)
package minet (Meyer et al., 2008) with a customized wrapper. Our wrapper will parse multiple
arguments to select a set of targeted trajectories for inference, transform trajectories into a suit-
able format, feed each trajectory into the ARACNe algorithm, and store the output into designated
directories. Our implementation can be found at /src/models/ARACNE in the provided Anony-
mous GitHub repository.The method is implemented by minet (Meyer et al., 2008) in R with the
help of NumPy (Harris et al., 2020) Python package to store generated trajectories, reticulate
from https://github.com/rstudio/reticulate to load Python variables into the R
environment, stringr from https://stringr.tidyverse.org for string operation, and
optparse from https://github.com/trevorld/r-optparse to produce Python-style
argument parser.

Computational resources. We infer networks on Amazon EC2 C7g.2xlarge instances equipped
with 64 vCPUs powered by AWS Graviton3 processors and 128 GB RAM. Each inference took one
vCPU to run.

Hyperparameters. The hyperparameters that are being considered during implementation are (1)
the normalization method, (2) the mutual information (MI) estimation method, (3) the discretization
method, and (4) the MI threshold for edge removal. The corresponding search spaces are:
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• the normalization method: None, Symlog, Unitary, Z-score,
• the MI estimation method: mi.empirical, mi.mm, mi.shrink, mi.sg, pearson,
spearman,

• the discretization method: equalfreq, equalwidth, globalequalwidth,
• the MI threshold for edge removal: 0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10.

We search for the values of these hyperparameters on the NetSims simulation trajectories of CRNA
graph of 15 nodes, and we find the best hyperparameters to be: (1) the normalization method:
Symlog, (2) the MI estimation method: spearman, (3) the discretization method: equalfreq,
and (4) the MI threshold for edge removal: 0.1. Due to computational requirements, we do not
perform the hyperparameter search on every trajectory but use this set of choices for all of the
experiments. We argue that there might be other possible values, but the effect on the structural
inference results is minor.

C.4 CLR

Implementation. We use the implementation of CLR by the Bioconductor (Huber et al., 2015)
package minet (Meyer et al., 2008) with a customized wrapper. Our wrapper will parse mul-
tiple arguments to select a set of targeted trajectories for inference, transform trajectories into a
suitable format, feed each trajectory into the CLR algorithm, and store the output into designated
directories. Our implementation can be found at /src/models/CLR in the provided Anony-
mous GitHub repository. The method is implemented by minet (Meyer et al., 2008) in R with the
help of NumPy (Harris et al., 2020) Python package to store generated trajectories, reticulate
from https://github.com/rstudio/reticulate to load Python variables into the R
environment, stringr from https://stringr.tidyverse.org for string operation, and
optparse from https://github.com/trevorld/r-optparse to produce Python-style
argument parser.

Computational resources. We infer networks on Amazon EC2 C7g.2xlarge instances equipped
with 64 vCPUs powered by AWS Graviton3 processors and 128 GB RAM. Each inference took one
vCPU to run.

Hyperparameters. The hyperparameters that are being considered during implementation are (1)
the normalization method, (2) the MI estimation method, (3) the discretization method, and (4) the
Boolean to skip the diagonal entries. The corresponding search spaces are:

• the normalization method: None, Symlog, Unitary, Z-score,
• the MI estimation method: mi.empirical, mi.mm, mi.shrink, mi.sg, pearson,
spearman,

• the discretization method: equalfreq, equalwidth, globalequalwidth,
• the Boolean to skip the diagonal entries: True, False.

We search for the values of these hyperparameters on the NetSims simulation trajectories of CRNA
graph of 15 nodes, and we find the best hyperparameters to be: (1) the normalization method:
Symlog, (2) the MI estimation method: spearman, (3) the discretization method: equalfreq,
and (4) the Boolean to skip the diagonal entries: False. Due to computational requirements, we
do not perform the hyperparameter search on every trajectory but use this set of choices for all of
the experiments. We argue that there might be other possible values, but the effect on the structural
inference results is minor.

C.5 PIDC

Implementation. We use the official implementation of PIDC by the author at https://
github.com/Tchanders/NetworkInference.jl with a customized wrapper. Our wrap-
per will parse multiple arguments to select a set of targeted trajectories for inference, transform
trajectories into a suitable format, feed each trajectory into the PIDC algorithm, and store the out-
put into designated directories. Our implementation can be found at /src/models/PIDC in
the provided Anonymous GitHub repository.The method is implemented in Julia (Bezanson et al.,
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2017) with the help of NumPy (Harris et al., 2020) Python package to store generated trajec-
tories, ArgParse.jl from https://github.com/carlobaldassi/ArgParse.jl to
parse command line arguments, CSV.jl from https://github.com/JuliaData/CSV.jl
to save and load .csv files, DataFrames.jl from https://github.com/JuliaData/
DataFrames.jl to manipulate data array, and NPZ.jl from https://github.com/fhs/
NPZ.jl to load .npy into the Julia environment.

Computational resources. We infer networks on our clusters with 128 AMD Epyc ROME 7H12
@ 2.6 GHz CPUs and 256 GB RAM. Each inference took one CPU to run.

Hyperparameters. The hyperparameters that are being considered during implementation are (1)
the normalization method, (2) the discretizing method, (3) the probability distribution estimator, and
(4) the number of bins in discretization. The corresponding search spaces are:

• the normalization method: None, Symlog, Unitary, Z-score,

• the discretizing method: uniform width, uniform count,

• the probability distribution estimator: maximum likelihood, miller madow,
dirichlet, shrinkage,

• the number of bins in discretization: 4, 5, 10, 20, 100, 200, 500, 1000,
√
#Nodes.

We search for the values of these hyperparameters on the NetSims simulation trajectories of CRNA
graph of 15 nodes, and we find the best hyperparameters to be: (1) the normalization method:
Symlog, (2) the discretizing method: uniform count, (3) the probability distribution estimator:
maximum likelihood, and (4) the number of bins in discretization:

√
#Nodes. Due to com-

putational requirements, we do not perform the hyperparameter search on every trajectory but use
this set of choices for all of the experiments. We argue that there might be other possible values, but
the effect on the structural inference results is minor.

C.6 SCRIBE

Implementation. We optimize the official implementation of Scribe by the author at https:
//github.com/aristoteleo/Scribe-py with a customized wrapper. Our wrapper will
parse multiple arguments to select a set of targeted trajectories for inference, transform trajec-
tories into a suitable format, feed each trajectory into the Scribe algorithm, and store the out-
put into designated directories. Our implementation has customized causal network.py and
information estimators.py scripts so as to modify the hyperparameters directly from
command line arguments. We also have optimized the parallel support and computation effi-
ciency and kept minimal functionality for benchmarking purposes, at the same time maintain-
ing its general mechanism. Our implementation can be found at /src/models/scribe in
the provided Anonymous GitHub repository.The method is implemented in Python with the help
of NumPy (Harris et al., 2020) package to store generated trajectories and tqdm from https:
//github.com/tqdm/tqdm to create progress bars.

Computational resources. We infer networks on our clusters with 128 AMD Epyc ROME 7H12
@ 2.6 GHz CPUs and 256 GB RAM. Each inference took the whole cluster to run.

Hyperparameters. The hyperparameters that are being considered during implementation are (1)
the normalization method, (2) the MI estimator, (3) the number of nearest neighbors used in entropy
estimation, (4) the number of conditional variables under consideration in MI estimation (only valid
when the MI estimator is crdi or ucrdi), and (5) the Boolean for applying differentiation. The
corresponding search spaces are:

• the normalization method: None, Symlog, Unitary, Z-score,

• the MI estimator: rdi, urdi, crdi, ucrdi,

• the number of nearest neighbors used in entropy estimation: 2, 3, 4, 5,

• the number of conditional variables under consideration in MI estimation: 1, 2, 3, 4, 5,

• the Boolean for applying differentiation: True, False.
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We search for the values of these hyperparameters on the NetSims simulation trajectories of CRNA
graph of 15 nodes, and we find the best hyperparameters to be: (1) the normalization method:
Unitary, (2) the MI estimator: urdi, (3) the number of nearest neighbors used in entropy esti-
mation: 2, and (4) the Boolean for applying differentiation: False. Due to computational require-
ments, we do not perform the hyperparameter search on every trajectory but use this set of choices
for all of the experiments. We argue that there might be other possible values, but the effect on the
structural inference results is minor.

C.7 DYNGENIE3

Implementation. We optimize the official Python implementation of dynGENIE3 by the author at
https://github.com/vahuynh/dynGENIE3with a customized wrapper. Our wrapper will
parse multiple arguments to select a set of targeted trajectories for inference, transform trajectories
into a suitable format, feed each trajectory into the dynGENIE3 algorithm, and store the output into
designated directories. Following the principle of maintaining dynGENIE’s general mechanism, we
have modified the dynGENIE3.py script so as to tune the hyperparameters directly from command
line arguments, increase computation efficiency on big datasets, enable calculation of self-influence,
and retain minimal functionality for benchmarking purposes. Our implementation can be found
at /src/models/dynGENIE3 in the provided Anonymous GitHub repository.The method is
implemented in Python with the help of NumPy (Harris et al., 2020) package to store generated
trajectories.

Computational resources. We infer networks on our clusters with 128 AMD Epyc ROME 7H12
@ 2.6 GHz CPUs and 256 GB RAM. Each inference took the whole cluster to run.

Hyperparameters. The hyperparameters that are being considered during implementation are (1)
the normalization method, (2) the number of trees in random forest regression, and (3) the maximum
depth allowed in random forest regression. The corresponding search spaces are:

• the normalization method: None, Symlog, Unitary, Z-score,

• the number of trees in random forest regression: 100, 200, 300, 400, 500, 600, 700, 800,
900, 1000,

• the maximum depth allowed in random forest regression: 10, 20, 30, 40, 50, 60, 70, 80, 90,
100, unlimited.

We search for the values of these hyperparameters on the NetSims simulation trajectories of CRNA
graph of 15 nodes, and we find the best hyperparameters to be: (1) the normalization method:
Z-score, (2) the number of trees in random forest regression: 700, and (3) the maximum depth
allowed in random forest regression: 90. Due to computational requirements, we do not perform the
hyperparameter search on every trajectory but use this set of choices for all of the experiments. We
argue that there might be other possible values, but the effect on the structural inference results is
minor.

C.8 XGBGRN

Implementation. We use the official implementation of XGBGRN by the author at https:
//github.com/lab319/GRNs_nonlinear_ODEs with a customized wrapper. Our wrap-
per will parse multiple arguments to select a set of targeted trajectories for inference, trans-
form trajectories into a suitable format, feed each trajectory into the XGBGRN algorithm,
and store the output into designated directories. Our implementation can be found at
/src/models/GRN nonlinear ODEs in the provided Anonymous GitHub repository.The
method is implemented in Python with the help of NumPy (Harris et al., 2020) package to store
generated trajectories.

Computational resources. We infer networks on our clusters with 128 AMD Epyc ROME 7H12
@ 2.6 GHz CPUs and 256 GB RAM. Each inference took the whole cluster to run.

Hyperparameters. The hyperparameters that are being considered during implementation are (1)
the normalization method, (2) the number of estimators, (3) the maximum depth allowed, (4) the
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subsample ratio during training, (5) the learning rate, and (6) the L1 regularization strength on
weights. The corresponding search spaces are:

• the normalization method: None, Symlog, Unitary, Z-score,

• the number of estimators: 100, 200, 500, 1000,

• the maximum depth allowed: 3, 5, 6, 8, 10, unlimited,

• the subsample ratio during training: 0.6, 0.8, 1.0,

• the learning rate: 0.01, 0.02, 0.05, 0.1,

• the L1 regularization strength on weights: 0, 0.01, 0.02, 0.05.

We search for the values of these hyperparameters on the NetSims simulation trajectories of CRNA
graph of 15 nodes, and we find the best hyperparameters to be: (1) the normalization method:
Unitary, (2) the number of estimators: 100, (3) the maximum depth allowed: 3, (4) the subsample
ratio during training: 0.6, (5) the learning rate: 0.1, and (6) the L1 regularization strength on weights:
0.02. Due to computational requirements, we do not perform the hyperparameter search on every
trajectory but use this set of choices for all of the experiments. We argue that there might be other
possible values, but the effect on the structural inference results is minor.

C.9 NRI

Table 15: Batch sizes of the training of different methods in accordance with the number of nodes
in the trajectories.

Methods Number of Nodes

15 30 50 100

NRI 64 16 16 8
ACD 64 16 16 8
MPM 32 16 16 8
iSIDG 64 16 16 8

Implementation. We use the official implementation code by the author from https://
github.com/ethanfetaya/NRI with customized data loaders for our chosen datasets. We
choose the MLPEncoder and MLPDecoder as the blocks for VAE. We add our metric evaluation
in the “test” function, after the calculation of accuracy in the original code. Besides that, we add
multiple arguments to select the target trajectories for training, but these arguments do not affect
the general mechanism of NRI. Our implementation can be found at /src/models/NRI in the
provided Anonymous GitHub repository. The method is implemented with PyTorch (Paszke et al.,
2019) with the help of Scikit-Learn (Pedregosa et al., 2011) to calculate metrics. The AUROC values
are calculated between the ground truth adjacency matrix and the prob variable in the algorithm.

Computational resources. We train NRI with two different GPU cards depending on the number
of nodes in the trajectories. For the trajectories with less than 50 nodes, we train NRI on a single
NVIDIA Tesla V100 SXM2 16G GPU card, with 768 GB RAM, and with a single Xeon Gold 6132
@ 2.6GHz CPU. For the trajectories with equal or more than 50 nodes, we train NRI on a single
NVIDIA Tesla V100 SXM2 32G GPU card, with 768 GB RAM, and with a single Xeon Gold 6132
@ 2.6GHz CPU. We show the batch sizes for training NRI in Table 15. The learning rate we use is
identical to the default in NRI (Kipf et al., 2018), i.e., 0.0005.

Hyperparameters. The hyperparameters that are being considered during implementation are (1)
the number of units of the hidden layers in the encoder, (2) the number of units of the hidden layers
in the decoder, (3) the dropout rates in the encoder, and (4) the dropout rates in the decoder, while
the rest are set the same as the default. These hyperparameters can be set from the arguments of
arg parser. The corresponding search spaces are:

• the number of units of the hidden layers in the encoder: {128, 256, 512},

• the number of units of the hidden layers in the decoder: {128, 256, 512},
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• the dropout rates in the encoder: {0.0, 0.3, 0.5, 0.6, 0.7, 0.8},
• the dropout rates in the decoder: {0.0, 0.3, 0.5, 0.6, 0.7, 0.8}.

We search for the values of these hyperparameters based on 5 runs of NRI on the springs simulation
trajectories of CRNA graphs of 15 nodes, and we find the best hyperparameters to be: (1) the number
of units of the hidden layers in the encoder: 256, (2) the number of units of the hidden layers in the
decoder: 256, (3) the dropout rates in the encoder: 0.5, and (4) the dropout rates in the decoder:
0.0. Due to computational requirements, we do not perform the hyperparameter search on every
trajectory but use this set of choices for all of the experiments. We argue that there might be other
possible values, but the effect on the structural inference results is minor.

C.10 ACD

Implementation. We use the official implementation code by the author (https://github.
com/loeweX/AmortizedCausalDiscovery) with customized data loaders for our chosen
datasets. Same as default, we choose the MLPEncoder and MLPDecoder as the blocks for
ACD. We implement the metric-calculation pipeline in the forward pass and eval() func-
tion. Besides that, we add multiple arguments to select the target trajectories for training, but
these arguments do not affect the general mechanism of ACD. Our implementation can be found at
/src/models/ACD in the provided Anonymous GitHub repository.The method is implemented
with PyTorch (Paszke et al., 2019) with the help of Scikit-Learn (Pedregosa et al., 2011) to calcu-
late metrics. The AUROC values are calculated between the ground truth adjacency matrix and the
prob variable in the algorithm.

Computational resources. We train ACD with two different GPU cards depending on the number
of nodes in the trajectories. For the trajectories with less than 50 nodes, we train ACD on a single
NVIDIA Tesla V100 SXM2 16G GPU card, with 768 GB RAM, and with a single Xeon Gold 6132
@ 2.6GHz CPU. For the trajectories with equal or more than 50 nodes, we train ACD on a single
NVIDIA Tesla V100 SXM2 32G GPU card, with 768 GB RAM, and with a single Xeon Gold 6132
@ 2.6GHz CPU. We show the batch sizes for training ACD in Table 15. The learning rate we use is
identical to the default in ACD (Löwe et al., 2022), i.e., 0.0005.

Hyperparameters. The hyperparameters that are being considered during implementation are (1)
the number of units of the hidden layers in the encoder, (2) the number of units of the hidden layers
in the decoder, (3) the dropout rates in the encoder, and (4) the dropout rates in the decoder, while
the rest are set the same as the default. These hyperparameters can be set from the arguments of
arg parser. The corresponding search spaces are:

• the number of units of the hidden layers in the encoder: {128, 256, 512},
• the number of units of the hidden layers in the decoder: {128, 256, 512},
• the dropout rates in the encoder: {0.0, 0.3, 0.5, 0.6, 0.7, 0.8},
• the dropout rates in the decoder: {0.0, 0.3, 0.5, 0.6, 0.7, 0.8}.

We search for the values of these hyperparameters based on 5 runs of ACD on the springs simulation
trajectories of CRNA graphs of 15 nodes, and we find the best hyperparameters to be: (1) the number
of units of the hidden layers in the encoder: 256, (2) the number of units of the hidden layers in the
decoder: 256, (3) the dropout rates in the encoder: 0.5, and (4) the dropout rates in the decoder:
0.5. Due to computational requirements, we do not perform the hyperparameter search on every
trajectory but use this set of choices for all of the experiments. We argue that there might be other
possible values, but the effect on the structural inference results is minor.

C.11 MPM

Implementation. We use the official implementation code by the author at https://github.
com/hilbert9221/NRI-MPM with customized data loaders for our chosen datasets. Same as
default, we choose the RNNENC and RNNDEC as the blocks for MPM. We add our metric evaluation
for AUROC in the evaluate function of class XNRIDECIns in the original code. Besides that,
we add multiple arguments to select the target trajectories for training, but these arguments do not
affect the general mechanism of MPM. Our implementation can be found at /src/models/MPM
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in the provided Anonymous GitHub repository.The method is implemented with PyTorch (Paszke
et al., 2019) with the help of Scikit-Learn (Pedregosa et al., 2011) to calculate metrics. The AU-
ROC values are calculated between the ground truth adjacency matrix and the prob variable in
XNRIIns.test().

Computational resources. We train MPM with two different GPU cards depending on the number
of nodes in the trajectories. For the trajectories with less than 50 nodes, we train MPM on a single
NVIDIA Tesla V100 SXM2 16G GPU card, with 768 GB RAM, and with a single Xeon Gold 6132
@ 2.6GHz CPU. For the trajectories with equal or more than 50 nodes, we train MPM on a single
NVIDIA Tesla V100 SXM2 32G GPU card, with 768 GB RAM, and with a single Xeon Gold 6132
@ 2.6GHz CPU. We show the batch size for training MPM in Table 15. Because the number of
parameters in MPM is larger than those in other VAE-based methods, the batch-size of MPM for
graphs of 15 nodes is smaller than of other methods. The learning rate we use is identical to the
default in MPM (Chen et al., 2021), i.e., 0.0005.

Hyperparameters. The hyperparameters that are being considered during implementation are (1)
the number of units of the hidden layers in the encoder, (2) the number of units of the hidden layers
in the decoder, (3) the dropout rates in the encoder, and (4) the dropout rates in the decoder, while
the rest are set the same as the default. These hyperparameters can be set from the arguments of
config. The corresponding search spaces are:

• the number of units of the hidden layers in the encoder: {128, 256, 512},
• the number of units of the hidden layers in the decoder: {128, 256, 512},
• the dropout rates in the encoder: {0.0, 0.3, 0.5, 0.6, 0.7, 0.8},
• the dropout rates in the decoder: {0.0, 0.3, 0.5, 0.6, 0.7, 0.8}.

We search for the values of these hyperparameters based on 5 runs of MPM on the springs simulation
trajectories of CRNA graphs of 15 nodes, and we find the best hyperparameters to be: (1) the number
of units of the hidden layers in the encoder: 256, (2) the number of units of the hidden layers in the
decoder: 256, (3) the dropout rates in the encoder: 0.0, and (4) the dropout rates in the decoder:
0.0. Due to computational requirements, we do not perform the hyperparameter search on every
trajectory but use this set of choices for all of the experiments. We argue that there might be other
possible values, but the effect on the structural inference results is minor.

C.12 ISIDG

Implementation. We use the official implementation sent by the authors. Same as default, we
choose the GINEncoder and MLPDecoder as the blocks for iSIDG. The original code contains
evaluation pipelines to calculate AUROC values. Besides that, we add multiple arguments to select
the target trajectories for training, but these arguments do not affect the general mechanism of iSIDG.
Our implementation can be found at /src/models/iSIDG in the provided Anonymous GitHub
repository.The method is implemented with PyTorch (Paszke et al., 2019) with the help of Scikit-
Learn (Pedregosa et al., 2011) to calculate metrics. The AUROC values are calculated between the
ground truth adjacency matrix and the prob variable in the algorithm.

Computational resources. We train iSIDG with two different GPU cards depending on the number
of nodes in the trajectories. For the trajectories with less than 50 nodes, we train iSIDG on a single
NVIDIA Tesla V100 SXM2 16G GPU card, with 768 GB RAM, and with a single Xeon Gold 6132
@ 2.6GHz CPU. For the trajectories with equal or more than 50 nodes, we train iSIDG on a single
NVIDIA Tesla V100 SXM2 32G GPU card, with 768 GB RAM, and with a single Xeon Gold 6132
@ 2.6GHz CPU. We show the batch size for training iSIDG in Table 15. The learning rate we use is
identical to the default in iSIDG (Wang & Pang, 2022), i.e., 0.0005.

Hyperparameters. The hyperparameters that are being considered during implementation are (1)
the number of units of the hidden layers in the encoder, (2) the number of units of the hidden layers
in the decoder, (3) the dropout rates in the encoder, (4) the dropout rates in the decoder, (5) the
weight for KL-divergence in the loss, (6) the weight for smoothness in the loss, (7) the weight for
connectiveness in the loss, and (8) the weight for sparsity in the loss, while the rest are set the
same as the default. These hyperparameters can be set from the arguments of arg parser. The
corresponding search spaces are:
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• the number of units of the hidden layers in the encoder: {128, 256, 512},

• the number of units of the hidden layers in the decoder: {128, 256, 512},

• the dropout rates in the encoder: {0.0, 0.3, 0.5, 0.6, 0.7, 0.8},

• the dropout rates in the decoder: {0.0, 0.3, 0.5, 0.6, 0.7, 0.8},

• the weight for KL-divergence: {100, 200, 300, 400, 500},

• the weight for smoothness: {20, 30, 40, 50, 60, 70},

• the weight for connectiveness: {10, 20, 30, 40, 50},

• the weight for sparsity: {10, 20, 30, 40, 50}.

We search for the values of these hyperparameters based on 5 runs of iSIDG on the springs simula-
tion trajectories of CRNA graphs of 15 nodes, and we find the best hyperparameters to be: (1) the
number of units of the hidden layers in the encoder: 256, (2) the number of units of the hidden layers
in the decoder: 256, (3) the dropout rates in the encoder: 0.0, (4) the dropout rates in the decoder:
0.0, (5) the weight for KL-divergence in the loss: 200, (6) the weight for smoothness in the loss: 50,
(7) the weight for connectiveness in the loss: 20, and (8) the weight for sparsity in the loss: 20. Due
to computational requirements, we do not perform the hyperparameter search on every trajectory but
use this set of choices for all of the experiments. We argue that there might be other possible values,
but the effect on the structural inference results is minor.

D FURTHER BENCHMARKING RESULTS AND DETAILS

In this section, we present additional experimental results apart from those discussed in Section 5 in
the main content.

D.1 RESULTS ON ALL OF THE TRAJECTORIES WITHOUT NOISE

The average AUROC values with standard deviations of ten runs of all investigated structural infer-
ence methods are presented in Tables 16-26. The results are grouped into each table according to the
type of underlying interaction graphs. In each table, the nested column headings indicate the type
of simulation and system size used for trajectory generation, e.g., “Springs” and “n30” refer to the
trajectories of a system of 30 nodes that are generated by the “Springs” simulation.

Table 16: AUROC values (in %) of investigated structural inference methods on BN trajectories.

Method Springs NetSims

n15 n30 n50 n100 n15 n30 n50 n100

ppcor - - - - 96.12± 0.40 98.08± 0.22 98.83± 0.09 99.43± 0.01

TIGRESS - - - - 93.14± 0.67 96.44± 0.76 97.72± 0.26 98.72± 0.04

ARACNe - - - - 94.10± 0.66 96.45± 0.31 97.78± 0.19 98.83± 0.03

CLR - - - - 95.39± 0.48 96.72± 0.56 97.73± 0.19 98.84± 0.03

PIDC - - - - 88.45± 0.61 93.16± 0.69 94.28± 0.26 96.17± 0.12

Scribe - - - - 48.71± 1.37 62.41± 1.64 68.79± 2.53 69.36± 1.50

dynGENIE3 - - - - 90.70± 2.97 99.87± 0.01 99.89± 0.00 99.97± 0.00

XGBGRN - - - - 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

NRI 99.75± 0.00 99.57± 0.00 99.12± 0.01 97.54± 0.02 99.79± 0.00 98.73± 0.00 76.08± 0.01 75.26± 0.01

ACD 99.75± 0.00 99.60± 0.00 98.96± 0.01 99.57± 0.01 99.87± 0.00 98.95± 0.00 80.96± 0.01 79.88± 0.01

MPM 99.98± 0.00 99.95± 0.00 99.97± 0.01 98.69± 0.01 99.95± 0.00 99.56± 0.00 98.60± 0.01 79.92± 0.01

iSIDG 99.97± 0.00 99.94± 0.00 99.95± 0.01 98.92± 0.01 99.91± 0.00 99.62± 0.00 98.59± 0.01 76.41± 0.01

D.2 BENCHMARKING OVER ROBUSTNESS

In this section, we summarized the AUROC results of all methods on trajectories with noise gen-
erated with BN and NetSims simulations. The average AUROC values and corresponding standard
deviations of all investigated methods are presented in Tables 27 - 29. The results are grouped by
two levels of headings, i.e., the level of Gaussian noise, and the number of nodes in the graph.
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Table 17: AUROC values (in %) of investigated structural inference methods on CRNA trajectories.

Method Springs NetSims

n15 n30 n50 n100 n15 n30 n50 n100

ppcor - - - - 91.37± 1.10 90.35± 0.39 90.26± 0.54 89.16± 0.55

TIGRESS - - - - 84.40± 2.84 74.88± 0.64 69.41± 0.64 60.10± 0.46

ARACNe - - - - 78.11± 1.50 77.93± 1.00 77.55± 0.80 75.74± 0.89

CLR - - - - 86.01± 1.98 86.59± 1.06 84.24± 0.76 81.14± 1.24

PIDC - - - - 85.70± 3.35 75.38± 0.42 70.81± 1.99 82.74± 0.88

Scribe - - - - 55.19± 3.80 52.19± 0.22 50.78± 0.25 50.94± 0.74

dynGENIE3 - - - - 56.92± 6.83 50.32± 1.36 50.12± 0.84 50.35± 0.60

XGBGRN - - - - 99.60± 0.30 99.58± 0.13 97.40± 0.52 51.48± 0.22

NRI 83.91± 0.03 72.81± 0.05 70.73± 0.02 65.32± 0.02 49.47± 0.02 49.03± 0.03 50.06± 0.02 50.65± 0.02

ACD 85.90± 0.04 75.41± 0.01 69.97± 0.01 64.51± 0.02 48.26± 0.02 48.40± 0.03 51.42± 0.01 50.21± 0.02

MPM 85.75± 0.03 73.71± 0.01 68.25± 0.02 64.87± 0.02 49.72± 0.01 51.16± 0.04 50.06± 0.01 50.56± 0.02

iSIDG 87.01± 0.02 78.21± 0.05 70.72± 0.01 62.31± 0.02 51.04± 0.01 50.24± 0.04 51.26± 0.01 50.87± 0.02

Table 18: AUROC values (in %) of investigated structural inference methods on FW trajectories.

Method Springs NetSims

n15 n30 n50 n100 n15 n30 n50 n100

ppcor - - - - 78.21± 1.57 73.63± 1.75 72.76± 1.04 71.72± 0.15

TIGRESS - - - - 64.15± 1.55 58.00± 0.61 57.92± 0.84 53.97± 0.44

ARACNe - - - - 66.07± 4.26 65.40± 3.82 68.39± 0.24 53.18± 2.03

CLR - - - - 79.69± 3.33 74.20± 1.57 73.94± 1.01 44.50± 2.24

PIDC - - - - 78.82± 3.75 50.00± 0.00 50.00± 0.00 64.72± 1.39

Scribe - - - - 52.96± 2.66 54.25± 1.16 51.02± 1.59 51.73± 0.92

dynGENIE3 - - - - 47.98± 2.67 49.89± 1.29 49.40± 0.58 51.26± 1.07

XGBGRN - - - - 84.84± 1.90 73.00± 4.00 52.36± 0.35 49.11± 0.77

NRI 81.80± 0.01 76.75± 0.02 74.15± 0.01 71.57± 0.01 49.30± 0.03 48.50± 0.03 50.75± 0.02 47.56± 0.03

ACD 81.89± 0.01 76.38± 0.02 73.50± 0.01 71.12± 0.01 50.74± 0.06 50.19± 0.01 50.49± 0.03 49.82± 0.01

MPM 81.87± 0.02 75.97± 0.01 73.59± 0.01 71.52± 0.01 53.01± 0.08 50.66± 0.008 51.22± 0.03 53.01± 0.03

iSIDG 81.95± 0.01 76.75± 0.01 74.38± 0.02 72.21± 0.02 53.36± 0.03 50.78± 0.03 50.46± 0.03 51.07± 0.01

Table 19: AUROC values (in %) of investigated structural inference methods on GCN trajectories.

Method Springs NetSims

n15 n30 n50 n100 n15 n30 n50 n100

ppcor - - - - 96.72± 1.64 98.48± 0.35 98.55± 0.22 98.20± 0.42

TIGRESS - - - - 91.72± 4.28 87.90± 1.44 80.44± 1.78 78.12± 0.15

ARACNe - - - - 95.24± 0.00 91.15± 2.18 92.75± 1.94 94.04± 0.71

CLR - - - - 94.57± 2.14 97.48± 0.54 97.25± 0.76 96.40± 0.21

PIDC - - - - 92.75± 3.92 91.98± 0.90 92.01± 1.23 94.17± 1.25

Scribe - - - - 50.47± 2.55 49.31± 1.72 48.17± 2.80 49.51± 0.77

dynGENIE3 - - - - 46.70± 5.05 47.86± 4.04 50.46± 1.93 49.58± 1.37

XGBGRN - - - - 93.28± 2.47 96.71± 0.51 96.74± 0.62 94.95± 0.33

NRI 97.42± 0.00 93.38± 0.01 89.54± 0.02 83.78± 0.01 43.46± 0.02 52.74± 0.06 50.98± 0.02 50.34± 0.02

ACD 97.95± 0.01 92.62± 0.01 89.96± 0.03 90.73± 0.02 42.23± 0.03 46.12± 0.04 47.66± 0.03 49.87± 0.04

MPM 98.82± 0.01 92.68± 0.02 85.81± 0.03 84.98± 0.02 52.59± 0.03 66.65± 0.07 63.01± 0.07 53.07± 0.06

iSIDG 98.93± 0.01 93.16± 0.01 89.53± 0.01 87.60± 0.01 56.41± 0.06 52.07± 0.03 52.96± 0.03 50.78± 0.03

D.3 BENCHMARKING OVER EFFICIENCY

D.3.1 IMPLEMENTATION DETAILS

Investigating the potential influence of trajectory lengths on the performance of structural inference
methods is of significant interest. Additionally, such evaluations shed light on the data efficiency of
these methods by examining the number of time steps required to yield reliable results. To explore
these aspects, we conducted evaluations using trajectories generated by BN with varying numbers of
time steps (lengths). The selected time step counts include 10, 20, 30, 40, 49, with 49 representing
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Table 20: AUROC values (in %) of investigated structural inference methods on GRN trajectories.

Method Springs NetSims

n15 n30 n50 n100 n15 n30 n50 n100

ppcor - - - - 86.12± 0.98 88.72± 1.33 89.83± 0.89 89.61± 0.93

TIGRESS - - - - 79.09± 1.07 85.16± 2.26 85.85± 1.96 87.41± 2.73

ARACNe - - - - 70.46± 3.52 70.05± 2.10 70.73± 1.90 69.48± 2.10

CLR - - - - 78.25± 0.49 76.48± 1.91 75.67± 1.29 73.09± 2.10

PIDC - - - - 57.49± 3.59 63.51± 2.69 65.95± 1.41 63.85± 2.00

Scribe - - - - 44.89± 7.52 47.79± 3.50 45.50± 3.03 46.15± 2.41

dynGENIE3 - - - - 64.23± 4.75 59.69± 6.09 54.38± 3.18 58.53± 3.94

XGBGRN - - - - 80.08± 3.81 83.77± 0.49 84.51± 0.43 83.47± 1.31

NRI 91.65± 0.01 90.45± 0.01 90.35± 0.02 88.14± 0.02 78.08± 0.03 57.01± 0.05 55.71± 0.05 58.33± 0.04

ACD 91.10± 0.00 88.21± 0.01 86.78± 0.01 90.07± 0.03 80.18± 0.04 69.78± 0.07 62.65± 0.02 53.99± 0.03

MPM 94.02± 0.01 93.25± 0.02 84.60± 0.02 85.30± 0.02 70.46± 0.04 57.36± 0.03 72.25± 0.05 66.74± 0.03

iSIDG 92.91± 0.01 90.06± 0.01 90.15± 0.01 87.94± 0.04 71.11± 0.04 56.25± 0.02 57.15± 0.02 62.13± 0.02

Table 21: AUROC values (in %) of investigated structural inference methods on IN trajectories.

Method Springs NetSims

n15 n30 n50 n100 n15 n30 n50 n100

ppcor - - - - 94.14± 0.54 96.13± 1.65 97.64± 0.11 97.61± 0.01

TIGRESS - - - - 94.39± 1.34 91.79± 5.82 86.31± 1.42 78.25± 0.52

ARACNe - - - - 85.82± 3.90 87.77± 5.36 83.05± 2.84 86.14± 0.54

CLR - - - - 87.17± 0.26 92.45± 2.50 89.58± 3.93 92.82± 1.03

PIDC - - - - 81.90± 1.92 85.16± 1.59 84.84± 2.89 89.35± 0.48

Scribe - - - - 54.29± 4.17 50.81± 1.34 50.68± 3.52 50.76± 0.53

dynGENIE3 - - - - 58.18± 4.97 70.18± 15.42 68.08± 8.25 50.22± 1.78

XGBGRN - - - - 99.00± 0.85 99.69± 0.07 99.90± 0.04 99.91± 0.05

NRI 93.09± 0.01 90.54± 0.05 88.10± 0.03 82.51± 0.03 60.47± 0.04 61.78± 0.06 56.45± 0.04 53.96± 0.04

ACD 93.33± 0.02 89.12± 0.05 87.69± 0.04 81.37± 0.02 68.39± 0.06 55.11± 0.08 53.88± 0.02 53.04± 0.05

MPM 95.61± 0.02 89.59± 0.05 86.47± 0.03 83.45± 0.03 63.83± 0.03 64.70± 0.09 54.18± 0.03 54.37± 0.04

iSIDG 95.37± 0.02 90.72± 0.05 87.79± 0.02 84.00± 0.02 62.18± 0.03 61.91± 0.01 56.50± 0.02 53.85± 0.02

Table 22: AUROC values (in %) of investigated structural inference methods on LN trajectories.

Method Springs NetSims

n15 n30 n50 n100 n15 n30 n50 n100

ppcor - - - - 99.49± 0.56 95.04± 5.20 86.75± 1.66 79.32± 4.32

TIGRESS - - - - 84.15± 1.16 87.38± 3.32 92.22± 0.42 93.97± 1.96

ARACNe - - - - 92.33± 4.84 80.36± 5.67 71.17± 0.48 62.82± 8.36

CLR - - - - 97.35± 3.17 96.56± 4.87 91.04± 2.35 95.04± 0.53

PIDC - - - - 97.53± 1.01 82.03± 7.28 88.58± 1.69 94.18± 2.28

Scribe - - - - 54.22± 3.98 56.16± 3.88 52.12± 2.49 52.55± 1.62

dynGENIE3 - - - - 51.32± 5.21 50.12± 2.42 50.49± 1.22 67.32± 14.23

XGBGRN - - - - 97.21± 1.13 96.95± 2.10 96.90± 0.83 97.99± 0.93

NRI 97.01± 0.02 94.94± 0.00 87.10± 0.01 82.80± 0.01 56.00± 0.04 53.94± 0.02 54.36± 0.02 51.75± 0.03

ACD 96.99± 0.02 95.79± 0.01 87.58± 0.02 83.92± 0.02 61.94± 0.03 61.56± 0.04 53.36± 0.02 50.19± 0.02

MPM 97.92± 0.01 95.53± 0.02 86.92± 0.01 84.22± 0.03 52.18± 0.02 62.08± 0.05 53.44± 0.01 50.42± 0.03

iSIDG 97.38± 0.02 94.70± 0.02 87.44± 0.02 83.15± 0.02 59.19± 0.05 56.18± 0.03 55.73± 0.03 52.30± 0.02

the full-length trajectories. By comparing the average AUROC results between shorter and full-
length trajectories, we computed the differences ∆AUROC = AUROCTS − AUROCraw, where
AUROCTS denotes the average AUROC results with shorter trajectories, and AUROCraw represents
the average AUROC results with full-length trajectories. The results are presented in Fig. 5. These
findings provide insights into the impact of trajectory lengths on the performance and efficiency of
structural inference methods.
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Table 23: AUROC values (in %) of investigated structural inference methods on MMO trajectories.

Method Springs NetSims

n15 n30 n50 n100 n15 n30 n50 n100

ppcor - - - - 96.42± 0.02 98.28± 0.00 98.98± 0.00 99.49± 0.00

TIGRESS - - - - 99.88± 0.01 99.98± 0.00 100.00± 0.00 100.00± 0.00

ARACNe - - - - 89.76± 0.16 96.60± 1.51 97.09± 1.07 98.11± 0.79

CLR - - - - 96.43± 0.00 98.28± 0.00 98.98± 0.00 98.81± 0.37

PIDC - - - - 44.74± 4.70 70.03± 7.65 77.24± 1.02 75.01± 0.29

Scribe - - - - 69.85± 12.21 38.03± 25.86 20.70± 10.19 23.88± 15.76

dynGENIE3 - - - - 16.90± 2.38 23.49± 5.12 23.31± 4.03 45.89± 20.23

XGBGRN - - - - 59.77± 2.14 81.64± 6.68 72.13± 11.09 63.83± 6.71

NRI 99.62± 0.00 84.96± 0.02 77.66± 0.01 78.04± 0.02 68.34± 0.03 66.21± 0.06 57.84± 0.03 56.10± 0.01

ACD 99.68± 0.00 93.89± 0.01 85.53± 0.02 85.46± 0.01 71.88± 0.03 59.46± 0.06 64.14± 0.03 58.05± 0.02

MPM 99.83± 0.00 88.32± 0.01 87.02± 0.03 86.75± 0.02 79.34± 0.04 65.48± 0.07 54.78± 0.04 57.06± 0.02

iSIDG 99.84± 0.00 89.77± 0.01 87.47± 0.02 85.47± 0.01 74.58± 0.03 64.71± 0.06 56.07± 0.04 58.80± 0.01

Table 24: AUROC values (in %) of investigated structural inference methods on RNLO trajectories.

Method Springs NetSims

n15 n30 n50 n100 n15 n30 n50 n100

ppcor - - - - 96.36± 0.10 98.28± 0.00 98.95± 0.04 99.25± 0.38

TIGRESS - - - - 99.82± 0.06 99.98± 0.00 99.99± 0.00 99.99± 0.01

ARACNe - - - - 93.47± 2.99 95.67± 1.61 97.02± 0.86 98.03± 0.43

CLR - - - - 96.35± 0.12 98.28± 0.00 98.72± 0.31 98.62± 0.29

PIDC - - - - 56.18± 6.51 72.67± 10.76 74.36± 6.83 71.95± 2.31

Scribe - - - - 38.49± 1.57 47.15± 18.16 46.52± 26.84 20.23± 13.56

dynGENIE3 - - - - 15.96± 2.97 21.37± 8.84 27.57± 7.69 56.44± 21.63

XGBGRN - - - - 83.55± 8.24 81.05± 5.42 81.82± 5.07 67.30± 12.31

NRI 95.54± 0.02 72.53± 0.08 72.72± 0.03 75.07± 0.02 69.43± 0.04 67.70± 0.08 60.55± 0.03 62.42± 0.02

ACD 96.20± 0.02 93.44± 0.03 75.83± 0.02 79.14± 0.02 57.32± 0.05 53.75± 0.01 61.68± 0.05 65.45± 0.03

MPM 97.40± 0.01 83.70± 0.06 78.50± 0.02 79.36± 0.02 72.62± 0.03 62.34± 0.01 56.90± 0.05 60.05± 0.02

iSIDG 97.45± 0.01 81.60± 0.05 78.51± 0.03 79.08± 0.03 64.79± 0.05 57.10± 0.02 64.50± 0.05 66.01± 0.02

Table 25: AUROC values (in %) of investigated structural inference methods on SN trajectories.

Method Springs NetSims

n15 n30 n50 n100 n15 n30 n50 n100

ppcor - - - - 93.77± 0.59 94.17± 0.28 94.74± 0.44 94.37± 0.05

TIGRESS - - - - 90.20± 1.52 82.82± 0.30 78.22± 1.92 67.98± 0.57

ARACNe - - - - 80.80± 3.58 78.78± 3.00 80.42± 1.00 81.49± 0.32

CLR - - - - 85.08± 0.54 87.70± 1.11 89.81± 0.74 88.24± 0.60

PIDC - - - - 83.96± 2.44 84.29± 1.00 84.66± 0.70 91.76± 0.25

Scribe - - - - 56.52± 2.94 51.30± 0.50 50.38± 0.50 50.74± 1.01

dynGENIE3 - - - - 62.48± 5.44 55.74± 3.23 50.00± 1.70 50.20± 0.77

XGBGRN - - - - 99.83± 0.21 99.88± 0.07 99.74± 0.12 98.81± 0.12

NRI 93.26± 0.01 79.96± 0.02 80.40± 0.02 71.84± 0.01 58.41± 0.04 51.43± 0.01 49.57± 0.03 50.16± 0.03

ACD 93.47± 0.01 81.17± 0.01 79.63± 0.02 68.76± 0.02 65.24± 0.05 52.96± 0.03 49.28± 0.02 50.76± 0.01

MPM 92.68± 0.00 79.32± 0.01 75.90± 0.01 69.36± 0.03 67.42± 0.02 50.87± 0.01 53.12± 0.03 50.08± 0.02

iSIDG 93.51± 0.00 81.38± 0.01 80.80± 0.02 69.25± 0.01 66.14± 0.04 53.79± 0.03 54.83± 0.01 51.72± 0.02

D.3.2 EXPERIMENTAL OBSERVATIONS

Obs. 9. The performance of the majority of the investigated methods decreases as the trajec-
tories become shorter. This observation is evident in Fig. 5, where the AUROC values of most
methods decline with decreasing trajectory lengths across various graph sizes. The reduction in per-
formance can be attributed to the limited information available in shorter trajectories, which restricts
the ability of the methods to accurately infer the underlying structures. However, it is noteworthy
that three methods, namely ARACNe, CLR and PIDC, exhibit contrasting behavior. These methods
actually demonstrate improved performance with shorter trajectories. The performance decline of
ARACNe and CLR can be attributed to the removal of correctly predicted edges when the number
of time steps exceeds 20, leading to a reduction in its AUROC scores. PIDC benefits from shorter
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Table 26: AUROC values (in %) of investigated structural inference methods on VN trajectories.

Method Springs NetSims

n15 n30 n50 n100 n15 n30 n50 n100

ppcor - - - - 96.68± 0.01 98.33± 0.01 99.00± 0.00 99.50± 0.00

TIGRESS - - - - 99.28± 0.18 99.41± 0.15 99.62± 0.09 99.84± 0.02

ARACNe - - - - 96.66± 0.03 97.85± 0.09 98.54± 0.01 99.08± 0.00

CLR - - - - 96.68± 0.00 98.34± 0.00 99.00± 0.00 99.50± 0.00

PIDC - - - - 76.51± 2.67 85.70± 3.99 91.80± 0.43 95.01± 0.70

Scribe - - - - 51.56± 5.64 52.71± 4.98 57.68± 2.56 59.50± 0.83

dynGENIE3 - - - - 92.81± 2.83 97.33± 1.01 97.87± 0.66 97.30± 1.26

XGBGRN - - - - 97.99± 0.49 98.54± 0.38 99.21± 0.12 99.59± 0.02

NRI 94.58± 0.01 95.12± 0.01 94.65± 0.02 89.17± 0.02 90.31± 0.01 74.64± 0.04 69.78± 0.03 68.80± 0.02

ACD 94.34± 0.01 93.73± 0.01 87.54± 0.03 90.49± 0.03 80.32± 0.02 65.36± 0.06 69.01± 0.03 68.72± 0.03

MPM 96.56± 0.01 89.71± 0.04 85.07± 0.02 84.56± 0.03 91.18± 0.01 83.37± 0.03 72.66± 0.04 70.34± 0.03

iSIDG 96.59± 0.02 95.66± 0.01 95.72± 0.02 85.07± 0.02 91.20± 0.02 78.08± 0.06 73.68± 0.02 68.81± 0.02

Table 27: AUROC values (in %) of investigated structural inference methods on BN trajectories
with 1 (N1) and 2 (N2) levels of Gaussian noise.

Method N1 N2

n15 n30 n50 n100 n15 n30 n50 n100

ppcor 92.66± 0.80 97.16± 0.59 98.48± 0.19 99.30± 0.02 91.25± 0.75 96.68± 0.64 98.28± 0.22 99.21± 0.03

TIGRESS 93.08± 0.76 96.42± 0.67 97.59± 0.23 98.65± 0.05 93.12± 0.80 96.43± 0.62 97.55± 0.24 98.59± 0.05

ARACNe 84.73± 1.20 91.90± 1.00 95.84± 0.33 98.11± 0.11 84.39± 1.04 92.37± 0.98 95.73± 0.34 97.76± 0.13

CLR 91.46± 0.45 96.48± 0.64 97.97± 0.24 98.97± 0.03 90.88± 0.73 96.55± 0.67 98.12± 0.20 99.04± 0.03

PIDC 87.87± 0.64 94.54± 0.41 95.84± 0.10 96.77± 0.08 88.58± 0.66 95.02± 0.75 96.78± 0.19 97.56± 0.06

Scribe 47.75± 6.78 63.04± 2.33 73.37± 1.11 70.95± 1.87 46.19± 5.58 63.42± 4.19 72.37± 1.98 71.36± 1.12

dynGENIE3 83.60± 3.35 90.28± 1.63 92.28± 2.10 98.00± 0.45 76.46± 0.64 88.32± 3.03 90.96± 1.39 97.93± 0.04

XGBGRN 93.72± 1.08 98.35± 0.21 98.63± 0.18 99.40± 0.01 86.78± 2.19 96.92± 1.00 97.94± 0.28 99.07± 0.05

NRI 72.98± 0.01 73.85± 0.02 74.12± 0.02 74.70± 0.02 56.76± 0.02 59.64± 0.03 62.52± 0.03 63.52± 0.02

ACD 65.62± 0.02 63.47± 0.01 66.69± 0.02 61.56± 0.03 62.08± 0.02 58.14± 0.03 61.73± 0.02 59.04± 0.02

MPM 70.23± 0.02 74.37± 0.02 75.72± 0.03 75.60± 0.03 62.83± 0.02 65.22± 0.02 66.52± 0.02 66.88± 0.03

iSIDG 74.33± 0.03 76.06± 0.02 76.29± 0.01 76.54± 0.03 63.40± 0.04 66.44± 0.03 67.52± 0.03 68.75± 0.02

Table 28: AUROC values (in %) of investigated structural inference methods on BN trajectories
with 3 (N3) and 4 (N4) levels of Gaussian noise.

Method N3 N4

n15 n30 n50 n100 n15 n30 n50 n100

ppcor 90.87± 0.66 96.36± 0.62 98.16± 0.19 99.15± 0.04 90.81± 0.67 96.10± 0.65 98.09± 0.19 99.09± 0.04

TIGRESS 93.11± 0.65 96.45± 0.62 97.59± 0.21 98.56± 0.05 93.00± 0.38 96.44± 0.60 97.64± 0.22 98.57± 0.05

ARACNe 88.04± 1.01 93.42± 0.85 96.02± 0.34 97.80± 0.11 89.51± 0.73 93.89± 0.79 96.22± 0.35 97.85± 0.12

CLR 91.22± 0.82 96.57± 0.70 98.20± 0.20 99.07± 0.03 91.40± 0.86 96.63± 0.71 98.26± 0.20 99.09± 0.03

PIDC 90.24± 0.56 95.17± 0.75 96.93± 0.23 97.98± 0.04 91.53± 1.11 95.17± 0.84 97.03± 0.28 98.12± 0.04

Scribe 51.12± 2.82 61.51± 3.27 71.40± 3.26 72.10± 0.97 48.14± 2.15 60.82± 2.68 67.96± 2.52 70.71± 1.81

dynGENIE3 63.28± 2.16 80.56± 2.28 87.03± 2.73 98.04± 0.03 52.46± 0.55 73.68± 1.60 81.89± 4.03 97.77± 0.01

XGBGRN 86.90± 1.19 96.38± 1.00 97.55± 0.32 98.88± 0.06 85.29± 0.62 95.74± 1.21 97.37± 0.31 98.75± 0.07

NRI 50.67± 0.02 51.68± 0.01 54.40± 0.02 58.16± 0.02 50.91± 0.03 51.11± 0.02 51.24± 0.02 52.89± 0.03

ACD 50.09± 0.03 54.38± 0.02 56.42± 0.01 56.12± 0.02 51.89± 0.02 54.65± 0.02 55.73± 0.03 55.02± 0.03

MPM 55.29± 0.03 56.81± 0.03 57.41± 0.02 59.23± 0.02 55.85± 0.03 57.48± 0.01 59.76± 0.02 59.90± 0.02

iSIDG 56.73± 0.02 56.79± 0.02 57.71± 0.01 60.60± 0.03 54.59± 0.04 57.82± 0.03 58.08± 0.02 59.70± 0.02

trajectories because PIDC infers more false positive edges as the number of time steps increases.
Upon our observation, node pairs connected by false positive edges often co-influence a common
node.

Obs. 10. The impact of shorter trajectories on the performance of the structural inference
methods can be compensated by increasing the number of nodes in the graph. As observed
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Table 29: AUROC values (in %) of investigated structural inference methods on BN trajectories
with 5 (N5) levels of Gaussian noise.

Method N5

n15 n30 n50 n100

ppcor 91.11± 0.69 95.81± 0.61 97.97± 0.18 99.04± 0.05

TIGRESS 92.95± 0.42 96.38± 0.64 97.66± 0.18 98.57± 0.05

ARACNe 90.22± 0.96 94.15± 0.70 96.33± 0.35 97.90± 0.11

CLR 91.59± 0.90 96.65± 0.70 98.31± 0.20 99.10± 0.04

PIDC 91.18± 1.61 95.11± 0.95 96.90± 0.32 98.17± 0.03

Scribe 52.20± 6.61 58.31± 2.98 66.41± 2.87 69.35± 1.47

dynGENIE3 47.84± 1.10 67.07± 2.68 74.14± 4.26 97.46± 0.03

XGBGRN 85.18± 0.34 95.41± 1.22 97.27± 0.28 98.70± 0.08

NRI 46.68± 0.03 46.70± 0.02 49.57± 0.03 49.79± 0.03

ACD 46.21± 0.03 46.34± 0.05 44.06± 0.02 44.41± 0.02

MPM 55.39± 0.05 58.87± 0.02 59.07± 0.03 60.45± 0.03

iSIDG 55.59± 0.03 58.82± 0.03 59.08± 0.01 60.70± 0.02
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Figure 5: Performance drops (in %) of investigated structural inference methods on BN trajectories
of different shorter lengths with respect to the performance on the full-length trajectories.

in Fig. 5, with the exception of Scribe, all methods exhibit smaller AUROC drops when the number
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of nodes in the graph increases. Typically, shorter trajectories convey limited information to the
structural inference methods, posing a challenge in accurately inferring the underlying structure.
However, larger dynamical systems with more nodes provide richer information, enabling the meth-
ods to overcome the limitations of insufficient information and improve their performance. This
observation highlights the importance of considering the interplay between trajectory length and
graph size in achieving more reliable and effective structural inference results.

Obs. 11. Notably, ppcor, TIGRESS, and XGBGRN demonstrate a remarkable insensitivity to
shorter trajectories. As depicted in Fig. 5, these methods exhibit minimal AUROC drops when
the length of trajectories decreases. This finding emphasizes the robustness of correlation metrics
and tree-based approaches in tackling the challenge posed by shorter trajectories. Therefore, for the
development of algorithms focused on structural inference with limited trajectory data, incorporating
these techniques could be a promising direction to overcome the inherent limitations of shorter
trajectories and enhance the accuracy and reliability of the inferred structural connections.

D.4 DISCUSSION ON METRICS

The AUROC (Area Under the Receiver Operating Characteristic) metric has several advantages
over other metrics such as F1 score, accuracy, and Hamming distance when it comes to evaluating
structural inference problems, where the results are binary:

• Handling imbalanced datasets: AUROC is less sensitive to class imbalance compared to accuracy
and F1 score. In imbalanced datasets where one class is dominant, such as the adjacency matrix of
a sparse graph, accuracy and F1 score can be misleading due to high accuracy achieved by simply
predicting the majority class. AUROC considers the trade-off between true positive rate and false
positive rate, making it more suitable for imbalanced datasets.

• Performance across different classification thresholds: AUROC considers the structural inference
method’s performance at various classification thresholds by plotting the ROC curve. It captures
the overall discriminative power of the method across all possible threshold values, whereas F1
score, accuracy, and Hamming distance are based on a specific threshold. This makes AUROC
more comprehensive in evaluating the method’s performance.

• Robustness to class distribution changes: AUROC remains consistent even when the class distri-
bution changes, for example, the underlying interaction graph may be sparse or dense. In scenarios
where the class distribution in the test set differs from the training set, AUROC provides a reli-
able measure of the method’s performance. F1 score, accuracy, and Hamming distance can be
influenced by changes in class distribution, leading to biased evaluations.

• Handling probabilistic predictions: AUROC can handle probabilistic predictions and ranks them
accordingly, which is particularly useful when the structural inference method outputs proba-
bilities instead of hard class labels. F1 score, accuracy, and Hamming distance require explicit
thresholding, which may not be suitable for probabilistic outputs.

While F1 score, accuracy, and Hamming distance have their own strengths in specific contexts, AU-
ROC is widely used and preferred when evaluating binary classification tasks due to its robustness,
ability to handle imbalanced datasets, and comprehensive evaluation of method performance across
different classification thresholds. So in this work, we benchmark all of the methods with AUROC.

D.5 BENCHMARKING WITH CHARGED PARTICLES

We observed that the two dynamic simulations do not encompass a prevalent type of real-world
dynamical system characterized by quadratic dependencies. To address this gap, we introduce a
third simulation of dynamical systems, grounded in the Coulomb force interactions among charged
particles, and we have named it the ”Charged Particles” simulation.

Simulation of Charged Particles. We simulate the movement of charged particles within a 2D
enclosure, where nodes represent particles and edges symbolize the Coulomb forces acting between
pairs of particles. Unlike the Springs and NetSims simulations, the Charged Particles simulation
entails a unique approach: all nodes are interconnected, and none of the 11 types of generated
underlying interaction graphs are employed. Consequently, every pair of nodes interacts, even if the
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interaction might be weak when the nodes are distant. These interactions involve either attraction
or repulsion. Drawing inspiration from (Kipf et al., 2018) and following a concept akin to the
Springs simulation, our simulation involves N particles (point masses) located within a 2D enclosure
and subject to no external forces. The parameter N is chosen from the set 15, 30, 50, 100. The
simulation accounts for elastic collisions with the boundary of the enclosure. The particles carry
charges qi ∈ ±q, sampled uniformly at random. The inter-particle interactions are governed by
Coulomb forces, defined as Fij(t) = C · sign(qi · qj) · 1

∥xi(t)−xj(t)∥2 , with a constant C set to 1.
Here, Fij(t) denotes the force exerted on particle i by particle j at time t, and xi(t) represents the
2D location vector of particle i at time t. So the adjacency matrix A in this simulation is formed
as a matrix with each element aij in it as either +1 or −1, where aij = +1 stands for repelling
between node i and j, while aij = −1 stands for attracting between node i and j. The dynamics
of the Charged Particles simulation are encapsulated in an ordinary differential equation (ODE)
characterized by quadratic dependencies on particle locations, expressed as:

mi · x′′
i (t) =

∑
j∈Ni

C · sign(qi · qj) ·
1

∥xi(t)− xj(t)∥2
, (3)

Here, mi represents the mass of node i, assumed to be 1 for simplicity. Ni refers to the set of
neighboring nodes with connections to node i. In this simulation, it represents all nodes in the
system. The equation is integrated to compute x′

i(t), and subsequently, xi(t) is determined for each
time step. These calculated values of x′

i(t) and xi(t) collectively constitute the 4D node features at
each time point. Initially, the positions are drawn from a Gaussian distribution N (0, 0.5), while the
initial velocities, represented as 2D vectors, are randomly generated with a norm of 0.5. With these
initial positions and velocities in the 2D plane, trajectories are simulated using the solutions to Eq. 3.
The simulation employs leapfrog integration with a small time step size of 0.001 seconds, and the
trajectories are sampled at intervals of 100 minor time steps. As a result, the feature representation
of each node at each minor time step consists of a 4D vector encompassing 2D positions and 2D
velocities.

The simulation’s design ensures that the next value of a particle’s feature depends on its present
value and interactions with other particles. Utilizing a set of initial positions and velocities, we
generate trajectories for the current interacting dynamical system, encapsulating the feature vectors
of all particles within the designated time frame. Specifically, trajectories comprising 49 time points
(obtained through integration over 4,900 minor time steps) are generated for training and validation
purposes. For testing, trajectories with 100 time steps are generated, aligning with the requirements
in (Kipf et al., 2018; Wang & Pang, 2022). To ensure robustness, a total of 8,000 trajectories are
generated for training, along with 2,000 for validation and 2,000 for testing. This process is repeated
thrice, yielding three sets of trajectories with the same node count but distinct initializations.

Implementation of Structural Inference Methods For methods reliant on VAEs, we maintain
uniform settings akin to those utilized for the Springs simulation trajectories. Furthermore, we
configure the parameter ”edge types” to a value of two, aligning with the requirement to infer the
two distinct edges corresponding to aij = ±1. However, it’s crucial to note that the remaining
methods are tailored explicitly for structural inference tasks involving trajectories featuring one-
dimensional attributes. Regrettably, their respective literature lacks both theoretical and practical
guidelines pertaining to adapting these methods for trajectories characterized by multi-dimensional
attributes. Additionally, these methods inherently lack the capability to deduce multiple edge types,
thereby restricting their applicability in this context. Consequently, the VAE-based structural infer-
ence methods were exclusively employed for analysis on the Charged Particles dataset.

Table 30: AUROC values (in %) of VAE-based structural inference methods on Charged Particles
trajectories.

Method n15 n30 n50 n100

NRI 72.14± 0.02 71.66± 0.02 68.98± 0.02 64.35± 0.02

ACD 74.36± 0.02 73.42± 0.03 71.20± 0.03 67.45± 0.03

MPM 75.10± 0.04 74.89± 0.03 72.04± 0.02 67.82± 0.02

iSIDG 75.67± 0.03 75.02± 0.02 73.12± 0.02 69.37± 0.03
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Results Table 30 provides a comprehensive summary of the average AUROC values and standard
deviations for each method across various node counts within the graph. A comparison of these
results with those from the Springs dataset reveals that while all methods continue to successfully
infer the structure of the underlying interaction graphs, their performance is relatively diminished in
this case. The reason lies in the increased complexity of the task, as the methods are now required
to infer two distinct edge types, which inherently poses a greater challenge. Moreover, it is note-
worthy that the performance of all methods is influenced by the number of nodes present within the
graph, corroborating observation 4. The sensitivity to node count underscores the intricate interplay
between the size of the graph and the efficacy of the methods. In light of the presented data, it
becomes evident that the feasibility of VAE-based methods in the structural inference of dynamical
systems governed by quadratic dependencies on locations is empirically substantiated.

D.6 RUNNING TIME OF INVESTIGATED METHODS

It is worse investigating the running time of investigated structural inference methods. In order to
compare all running times in a unified way, we report the average running time of ten runs of every
investigated structural inference methods on “BN NS” trajectories, and group the results according
to the number of nodes in the graph. We report the results in Table 31.

Table 31: Running time (in minutes if not specified) of investigated structural inference methods on
BN NS trajectories.

Method n15 n30 n50 n100

ppcor < 1 < 1 < 1 < 1
TIGRESS 7.91 15.66 31.66 113.92
ARACNe < 1 < 1 < 1 < 1

CLR < 1 < 1 < 1 < 1
PIDC < 1 < 1 < 1 1.00
Scribe 13.67 46.51 130.32 548.60

dynGENIE3 3.47 12.43 1.57 2.29
XGBGRN < 1 < 1 1.50 4.70

NRI 22.35 hours 31.03 hours 39.65 hours 45.91 hours
ACD 40.14 hours 52.90 hours 69.37 hours 83.15 hours
MPM 44.20 hours 59.02 hours 80.43 hours 95.72 hours
iSIDG 43.80 hours 67.44 hours 91.25 hours 106.51 hours

As indicated in the table, VAE-based methods generally require more time due to the necessity of
initial training. In contrast, other methods can directly infer structure without this training phase,
making them more efficient in terms of computation time. However, it’s important to note that
VAE-based methods offer greater versatility, as they are applicable to both multi-dimensional and
one-dimensional trajectories. This broader application scope might justify the longer running times
for certain use cases.

E LIMITATIONS

This study has certain limitations, which can be summarized as follows: resource limitation, trajec-
tory generation, and the exploration of additional valid methods.

• Resource limitation: The computational resources available for this study include NVIDIA Tesla
V100 SXM2 cards, AMD Epyc ROME 7H12 CPUs, and AWS Graviton3 processors. As a result,
conducting experiments on trajectories generated with larger graphs (e.g., exceeding 100 nodes)
would be infeasible or would require a significant amount of time. However, in the interest of
fostering further research, we plan to make the trajectories generated by graphs with more than 100
nodes publicly available. We encourage interested researchers to leverage their own computational
resources to test alternative structural inference methods on these trajectories.

• Assumption: The fundamental assumption underlying our study is that the nodes in the graph
are entirely observed within the specified time frame, and the edges remain stable. However, we
acknowledge the potential for nodes to be only partially observed, resulting in incomplete data.
Moreover, dynamic graphs may come into play, where nodes and edges evolve over time. While
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this paper primarily focuses on benchmarking structural inference methods on static graphs, we
recognize the significance of exploring these methods in the context of dynamic graphs. This
avenue remains a promising area for future research.

• Trajectory generation: This study solely utilizes synthetic data generated by synthetic static
interaction graphs and employs two specific types of dynamical simulations. While the synthetic
graphs were designated based on properties observed in real-world graphs, there may still exist
discrepancies between them. Furthermore, the chosen dynamical simulations are based on first-
order and second-order ODEs and may not fully capture the diverse range of dynamical systems
encountered in real-world scenarios, such as those based on stochastic differential equations, and
those based on quadratic dependency on locations. Future research should aim to incorporate real-
world data and explore a broader array of dynamical simulations to enhance the evaluation of the
fidelity and applicability of structural inference methods.

• Exploration of additional valid methods: It is important to acknowledge that this study does not
encompass all potentially valid methods for structural inference. Numerous methods from various
fields may possess the capability to perform, or to be adapted for, the task of structural inference.
We select the methods for our benchmarking based on four criteria:
– Representativeness: Our selected methods are either the latest work in its line of work or widely-

used methods in its research domain. XGBGRN and iSIDG are the latest work in their line of
work, while ppcor, ARACNe and CLR are widely used methods in GRN inference. Although
GENIE3 is also widely used in GRN inference, we have chosen its successor, the dynGENIE3
method, in our benchmark.

– Diversity: If methods have similar functional mechanisms, we only choose one representative.
For example, for all of the methods based on information theory, we choose PIDC and Scribe
as they use new MI estimators in their algorithms. Similarly, we choose TIGRESS because it
uses feature selection instead of indirect edge elimination in GRN inference.

– Data constraint: As most methods are domain-specific, we screen out methods with strong
data assumptions or low utilization of our data input. For example, methods that only al-
low single time series input are screened out, such as GRNVBEM (Sanchez-Castillo et al.,
2017), SCODE (Matsumoto et al., 2017a) and SINCERITIES (Papili Gao et al., 2017). Be-
sides, LinkedSOMs (Jansen et al., 2019) and method in (Hamey et al., 2017) were screened out
because the former requires additional scATAC-seq data on top of the gene expression level as
input, and the latter restricted node interaction as Boolean functions. For similar reasons, we
exclude several methods in the field of causal structural discovery, because they either require
interventional data (Zhou, 2011; Gu et al., 2019; Zhang et al., 2020; Yang et al., 2021) or impose
strong assumptions (Cummins et al., 2015; Breskin et al., 2018; Jaber et al., 2020; Bhattacharya
et al., 2021).

– Computational constraint: We screen out methods with long computation time such as
SINGE (Deshpande et al., 2022), PCA-PMI (Zhao et al., 2016), Jump3 (Huynh-Thu & San-
guinetti, 2015) and Bayesian network methods.

We encourage researchers in this field to explore and evaluate other promising methods originating
from diverse disciplines. Such exploration will contribute to the advancement of the field and the
discovery of innovative approaches to structural inference.

By recognizing and addressing these limitations in future research endeavors, we can enhance the
robustness, versatility, and effectiveness of structural inference methods, enabling their application
in a wide range of real-world scenarios.

F BROADER IMPACT

Structural inference methods on dynamical systems allow numerous researchers in the fields of
physics, chemistry, and biology to study the interactions inside the systems. We have shown that
investigated methods work well on either one-dimensional node features or multi-dimensional fea-
tures, where the features are continuous variables. These results prove the wide application of the
methods. While the emergence of the structural inference technology may be extremely helpful for
many, it has the potential for misuse. Potentially, structural inference methods can be extended to
infer the online social connections via measuring mutual information or correlations, which could
erode privacy.
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G POTENTIAL ETHICAL GUIDELINES AND SAFEGUARDS FOR STRUCTURAL
INFERENCE METHODS

In the application of structural inference methods to fields like biology and financial systems, the
deployment of structural inference methods offers substantial insights but also raises significant
ethical concerns. Given the sensitivity of data, it is imperative to establish robust safeguards and
ethical guidelines. This section is dedicated to outlining measures that not only prevent the misuse
of these methods but also ensure their responsible application, thereby protecting the integrity of
data and the rights of individuals and entities involved.

G.1 ETHICAL GUIDELINES

Respect for Privacy. Paramount to ethical data analysis is the respect for individual privacy. This
involves ensuring explicit consent for the use of data where applicable and adhering to privacy
regulations such as the General Data Protection Regulation (GDPR). The handling of data demands
a heightened level of confidentiality, and any structural inference method must prioritize this in its
design and execution.

Transparency and Accountability. Structural inference methods must be transparent and account-
able. This entails comprehensive documentation of methodologies, data sources, and the purpose
behind the analyses. Users and practitioners should be able to understand and verify the processes
and outcomes, ensuring that these methods are not veiled in obscurity and are held accountable for
their results.

Integrity and Accuracy. The ethical use of structural inference necessitates the integrity and ac-
curacy of data. It is crucial to prevent any form of data manipulation that could lead to misleading
conclusions or analyses. Maintaining high standards of accuracy and truthfulness in data handling
and interpretation is non-negotiable.

Fairness and Non-Discrimination. Ensuring that structural inference methods are free from biases
and do not propagate discrimination is vital. This involves rigorous testing for biases in data sets and
algorithms, with continuous efforts to address and eliminate any form of discriminatory analysis.

G.2 SAFEGUARDS

Data Security Measures. Implementing stringent data security measures is critical to protect sen-
sitive information. This includes robust encryption practices, stringent access controls, and secure
data storage protocols to safeguard data from unauthorized access or breaches.

Compliance with Regulations. Adherence to legal and regulatory frameworks governing data is
mandatory. This compliance ensures that structural inference methods are in line with legal stan-
dards, protecting both the data subjects and the organizations involved.

Regular Audits and Reviews. Conducting regular audits and reviews of the structural inference
processes helps in ensuring continuous adherence to ethical standards and identifying any potential
misuse. These reviews should assess both the technical aspects and the ethical implications of the
methodologies used.

Limitations on Usage. Setting clear boundaries on the use of structural inference methods can pre-
vent ethical breaches. This may include restrictions on certain types of sensitive data or prohibiting
the use in scenarios that pose ethical conflicts.

User Training and Awareness. It is essential to educate all users of structural inference methods
about ethical practices, relevant data protection laws, and the risks associated with misuse. This
training should aim to foster a culture of ethical awareness and responsibility.

The importance of ethical guidelines and safeguards in the application of structural inference meth-
ods cannot be overstated. As we integrate more advanced technologies into network analyses, the
need for rigorous ethical standards becomes increasingly critical. This section serves as a call for
ongoing vigilance and commitment to ethical practices, ensuring that as our capabilities advance, so
too does our sense of responsibility and ethical conduct.
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