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Abstract

In this paper, we study the problem of fair sequential decision making with biased
linear bandit feedback. At each round, a player selects an action described by a
covariate and by a sensitive attribute. The perceived reward is a linear combination
of the covariates of the chosen action, but the player only observes a biased
evaluation of this reward, depending on the sensitive attribute. To characterize the
difficulty of this problem, we design a phased elimination algorithm that corrects
the unfair evaluations, and establish upper bounds on its regret. We show that the
worst-case regret is smaller than O(1/3

⇤ log(T )1/3T 2/3), where ⇤ is an explicit
geometrical constant characterizing the difficulty of bias estimation. We prove
lower bounds on the worst-case regret for some sets of actions showing that this
rate is tight up to a possible sub-logarithmic factor. We also derive gap-dependent
upper bounds on the regret, and matching lower bounds for some problem instance.
Interestingly, these results reveal a transition between a regime where the problem
is as difficult as its unbiased counterpart, and a regime where it can be much harder.

1 Introduction

Artificial intelligence is increasingly used in a wide range of decision making scenarii with higher and
higher stakes, with application in online advertisement [31], credit [3], health care [11], education
[28] and job interviews [35], in the hope of improving accuracy and efficiency. Recent works have
shown that the decisions made by algorithms can be dangerously biased against certain categories of
people, and have endeavored to mitigate this behavior [22, 14, 6, 27]. Studies have underlined that
the main cause of algorithmic unfairness is the presence of bias in the training set [27], which led to
the development of methods aiming to guarantee the fairness of the algorithms. This paper, in lines
with these works, addresses the problem of online decision making under biased feedback.

Linear bandits have become a very popular tool in online decision making problems, when side
information on the actions is available in the form of covariates. In the present paper, we consider a
variant of this problem, where the agent only has access to an unfair assessment of the action taken,
that is systematically biased against a group of actions. For example, examiners may be prejudiced
against people from a minority group, and give them lower grades; similarly, algorithms trained on
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biased data may produce unfair assessments of the credit risk of individuals belonging to a minority
group. Note that not correcting biased evaluation can have adverse effects for all parties: on the one
hand, actions disadvantaged by the evaluation mechanism will be unfairly discriminated against;
on the other hand, the agent may spend his budget on an unfairly advantaged action that is actually
sub-optimal. The problem of sequential decision making under biased feedback can be formalized as
follows.

Biased linear bandit problem A player is presented with a set of k distinct actions characterized
by covariates x 2 X ⇢ Rd, and by known sensitive attributes zx 2 {�1, 1} indicating the group of
the action. For the sake of clarity, we consider here a two-group model (respectively privileged or
discriminated against), and we defer to Appendix D discussions on how to extend this model and
our algorithm to more than two groups. At each round t  T , the player chooses the action xt and
receives an unobserved reward x

>
t �

⇤, where �
⇤ 2 Rd is the regression parameter specifying the true

value of the action. The regret of the player is given by

RT = E
hX

tT

(x⇤ � xt)
>
�
⇤
i
, where x

⇤ 2 argmax
x2X

x
>
�
⇤
. (1)

By contrast to the classical linear bandit, the player does not observe a noisy version of the unbiased
reward x

>
t �

⇤. Instead, she observes an unfair evaluation yt of the value of the action x
>
t �

⇤, given by
the following biased linear model:

yt = x
>
t �

⇤ + zxt!
⇤ + ⇠t

where ⇠t
i.i.d⇠ N (0, 1) is a noise term. The evaluation are systematically biased against a certain

group: this unequal treatment of the groups is captured by the bias parameter !⇤ 2 R.

Preliminary discussion The biased linear bandit is a variant of the linear bandit. By contrast,
in the classical linear bandit model, the agent observes a noisy version of the reward. Obviously,
applying directly an algorithm designed for linear bandit to biased linear bandits without correcting
the evaluations would lead to a linear regret if the evaluation mechanism is prejudiced against the
group of the best action in terms of reward, and if the best action in terms of feedback belongs
to the advantaged group. To avoid this pitfall, one must estimate the bias in order to correct the
evaluations. This implies a change in the exploration-exploitation trade-off, as exploration becomes
more expensive. Indeed, in classical bandit problems, one can compare the rewards of two actions
by repeatedly sampling them - or, to put it differently, one can find the best action by sampling only
those actions that seem optimal. This does not hold in the biased linear bandit: if, at some point,
the set of potentially optimal actions contains representatives from both groups, and does not span
Rd, one is forced to sample sub-optimal actions to estimate the bias and improve the estimation of
the unbiased rewards. For this reason, classical algorithm for linear bandit that only sample actions
considered as potentially optimal, such as OFUL [1] or Phase Elimination [24], can suffer linear
regret. This underlines the necessity to ensure sufficient estimation of the bias parameter, even when
it implies sampling sub-optimal actions.

1.1 Related work

Fairness in bandit problems has mostly been studied from the perspective of fair budget allocation
between actions. This problem is motivated by the fact that classical bandit algorithms select sub-
optimal actions only a vanishing fraction of the time, which may be undesirable in many situations.
To mitigate this problem and guarantee diversity in the actions selected, some papers [4, 29, 9, 16, 43]
have proposed new algorithms ensuring fairness of the selection frequency of each action. The
framework studied in this paper is different: we consider here that the mechanism for observing the
rewards is unfair, and we aim at correcting it in order to maximize a (fair) true cumulative reward.

In this work, we consider that the agent knows the sensible attributes, and that she can treat actions
differently according to their sensible attributes, in order to correct the prejudice caused by the
unfair bias in the evaluation. This situation falls into the awareness framework, by contrast to the
unawareness one, where using the sensitive attributes is prohibited. Whether or not it is preferable to
treat different groups differently remains a controversial question. While using sensitive attributes at
the time of prediction is sometimes forbidden by law, some recent works have highlighted critical
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issues related to unawareness. For example, empirical evidence [26] have shown that classification
algorithms based on disparate learning processes use non-sensitive features correlated with the
sensitive attribute as a proxy for the later. These empirical findings have recently been supported by
theoretical results established in [15] in the case of demographic parity. Similarly, the authors of
[7] study a problem of fair online learning, and show that some problems feasible in the awareness
framework become infeasible in the unawareness one (such as no-regret learning under demographic
parity constraints). These examples advocate for the use of the sensitive attribute, as it allows for better
fairness guarantees while preventing unfair discrimination based on (possibly irrelevant) non-sensitive
features correlated with the sensitive attribute. Without taking a position in this debate, we underline
that, in practice, this attribute (gender or minority status) is often known to the decision-maker, and
that its use is in some cases allowed or even encouraged (e.g. for affirmative action).

By contrast to a line of work on statistical fairness, the aim of our model is not to correct for the
possibly unequal distribution of features x and values x>

�
⇤ across the different groups. Our approach

is instead related to causal fairness [18]: in the causal fairness framework, the dependencies between
prediction, sensitive attributes and non-sensitive attributes are captured by a causal model. The goal is
then to ensure that the sensitive attribute does not directly influence the prediction (in other words, that
conditionally on selected resolving variables, the prediction is independent of the sensitive attribute).
Here, the resolving variables may depend on the sensitive attribute in a manner that is considered as
non-discriminatory. For example, one group may have, on average, more physical strength than the
other one, and this skill can be considered as fair when it comes to recruit a piano mover. The biased
linear model studied in this paper is a simple example of causal model with linear structural model
equations x = f(z, ⇠0) and y = x

>
�
⇤ + z!

⇤ + ⇠, where ⇠ and ⇠
0 are noise terms: the covariates x

may depend on the sensitive attribute z, and the biased evaluation y depends on both. In our work,
we treat x>

�
⇤ as a fair evaluation of the value of action x, since it is independent of z conditionally

on the resolving variable x.

The biased linear model has been studied in the batch setting in [8], where the authors investigate
the optimal trade-off between minimax risk and Demographic Parity. Detection of systematic bias,
interpreted as a treatment effect, has been investigated in a batch setting in [18]. In [2], the authors
consider a similar model, with unobserved sensitive attribute z and known bias parameter !⇤, under
additional assumption that the sensitive attribute z is independent from the covariate x. By contrast,
we show that bias estimation is one of the main difficulties of the biased bandit problem.

The linear bandit with biased feedback can be viewed as a stochastic partial monitoring game. With
the terminology of partial monitoring, the biased problem considered in the present paper is globally
observable but not locally observable: in this case, the optimal worst-case regret rate typically
increases as Õ(T 2/3). This regret rate is for example achieved in the related problem of partial linear
monitoring with linear feedback and linear reward using an Information Directed Sampling algorithm
[20]. However, the dependence of the regret on the geometry of the action set and on the dimension d

remains in most cases an open question [25, 5, 20]. In this paper, we characterize the geometry of the
biased linear bandit problem, and we investigate dependence of the regret on the gaps.

1.2 Contribution and outline

In this paper, we introduce the linear bandit problem with biased feedback. We design a new algorithm
based on optimal design for this problem. We derive an upper bound on the worst case regret of
this algorithm of order 1/3

⇤ log(T )1/3T 2/3 for large T , where ⇤ is an explicit constant depending
on the geometry of the action set. We provide matching lower bounds on some problem instances,
showing that the constant ⇤ characterizes the difficulty of the action set. Note that this regret is
higher than the classical rates of order Õ(dT 1/2) obtained for d-dimensional linear bandits: this
increase corresponds to the price to pay for debiasing the unfair evaluations.

We also characterize the gap-depend regret, showing that it is of order (d/�min _ (�)/�2
6=) log(T ),

where �min is the minimum gap, � 6= is the gap between the best actions of the two groups, and (�)
corresponds to the minimum regret to pay for estimating the bias with a given variance. This bound
underlines the relative difficulties of the d-dimensional linear bandit and of the bias estimation. When
d/�min � (�)/�2

6=, i.e. when one group contains all near-optimal actions, the difficulty is dominated
by that of the corresponding linear bandit problem. When both groups contain near-optimal actions,
and d/�min  (�)/�2

6=, the regret corresponds to the price of debiasing the rewards.
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The rest of the paper is organized as follows. In Section 2, we present the FAIR PHASED ELIMI-
NATION algorithm: we first discuss parameter estimation in Section 2.1, before presenting a sketch
of the algorithm in Section 2.2 (a detailed version of this algorithm is provided in Appendix B).
Then, in Section 3, we establish an upper bound on its worst-case regret. In Section 4, we derive a
gap-dependent upper bound on the regret of our algorithm. In Section 5, we establish lower bounds
on some action sets for both the worst-case and the gap-dependent regret, showing that these rates are
sharp respectively up to a sub-logarithmic factor and an absolute multiplicative constant. Additional
discussions on the geometry of bias estimation are postponed to Appendix A.

1.3 Notations and additional assumptions

We assume that all covariates x 2 X are distinct, which implies that the group zx of action x is well
defined. We also assume that no group is empty, that the set {

⇣
x
zx

⌘
: x 2 X} spans Rd+1 (which

guarantees identifiability of the parameters), and that the rewards are bounded: maxx2X |x>
�
⇤|  1.

When necessary, we underline the dependence of the regret on the parameter ✓ by denoting it R✓
T .

We denote by ax =
⇣

x
zx

⌘
the vector describing an action and its group, by ✓

⇤ =
⇣

�⇤

!⇤

⌘
2 Rd+1 the

unknown parameter, and by A = {ax : x 2 X} the set of actions and of corresponding sensitive
attributes. We denote by � = (�x)x2X the vector of gaps �x = maxx02X (x0 � x)>�⇤, and
by C(X ) =

�
� 2 Rd : 8x 2 X , |x>

�|  1
 

the set of admissible parameters. Note that for all
x 2 C(X ), �x  2. For i  d+1, let ei be the i-th vector of the canonical basis of Rd+1, and for any
matrix M , let M+ be a generalized inverse of M . We denote by PX the set of probability measures on
X , and MX = {µ : X 7! R+}. For any µ 2 PX or µ 2MX , we denote V (µ) =

P
x2X µ(x)axa>x

the covariance matrix corresponding to this allocation. For u 2 Rd+1 (resp. U 2 Rd+1), we denote by
PX
u (resp. MX

u ) the measures µ in PX (resp. in MX ) such that u 2 Range(V (µ)). For U ⇢ Rd+1,
we denote by PX

U (resp. MX
U ) the measures µ such that µ 2 PX

u (resp. MX
u ) for all u 2 U .

2 Fair Phased Elimination algorithm

The Fair Phased Elimination algorithm belongs to the category of sequential elimination algorithms.
Classical sequential elimination algorithms typically proceed by phases, indexed by l = 1, 2, . . .. At
phase l, these algorithms consider a set of potentially optimal actions Xl. The rewards of all actions
x 2 Xl are then estimated with a given precision O(✏l), typically chosen as ✏l = 22�l, by sampling
actions in Xl. Actions sub-optimal by a gap larger than the precision level are then removed from the
set Xl+1 of potentially optimal actions for the phase l + 1.

As underlined previously, classical sequential elimination algorithms may suffer linear regret in the
biased linear bandit problem if actions allowing to estimate the bias are discarded by the algorithm
before the best group is identified (this happens for example if at a phase l, less that d + 1 action
remains, with at least one action in each group). To mitigate this problem, we first estimate the
biased evaluations of the potentially optimal actions, using ordinary least squares estimation. We then
debias the estimations using an estimator for the bias relying on independent observations, which
may be obtained by sampling sub-optimal actions. Before presenting the algorithm, let us discuss the
estimation of the evaluations and of the bias parameter.

2.1 Optimal design for parameter estimation in the biased linear bandit

G-optimal design for biased evaluation estimation As in the Phased Elimination algorithm [24],
we rely on G-optimal design to estimate the biased evaluations a>x ✓⇤ with small error uniformly over
a set of actions Xl. More precisely, for a given set of potentially optimal actions Xl, we compute the
G-optimal design solution to the problem

minimize
⇡2PXl

Xl

max
x2Xl

a
>
x (V (⇡))+ ax . (G-optimal design) (2)

This can be done using polynomial-time algorithms, relying for example on interior points method
[40], or on mixed integer second-order cone programming [37]. The celebrated General Equivalence
theorem of Kiefer [19] and Pukelsheim [33] states that the value of Equation (2) is bounded by d+ 1.
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Let ⇡⇤ denote any design solution to the G-optimal design problem (2), and let b✓ denote the ordinary
least square estimator obtained by sampling each action x 2 Xl exactly dn⇡⇤(x)e times for a given
n > 0. Then, for all x 2 Xl, the General Equivalence theorem implies that the variance of the
estimate a

>
x
b✓ is smaller than (d+1)/n. Moreover, the G-optimal design ⇡

⇤ can be chosen so that it is
supported by at most (d+1)(d+2)/2 points, so the total number of samples is at most n+ (d+1)(d+2)/2.

�-optimal design for bias evaluation In this paragraph, we introduce the �-optimal design, which
is discussed in greater depth in Appendix A. �-optimal design aims at estimating a parameter with
a given accuracy and with minimal regret. Similar ideas have recently been used in [42] to solve
classical linear bandit problems. To estimate the bias parameter !⇤, we use the estimator b! = e

>
d+1
b✓,

where b✓ is the ordinary least square estimator for the full parameter ✓⇤. Now, if we sample each
action x 2 X exactly µ(x) time, the variance of b! is equal to e

>
d+1V (µ)+ed+1. Given the vector of

gaps �, the design µ minimizing the regret of this exploration phase, while ensuring that the variance
of b! is smaller than 1, is solution of the problem

minimize
µ2M

ed+1
X

X

x

µ(x)�x such that e
>
d+1V (µ)+ed+1  1. (�-optimal design) (3)

In the following, we denote µ
� a minimizer of (3), and (�) =

P
x2Xµ

�(x)�x. Lemma 9 in
Appendix A explains how to compute the design µ

� in polynomial time by adapting tools from
c-optimal design. This lemma also shows that the support of µ� can be chosen to be of cardinality
at most d + 1. Then, choosing each action exactly dnµ�(x)e times for a given n > 0 allows us
to estimate the bias with variance lower than n

�1 and a regret no larger than n(�) + 2(d + 1).
Obviously, we do not know the gap vector � beforehand, so we must estimate it as we go.

2.2 Outline of the Fair Phased Elimination algorithm

The Fair Phased Elimination algorithm, sketched in Algorithm 3, relies on the following key ideas.
First, note that within a group, the order of the true rewards and of the biased evaluations are the
same. Hence, within a group, we can use classical algorithms for linear bandits to choose the
actions and estimate the biased evaluations with a controlled within-group regret: this is done using
G-exploration and elimination. Second, to compare actions belonging to different groups, we
independently estimate the bias parameter !⇤, using �-exploration and elimination. Finally, we
underline that bias estimation may require to sample very sub-optimal actions. Therefore, it can be
overly costly to estimate the bias up to the precision level required to identify the best group. To
prevent this, we use a stopping criterion.

G-exploration and elimination At each phase l = 1, 2, ..., we keep two sets of potentially optimal
actions belonging to the groups +1 and �1, denoted respectively X (+1)

l and X (�1)
l . If we have not

identified the group containing the best action, we run a G-EXP-ELIM routine 1 on each set X (z)
l

for z = 1 and z = �1. This routine samples actions according to a rounded G-optimal design on
X (z)

l , with a total number of observations chosen so that the biased evaluations of all actions in X (z)
l

are known with an error at most ✏l. The set X (z)
l+1 is obtained by removing from X (z)

l actions whose
estimated evaluations are sub-optimal by a gap larger than 3✏l, compared to the empirical best action
in the group. This allows to ensure that only actions sub-optimal by a gap O(✏l) remain in X (z)

l+1, and
to estimate the gap vector � with a precision sufficient for �-optimal estimation.

If the group containing the best action has been identified, we discard the other group, and run a
G-EXP-ELIM routine 1 on the set of potentially optimal actions in this group.

�-exploration and elimination If the group of the best action has not been found before phase
l, we run the �-EXP-ELIM routine 2. More precisely, relying on a previous estimate b�l of the gap
vector �, we compute the b�l-optimal design bµ. We then estimate the bias using actions sampled
according to a rounded version of this design, with a total number of observations chosen so that the
error of bias estimation is smaller than ✏l, and use it to debias the reward estimation. If the debiased
evaluation of the best action of each group are separated by a gap larger than 4✏l, we consider that
the best group is the one containing the empirical best action in terms of biased evaluation, and we
discard the other group.
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Routine 1 G-EXP-ELIM (X , n, ✏)

1: Compute G-optimal design ⇡ solution of (2) on X , with | supp(⇡)|  (d+1)(d+2)/2

2: Sample dn⇡(x)e times each action ax for x 2 X . G-optimal parameter estimation
3: Compute the ordinary least square estimator b✓
4: X 0  

n
x 2 X : maxx02X (x0 � x)>b✓  3✏

o
. Suboptimal actions elimination

5: return b✓ and X 0

If we cannot find the best group, we rely on estimates of the bias and of the biased evaluations
obtained during the previous round to update the estimate of the gap vector b�l+1.

Routine 2 �-EXP-ELIM (X , (X (z)
, b✓(z))z2{�1,1}, b�, n, ✏)

1: Compute b�-optimal design
�
µ̂,(�̂)

�
solution of (3) on X , with | supp(µ̂)|  d+ 1

2: Sample dnµ̂(x)e times each action ax for x 2 X . b�-optimal bias estimation
3: Compute b! = e

>
d+1
b✓, where b✓ is the ordinary least square estimator

4: for z 2 {�1, 1} and x 2 X (z) do bmx  a
>
x
b✓(z) � zb! . Debiased rewards estimation

5: if 9z 2 {�1, 1} such that max
x2X (z)

bmx � max
x2X (�z)

bmx + 4✏ then Z  {z} . Group elimination

6: else b�x  2 ^ (maxx02X (�1)[X (1) bmx0 � bmx + 4✏) for all x 2 X (�1) [ X (1)

7: return Z and b�

Stopping criterion As underlined previously, the �-EXP-ELIM routine samples actions that can
be very sub-optimal. As a consequence, when the gap between the best two actions of each group is
small, finding the best group can be overly costly in terms of regret. To prevent this, if the best group
has not been found at stage l fulfilling ✏l 

�
(b�l) log(T )/T

�1/3, the bias estimation is stopped and the
empirical best action in X (1)

l+1 [ X (�1)
l+1 is sampled for the remaining time (see Algorithm 3)

Algorithm 3 FAIR PHASED ELIMINATION (sketched)

1: input: �, T , X , k = |X |, ✏l = 22�l for l � 1

2: initialize: X (+1)
1  {x : zx = 1}, X (�1)

1  {x : zx = �1},
3: Z1  {�1,+1}, b�1  (2, ..., 2), l 0
4: while the budget is not spent do l l + 1
5: for z 2 Zl do
6:

⇣
b✓(z),X (z)

l+1

⌘
 G-EXP-ELIM

⇣
X (z)

l ,
2(d+1)

✏2l
log
⇣

kl(l+1)
�

⌘
, ✏l

⌘

7: if Zl = {�1,+1} then

8: if ✏l 
⇣
(b�l) log(T )/T

⌘1/3
then . Stop bias estimation

9: Sample best action in X (�1)
l+1 [ X (+1)

l+1 for the remaining time
10: else
11:

⇣
Zl+1,

b�l+1
⌘
 �-EXP-ELIM

✓
X ,

⇣
X (z)

l+1,
b✓(z)l

⌘

z2{�1,1}
, b�l

,
2
✏2l

log
⇣

l(l+1)
�

⌘
, ✏l

◆

3 Upper bound on the worst-case regret of FAIR PHASED ELIMINATION

The regret of the FAIR PHASED ELIMINATION depends on the difficulty of estimating the bias
parameter, captured by (�). Lemma 7 in Appendix A.6 shows that for all parameter �⇤ 2 X , (�)
is upper bounded by 2⇤, where ⇤ is the minimal variance of the bias estimator given by

⇤ = min
⇡2PX

ed+1

e
>
d+1 (V (⇡))+ ed+1.
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The following theorem provides a bound on the worst case regret depending on ⇤. Proofs are
postponed to Appendix C.2.

Theorem 1. For the choice � = T
�1, there exists two numerical constants C,C 0

> 0 such that the
following bound on the regret of the FAIR PHASED ELIMINATION algorithm 4 holds

RT  C

⇣

1/3
⇤ T

2/3 log(T )1/3 + (d _ ⇤) log(T ) + d
2 + d

�1/3
⇤ T

1/3 log(kT ) log(T )�1/3
⌘

 C
0

1/3
⇤ T

2/3 log(T )1/3 for T �
�
(d _ ⇤)3/2 log(T )

�
_ d

3

p
⇤

_ (d log(kT ))3

(⇤ log(T ))2
.

In Section 5.1, we show that the upper bound obtained in Theorem 1 is sharp in some settings, up to
the sub-logarithmic factor log(T )1/3.

Theorem 1 shows that the worst-case regret of the Fair Phased Elimination algorithm asymptot-
ically grows as C

1/3
⇤ T

2/3 log (T )1/3. This worst-case regret rate is higher than the typical rate
Cd log(T )T 1/2 obtained under unbiased feedback on the rewards (see, e.g., [1]). This increase in
the regret corresponds to the cost of learning from unfair evaluations. It is due to the fact that the
algorithm may need to sample actions that are sub-optimal in order to estimate the bias parameter.
Note that this rate eO(T 2/3) is typical for globally observable bandit problems with partial linear
monitoring, and can be obtained by applying results established in [20] for in the partial linear
monitoring setting to the biased linear bandit problem.

By contrast to previous results, Theorem 1 characterizes precisely the dependence of the worst-case
regret on the geometry of the action set. The relevant constant ⇤ is the minimal variance for
estimating the bias, which appears when considering the related c-optimal design problem. While the
connection between G-optimal design and the linear bandit problem has already been exploited, it is
to the best of our knowledge the first time that c-optimal design is related to partial monitoring.

The constant ⇤ corresponds to the minimum number of samples required for estimating the bias with
a variance equal to 1 (up to rounding issues). Intuitively, if the actions are very correlated with their
sensitive attributes, more samples will be needed to estimate the bias with the same precision. This
situation corresponds to cases where ⇤ is large, and leads to a higher regret. Lemma 1, illustrated in
Figure 1, relates ⇤ to the margin between the two groups of actions.

Lemma 1. ⇤ is the largest constant  � 0 such that, there exists an hyperplane H containing
zero and separating the two groups, and such that, the margin to H is at least

p
�1/

p
+1 times the

maximum distance of all points to the hyperplane (see Figure 1). When no such hyperplane exists,
then ⇤ = 1.

(a) The margin m is equal to
p

⇤�1/p⇤+1 times the
maximum distance M of any action to the hyperplane.

(b) ⇤ = 1: the groups cannot be separated by a
hyperplane containing 0.

Figure 1: Interpretation of ⇤ in terms of separation of the groups.
Interestingly, Lemma 1 underlines that under reasonable assumptions, the constant ⇤ may not
depend on the ambient dimension d, and it can even be equal to 1. By contrast, while the Information
Directed Sampling algorithm can be applied to the biased linear bandit problem, the regret bounds
established in [20] are of order ↵1/3

d
1/2

T
2/3 log(kT )1/2, where ↵ is a measure of the complexity

of the action set called the worst-case alignment constant. Lemma 6 in Appendix A shows that ↵ is
equivalent to the minimal variance of the bias estimator ⇤. Hence, our bound improves over previous
results by a factor d1/2 log(T )1/6(log(kT )/ log(T ))1/2.
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The gaps are not involved in the definition of the minimal variance of bias estimation ⇤. The reader
may have expected to get, instead of ⇤, the minimax regret for estimating the bias

e = max
�2C(X ),x02X

X

x2X
eµ(x)(x0 � x)>�, where

eµ = argmin
µ

max
x02X ,�2C(X )

X

x2X
µ(x)(x0 � x)>�, such that µ 2MX

ed+1
and e

>
d+1V (µ)+ed+1  1.

Next lemma shows that ⇤ and e are in equivalent up to a factor 2. We refer the interested reader
to Appendix A, where further discussions on the geometry of bias estimation are postponed, due to
space constraints.
Lemma 2. e/2  ⇤  2e.

4 Upper bound on the gap-depend regret of FAIR PHASED ELIMINATION

In this section, we provide an upper bound on the worst-case regret that depends on the gap between
the two best actions, and on the gap between the best actions of the two groups. Compared to
instance-dependent bounds, established in the linear bandit problem in [23, 21], gap-dependent
bounds characterize the dependence of the regret on a small number of parameters. They are typically
less sharp than instance-dependent bounds, but allow to better highlight the influence of the parameters
on the difficulty of the problem. The bound established in the following theorem relates the difficulty
of the biased linear bandit to that of bias estimation, and to that of the corresponding d-dimensional
linear bandit. Proofs are postponed to Appendix C.2.
Theorem 2. Assume that x⇤ 2 argmaxx2X x

>
�
⇤ is unique. Then, there exists two numerical

constants C,C 0
> 0 such that, for the choice � = T

�1, the following bound on the regret of the FAIR
PHASED ELIMINATION algorithm 4 holds

RT  C

  
d

�min
_


�
� _� 6= _ "T

�

�2
6=

!
log(T ) + d

2 +
d

�min
log (k)

!

 C
0

 
d

�min
_


�
� _� 6= _ "T

�

�2
6=

!
log(T ) for T � k _ e

d�min

where �min = minx2X\x⇤ �x, � 6= = minx2X :zx=�zx⇤ �x, and "T = (⇤ log(T )/T)1/3.

The term d/�min_(�_� 6=_"T )/�2
6= highlights the two sources of difficulty of the problem. On the one

hand, the term d/�min is unavoidable: even if the algorithm knew beforehand the group containing the
best action, it would still need to play a game of d-dimensional linear bandits in this group, and suffer,
in the worst-case, the corresponding gap-dependent regret [1]. Note that lower bounds on gap-depend
regret of classical linear bandits follow from considering a setting with one near-optimal action with
gap �min in each of the d dimensions. Then, any algorithm needs to explore each dimension up
to ��2

min log(T ) times in order to find the best action, but can do so by choosing the near-optimal
actions, thus having a regret ��1

min log(T ) in each direction. By contrast, the term (�_� 6=_"T )/�2
6= is

characteristic of the biased linear bandit problem: it is due to the fact that the algorithm may need
to sample very sub-optimal actions in order to find the group containing the best action. Indeed, to
identify this group, one must estimate the bias with a precision � 6=, i.e. sample sub-optimal actions
with average regret (�) approximately ��2

6= log(T ) times.

When d/�min  (�_� 6=_"T )/�2
6=, the regret corresponds to the regret of this bias estimation phase. In

other words, when both groups contain near-optimal actions, the difficulty of the problem is dominated
by the price to pay for debiasing the unfair evaluations. Interestingly, when d/�min > (�_� 6=_"T )/�2

6=,
the difficulty of the linear bandit with systematic bias is dominated by that of the classical d-linear
bandit. In this case, the algorithm is able to find the group containing the best action, and the problem
reduces to a linear bandit in dimension d. Thus, the linear bandit with systematic bias is a non trivial
example of a globally observable game that can be locally observable around the best action.

Finally, we underline that the magnitude of the bias does not appear in the regret: intuitively, no
matter its magnitude, the algorithm always need to estimate it up to the same precision (of order � 6=)
in order to find the best group and to be optimal in terms of gap-depend regret. This indicates that our
algorithm is robust against important discriminations in the evaluation mechanism.
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5 Lower bounds on the regret

In this section, we derive lower bounds on the worst-case regret and the gap-dependent regret that
respectively match the upper bounds established in Theorems 1 and 2 up to sub-logarithmic factors
or numerical constants.

5.1 Lower bound on the worst-case regret

Theorems 1 and 2 underline the dependence of the regret on the geometry of the action set. Before
stating our result, we begin by introducing the notion of ⇤-correlated action set.

Definition 1 (⇤-correlated action set). For ⇤ � 1, a set of actions A is ⇤-correlated if A 2 A⇤,d,
where

A⇤,d =

8
>><

>>:

A = {a1, ..., ak} ⇢
⇣
Rd ⇥ {�1,+1}

⌘k
:

k 2 N⇤
, min
⇡2PA

ed+1

(
e
>
d+1

⇣X

a2A
⇡(a)aa>

⌘+
ed+1

)
� ⇤

9
>>=

>>;

is the set of actions sets such that the minimal variance of the bias estimator is larger than ⇤.

In the following theorem, we establish a lower bound on the regret valid for all ⇤ � 1 by designing
⇤-correlated sets of actions A 2 A⇤,d, and obtaining lower bounds on the regret of any algorithm
on these sets of actions.

Theorem 3. Let ⇤ � 1, d � 2 and T � 43⇤. There exists an action set A 2 A⇤,d such that for
any algorithm, there exists a bandit problem with parameter ✓T 2 Rd+1 such that the regret of this
algorithm on the problem characterized by ✓T satisfies R✓T

T � 1/3
⇤ T 2/3

/8e.

Previous lower bounds on the regret of linear bandits with partial monitoring, established in [20], state
that the regret must be at least cAT 2/3 for some parameter ✓T 2 Rd+1, where cA > 0 is a constant
depending (not explicitly) on A. By contrast, Theorem 3 provides an explicit characterization of the
dependence of the regret rate on the geometry of the problem, which matches the upper bound of
Theorem 1 up to a sub-logarithmic factor. Note that the assumption d � 2 is necessary here: if d = 1,
there are at most two potentially optimal actions (namely, max{x : x 2 X} and min{x : x 2 X}).
Then, the problem becomes locally observable, and regret of order eO(T 1/2) can be achieved [20].

5.2 Lower bound on the gap-dependent regret

We now present a lower bound on the gap-dependent regret. More precisely, for given values of
�min and � 6=, we establish a lower bound on the worst case regret among parameters ✓ verifying
�min  minx2X\x⇤ �x, and � 6=  minx2X :zx=�zx⇤ �x. Before stating formally the result, let us
define the corresponding parameter set. For an action set A 2 A⇤,d, and for (�min,� 6=) 2 (0, 1)2

such that �min  � 6=, we denote

⇥A
�min,� 6=

=

8
>>><

>>>:

✓ =
� �
!

�
: � 2 C(X ), 9 !

⇣
x⇤

zx⇤

⌘
2 argmax( x

zx
)2A{x>

�},

8
⇣

x0

zx0

⌘
2 A such that x0 6= x

⇤
, (x⇤ � x

0)> � � �min,

8
⇣

x0

zx0

⌘
2 A such that zx0 6= zx⇤ , (x⇤ � x

0)> � � � 6=

9
>>>=

>>>;

the set of parameters with minimum gap �min, and minimum between-group-gap � 6=.

The upper bounds established in Theorem 2 underline the dependence of the gap-dependent regret
on the minimal regret (�) for estimating the bias. Before stating our results, we define a class
of problems ⇥A

�min,� 6=, such that (�)  . For a parameter � 2 C(X ), let us denote �(�)x =

maxx02X (x0 � x)>�, and �(�) = (�(�)x)x2X . Moreover, for a given set A, let us denote

⇥A
�min,� 6=, = ⇥A

�min,� 6=
\
n
✓ =

⇣
�

!

⌘
: � 2 C(X ), (�(�))  

o
.
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Theorem 4. For all  � 2 and all d � 4, there exists a set of actions A 2 Rd+1 such that for all
(�min,� 6=) 2 (0, 1/8)2 with �min  � 6=,

lim inf
T!1

sup
✓2⇥A

�min,� 6=,

R
✓
T

log (T )
�


d

10�min

�
_
"
+ 2

8�2
6=

#
. (4)

Theorem 4 shows that for some action sets A, the gap-depend regret of the FAIR PHASED ELIM-
INATION algorithm is asymptotically optimal up to a numerical constant. Note that the assump-
tion d � 4 is necessary in our proof to design an action set A such that Equation (4) holds for
all �min,� 6= 2 (0, 1/8). On the other hand, as discussed in Appendix C.6, for d � 2, for all
�min,� 6= 2 (0, 1/8), we can show that there exists action sets A and ✓ 2 ⇥A

�min,� 6=
such that

the lower bound in Equation (4) still holds, by considering separately the cases d/�min > /�2
6= and

d/�min  /�2
6=.

6 Conclusion

In this paper, we addressed the problem of online decision making under biased bandit feedback.
We designed a new algorithm based on �- and G-optimal design, and obtained worst-case and
gap-dependent upper bounds on its regret. We obtained lower bounds on the regret for some problem
instances showing that these rates are tight up to sub-logarithmic factors in some settings. These rates
highlight two behaviors: on the one hand, the worst case rate O(1/3

⇤ log(T )1/3T 2/3) highlights the
cost induced by the biased feedback, and the need to select sub-optimal actions in order to debias
it. On the other hand, the gap-dependent bound shows that for some instance, the problem can be
locally observable around the best action: then, the difficulty of the problem is dominated by the
difficulty of the corresponding linear bandit problem, and is no more difficult than this problem.
When this is not the case, the regret scales as (�)��2

6= log(T ), where � 6= is the gap between the
best actions of the two groups, and (�) is the minimum regret for estimating the bias with a given
precision. In Appendix D, we discuss the extension of the biased linear model and of the Fair Phased
Elimination algorithm to multiple groups with different biases. This work paves the way for studying
other bandit models with unfair feedback, considering for example continuous, multi-dimensional
sensitive attributes.

Broader impact

In this work, we propose a model for sequential decision making under biased feedback. Our goal
is primarily to provide a good strategy for sequential learning in an unfair environment, and to
characterize the difficulty of this problem by bounding the regret. On the one hand, our results reveal
that maximizing the fair rewards instead of unfair evaluations may be more difficult in terms of regret,
which may discourage practitioners from correcting unfair feedbacks. On the other hand, we believe
that as fairness is an important long-term key objective, rather than discouraging the practitioner, it
will inform them to better plan the adaptation of their methods toward this aim.
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