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Abstract
We study the problem of gradient descent learning of a single-index target function f∗(x) =
σ∗(⟨x,θ⟩) under isotropic Gaussian data in Rd, where the link function σ∗ : R → R is an un-
known degree q polynomial with information exponent p (defined as the lowest degree in the Her-
mite expansion). Prior works showed that gradient-based training of neural networks can learn
this target with n ≳ dΘ(p) samples, and such statistical complexity is predicted to be necessary
by the correlational statistical query lower bound. Surprisingly, we prove that a two-layer neural
network optimized by an SGD-based algorithm learns f∗ of arbitrary polynomial link function with
a sample and runtime complexity of n ≍ T ≍ C(q) · dpolylogd, where constant C(q) only de-
pends on the degree of σ∗, regardless of information exponent; this dimension dependence matches
the information theoretic limit up to polylogarithmic factors. Core to our analysis is the reuse of
minibatch in the gradient computation, which gives rise to higher-order information beyond corre-
lational queries.

1. Introduction

Single-index models are a classical class of functions that capture low-dimensional structure in the
learning problem. To efficiently estimate such functions, the learning algorithm should extract the
relevant (one-dimensional) subspace from high-dimensional observations; hence this problem set-
ting has been extensively studied in deep learning theory [3, 5, 9, 25, 27, 34], to examine the adap-
tivity to low-dimensional targets and benefit of representation learning in neural networks (NNs)
optimized by gradient descent (GD). In this work we study the learning of a single-index target
function with polynomial link function under isotropic Gaussian data:

yi = f∗(xi) + ςi, f∗(xi) = σ∗(⟨xi,θ⟩), xi
i.i.d.∼ N (0, Id), (1.1)

where ςi is i.i.d. label noise, θ ∈ Rd is the direction of index features, and we assume the link
function σ∗ : R→ R is a degree-q polynomial with information exponent p defined as the index of
the first non-zero coefficient in the Hermite expansion (see Definition 1).

(1.1) requires the estimation of the link function σ∗ and the relevant direction θ with d param-
eters; it is known that learning is information theoretically possible with n ≳ d samples [4, 16].
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Indeed, when σ∗ is polynomial, such complexity can be achieved up to logarithmic factors by a
tailored algorithm that exploit the specific structure of the low-dimensional target function [13]. On
the other hand, for gradient-based training of two-layer NNs, existing works established a sample
complexity of n ≳ dΘ(p) [7, 9, 15], which presents a gap between the information theoretic limit
and what is computationally achievable by (S)GD. Such a gap is also predicted by the correlational
statistical query (SQ) lower bound [2, 17], which states that for a CSQ algorithm to learn Gaussian
single-index models using less than exponential compute, a sample size of n ≳ dp/2 is necessary.

Although CSQ lower bounds are frequently cited to imply a fundamental barrier of learning
via SGD (with the squared loss), strictly speaking, the CSQ model does not include empirical risk
minimization with gradient descent, due to non-adversarial noise and existence of non-correlational
terms in the gradient computation. Recently, [19] exploited higher-order terms in the gradient update
arising from the reuse of the same minibatch, and showed that for certain link functions with high
information exponent (p > 2), two-layer NNs may still achieve weak recovery (i.e., nontrivial
overlap with θ) after two GD steps with O(d) batch size. While this presents evidence that GD-
trained NNs can learn f∗ beyond the CSQ complexity, the weak recovery statement in [19] may not
translate to statistical guarantees; moreover, the class of functions where SGD can achieve vanishing
generalization error is not fully characterized, as only specific examples of σ∗ are discussed.

Given the existence of (non-NN) algorithms that learn any single-index polynomials with n =
Õ(d) samples [13, 16], it is natural to ask if gradient-based training of NNs can achieve similar
statistical efficiency for the same function class. Motivated by observations in [19] that SGD with
reused batch may break the “curse of information exponent”, we aim to address the question:

Can a two-layer NN optimized by SGD with reused batch learn arbitrary polynomial single-index
models near the information-theoretic limit n = Õ(d), regardless of the information exponent?

1.1. Our Contributions

We answer the above question in the affirmative by showing that for (1.1) with arbitrary polynomial
link function, SGD training on a natural class of shallow NNs can achieve small generalization error
using polynomial compute and n = Õ(d) training examples, if we employ a layer-wise optimization
procedure (analogous to that in [2, 3, 17]) and reuse of the same minibatch:

Theorem [informal] A shallow NN with N = Õd(1) neurons can learn arbitrary single-index
polynomials up to small population loss: Ex[(fΘ(x) − f∗(x))

2] = od,P(1), using n = Õd(d)
samples, and an SGD-based algorithm (with reused training data) minimizing the squared loss
objective in T = Õd(d) gradient steps.

• The theorem suggests that NN + SGD with reused batch can match the statistical efficiency of
SQ algorithms tailored for low-dimensional polynomial regression [13]. Furthermore, the sample
complexity is information theoretically optimal up to polylogarithmic factors, and surpasses the
CSQ lower bound for p > 2 (see Figure 1); this disproves a conjecture in [2] stating that n ≍ dp/2
is the optimal sample complexity for empirical risk minimization with SGD.

• A key observation in our analysis is that SGD with reused batch can go beyond correlational
queries and implement (a subclass of) SQ algorithms. This enables polynomial transformations
to the labels that reduce the information exponent to (at most) 2, and hence optimization can
escape the high-entropy “equator” at initialization in polylogarithmic time.
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Information
theoretic limit

SGD + batch reuse [This work]
SQ algorithm [13]

Smoothed SGD [15]
CSQ lower bound [17]

One-pass SGD
[7]

Kernel methods
[22]

d Õ(d) Õ(dp/2) Õ(dp−1) O(dq)

Figure 1: Sample complexity of learning single-index model where the link function σ∗ has degree q and
information exponent p. For the CSQ lower bound, we translate the tolerance to sample complexity using the
i.i.d. concentration heuristic τ ≈ n−1/2. We restrict ourselves to algorithms using polynomial compute.

2. Problem Setting and Prior Works

2.1. Complexity of Learning Single-index Models

We aim to learn a single-index polynomial (1.1) where σ∗ has information exponent p defined below.

Definition 1 (Information exponent [7]) Let {Hej}∞j=0 denote the normalized Hermite polynomi-
als. Given g ∈ L2(γ) and its Hermite expansion g(z) =

∑∞
j=0 αjHej(z), the information exponent

is defined as IE(g) = p := min{j > 0 : αj ̸= 0}.

Note that f∗ contains Θ(d) parameters to be estimated, and hence information theoretically n ≳ d
samples are both sufficient and necessary for learning [6, 16, 26]; however the sample complexity
achieved by different learning algorithms depends on structure of the link function.

• Gradient-based Training of NNs. While NNs can easily approximate a single-index model
[4], existing statistical complexity of gradient-based learning scales as n ≳ dΘ(p): in the well-
specified setting, [7] proved a complexity of n = Θ̃(dp−1) for online SGD, which is improved to
Θ̃(dp/2) by smoothing [15]; as for the misspecified setting, [9, 18] showed that n ≳ dp samples
suffice. Note that this exponential dependence on p also appears in the CSQ lower bound [1, 17].

• Statistical Query Learners. If we do not restrict ourselves to correlational queries, then (1.1)
can be efficiently solved near the information-theoretic limit. Specifically, [13] proposed an SQ
algorithm that learns any single-index polynomials using n = Õ(d) samples; the key ingredient
is to construct nonlinear transformations to the labels that lowers the information exponent to 2.
This is consistent with the recently established SQ lower bound [16].

2.2. Can Gradient Descent Go Beyond Correlational Queries?

Correlational statistical query. A statistical query (SQ) learner [24, 32] accesses the target f∗
through noisy queries ϕ̃ with error tolerance τ : |ϕ̃ − Ex,y[ϕ(x, y)]| ≤ τ . Lower bound on the
performance of SQ algorithm is a classical measure of computational hardness. In the context of
gradient-based optimization, an often-studied subclass of SQ is the correlational statistical query
(CSQ) [11] where the query is restricted to (noisy version of) Ex,y[ϕ(x)y]. To see the connection
between CSQ and SGD, consider the gradient of expected squared loss for one neuron fw(x):

∇wEx,y(fw(x)− y)2 ∝ −Ex,y[y · ∇wfw(x)︸ ︷︷ ︸
correlational query

] + Ex[fw(x) · ∇wfw(x)︸ ︷︷ ︸
can be evaluated without y

].

One can see that information of the target function is encoded in the correlation term in the gradi-
ent. To infer the statistical efficiency of GD, we replace the population gradient with the empirical
average, and heuristically equate the tolerance τ with the scale of i.i.d. concentration error n−1/2.
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For Gaussian single-index model with information exponent p, [17] proved a lower bound stat-
ing that a CSQ learner either has access to queries with tolerance τ ≲ d−p/4, or exponentially many
queries are needed. This suggests a sample complexity lower bound n ≳ dp/2 for poly-time CSQ
algorithm, which is conjectured to be optimal for empirical risk minimization with SGD [2].

SGD with reused data. The gap between SQ and CSQ algorithms primarily stems from the ex-
istence of label transformations that decrease the information exponent. While such transformation
cannot be utilized by a CSQ learner, [19] argued that they may arise from two consecutive gradient
updates using the same minibatch. For illustrative purposes, consider an example where one neuron
fw(x) = σ(⟨x,w⟩) is updated by two GD steps using the same training example (x, y), starting
from zero initialization w0 = 0 (we focus on the correlational term in the loss for simplicity):

w2 = w1 + η · yσ′(⟨x,w1⟩)x = ησ′(0) y · x︸︷︷︸
CSQ term

+ η yσ′(ησ′(0)∥x∥2 · y)x︸ ︷︷ ︸
non-CSQ term

. (2.1)

One can see that in the second gradient step, the label y is transformed by the nonlinearity σ′. Based
on this observation, [19] showed that if the non-CSQ term in (2.1) reduces the information exponent
to 1, then weak recovery can be achieved after two GD steps with n = O(d) samples.

2.3. Challenges in Establishing Statistical Guarantees

Importantly, the analysis in [19] does not lead to concrete learnability guarantees for the class of
single-index polynomials, due to the following technical challenges.

SGD decreases information exponent. To show weak recovery, [19, Definition 3.1] assumed that
the student activation σ can reduce the information exponent of the labels to 1; while a few examples
are given, the existence of such transformations in SGD (with batch reuse) is not guaranteed:

• The label transformation employed in prior SQ algorithms [13] is based on the thresholding func-
tion, but extracting such transformation from SGD updates on the squared loss is challenging.
Instead, we show in Proposition 6 that bounded-degree monomial transformation suffices.

• If the link function σ∗ is even, then its information exponent after arbitrary nonlinear transfor-
mation is at least 2; such functions are predicted not be not learnable by SGD in the n ≍ d
regime [19]. To handle this setting, we analyze the SGD update up to polylog(d) time, at which
a nontrivial overlap can be established by a Grönwall-type argument similar to [7].

From weak recovery to sample complexity. Note that weak recovery (i.e., |⟨w,θ⟩| > ε for small
constant ε > 0) is insufficient to establish low generalization error of the trained NN. Therefore, we
need to show that starting from a nontrivial overlap, subsequent gradient steps can achieve strong
recovery of the index features (i.e., |⟨w,θ⟩| > 1− ε), despite the link misspecification.

3. SGD Achieves Almost-linear Sample Complexity

We consider the learning of single-index polynomials with degree q and information exponent p;
hence the link function admits the Hermite decomposition σ∗(z) =

∑q
j=p αjHej(z).

We train the following two-layer NN with N neurons using SGD to minimize the squared loss:

fΘ(x) = 1
N

∑N
j=1 ajσ(⟨x,wj⟩+ bj), (3.1)
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where Θ = (wj , aj , bj)
N
j=1 are trainable parameters, and σ : R → R is the activation function

defined as the sum of Hermite polynomials up to degree Cσ given as σ(z) :=
∑Cσ

j=0 βjHej(z),
where Cσ only depends on the degree of link function σ∗. Our SGD training procedure is described
in Algorithm 1 in the Appendix, and below we outline the key ingredients of the algorithm.

• Algorithm 1 employs a layer-wise training strategy common in the recent feature learning theory
literature [2, 3, 9, 17, 28], where in the first stage, we optimize the first-layer parameters {wj}Nj=1

with normalized SGD to learn the low-dimensional latent representation (index features θ), and
in the second phase, we train the second-layer parameters {aj}Nj=1 to fit the link function σ∗.

• The most important part in Phase I of Algorithm 1 is the reuse of same minibatch in the gradient
computation. Specifically, we sample a fresh batch of training examples in every two GD steps;
this enables us to extract non-CSQ terms from two consecutive gradient updates outlined in (2.1).

Weak Recovery Guarantee. We first consider the “search phase” of SGD, and show that after
running Phase I of Algorithm 1 for T = polylog(d) steps, a subset of parameters w achieve non-
trivial overlap with the target direction θ. We denoteH(g; j) as the j-th Hermite coefficient of some
g ∈ L2(γ). Our main theorems handle polynomial activations satisfying the following condition.

Assumption 1 For all 1 ≤ i ≤ Cσ and k = 0, 1, we assume that H
(
σ(i)(σ(1))i−1; k

)
̸= 0.

Lemma 1 Given any ℓ ≥ 2 and k ≥ 0. For Cσ ≥ 2ℓ+k−1
ℓ , if we choose {βi}Cσ

i=0 where each βi is
randomly drawn from some interval [ai, bi], then H(σ(ℓ)(σ(1))ℓ−1; k) ̸= 0 with probability 1.

Theorem 2 Under Assumption 1, for suitable hyperparameters ηt = Õ(Nd−1) and ξtj = 1−Õ(1),
after Phase I of Algorithm 1 is run for T1,1 = dpolylog(d) steps, there exists a subset of neurons
w2T1
j ∈ W with |W| = Θ̃(N) such that

∣∣⟨w2T1
j ,θ⟩

∣∣ > c for some c ≳ 1/polylog(d).

The theorem implies that after seeing n = Õ(d) samples, the parameters escape from the high-
entropy equator around initialization, analogous to the information exponent p = 2 setting in [7].

Strong recovery and sample complexity. After weak recovery is achieved, we continue Phase I
to amplify the alignment. Due to the nontrivial overlap between w and θ, the objective is no longer
dominated by the lowest degree in the Hermite expansion. Therefore, to establish strong recovery
(⟨w,θ⟩ > 1− ε), we place an additional assumption on the activation function.

Assumption 2 Recall the Hermite expansions σ∗(z) =
∑q

j=p αjHej(z), σ(z) =
∑Cσ

j=0 βjHej(z),
we assume the coefficients satisfy αjβj ≥ 0 for p ≤ j ≤ q.

Lemma 3 If we set σj(z) =
∑Cσ

i=0 βj,iHei(z), where for each neuron we sample βj,i
i.i.d.∼ Unif({±ri})

with some constant ri, then Assumption 1 and 2 are satisfied in exp(−Θ(q))-fraction of neurons.

Note that in our construction of activation for Assumptions 1 and 2, we do not exploit knowledge of
the link function σ∗ other than its degree q which decides the constant Cσ. The next theorem shows
that by running Phase I for Õ(d) more steps, a subset of neurons can achieve strong recovery.

Theorem 4 Under Assumptions 1 and 2, given parameter wj starting from a nontrivial overlap,
for suitable hyperparameters ηt = Õ(Nd−1) and ξtj = 1 − Õ(ε), if we continue to run Phase I of

Algorithm 1 for T1,2 = Õ(dε−2) steps, then ⟨w2(T1,1+T1,2)
j ,θ⟩ > 1− ε with high probability.
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Combining the first two theorems, we know that after T1 = 2(T1,1 + T1,2) steps, at least
1/polylog(d) fraction of neurons become ε-close to θ. The following proposition shows that after
strong recovery, training the second-layer parameters in Phase II achieves small generalization error.

Proposition 5 After Phase I terminates, for suitable λ > 0, the output of Phase II satisfies

Ex[(fΘ̂(x)− f∗(x))2] ≲ ε.

with probability 1 as d→∞, if we set T2 = C(q)N4polylog(d)ε−2, N = C(q)polylog(d)ε−1 for
some constant C(q) depending on the target degree q.

Putting things together. Combining the above theorems, we conclude that in order for two-layer
NN (3.1) trained by Algorithm 1 to achieve ε population squared loss, it is sufficient to set

n = T1 + T2 ≍ C(dε−2 ∨ ε−4) · polylog(d), N ≍ Cε−1polylog(d),

where constant C only depends on the target degree q. Hence we may set ε−1 ≍ polylogd to
conclude an almost-linear sample and computational complexity for learning arbitrary single-index
polynomials up to od(1) population error.

4. Conclusion and Future Directions

In this work we showed that a two-layer neural network (3.1) trained by SGD with reused batch can
learn arbitrary single-index polynomials up to ε population error using n = Õ(dε−2) samples and
compute. Our analysis is based on the observation that by reusing the same minibatch twice in the
gradient computation, a non-correlational term arises in the SGD update that transforms the labels
(despite the loss function is not modified). Specifically, following the definition in [16], we know
that polynomial σ∗ has generative exponent at most 2, which implies the existence of nonlinear
transformation T : R→ R such that the information exponent p∗ becomes at most 2, i.e.,

E[T (y)Hei(⟨x,θ⟩)] ̸= 0, for i = 1 or 2.

We show that restricting T to be polynomial is sufficient, and such transformation can be extracted
by Taylor-expanding the SGD update. Then we show via careful analysis of the trajectory that
strong recovery and low population error can be achieved under suitable activation function.

Future directions. First, our analysis only handles link functions with generative exponent p∗ ≤
2; while this covers arbitrary polynomial σ∗ analogous to [13], it is interesting to examine whether
SGD with reused batch can learn targets with p∗ ≥ 3 with a sample complexity matching the SQ
lower bound. It is also possible that ERM algorithms on i.i.d. data can achieve a statistical com-
plexity beyond the SQ lower bound due to non-adversarial noise [20, 21]; such mechanism is not
exploited in our current analysis. Additional interesting directions include extension to multi-index
[8, 10, 14, 23], hierarchical polynomials [29], and additive models [31]. Lastly, the SGD algo-
rithm that we employ requires a layer-wise training procedure and a specific batch reuse schedule;
one may therefore ask if standard multi-pass SGD training of all parameters simultaneously also
achieves the same statistical efficiency.
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Algorithm 1 Gradient-based training of two-layer neural network
Input : Learning rates ηt, momentum parameters ξtj , number of steps T1, T2, ℓ2 regularization λ.
Initialize w0

j ∼ Sd−1(1), aj ∼ Unif{±ra}.
Phase I: normalized SGD on first-layer parameters

for t = 0 to T1 do
if t > 0 is even then

Draw i.i.d. sample (x, y).
Interpolate wt

j ← wt
j − ξtj(wt

j −wt−2
j ).

Normalize wt
j ← wt

j/∥wt
j∥.

end if
wt+1
j ← wt

j − ηt∇̃w(fΘ(x)− y)2, (j = 1, . . . , N).
end for

Initialize bj ∼ Unif([−Cb, Cb]).
Phase II: SGD on second-layer parameters

â← argmina∈RN
1
T2

∑T2
i=1(fΘ(xi)− yi)2 + λ∥a∥2.

Output: Prediction function x 7→ fΘ̂(x) with Θ̂ = (âj ,w
T1
j , bj)

N
j=1.

Notations. ∥·∥ denotes the ℓ2 norm for vectors and the ℓ2 → ℓ2 operator norm for matrices. Od(·)
and od(·) stand for the big-O and little-o notations, where the subscript highlights the asymptotic
variable; we write Õ(·) when (poly-)logarithmic factors are ignored. Ω(·),Θ(·) are defined analo-
gously. γ is the standard Gaussian distribution in R. We denote its L2-norm of a function f with
respect to the data distribution (which will be specified in the sequel) as ∥f∥L2 . For g : R → R,
we denote gi as its i-th exponentiation, and g(i) is the i-th derivative. Finally, we say an event A
happens with high probability when the failure probability is bounded by poly(d)e−CH log d, where
CH is a sufficiently large constant and the hidden constants in poly(d) do not depend on CH .

Appendix A. Proof Sketch

In this section we outline the high-level ideas and key steps in our derivation.

A.1. Monomial Transformation Reduces Information Exponent

To prove the main theorem, we first establish the existence of nonlinear label transformation that (i)
reduces the information exponent, and (ii) can be easily extracted from SGD updates. If we ignore
desideratum (ii), then for polynomial link functions, transformations that decrease the information
exponent to at most 2 have been constructed in [13, Section 2.1] and [16, Corollary 4.4]. However,
these prior results are based on the thresholding function with specific offset, and it is not clear if
such function naturally arises from SGD with batch reuse. The following proposition shows that the
effect of thresholding can also be achieved by a simple monomial transformation.

Proposition 6 Let f : R→ R be any polynomial with degree up to p and ∥f∥2L2(γ) = 1, then

(i) There exists some i ≤ Cq ∈ N+ such that IE(f i) ≤ 2, where constant Cq only depends on q.

(ii) Let fodd : R → R be the odd part of f with Et∼N (0,Id)[f
odd(t)2] ≥ ρ > 0. Then there exists

some i ≤ Cq,ρ ∈ N+ such that IE(f i) = 1, where constant Cq,ρ only depends on q and ρ.

10
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We make the following remarks.

• The proposition implies that for any polynomial link function that is not even, there exists some
power i ∈ N+ only depending on the degree of σ∗ such that raising the function to the i-the power
reduces the information exponent to 1. For even link functions, the information exponent after
arbitrary transformation is at least 2 (since the transformed function is necessarily even), and this
lowest value can also be achieved by suitable monomial transformation. Furthermore, we provide
a uniform upper-bound on the required degree of transformation i via a compactness argument.

• The advantage of working with monomial label transformations is that they can be obtained from
two gradient steps on the training examples, by Taylor expanding the activation function σ′ as
seen in (2.1). In Section A.2, we build upon this observation to show that Phase I of Algorithm 1
achieves weak recovery using n ≳ dpolylog(d) samples.

Intuition behind the analysis. Our proof is inspired by [13] which introduced a (non-polynomial)
label transformation that reduces the information exponent of any degree-q polynomial to at most
2. To prove the existence of monomial transformation for the same purpose, we first show that
for a fixed link function σ∗, there exists some i such that the i-th power of the link function has
information exponent 2, which mirrors the transformation used in [13]. Then, we make use of the
compactness of the space of link functions to define a test function and obtain a uniform bound on
i. As for the polynomial transformation for non-even functions, we exploit the asymmetry of σ∗ to
further reduce the information exponent to 1.

A.2. SGD with Batch Reuse Implements Polynomial Transformation

Now we present a more formal discussion of (2.1) to illustrate how polynomial transformation can
be utilized in batch reuse SGD. We let ηt ≡ η. When one neuron fw(x) = σ(⟨x,w⟩) is updated by
two GD steps using the same sample (x, y), starting from w0 := ω, the alignment with θ becomes

⟨θ,w2⟩ =
〈
θ,
[
w1 + η · yσ′(⟨x,w1⟩)x

]〉
= ⟨θ,ω⟩+

η

[
yσ′(⟨ω,x⟩)⟨θ,x⟩+

Cσ−1∑
i=0

(η∥x∥2)iyi+1(i!)−1(σ′(⟨ω,x⟩))iσ(i+1)(⟨ω,x⟩)⟨θ,x⟩︸ ︷︷ ︸
=:ψi

]
. (A.1)

We take η ≤ cηd
−1 with a small constant cη so that η∥x∥2 ≪ 1. Crucially, the strength of each

term in (A.1) can vary depending on properties of the link function σ∗, which is unknown. Hence
a careful analysis is required to ensure that the suitable monomial transformation is always singled
out from the gradient update. We therefore divide our analysis into four cases (for simplicity we
present the noiseless setting below).

(I) If IE(σ∗) = 1. All terms in the summation in (A.1) with i ≥ 2 decay as fast as η∥x∥2 ≪ 1.
On the other hand, the expectation of yσ′(ω⊤x)θ⊤x is roughly α1β1 ≳ 1. Therefore we may
isolate the informative term yσ′(ω⊤x)θ⊤x. This case is discussed in Section C.3.3.

(II) Else if IE((σ∗)
I) = 1 for some 2 ≤ I ≤ Cσ. Let I be the lowest degree of monomial

transformation such that IE((σ∗)I) = 1. Since σ∗, · · · , σI−1
∗ have information exponent larger

11
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than 1, expectations of yσ′(ω⊤x)θ⊤x and ψi (i = 2, · · · , I − 2) scales as θ⊤ω ≍ d−
1
2 . For

i = I − 1, because σI∗ has information exponent 1,

E[ψI−1] =E
[
(η∥x∥2)I−1yI((I − 1)!)−1(σ(1)(ω⊤x))I−1σ(I)(ω⊤x)θ⊤x

]
≍ cI−1

η H(σI∗ ; 1)H(σ(I)(σ(1))I−1; 0).

For i ≥ I , ψi decays as cIη, which is smaller than the scale of ψI−1 ≍ cI−1
η . Hence the term

ψI−1 ≳ cI−1
η is singled out. This case is discussed in Section C.3.2.

(III) Else if IE(σ∗) = 2. We have E[yσ′(ω⊤x)θ⊤x] ≈ 2α2β2θ
⊤ω. Also, for i ≥ 2, since

σ2∗, · · · , σCσ
∗ have information exponent at least 2, expectation of ψi is roughly of order

(η∥x∥2)iθ⊤ω. Therefore, the term yσ′(ω⊤x)θ⊤x is singled out, and the expectation scales
as α2β2d

−1/2 at initialization. This case is discussed in Section C.3.3.

(IV) Else IE((σ∗)
I) = 2 for some 2 ≤ I ≤ Cσ. In this case, since σ∗, · · · , σI−1

∗ have information
exponent larger than 2, expectations of yσ′(ω⊤x)θ⊤x and ψi (i = 2, · · · , I − 2) are at most
(θ⊤ω)2 ≍ d−1. And at i = I − 1, because σI∗ has information exponent 2,

E[ψI−1] =E
[
(η∥x∥2)I−1yI((I − 1)!)−1(σ(1)(ω⊤x))I−1σ(I)(ω⊤x)θ⊤x

]
≍ cI−1

η H(σI∗ ; 2)H(σ(I)(σ(1))I−1; 1)θ⊤ω.

As for i ≥ I , because σi∗ has information exponent larger than 1 for I+1 ≤ i ≤ Cσ, ψi decays
as cIηθ

⊤ω, which is smaller than ψI−1 ≍ cI−1
η θ⊤ω. Thus, the term ψI−1 is dominating, whose

scale is roughly cI−1
η d−1/2 at initialization. This case is discussed in Section C.3.1.

Why interpolation is required. In all the cases above, strength of the signal is at least ηcI−1
η d−1/2

at initialization. However, this signal strength may not dominate the error coming from discarding
the effect of normalization. Usually, given the gradient −g and projection Pw = Id − ww⊤, the
spherical gradient affects the alignment as ⟨θ,wt+1⟩ =

〈
θ, wt+ηPwg

∥wt+ηPwg∥
〉
≥ ⟨θ,wt⟩ + η⟨θ, g⟩ −

1
2η

2∥g∥2⟨θ,wt⟩ + (negligible terms), see [7] or discussion in [15]. Here η⟨θ, g⟩ corresponds to
the signal, and −1

2η
2∥g∥2⟨θ,wt⟩ comes from the normalization. Thus, taking η sufficiently small,

the normalization term shrinks faster than the signal. However, in our setting, the signal shrinks
at the rate of cIη, and hence taking a smaller step does not improve the signal-to-noise ratio. The
interpolation step in our analysis allows us to reduce the effect of normalization without shrinking
the signal too fast, by ensuring that w2(t+1) does not move too far from w2t.

Combining the four cases yields the following lemma on the evolution of alignment.

Lemma 7 Under the assumptions per Theorem 2, one of the following holds:

(i) ⟨θ,w2(t+1)
j ⟩ ≥ ⟨θ,w2t

j ⟩+ η2tj (1− ξ
2(t+1)
j )γ + η2tj (1− ξ

2(t+1)
j )ν2tj .

(ii) ⟨θ,w2(t+1)
j ⟩ ≥ ⟨θ,w2t

j ⟩+ η2tj (1− ξ
2(t+1)
j )γθ⊤w2t

j + η2tj (1− ξ
2(t+1)
j )ν2tj .

Here γ ≳ cI−1
η is a constant that depends on σ∗ and ν2tj is a mean-zero noise.

For (i), taking expectation immediately yields that weak recovery is achieved within (η(1−ξ)γ)−1 =
Õ(d) steps. For (ii), θ⊤w2t

j =: κt can be approximated by a differential equation dκt

dt = η(1−ξ)γκt.
Solving this yields κt = κ0 exp(η(1−ξ)γt) ≈ d−

1
2 exp(η(1−ξ)γt), and weak recovery is obtained

within t ≲ (η(1− ξ)γ)−1 · log d = Õ(d) steps, similar to the analysis in [7].

12
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A.3. Analysis of Phase II and Statistical Guarantees

Once strong recovery is achieved for the first-layer parameters, we turn to Phase II and optimize the
second-layer with ℓ2 regularization. Since the objective is strongly convex, gradient-based optimiza-
tion can efficiently minimize the empirical loss. The learnability guarantee follows from standard
analysis analogous to that in [1, 3, 17], where we construct a “certificate” second-layer a∗ ∈ RN
that achieves small loss and small norm:

Ex

(
f∗(x)− 1

N

∑N
j=1 a

∗
jσ(w

T1
j

⊤
x+ bj)

)2
≤ ε∗, ∥a∗∥ ≲ r∗,

from which the population loss of the regularized empirical risk minimizer can be bounded via
standard Rademacher complexity argument. To construct such a certificate, we make use of the
random bias units {bj}Nj=1 to approximate the link function σ∗ as done in [9, 17, 31].

Appendix B. Polynomial Transformation

Proof of Proposition 6. We use a thresholding and compactness argument inspired by [13].

B.1. Proof for Even Functions (i)

We divide the analysis into the following steps.
(i-1): Monomials reducing the information exponent. Define τ(f) = max−2≤t≤2 |f(t)|. This
entails that if |f(t)| ≥ τ(f), then we have |t| > 2.

Consider the following expectation:

Et∼N (0,Id)

[(
f(t)

2τ(f)

)i
(t2 − 1)

]
. (B.1)

We evaluate the case when i is even. (B.1) can be lower bounded as

(B.1) = Et∼N (0,Id)

[
1[|f(t)| ≥ 2τ(f)]

(
f(t)

2τ(f)

)i
(t2 − 1)

]
+ Et∼N (0,Id)

[
1[τ(f) ≤ |f(t)| < 2τ(f)]

(
f(t)

2τ(f)

)i
(t2 − 1)

]
+ Et∼N (0,Id)

[
1[|f(t)| < τ(f)]

(
f(t)

2τ(f)

)i
(t2 − 1)

]
≥ Et∼N (0,Id)

[
1[|f(t)| ≥ 2τ(f)]

(
2τ(f)

2τ(f)

)i
(22 − 1)

]
+ Et∼N (0,Id)

[
1[τ(f) ≤ |f(t)| < 2τ(f)]

(
f(t)

2τ(f)

)i
(22 − 1)

]
+ Et∼N (0,Id)

[
1[|f(t)| < τ(f)]

(
τ(f)

2τ(f)

)i
(02 − 1)

]
≥ 3Pt∼N (0,Id)[|f(t)| ≥ 2τ(f)]− 2−i.

Note that P[|f(t)| ≥ 2τ(f)] is positive (since f is polynomial) and independent of i, while 2−i

decays to 0 as i increases. Therefore, for sufficiently large i ∈ N, (B.1) is positive and hence
IE(f i) ≤ 2. The subsequent analysis aims to provide an upper bound on i.

13
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(i-2): Construction of test function. We introduce the notation H(·; j) which takes any function
(in L1) and returns its j-th Hermite coefficient. We consider the following test function:

H (f) :=

∞∑
i=2

(
H(f i; 2)

2
i
2 (2i− 1)

iq
2

)2

. (B.2)

(i-3): Lower bound of test function via compactness. Let Fq be a set of polynomials with degree
up to q with unit L2 norm. Because H (f) is positive for any f ∈ Fq, H(f i; 2) is continuous with
respect to f , and Fq is a compact set, inff∈Fq H (f) admits a minimum value H0 which is positive.
(i-4): Conclusion via hypercontractivity. Because f is a polynomial with degree at most q, Gaus-
sian hypercontractivity [30] yields that

2H(f i; 2)2 ≤ Et∼N (0,Id)

[
(f(t))2i

]
≤ (2i− 1)iq

(
Et∼N (0,Id)

[
f(t)2

])i
= (2i− 1)iq.

Therefore, for all polynomials in Fq, a partial sum of (B.2) is uniformly bounded by∣∣∣∣ ∞∑
i=j

(
H(f i; 2)

2
i
2 (2i− 1)

iq
2

)2∣∣∣∣ ≤ ∞∑
i=j

2−i−1 = 2−j → 0 (j →∞).

Combining this with the fact that H (f) ≥ H0 > 0, we know that there exists some Cq ≤ 1 +
log2(H

−1
0 ) such that

Cq∑
i=2

(
H(f i; 2)

2
i
2 (2i− 1)

iq
2

)2

>
1

2
H0 > 0,

for all polynomials in Fq. This means that there is at least one i ≤ Cq such that H(f i; 2) ̸= 0.

B.2. Proof for Non-even Functions (ii)

(ii-1): Monomials reducing the information exponent. We prove that some exponentiation of
g := f2 has non-zero first Hermite coefficient. Denote godd as the odd part of g, and similarly
geven. Let υ(g) ∈ R+ be the value at which the followings hold:

(a) godd(t) > 0 for all t ≥ υ(g) and godd(t) < 0 for all t ≤ −υ(g).

(b) geven(t) > |godd(t)| for all t ≥ υ(g) and t ≤ −υ(g).

(c) For for all t ≥ υ(g) and t ≤ −υ(g), g(s) = g(t) (as an equation of s) only has two real-valued
solutions with opposing signs.

Such threshold υ(g) exists because the tail of g = f2 is dominated by the highest degree which is
even. Then, we let τ(g) = max−υ(g)≤t≤υ(g) |g(t)|.

Consider the following expectation:

Et∼N (0,Id)

[(
g(t)

2τ(g)

)i
t

]
. (B.3)

14
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(B.3) is decomposed as

(B.3) = Et∼N (0,Id)

[
1[|g(t)| ≥ 3τ(f)]

(
g(t)

3τ(g)

)i
t

]
+ Et∼N (0,Id)

[
1[2τ(g) ≤ |g(t)| < 3τ(g)]

(
g(t)

3τ(f)

)i
t

]
+ Et∼N (0,Id)

[
1[|g(t)| < 2τ(g)]

(
g(t)

3τ(g)

)i
t

]
. (B.4)

We first evaluate the first term. Because of (c), g(t) = 3τ(f) has two real-valued solutions α <
0 < β. Because of (a) and (b), g(β) = geven(β) + godd(β) = 3τ(f) > geven(−β) + godd(−β) =
godd(−β). Because limt→−∞ godd(t) = +∞, and α is the only solution in t < 0, we have α < −β.
Moreover, for all t > β, we have g(t) = geven(t) + godd(t) > geven(−t) + godd(−t) = godd(−t).
Combining the above, the first term of (B.4) is bounded as

Et∼N (0,Id)

[
1[|g(t)| ≥ 3τ(f)]

(
g(t)

3τ(g)

)i
t

]
= Et∼N (0,Id)

[
1[β ≤ t ≤ −α]

(
g(t)

3τ(g)

)i
t

]
+ Et∼N (0,Id)

[
1[t ≥ −α]

(
g(t)

3τ(g)

)i
t

]
+ Et∼N (0,Id)

[
1[t ≤ α]

(
g(t)

3τ(g)

)i
t

]
= Et∼N (0,Id)

[
1[β ≤ t ≤ −α]t

]
+ Et∼N (0,Id)

[
1[t ≥ −α]

((
g(t)

3τ(g)

)i
−
(
g(−t)
3τ(g)

)i)
t

]
> βPt∼N (0,Id)

[
β ≤ t ≤ −α

]
.

Following the exact same reasoning, we know that the second term of (B.4) is positive. Finally, the
third term which is bounded by

Et∼N (0,Id)

[
1[|g(t)| < 2τ(g)]

(
g(t)

3τ(g)

)i
t
]
≥ −Et∼N (0,Id)

[
1[|g(t)| < 2τ(g)]|t|

](2

3

)i
.

Putting things together,

(B.4) > βPt∼N (0,Id)

[
β ≤ t ≤ −α

]
− Et∼N (0,Id)

[
1[|g(t)| < 2τ(g)]|t|

](2

3

)i
.

The first term is independent of i and positive, while the second term goes to zero as i grows.
Therefore, there exists some i such that IE(gi; 1) = 1.
(ii-2): Construction of test function. This time we consider the following function:

H (f) :=
∞∑
i=2

(
H(f i; 1)

2
i
2 (2i− 1)

iq
2

)2

.

(ii-3): Lower bound of test function via compactness. Let Fq be a set of unit L2-norm polyno-
mials with degree up to q and Et∼N (0,Id)[f

odd(t)2] ≥ c. Since H (f) is always positive for Fq,
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H (f) is continuous with respect to f , and Fq is a compact set, inff∈Fq H (f) has the minimum
value H0 that is positive. Note that H (f) might depends on c.
(ii-4): Conclusion via hypercontractivity. Using the same argument as in (i), we conclude that
there exists some Cq,c such that

Cq∑
i=2

(
H(f i; 1)

2i(2i− 1)
iq
2

)2

>
1

2
H0 > 0.

Because H0 depends on c, Cq,c depends on c as well as q. ■

Appendix C. SGD with Reused Batch

In this section we establish the statistical and computational complexity of Algorithm 1. Recall that
the algorithm first trains the first-layer parameters with T1 steps of SGD update, where we reuse
the same sample for two consecutive steps. The analysis of first-layer training is divided into two
phases: (i) weak recovery (w⊤θ ≥ ε), and (ii) strong recovery (w⊤θ ≥ 1− ε). We then train the
second-layer parameters after strong recovery is achieved.

The section is organized as follows.

• Section C.1 verifies the conditions on the activation function σ to guarantee weak and strong
recovery.

• Section C.2 isolates a (nearly) constant fraction of neurons at initialization with an alignment
w⊤θ above a certain threshold. We focus on such neurons in Phase I of first-layer training.

• Section C.3 lower bounds the expected update of alignment w⊤θ of two gradient steps, and
Section C.4 shows that neurons yield weak recovery within 2T1,1 = Õ(d) steps.

• Section C.5 discusses how to convert weak recovery to strong recovery using 2T1,2 = Õ(dε−2)
SGD steps.

• Finally, Section C.6 analyzes the second-layer training and concludes the proof.

In the following proofs, we introduce constants ci and Ci, which depends on d at most polylog-
arithmically. Specifically, the asymptotic strength of the constants is ordered as follows.

1 ≃ C1 ≲ c−1
1 ≲ C2 ≲ C3 ≲ c−1

2

cη in the main text can be taken as cη = c1, where c1 should satisfy limd→∞ c1 = 0, but the
convergence can be arbitrarily slow. This requirement comes from the fact that we do not know the
exact value of H(σI∗ ; k∗), which might be very small. To ensure that the signal is isolated, taking
η ≍ c1d

−1 with arbitrarily slow c1 suffices. C2 can also be arbitrarily slow, as long as it satisfies
C2 = poly(c−1

1 ). C3 = polylog(d) will be used to represent polylogarithmic factor that comes
from high probability bounds.
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C.1. Conditions on the Activation Function

C.1.1. VERIFYING ASSUMPTION 1

In the following, we focus on the activation function of a single neuron and omit the subscript that
distinguishes different neurons. Recall that we consider polynomial activation functions written as

σ(z) :=

Cσ∑
j=0

βjHej(z).

For weak recovery, we can use any polynomial that has degree Cσ ≥ Cq as long as the following
condition holds: If IE(σ∗) ≥ 2 and there exists some i ≤ Cσ such that IE(σi∗) = 1, σ should satisfy

H

(
1

(I − 1)!
σ(I)(σ(1))I−1; 0

)
̸= 0. (C.1)

If IE(σ∗) ≥ 3 and there does not exist any i ≤ Cσ such that IE(σi∗) = 1 (in this case there exists
some i ≤ Cq such that IE(σi∗) = 2), σ should satisfy

H

(
1

(I − 1)!
σ(I)(σ(1))I−1; 1

)
̸= 0. (C.2)

Below we prove Lemma 1 which shows that the above conditions are met with probability 1 for
randomly drawn the Hermite coefficients.
Proof of Lemma 1. We note that H(σ(i)(σ(1))i−1; k) = E[σ(i)(σ(1))i−1Hek] is a polynomial of
{βj}Cσ

j=0. This polynomial is not identically equal to zero. To confirm this, consider σ = xCσ +

xCσ−1. Because σ(i)(σ(1))i−1 is expanded as a sum of xl(i(Cσ−3) ≤ l ≤ i(Cσ−2)+1 with positive
coefficients and each xl is a sum of Hel,Hel−2 · · · with positive coefficients, σ(i)(σ(1))i−1 has all
positive Hermite coefficients for degree 0, 1, · · · , i(Cσ − 2) + 1. If k ≤ i(Cσ − 2) + 1, this choice
of σ yields H(σ(i)(σ(1))i−1; k) > 0, which confirms that H(σ(i)(σ(1))i−1; k) as a polynomial of
{βj}Cσ

j=0 is not identically equal to zero.
Now, the assertion follows from the Schwartz–Zippel Lemma [33], or the fact that zeros of a

non-zero polynomial form a measure-zero set. ■

C.1.2. VERIFYING ASSUMPTION 2

On the other hand, for the strong recovery we require an additional condition on the activation
function due to link misspecification, which is also introduced in [7, 28]:

p∑
j=p

j!αjβjs
j > 0 for all s > 0.

In order to meet Assumption 1 and (2) simultaneously, we follow [31] and randomize the activation
function. Specifically, the activation function should satisfy

(I) If IE(σ∗) = 1. We require β1 > 0 and
∑q

j=1 j!αjβjs
j−1 > 0 for all s > 0.
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(II) Else if IE((σ∗)I) = 1 for some 2 ≤ I ≤ Cσ. We require H(σ(I)(σ(1))I−1; 0) is not 0 and
has the same sign as H((σ∗)

I ; 1). Also,
∑q

j=2 j!αjβjs
j−1 > 0 for all s > 0.

(III) Else if IE(σ∗) = 2. We require β2 > 0 and
∑q

j=2 j!αjβjs
j−1 > 0 for all s > 0.

(IV) Else IE((σ∗)
I) = 2 for some 2 ≤ I ≤ Cq. We require H(σ(I)(σ(1))I−1; 1) is not 0 and has

the same sign as H((σ∗)
I ; 2). Also,

∑q
j=3 j!αjβjs

j−1 > 0 for all s > 0.

Now we prove Lemma 3 which verifies the existence of an activation function that satisfies the
assumptions above with non-zero probability. The construction does not depend on the link function
itself, but only its degree q.
Proof of Lemma 3. Let c be a sufficiently small constant, andCσ be the minimum odd integer with
Cσ ≥ max{Cq+1, q+2, 3}. With probability 1/2, we choose the coefficients as β1 ∼ Unif({±1}),
and βj ∼ Unif({−c, c}) for 2 ≤ j ≤ Cσ. Then, it is easy to see (I) and (III) are met with probability
at least 2−q, because they hold when sign(αj) = sign(βj) holds in the summation.

By taking c sufficiently small, we have

H(σ(I)(σ(1))I−1; 0) = i!βI(β1)
I−1︸ ︷︷ ︸

≍ c

+O(c).

When I is even, by adjusting the sign of β1, H(σ(I)(σ(1))I−1; 0) is not 0 and has the same sign as
H((σ∗)

I ; 1) with probability 1
2 . Note that the sign of β1 is independent from whether

∑q
j=2 j!αjβjs

j−1 >

0 for all s > 0 holds. This holds with probability at least 2−q+1. Thus we verified (II) for even I .
In the same vein, we can verify (IV) for even I ≤ Cq ≤ Cσ − 1. We have

H(σ(I)(σ(1))I−1; 1) = (I + 1)!βI+1(β1)
I−1︸ ︷︷ ︸

≍ c

+O(c2),

and (IV) can be verified using the same argument.
Otherwise (also with probability 1/2), we choose the coefficients as βj ∼ Unif({−c, c}) for

1 ≤ j ≤ Cσ − 2 and βCσ−1 = βCσ = ±1 to verify (II) and (IV) for odd I . It is easy to see
that

∑q
j=2 j!αjβjs

j−1 > 0 for all s > 0 holds for (I) and
∑q

j=3 j!αjβjs
j−1 > 0 for all s > 0

for (III). In addition, H((HeCσ + HeCσ−1)
(I)((HeCσ + HeCσ−1)

(1))I−1; 0) > 0 and H((HeCσ +
HeCσ−1)

(I)((HeCσ + HeCσ−1)
(1))I−1; 1) > 0. Therefore, by taking c sufficiently small, flipping

the sign of HeCσ + HeCσ−1 can change the sign of H(σ(I)(σ(1))I−1; k) for both (II) and (IV) with
odd I . Combining all cases yields the desired claim. ■

C.2. Random Initialization

In Section C.3.1 we focus on the neurons with slightly larger initial alignment that satisfy κ0j =

θ⊤w0
j ≥ 2C2d

− 1
2 at initialization, where constant C2 grows at most polylogarithmically in d. The

following lemma states that roughly a constant portion of the neurons satisfies this initial alignment
condition.

Lemma 8 At the time of initialization, κ0j = θ⊤w0 satisfies the following:

P[κ0j ≥ 2C2d
− 1

2 ] = P[κ0j ≤ −2C2d
− 1

2 ] ≳ e−16C2
2 = Ω̃(1).
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We make use of the following lemma.

Lemma 9 (Theorem 2 of [12]) For any β > 1 and s ∈ R, we have√
2e(β − 1)

2β
√
π

e−
βs2

2 ≤
∫ ∞

s

1√
2π
e−

t2

2 dt

Proof of Lemma 8. Because κ0 = v⊤w
d
=

e⊤1 g
g , where g ∼ N (0, Id),

P[κ0j ≥ 2C2d
− 1

2 ] = Pg∼N (0,Id)

[
e⊤1 g ≥ 4C2 ∧ ∥g∥ ≤ 2d

1
2

]
≥ Pg∼N (0,Id)

[
e⊤1 g ≥ 4C2

]
− Pg∼N (0,Id)

[
∥g∥ ≥ 2d

1
2

]
≳

√
2e(β − 1)

2β
√
π

e−8βC2
2 − e−Ω(d).

By letting β = 2, we have that P[κ0j ≥ C2d
− 1

2 ] ≳ e−16C2
2 . Due to symmetry, P[κ0j ≤ 2C2d

− 1
2 ] =

P[κ0j ≥ 2C2d
− 1

2 ]. ■

C.3. Population Update

We first analyze the training of first-layer parameters by evaluating the expected (population) update
of two gradient steps with the same training example. At each step, the parameters are updated as

wt+1
j ← wt

j − ηt∇̃w

(
(fΘ(x)− y)2

)
= wt

j − ηt∇̃w

(
1

N

N∑
j=1

ajσ(w
t
j
⊤
x)

)2

+ 2ηt∇̃w

(
y
1

N

N∑
j=1

ajσ(w
t
j
⊤
x)

)
.

While the second term scales with ηta2j = ηtc2a, the third term scales with ηtaj = ηtca. Thus, by
setting the second-layer scale ca sufficiently small, we can ignore the interaction of neurons; similar
mechanism also appeared in [2, 3]. Specifically, in the following, we show that the strength of the
signal is θ⊤wt

j ≳ d−
1
2 . Thus, by simply letting ca ≲ C−1

3 d−
1
2 , we can ignore the effect of the

squared term. Thus we may focus on the following correlational update:

wt+1
j ← wt

j + ηt∇̃w

(
y
1

N

N∑
j=1

ajσ(w
t
j
⊤
x)

)
.

Due to the absence of interaction between neurons, we omit the subscript j for the index of neurons
and ignore the prefactor of N (which can be absorbed into the learning rate); multiplying N to ηt

specified below recovers the scaling of ηt presented in the main text.
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C.3.1. WHEN IE(σI∗) = 2 WITH I ≥ 2

First we consider the most technically difficult case, when IE[σ∗] ≥ 3 and the information exponent
cannot be lowered to 1 for i ≤ Cσ; in this case, from Proposition 6 we know that there exists some
2 ≤ i ≤ Cσ such that IE[σi∗] = 2 and we let I be the first such i.

Without loss of generality, we assume (LHS of (C.2)) > 0; the same result holds for the case of
H(σI∗ ; 2) < 0 except for the opposite sign for the second term in (C.3), by simply setting ξ = 1+ η̃
in the following.

Lemma 10 Starting from w = ω, if we choose step size η = caη
t = c1d

−1 and negative momen-
tum ξ = 1− η̃, and assume that C2d

− 1
2 ≤ κ = θ⊤ω ≤ c2 and η̃ ≤ c2, then the expected change in

the alignment after two gradient steps on the same sample (x, y) in Algorithm 1 is as follows:

θ⊤w = θ⊤ω + (1 +O(c1)) · ηη̃cI−1
1 H

(
1

(I − 1)!
σ(I)(σ(1))I−1; 1

)
H
(
(σ∗)

I ; 2
)
κ+ ηη̃ν,

where ν is a mean-zero random variable that satisfies P[|ν| > s] ≤ exp(−s1/C1/C1) for all s > 0.

Proof. We first compute one gradient step from w = ω with a fresh sample (x, y).

∇̃wyσ(w
⊤x) = yσ′(ω⊤x)x.

Then, with a projection matrix Pω = I − ωω⊤, the updated parameter becomes

w ← w + Pωηyσ
′(w⊤x)x = ω + ηyσ′(ω⊤x)Pωx, (C.3)

and the next gradient step with the same sample is computed as

∇̃wyσ(w
⊤x) = ηyσ′(w⊤x)x

= yσ′
(
(ω + ηyσ′(ω⊤x)Pωx)

⊤x
)
x

= yσ′
(
ω⊤x+ η∥x∥2Pω

σ′(ω⊤x)y
)
x, (C.4)

here we used the notation ∥v∥2A = v⊤Av for a vector v ∈ Rd and a positive symmetric matrix
A ∈ Rd×d. From (C.3) and (C.4), the parameter after the two steps is obtained as

w ← w + ∇̃wyσ(w
⊤x)

= ω + ηyσ′(ω⊤x)Pωx+ ηyσ′
(
ω⊤x+ η∥x∥2Pω

σ′(ω⊤x)y
)
Pωx

= ω + ηg,

where we defined

g := yσ′(ω⊤x)Pωx+ yσ′
(
ω⊤x+ η∥x∥2Pω

σ′(ω⊤x)y
)
Pωx. (C.5)

Finally, normalization yields

w ← w − ξ(w − ω)

∥w − ξ(w − ω)∥
=

ω + ηη̃g

∥ω + ηη̃g∥
.
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Therefore, the update of the alignment is

θ⊤w =
κ+ ηη̃θ⊤g

∥ω + ηη̃g∥
=

κ+ ηη̃θ⊤g

(1 + η2η̃2∥g∥2)
1
2

≥ κ+ ηη̃θ⊤g − 1

2
κη2η̃2∥g∥2 − 1

2
η3η̃3|θ⊤g|∥g∥2. (C.6)

On the other hand, we have

θ⊤w ≤ κ+ ηη̃θ⊤g +
1

2
κη2η̃2∥g∥2 + 1

2
η3η̃3|θ⊤g|∥g∥2. (C.7)

We evaluate the expectation of (C.6). For the j-th Hermite polynomial Hej and u ∈ Sd−1, we
have that

Ex∼N (0,Id)[Hei(e
⊤
1 x)f(u

⊤x)e⊤1 x]

= j(e⊤1 x)
j−1Ex∼N (0,Id)[f

(j−1)(u⊤x)] + (e⊤1 x)
j+1Ex∼N (0,Id)[f

(j+1)(u⊤x)],

Ex∼N (0,Id)[Hej(x1)f(u
⊤x)e⊤2 x] = (e⊤1 x)

j(e⊤2 x)Ex∼N (0,Id)[f
(j+1)(u⊤x)].

Therefore,

Ex∼N (0,Id)[Hej(e
⊤
1 x)f(u

⊤x)x]

=


j(e⊤1 x)

j−1

0
...
0

Ex∼N (0,Id)[f
(j−1)(u⊤x)]e1 + (e⊤1 x)

jEx∼N (0,Id)[f
(j+1)(u⊤x)]u.

Hence the first term of g (C.5) can be exapanded as

E[yσ′(ω⊤x)Pωx] = PωE
[( q∑

j=p

αjHej(θ
⊤x)

)(
j

Cq∑
j=0

βjHej
(
ω⊤x

))
x

]

= Pω

q∑
j=p

[
j!αjβj

(
θ⊤ω

)j−1
θ + (j + 2)!αjβj+2

(
θ⊤ω

)j
ω

]

=

q∑
j=p

j!αjβj
(
θ⊤ω

)j−1
Pωθ. (C.8)

The coefficient is evaluated as∣∣∣∣ q∑
j=p

j!αjβj
(
θ⊤ω

)j−1
∣∣∣∣ ≲ κp−1 ≤ κ2. (C.9)

For the second term of g (C.5), we first bound the difference in replacing ∥x∥2Pω
with d,∣∣θ⊤E[yσ′

(
ω⊤x+ η∥x∥2Pω

σ′(ω⊤x)y
)
Pωx]− θ⊤E[yσ′

(
ω⊤x+ ηdσ′(ω⊤x)y

)
Pωx]

∣∣
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= 2
∣∣E[(η∥x∥2Pω

− ηd)h(η∥x∥2Pω
,ω⊤x,θ⊤x,θ⊤Pωx)]

∣∣, (C.10)

where h is a polynomial with degree at most (Cq + q)Cq−1 + q + 1 and coefficients are all O(1).
(C.10) is further upper bounded as

(C.10) ≤ 2E[(η∥x∥2Pω
− ηd)2]

1
2E[(h(η∥x∥2Pω

,ω⊤x,θ⊤x,θ⊤Pωx))
2]

1
2 ,

by Cauchy-Schwarz inequality. E[(η∥x∥2Pω
− ηd)2]

1
2 = η(2d− 1)

1
2 , and the expectation of E[h2]

is O(1) when η ≤ d−1. Therefore, (C.10) is bounded by C1ηd
1
2 .

Now, we consider E[yσ′
(
ω⊤x + ηdσ′(ω⊤x)y

)
Pωx]. The following decomposition can be

made.

E[yσ′
(
ω⊤x+ ηdσ′(ω⊤x)y

)
Pωx]

=

Cσ∑
j=1

jβjE
[
yHej−1

(
ω⊤x+ ηdσ′(ω⊤x)y

)
Pωx

]

=

j−1∑
k=0

Cσ∑
j=1

jβj

(
j − 1

k

)
E
[
yHej−1−k

(
ω⊤x

)(
ηdσ′(ω⊤x)y

)k
Pωx

]
. (C.11)

We evaluate each term of (C.11) except for k = I−1. Each term of (C.11) is a constant multiple
of Pωθ. and we can evaluate the constant by∣∣∣∣θ⊤E

[
yHej−1−k

(
ω⊤x

)(
ηdσ′(ω⊤x)y

)k
Pωx

]∣∣∣∣
= (ηd)k

∣∣∣∣E[(σ′(ω⊤x)
)k(

σ∗(θ
⊤x) + υ

)k+1
Hej−k−1

(
ω⊤x

)
θ⊤Pωx

]∣∣∣∣. (C.12)

When k ≤ I−2, σ∗(θ⊤x), · · · , σ∗(θ⊤x)k+1 has information exponent larger than 2. Therefore,
we have

(C.12)

= (ηd)k
∣∣∣∣ k+1∑
l=0

(
k + 1

l

)
E[υl]E

[(
σ′(ω⊤x)

)k(
σ∗(θ

⊤x)
)k−l+1

Hej−k−1

(
ω⊤x

)
θ⊤Pωx

]∣∣∣∣
= (ηd)k

∣∣∣∣ k+1∑
l=0

(
k + 1

l

)
E[υl]

∞∑
m=3

m!κq(k−l+1)H
(
(σ∗)

k−l+1;m
)
H
(
(σ′)kHej−k−1;m− 1

)
θ⊤Pωv

∣∣∣∣
≲ (ηd)kκ2.

When k ≥ I , we know that (σ∗(θ⊤x))k+1, · · · , (σ∗(θ⊤x))I have information exponent larger
than 1, and (σ∗(θ

⊤x))I−1, · · · , (σ∗(θ⊤x)) have information exponent larger than 2. Thus, the
expectation in (C.12) is bounded by

(C.12)
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= (ηd)k
∣∣∣∣ k+1∑
l=0

(
k + 1

l

)
E[υl]

∞∑
m=2

m!κq(k−l+1)H
(
(σ∗)

k−l+1;m− 1
)
H
(
(σ′)kHej−k−1;m

)
θ⊤Pωv

∣∣∣∣
≲ (ηd)kκ.

Now, consider the case when k = I − 1:

Cσ∑
j=1

jβj

(
j − 1

I − 1

)
E
[
yHej−1−k

(
ω⊤x

)(
ηdσ′(ω⊤x)

(
σ∗(θ

⊤x) + υ
))I

Pωx

]

=

I∑
l=0

Cσ∑
j=1

(ηd)kjβj

(
j − 1

I − 1

)(
I

l

)
E[υl]E

[
Hej−1−k

(
ω⊤x

)(
σ′(ω⊤x)

)I−1(
σ∗(θ

⊤x)
)I−l

Pωx

]
.

Note that σ∗(θ⊤x), · · · , (σ∗(θ⊤x))I−1 has information exponent larger than 2. Therefore, for
l ≥ 1, we have∣∣∣∣θ⊤(ηd)I−1jβj

(
j − 1

I − 1

)(
I

l

)
E[υl]E

[
Hej−1−k

(
ω⊤x

)(
σ′(ω⊤x)

)I−1(
σ∗(θ

⊤x)
)I−l

Pωx

]∣∣∣∣
≲ (ηd)I−1

∣∣∣∣E[ ∞∑
m=3

m!κm−1H
(
Hej−I(σ

′)I−1;m− 1
)
H
((
σ∗
)I−l

;m
)
θ⊤Pωx

]∣∣∣∣
≲ (ηd)I−1κ2.

And for l = 0, (σ∗(θ⊤x))I has information exponent 2 and we have

Cσ∑
j=1

(ηd)I−1jβj

(
j − 1

I − 1

)
E
[
Hej−I

(
ω⊤x

)(
σ′(ω⊤x)

)I−1(
σ∗(θ

⊤x)
)I−l

Pωx

]

= (ηd)I−1
∞∑
m=2

m!κm−1H

( Cσ∑
j=1

jβj

(
j − 1

I − 1

)
(σ′)I−1Hej−I ;m− 1

)
H
(
(σ∗)

I ;m
)
Pωv (C.13)

If H
(∑Cσ

j=1 jβj
(
j−1
I−1

)
(σ′)I−1Hej−I ; 1

)
̸= 0, we have

(C.13) = (1 +O(κ)) · (ηd)I−1 2H

( Cσ∑
j=1

jβj

(
j − 1

I − 1

)
(σ′)I−1Hej−I ; 1

)
H
(
(σ∗)

I ; 2
)

︸ ︷︷ ︸
=:γ

κPωv.

We have that

θ⊤E[yσ′
(
ω⊤x+ ηdσ′(ω⊤x)y

)
Pωx]

= (1 +O(κ)) · (ηd)I−1γκθ⊤Pωx+O(κ2 + C1ηd
1
2 + (ηd)I−2κ2 + (ηd)Iκ+ (ηd)I−1κ2)

When d−
1
2C3 ≤ κ ≤ c2 and η = c1d

−1, we have

θ⊤E[yσ′
(
ω⊤x+ ηdσ′(ω⊤x)y

)
Pωx] = (1 +O(c1)) · cI−1

1 γκ
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Together with the bound on the first term ((C.8) and (C.9)), the expectation of g (C.5) is evalu-
ated as

θ⊤E[g] = (1 +O(c1)) · cI−1
1 γκ.

By using this, the expected update of the alignment becomes

E[θ⊤w] ≥ κ+ ηη̃(1 +O(c1)) · cI−1
1 γκ− 1

2
κη2η̃2E[∥g∥2]− 1

2
η3η̃3E[|θ⊤g|∥g∥2].

Note that E[∥g∥2],E[|θ⊤g|∥g∥2] ≲ d and κ ≲ c1. Thus,

E[θ⊤w] ≥ κ+ ηη̃(1 +O(c1)) · cI−1
1 γκ− C1ηη̃

2(κηd+ η2η̃d).

When η̃ ≤ c2, E[θ⊤w] is evaluated as

E[θ⊤w] ≥ κ+ ηη̃(1 +O(c1)) · cI−1
1 γκ.

In the same way, using (C.7), we also have the opposite bound:

E[θ⊤w] ≤ κ+ ηη̃(1 +O(c1)) · cI−1
1 γκ

Regarding the noise, recall that

θ⊤w =
κ+ ηη̃θ⊤g

∥ω + ηη̃g∥
.

η−1η̃−1
(
κ+ ηη̃θ⊤g − E[κ+ ηη̃θ⊤g]

)
= θ⊤g − E[θ⊤g] is a mean-zero polynomial of Gaussian

inputs, with all coefficients and variances of inputs bounded by O(1). Notice that normalization
does not increase the absolute value of the noise. Thus, regarding ν = η−1η̃−1

(
θ⊤w − E[θ⊤w]

)
,

we have that

P
[∣∣η−1η̃−1θ⊤w − E[η−1η̃−1θ⊤w]

∣∣ > t
]
≤ P

[∣∣∣∣θ⊤g − E
[
θ⊤g

]∣∣∣∣ > t

]
≤ exp(−t1/C1/C1).

This completes the proof. ■

C.3.2. WHEN IE(σI∗) = 1 WITH I ≥ 2

Next we consider the case when IE(σ∗) ≥ 2 and there exists some i ≤ Cσ such that IE(σi∗) = 1.
Let I(≥ 2) be the first such i. Without loss of generality, we assume (LHS of (C.1)) > 0.

Lemma 11 For the case of IE(σI∗) = 1, starting from w = ω, if we choose step size η = caη
t =

c1d
−1 and negative momentum ξ = 1 − η̃, and assume that d−

1
2 ≤ κ = θ⊤ω ≤ c2 and η̃ ≤ c2,

then the expected change in the alignment after two gradient steps on the same sample (x, y) in
Algorithm 1 is as follows:

θ⊤w = θ⊤ω + (1 +O(c1)) · ηη̃cI−1
1 H

(
1

(I − 1)!
σ(I)(σ(1))I−1; 0

)
H
(
(σ∗)

I ; 1
)
+ ηη̃ν,

where ν is a mean-zero random variable that satisfies P[|ν| > s] ≤ exp(−s1/C1/C1) for all s > 0.

24



NEURAL NETWORK EFFICIENTLY LEARNS SINGLE-INDEX POLYNOMIALS

Proof. Similarly to Lemma 10, update of the alignment is evaluated as

θ⊤w ≥ κ+ ηc2θ
⊤g − 1

2
κη2η̃2∥g∥2 − 1

2
η3η̃3|θ⊤g|∥g∥2 (C.14)

and

θ⊤w ≤ κ+ ηc2θ
⊤g +

1

2
κη2η̃2∥g∥2 + 1

2
η3η̃3|θ⊤g|∥g∥2,

where

g = yσ′(ω⊤x)Pωx+ yσ′
(
ω⊤x+ η∥x∥2Pω

σ′(ω⊤x)y
)
Pωx. (C.15)

From (C.8) and (C.9) we know that the first term of g (C.15) is evaluated as

E[yσ′(ω⊤x)Pωx] =

q∑
j=p

j!αjβj
(
θ⊤ω

)j−1
Pωθ, (C.16)

where the sum of coefficients are bounded by ≲ κ.
We then consider the second term of g (C.15). We can replace ∥x∥2Pω

by d with the following
bound similarly to (C.10):∣∣θ⊤E[yσ′

(
ω⊤x+ η∥x∥2Pω

σ′(ω⊤x)y
)
Pωx]− θ⊤E[yσ′

(
ω⊤x+ ηdσ′(ω⊤x)y

)
Pωx]

∣∣ ≤ C1ηd
1
2 .

For the term E[yσ′
(
ω⊤x+ ηdσ′(ω⊤x)y

)
Pωx]. the following decomposition can be made.

E[yσ′
(
ω⊤x+ ηdσ′(ω⊤x)y

)
Pωx]

=

Cσ∑
j=1

jβjE
[
yHej−1

(
ω⊤x+ ηdσ′(ω⊤x)y

)
Pωx

]

=

j−1∑
k=0

Cσ∑
j=1

jβj

(
j − 1

k

)
E
[
yHej−1−k

(
ω⊤x

)(
ηdσ′(ω⊤x)y

)k
Pωx

]
. (C.17)

We evaluate each term of (C.17) except for k = I − 1. Similarly to the bounds on (C.12), each term
is a constant multiple of Pωv, and we want to bound∣∣∣∣θE[yHej−1−k

(
ω⊤x

)(
ηdσ′(ω⊤x)y

)k
Pωx

]∣∣∣∣. (C.18)

When k ≤ I − 2, σ∗(θ⊤x), · · · , σ∗(θ⊤x)k+1 has information exponent larger than 1. Therefore,
we have

(C.18) ≲ (ηd)kκ.

When k ≥ I , we have

(C.18) ≲ (ηd)k ≤ cI1.
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Now we consider the case when k = I − 1:

Cσ∑
j=1

jβj

(
j − 1

I − 1

)
E
[
yHej−1−k

(
ω⊤x

)(
ηdσ′(ω⊤x)

(
σ∗(θ

⊤x) + υ
))I

Pωx

]

=
I∑
l=0

Cσ∑
j=1

(ηd)kjβj

(
j − 1

I − 1

)(
I

l

)
E[υl]E

[
Hej−1−k

(
ω⊤x

)(
σ′(ω⊤x)

)I−1(
σ∗(θ

⊤x)
)I−l

Pωx

]
.

Note that σ∗(θ⊤x), · · · , (σ∗(θ⊤x))I−1 has information exponent larger than 1. Therefore, for
l ≥ 1, we have∣∣∣∣θ⊤(ηd)I−1jβj

(
j − 1

I − 1

)(
I

l

)
E[υl]E

[
Hej−1−k

(
ω⊤x

)(
σ′(ω⊤x)

)I−1(
σ∗(θ

⊤x)
)I−l

Pωx

]∣∣∣∣
≲ (ηd)I−1

∣∣∣∣E[ ∞∑
m=2

m!κm−1H
(
Hej−I(σ

′)I−1;m− 1
)
H
((
σ∗
)I−l

;m
)
θ⊤Pωx

]∣∣∣∣
≲ (ηd)I−1κ.

And for l = 0, (σ∗(θ⊤x))I has information exponent 1 and we have

Cσ∑
j=1

(ηd)I−1jβj

(
j − 1

I − 1

)
E
[
Hej−I

(
ω⊤x

)(
σ′(ω⊤x)

)I−1(
σ∗(θ

⊤x)
)I−l

Pωx

]

= (ηd)I−1
∞∑
m=1

m!κm−1H

( Cσ∑
j=1

jβj

(
j − 1

I − 1

)
(σ′)I−1Hej−I ;m− 1

)
H
(
(σ∗)

I ;m
)
Pωv (C.19)

If H
(∑Cσ

j=1 jβj
(
j−1
I−1

)
(σ′)I−1Hej−I ; 0

)
̸= 0, we have

(C.19) = (1 +O(κ)) · (ηd)I−1H

( Cσ∑
j=1

jβj

(
j − 1

I − 1

)
(σ′)I−1Hej−I ; 0

)
H
(
(σ∗)

I ; 1
)

︸ ︷︷ ︸
=:γ

Pωv.

Note that

H

( Cσ∑
j=1

jβj

(
j − 1

I − 1

)
(σ′)I−1Hej−I ; 0

)
= H

(
1

(I − 1)!
σ(I)(σ(1))I−1; 0

)
.

Now we have that

θ⊤E[yσ′
(
ω⊤x+ ηdσ′(ω⊤x)y

)
Pωx]

= (1 +O(κ)) · (ηd)I−1γθ⊤Pωx+O(κ+ C1ηd
1
2 + (ηd)I−2κ+ (ηd)I + (ηd)I−1κ).

When d−
1
2C3 ≤ κ ≤ c2 and η = c1d

−1, we have

θ⊤E[yσ′
(
ω⊤x+ ηdσ′(ω⊤x)y

)
Pωx] = (1 +O(c1)) · cI−1

1 γ
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Together with the bound on the first term ((C.16)), the expectation of g is evaluated as

θ⊤E[g] = (1 +O(c1)) · cI−1
1 .

By using this and (C.14), the expected update of the alignment becomes

E[θ⊤w] ≥ κ+ ηη̃(1 +O(c1)) · cI−1
1 γ − 1

2
κη2η̃2E[∥g∥2]− 1

2
η3η̃3E[|θ⊤g|∥g∥2].

Note that E[∥g∥2],E[|θ⊤g|∥g∥2] ≲ d and κ ≲ c1. Taking η̃ ≤ c2 yields that

E[θ⊤w] ≥ κ+ ηη̃(1 +O(c1)) · cI−1
1 γ.

The upper bound can be obtained in similar fashion,

E[θ⊤w] ≤ κ+ ηη̃(1 +O(c1)) · cI−1
1 γ.

Finally, the noise can be handled in the exact same way as that of Lemma 10, the details of which
we omit. ■

C.3.3. WHEN IE(σI∗) = 1, 2 WITH I = 1

We finally consider the case when IE[σ∗] = 1 or when IE[σ∗] = 2 and IE[σi∗] ≥ 2 for i =
2, · · · , Cσ.

Lemma 12 Starting from w = ω, if we choose step size η = caη
t = c1d

−1 and negative momentum
ξ = 1 − η̃, and assume that d−

1
2 ≤ κ = θ⊤ω ≤ c2 and η̃ ≤ c2, then for IE[σ∗] = 1, the expected

change in the alignment after two gradient steps on the same sample (x, y) in Algorithm 1 is as
follows:

θ⊤w = θ⊤ω + (1 +O(c1)) · 2ηη̃α1β1 + ηη̃ν,

and when IE[σ∗] = 2 and IE[σi∗] ≥ 2 for all i = 2, · · · , Cq,

θ⊤w = θ⊤ω + (1 +O(c1)) · 4ηη̃α2β2κ+ ηη̃ν,

where ν is a mean-zero random variable that satisfies P[|ν| > s] ≤ exp(−s1/C1/C1) for all s > 0.

Proof. Similar to Lemma 10, the update of the alignment is

θ⊤w ≥ κ+ ηη̃θ⊤g − 1

2
κη2η̃2∥g∥2 − 1

2
η3η̃3|θ⊤g|∥g∥2

and

θ⊤w ≤ κ+ ηη̃θ⊤g +
1

2
κη2η̃2∥g∥2 + 1

2
η3η̃3|θ⊤g|∥g∥2

where

g = yσ′(ω⊤x)Pωx+ yσ′
(
ω⊤x+ η∥x∥2Pω

σ′(ω⊤x)y
)
Pωx.
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We first consider the case when IE[σ∗] = 1. We have

θ⊤E[yσ′(ω⊤x)Pωx] = α1β1θ
⊤Pωθ = α1β1(1− κ2).

Because we take η = c1d
−1 with a vanishing constant c1 and assume that κ ≤ c2, we have∣∣θ⊤E[yσ′

(
ω⊤x+ η∥x∥2Pω

σ′(ω⊤x)y
)
Pωx]− θ⊤E[yσ′(ω⊤x)Pωx]

∣∣ ≲ ηdβ21 ≲ c1.

and

E[θ⊤g] = 2(1 +O(c1)) · α1β1.

The first claim follows from the fact that E[∥g∥2],E[|θ⊤g|∥g∥2] ≲ d and η = c1d
−1.

Next we consider the case when IE[σi∗] = 2 for i = 1, 2, · · · , Cq. We have

θ⊤E[yσ′(ω⊤x)Pωx] = 2α2β2κθ
⊤Pωθ = 2α2β2(1− κ2)κ.

On the other hand, because y, · · · , yCσ has information exponent larger than 1, we have∣∣θ⊤E[yσ′
(
ω⊤x+ η∥x∥2Pω

σ′(ω⊤x)y
)
Pωx]− θ⊤E[yσ′(ω⊤x)Pωx]

∣∣ ≲ ηdκ = c1κ.

Thus, when κ ≤ c1,

E[θ⊤g] = (1 +O(c1)) · 4α2β2κ,

which establishes the second claim. ■

C.4. Stochastic Update

As a result of the previous subsection, by choosing either of ξj = 1− η̃j or ξj = 1+ η̃j , we obtained
that

(i) When IE[σi∗] = 1 for some i ≤ Cσ, the update can be written as

κ2tj + η2tj η̃jγ + η2tj η̃jν
2t
j ≤ κ

2(t+1)
j ≤ κ2tj + 2η2tj η̃jγ + η2tj η̃jν

2t
j .

(ii) Otherwise, the update can be written as

κ2tj + η2tj η̃jγκ
2t
j + η2tj η̃jν

2t
j ≤ κ

2(t+1)
j ≤ κ2tj + 2η2tj η̃jγκ

2t
j + η2tj η̃jν

2t
j .

Here η2tj = η2t+1
j = c1d

−1, η̃j ≤ c2, and γ ≥ c2 that depends on σ∗. ν2tj is a mean-zero random

variable that satisfies P[|ν2tj | > s] ≤ exp(−s1/C1/C1) for all s > 0. We assumed that d−
1
2 ≤

κ2tj ≤ c2 for the former and C2d
− 1

2 ≤ κ2tj ≤ c2 for the latter. For each neuron j, we sample
T1,1,j ∼ Unif({1, · · · , T1,1}) and let ηt = c1d

−1. For t = 0, · · · , 2(T1,1,j − 1), we let ξtj ≡ 1− η̃j
or ξtj ≡ 1 + η̃j with equiprobability, where η̃j = c2, and ξtj = 1 for t = 2T1,1,j , · · · , 2(T1,1 − 1).

The goal of this subsection is to prove the following lemma.

Lemma 13 Let T1 = Θ̃(d). If the initial alignment satisfies κ0j ≥ C2d
− 1

2 (for (i)) or κ0j ≥ 2C2d
− 1

2

(for (ii)), then we have 1
4c2 ≤ κ

2T1,1
j ≤ c2 for at least 1/polylog(d) fraction of neurons, with high

probability.

Proof.
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(i) the case of IE = 1. If d−
1
2 ≤ κ2tj ≤ c2 for all t = 0, 1, · · · , τ (0 ≤ τ ≤ T1,j − 1), we have

κ
2(τ+1)
j ≥ κ2τj + ητ η̃jγ + ητ η̃jν

2τ
j (C.20)

= κ0j +

τ∑
s=0

ηsη̃jγ +

τ∑
s=0

ηsη̃jν
2s
j

≥ 2d−
1
2 + c1c2d

−1ε̃γ(s+ 1)− c1c22d−1

∣∣∣∣ τ∑
s=0

ν2sj

∣∣∣∣. (C.21)

With high probability,
∑τ

s=0 ν
2s
j is bounded by C3

√
τ + 1. If τ + 1 ≤ 4γ−2C2

3 , by letting c22 ≤
1
2γc

−1
1 C−2

3 d
1
2 , we have c1c2d−1C3

√
τ + 1 ≤ d−

1
2 . If τ + 1 ≥ 4γ−2C2

3 , we have C3

√
τ + 1 ≤

1
2γ(τ + 1). Thus, in either case,

(C.21) ≥ d−
1
2 +

1

2
c1c

2
2d

−1γ(τ + 1).

This verifies that κ2tj ≥ C1d
− 1

2 holds for t = τ + 1. By induction,

κ2tj ≥ d−
1
2 +

1

2
c1c

2
2d

−1γ(τ + 1)

holds for t until κ2t gets larger than c2. By letting T1,1 ≥ c−1
1 c−2

2 γ−1d, we have κ2t ≥ 1
2c2 for some

t ≤ T1,1, with high probability.
Now together with (C.20), we have

κ
2(t+1)
j ≤ κ2tj + ηtη̃j · 2γ + ηtη̃jν

2t
j .

Hence we obtain the following bound with high probability,

|κ2(t+1)
j − κ2tj | ≤ ηtj η̃j(2γ + C3) ≲ c1c

2
2C3d

−1 =: ∆1.

When κ2τ ≥ 1
2c1 holds for some τ , with high probability, we have

1

4
c2 ≤ κ2τ+s ≤ c2

for all 0 ≤ s ≤ ∆1/4c2. Because 1/4∆1c2 = Θ̃(d) and T1,1 is also Θ̃(d), with probability Θ̃(1),
2T1,1,j satisfies 2τ ≤ 2T1,1,j ≤ 2τ + 1/4∆1c2. This establishes the first assertion.

(ii) the case of IE = 2: If C2d
− 1

2 ≤ κ2tj ≤ c2 for all t = 0, 1, · · · , τ (0 ≤ τ ≤ T1,j − 1), we
have

κ
2(τ+1)
j ≥ κ2τj + ητ η̃jκ

2τ
j γ + ητ η̃jν

2s
j

= κ0j + c1c4d
−1γ

τ∑
s=0

κ2sj + c1c2d
−1

τ∑
s=0

ν2sj . (C.22)
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With high probability,
∑τ

s=0 ν
2s
j is bounded by C3

√
τ + 1. If τ + 1 ≤ 4γ−2C−2

2 C2
3d, by letting

c2 ≤ 1
2γc

−1
1 C2

2C
−2
3 , we have c1c2d−1C3

√
τ + 1 ≤ C2d

− 1
2 . If τ + 1 ≥ 4γ−2C−2

2 C2
3d, we have

C3

√
τ + 1 ≤ 1

2γ(τ + 1)C2d
− 1

2 . Thus, in either case,

(C.22) ≥ κ0j/2 +
1

2
c1c4d

−1ε̃γ
τ∑
s=0

κ2sj .

This verifies that κ2tj ≥ C1d
− 1

2 holds for t = τ + 1. By induction,

κ2t ≥ κ0j/2 +
1

2
c1c2d

−1γ

τ∑
s=0

κ2sj

holds for t until κ2t gets larger than c2. By letting T1,1 ≥ log(1+ 1
2
c1c2d−1)

c2

C1d
− 1

2
, we have κ2t ≥ 1

2c2

for some t ≤ T1,1, with high probability. Similarly to the case of (i), we can verify that 1
4c2 ≤ κ

2t ≤
c2 for Θ̃(d) steps. Therefore, we obtain the second assertion. ■

C.5. From Weak Recovery to Strong Recovery

In the previous subsection, we proved that after t = 2T1,1 = Θ̃(d) steps, with probability Ω̃(1)
over the randomness of initialization, T1,1,j , and η̃j , neurons achieve small alignment with the tar-
get direction 1

4c2 ≤ κ
2T1,1
j ≤ c2. This subsection discusses how to convert the weak recovery

into the strong recovery. We focus on the neurons that satisfy αjβj ≥ 0 for all j as specified in
Assumption 2.

For each neuron j, we let caηt = η = c1d
−1 if t is even and ηt = 0 if t is odd, for t =

2T1,1, · · · , 2(T1,1 + T1,2 − 1). The momentum is defined as ξtj = 1− η̃, where η̃ = c2ε.
In the following, we show that the strength of the signal is greater than some constant ε. Thus,

for second-layer initialization ca ≲ ε, the effect of the interaction term∇w

(
1
N

∑N
j=1 ajσ(w

t
j
⊤
x)

)2

can be ignored, and we drop the subscript that distinguishes N neurons.

Lemma 14 Consider the neuron that satisfies 1
4c2 ≤ κ

2T1,1
j ≤ c2. We have

θ⊤w2(T1,1+T1,2) ≥ 1− ε,

with high probability, where T1,2 = ΘOd(dε
−2).

Proof. The expected gradient (of the correlation term) can be computed as

E
[
∇̃wyσ(w

2t⊤x)
]
= E

[
∇̃w

( q∑
j=p

αjHej(θ
⊤x)

)( Cq∑
j=0

βjHej(w
2t⊤x)

)]

=

q∑
j=p

[
j!αjβj(θ

⊤w2t)j−1θ + (j + 2)!αjβj+2(θ
⊤w2t)jw2t

]
.
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Applying Pw2t , we have

E
[
Pw2t∇̃wyσ(w

2t⊤x)
]
= (θ − (w2t⊤θ)w2t)

q∑
j=p

j!αjβj(θ
⊤w2t)j−1. (C.23)

The update of the alignment is

κ2(t+1) ≥ κ2t + ηη̃θ⊤g − 1

2
κη2η̃2∥g∥2 − 1

2
η3η̃3|θ⊤g|∥g∥2,

where

g = Pw2tycaσ
′(w2t⊤x)x. (C.24)

From (C.23), the expectation of (C.24) is bounded by

E[κ2(t+1)] ≥ κ2t + ηη̃(1− (κ2t)2)

q∑
j=p

j!αjβj(θ
⊤w2t)j−1 − C3η

2η̃2d(κ2t + ηη̃).

≥ κ2t + ηη̃ε̃p!αpβp(κ
2t)p−1 − C3η

2η̃2d(κ2t + ηη̃).

By letting η ≤ c1d−1 and η̃ ≤ c2ε, we have

E[κ2(t+1)] ≥ κ2t + 1

2
ηη̃εp!αpβp(κ

2t)p−1.

Because the noise ν2t := η−1η̃−1(κ2(t+1) − E[κ2(t+1)]) satisfies P[|ν2t| > s] ≤ exp(−s1/C1/C1)
for all s > 0,

κ2(T1,1+t) ≥ κ2T1,1 + 1

2
ηη̃εp!αpβp

T1,1+t−1∑
s=T1,1

(κ2s)p−1 + ηη̃

T1,1+t−1∑
s=T1,1

ν2s,

with high probability. The third term is bounded by ηη̃C3t ≤ 1
8c2 when t ≤ 1

8η
−1η̃−1C−1

3 c2 and by

ηη̃C3

√
t ≤ 4η

3
2 η̃

3
2 c

− 1
2

2 C
3
2
3 t ≤ 1

2ηη̃εp!αpβp(c2/8)
p−1 when t ≤ 1

8η
−1η̃−1C−1

3 c2 and ε = Õ(d−1).
Therefore, if κ2s ≥ 1

8c2 holds for all s = T1,1, · · · , T1,1 + t− 1, we have

κ2(T1,1+t) ≥ 1

8
c2 +

1

4
ηη̃εp!αpβp(c2/8)

p−1t, (C.25)

with high probability. Thus, by induction, κ2(T1,1+t) ≥ 1
8c2 holds and (C.25) holds for all t, until

we get κ2(T1,1+t) ≥ 1 − ε. Because of (C.25), we have κ2(T1,1+t) ≥ 1 − ε until t ≤ T1,2, where
T1,2 ≥

(
1
4ηη̃εp!αpβp(c2/8)

p−1
)−1

= Õ
(
(ηη̃ε)−1

)
= Õ(dε−2).

After we achieve the strong recovery κ2(T1,1+t) ≥ 1− ε for some t, κ2(T1,1+s) may get smaller
than 1 − ε. However, by letting s′ be the first such step, because at each step the alignment only
moves at most Õ(ηη̃) = Õ(d−1ε), s′ should still satisfies κ2(T1,1+s

′) ≥ 1− 2ε ≥ c2. Thus, (C.25)
holds again until κ2(T1,1+t) ≥ 1−ε. Therefore, we can guarantee κ2(T1,1+t) ≥ 1−ε after t ≥ T1,2,
with high probability. ■
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C.6. Second Layer Training

This subsection proves the generalization error after training the second layer. Let fa(x) = fΘ(x)
for Θ = (ŵj , aj , b̂j)

N
j=1 where a ∈ RN and (ŵj , b̂j)

N
j=1 are the parameters trained in the first

stage. Here we let a∗ ∈ RN be the “certificate” such that ∥a∗∥ = Õ(N) that is shown to exist in
Lemma 16 (here we suppress dependence on constants p, q). The following lemma is a complete
version of Proposition 5.

Lemma 15 There exists a 4q-th order polynomial Q(Rw, b, q
′) of Rw = maxj∥wj∥ and b =

(bj)
N
j=1 such that, if we set λ = Θ

(√
2

T2δ0
N2Q(Rw, b, q′)

)
for some δ0 > 0, the ridge estimator â

satisfies

∥fâ − f∗∥2L2 ≲ (N−2 + ε2) +
1

T2λδ0

(
2N2Q(Rw, b, q

′) + Ex[(f∗)
4]
)
+

3λ

2
∥a∗∥2, (C.26)

with probability 1 − δ0. Therefore, by taking T2 = Θ̃((N4Q(Rw, b, q) + E[f∗(x)4])ε−2), and
N = Θ̃(ε−1), we have

Ex[(fâ(x)− f∗(x))2] ≲ ε.

Proof. Let PT2 be the empirical distribution of the second stage: PT2 := 1
T2

∑T2
i=1 δxi . Let ψ(x) =

(σ(⟨x, ŵj)⟩+ bj))
N
j=1 so that fa(x) = ⟨a, ψ(x)⟩.

Part (1). Here, we first bound the second term ∥fâ − f∗∥L2(PT2
). Since L̂(fâ) + λ∥â∥2 ≤

L̂(fa∗) + λ∥a∗∥2, we have that

∥fâ − f∗∥2L2(PT2
) + λ∥â∥2 (C.27)

≤ ∥fa∗ − f∗∥2L2(PT2
) +

2

T2

T2∑
i=1

(fa∗(xi)− fâ(xi))εi + λ∥a∗∥2.

Now, by the Cauchy-Schwarz inequality, we have

2

T2

T2∑
i=1

(fa∗(xi)− fâ(xi))εi = (a∗ − â)⊤
2

T2

T2∑
i=1

ψ(xi)εi

≤ 2∥a∗ − â∥

√∑
i,j εiεjψ(xi)

⊤ψ(xj)

T 2
2

.

By applying Markov’s inequality to the right hand side, it can be further bounded by

∥a∗ − â∥

√
Ex[∥ψ(x)∥2]

T2δ1
≤ λ

2
∥â∥2 + λ

2
∥a∗∥2 + Ex[∥ψ(x)∥2]

T2δ1λ
,

with probability 1− δ1. Thus, by combining with (C.27), we arrive at

∥fâ − f∗∥2L2(PT2
) +

λ

2
∥â∥2 ≤ ∥fa∗ − f∗∥2L2(PT2

) +
Ex[∥ψ(x)∥2]

T2δ1λ
+

3λ

2
∥a∗∥2.

Here, by using the evaluation ∥fa∗ − f∗∥L2(PT2
) = Õ(N−1 + ε) in Lemma 16, the right hand side

can be further bounded by

∥fâ − f∗∥2L2(PT2
) +

λ

2
∥â∥2 ≤ Õ(N−2 + ε2) +

Ex[∥ψ(x)∥2]
T2δ1λ

+
3λ

2
∥a∗∥2.
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Part (2). Next we lower bound ∥fâ − f∗∥2L2(PT2
) by noticing that

∥fâ − f∗∥2L2(PT2
)

= ∥fâ − f∗∥2L2(PT2
) − ∥fâ − f∗∥

2
L2(Px)

+ ∥fâ − f∗∥2L2(Px)

= ∥fâ∥2L2(PT2
) − ∥fâ∥

2
L2(Px)

− 2

(
1

T2

T2∑
i=1

fâ(xi)f∗(xi)− E[fâ(xi)f∗(xi)]

)
+ ∥f∗∥2L2(PT2

) − ∥f∗∥
2
L2(Px)

+ ∥fâ − f∗∥2L2(Px)
. (C.28)

The first two terms of Eq. (C.28) can be bounded by∣∣∣∥fâ∥2L2(PT2
) − ∥fâ∥

2
L2(Px)

∣∣∣ = ∣∣∣∣∣â⊤

(∑T2
i=1 ψ(xi)ψ(xi)

⊤

T2
− Ex[ψ(x)ψ(x)

⊤]

)
â

∣∣∣∣∣
≤ ∥â∥2 sup

a:∥a∥≤1

∣∣∣∥fa∥2L2(PT2
) − ∥fa∥

2
L2(Px)

∣∣∣.
The standard Rademacher complexity bound yields that

E
(xi)

T2
i=1

[
sup

a∈RN :∥a∥≤1

∣∣∣∥fa∥2L2(Px)
− ∥fa∥2L2(PT2

)

∣∣∣]

≤2E
(xi,σt)

T2
t=1

[
sup

a∈RN :∥a∥≤1

∣∣∣∣∣ 1T2
T2∑
t=1

σtfa(xi)
2

∣∣∣∣∣
]

≤2

√√√√E
(xi)

T2
i=1

[
sup

a∈RN :∥a∥≤1

1

T 2
2

T2∑
i=1

(a⊤ψ(xi))4

]

≤2

√√√√E
(xi)

T2
i=1

[
1

T 2
2

T2∑
i=1

∥ψ(xi)∥4
]

=2

√
1

T2
Ex[∥ψ(x)∥4],

where (σi)T2i=1 is the i.i.d. Rademacher sequence which is independent of (xi)T2i=1. Hence, Markov’s
inequality yields that∣∣∣∥fâ∥2L2(PT2

) − ∥fâ∥
2
L2(Px)

∣∣∣ = 2∥â∥2
√

1

T2δ2
Ex[∥ψ(x)∥4],

with probabilty 1− δ2.
The third term in Eq. (C.28) can be evaluated as

2

(
1

T2

T2∑
i=1

fâ(xi)f∗(xi)− Ex[fâ(x)f∗(x)]

)

= â⊤

(
1

T2

T2∑
i=1

(ψ(xi)f∗(xi)− Ex[ψ(x)f∗(x)])

)
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≤ ∥â∥

√√√√ 1

T 2
2

T2∑
i=1

T2∑
j=1

(ψ(xi)f∗(xi)− Ex[ψ(x)f∗(x)])⊤(ψ(xj)f∗(xj)− Ex[ψ(x)f∗(x)])

≤ ∥â∥
√

1

T2δ3
Ex[∥ψ(x)f∗(x)− Ex[ψ(x)f∗(x)]∥2]

≤ ∥â∥
√

1

T2δ3
Ex[∥ψ(x)∥4 + ∥f∗(x)∥4]

≤ λ

4
∥â∥2 + 1

λT2δ3
Ex[∥ψ(x)∥4 + ∥f∗(x)∥4],

with probability 1− δ3 where we used Markov’s inequality again in the second inequality.
Finally, the fourth and fifth term in Eq. (C.28) can be bounded as∣∣∣∥f∗∥2L2(PT2

) − ∥f∗∥
2
L2(Px)

∣∣∣ =√(∥f∗∥2L2(PT2
)
− ∥f∗∥2L2(Px)

)2
≤
√

1

T2δ4
Ex[(f∗(x)4 − ∥f∗∥2L2(Px)

)2]

≤
√

1

T2δ4
Ex[(f∗(x))4],

with probability 1− δ4 where we used Markov’s inequality in the last inequality.
Combining these inequalities, we finally arrive at

∥fâ − f∗∥2L2(Px)
+

(
λ

4
−
√

2

T2δ2
Ex[∥ψ(x)∥4]

)
∥â∥2

≤ Õ(N−2 + ε2) +
1

T2λ

(
Ex[∥ψ(x)∥2]

δ1
+

Ex[∥ψ(x)∥2]
δ3

+
Ex[(f

∗)4]

δ3

)
+

3λ

2
∥a∗∥2,

with probability 1−
∑4

j=1 δj . Hence, by setting λ ≥ 8
√

2
T2δ2

Ex[∥ψ(x)∥4], we have that

∥fâ − f∗∥2L2(Px)

≤ Õ(N−2 + ε2) +
1

T2λ

(
Ex[∥ψ(x)∥2]

δ1
+

Ex[∥ψ(x)∥4]
δ3

+
Ex[(f

∗)4]

δ3

)
+

3λ

2
∥a∗∥2.

When the activation function σ is a polynomial, then each ψj(x) = σ(⟨x,wj⟩ + bj) is an order
q-polynomial of a Gaussian random variable ⟨x,wj⟩which has mean 0 and variance E[⟨x,wj⟩2] =
∥wj∥2 = Õ(1). Then, if we letRw := maxj ∥wj∥ = Õ(1), the term maxj max{Ex[ψ(x)

2
j ],Ex[ψ(x)

4
j ]}

can be bounded by a 4q-th order polynomial of Rw and b, which can be denoted by Q(Rw, b, 4q).

Part (3). By combining evaluations of (1) and (2) together, if we let λ = 8
√

2
T2δ0

Ex[∥ψ(x)∥4]
for some δ0 > 0, (by ignoring polylogarithmic factors) we obtain that

∥fâ − f∗∥2L2(Px)
≲ (N−2 + ε2) +

1

T2λδ0

(
2N2Q(Rw, b, q

′) + Ex[(f∗)
4]
)
+

3λ

2
∥a∗∥2,
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with probability 1 − 4δ0. Thus, since ∥a∗∥2 = Õ(N), by setting T2 = Θ̃((N4Q(Rw, b, q
′) +

E[f∗(x)4])ε−2), and N = Θ̃(ε−1), we obtain that (C.26) ≲ ε. ■

Finally, we provide the approximation guarantee: If σ is a degree-q polynomial, we have the
following result, which follows Lemmas 29 and 30 of [31].

Lemma 16 Suppose that there exist at least N ′ = Θ̃(N) neurons that satisfy ∥w2T1
j −θ∥ ≤ ε and

σ is a polynomial link function with degree at least q. Let bj ∼ Unif([−Cb, Cb]) with Cb = Õ(1) ,
and consider approximation of a ridge function h(θ⊤x) with its degree at most q. Then, there exists
a1, . . . , aN such that ∣∣∣∣∣∣ 1N

N∑
j=1

ajσ
(
w2T1
j

⊤
x+ bj

)
− h(θ⊤x)

∣∣∣∣∣∣ = Õ(N−1 + ε)

with high probability, where (x, y) is a random sample, and we omit dependence on the degree q in
the big-O notation. Moreover, we have

∑N
j=1 a

2
j = Õ(N).

We rely on the following result.

Lemma 17 Suppose that Cb ≥ q. For any polynomial h(s) with its degree at most q, there exists
v̄(b;h) with |v̄(b;h)| ≲ Cb such that for all s,

E[v̄(b;h)σ(δs+ b)] = h(s).

Proof. When gq(s) = σ(s) is a degree-q polynomial,

gq(s) =

∫ 0

b=−q
σ(s+ b)db

is also a degree-q polynomial. Let us repeatedly define

gq−i(s) := gq−(i−1)(s+ 1)− gq−(i−1)(s) (i = 1, 2, · · · , q),

and let (ci,j) be coefficients so that (s−1)i =
∑i

j=0 ci,js
j holds for all z. Then, by induction, gi(s)

is a degree-i polynomial. Moreover, we have

gq−i(s) =
i∑

j=0

ci,j

∫ 0

b=−q
σ(s+ b+ j)db

= 2CbEb∼Unif([−Cb,Cb])

[( i∑
j=0

ci,j1[j − q ≤ b ≤ j]
)
σ(s+ b)

]
,

when Cb ≥ q. Therefore, for any polynomial h(s) with its degree at most q, there exists v̄(b;h)
with |v̄(b;h)| ≲ Cb such that for all s,

E[v̄(b;h)σ(δs+ b)] = h(s).
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■

Proof of Lemma 16. We now discretize Lemma 17. We focus on N ′ neurons that satisfy
∥w2T1

j − θ∥ ≤ ε (by letting aj = 0 otherwise).
ForA = Θ̃(N ′) = Θ̃(N) (with a small hidden constant), we consider 2A intervals [−Cb, Cb(−1+

1
A)), [Cb(−1 +

1
A), Cb(−1 +

2
A)), · · · , [Cb(1−

1
A), Cb]. By taking the hidden constant sufficiently

small, for each interval there exists at least one bj . Then, for bj corresponding to [Cb(−1 +

i
A), Cb(−1 +

i+1
A )), we set aj = N

2

∫ Cb(−1+ i+1
A

))

Cb(−1+ i
A
)

v̄(b;h)db. Here we note that |aj | = Õ(1) holds

for all j. If each interval contains more than one bj , we ignore all but one by letting aj = 0 except
for the one. By doing so, because of Lipschitzness of σ, we have∣∣∣∣∣∣ 1N

N∑
j=1

ajσ(s+ bj)− h(s)

∣∣∣∣∣∣ = Õ(N)

for all s = Õ(1). Because |θ⊤xt| = Õ(1) with high probability, we have∣∣∣∣∣∣ 1N
N∑
j=1

ajσ(θ
⊤x+ bj)− h(θ⊤x)

∣∣∣∣∣∣ = Õ(N−1) (C.29)

with high probability. Finally, because ∥w2T1
j − θ∥ ≤ ε, we have∣∣∣∣∣∣ 1N

N∑
j=1

ajσ
(
w2T1
j

⊤
x+ bj

)
− 1

N

N∑
j=1

ajσ(θ
⊤x+ bj)

∣∣∣∣∣∣ = Õ
(
(w2T1

j − θ)⊤x
)
= Õ(ε).(C.30)

Combining (C.29) and (C.30), we obtain the assertion. ■
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