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Abstract
Edge intelligent applications like VR/AR and language model
based chatbots have become widespread with the rapid expan-
sion of IoT and mobile devices. However, constrained edge
devices often cannot serve the increasingly large and complex
deep learning (DL) models. To mitigate these challenges,
researchers have proposed optimizing and offloading parti-
tions of DL models among user devices, edge servers, and the
cloud. In this setting, users can take advantage of different
services to support their intelligent applications. For example,
edge resources offer low response latency. In contrast, cloud
platforms provide low monetary cost computation resources
for computation-intensive workloads. However, communica-
tion between DL model partitions can introduce transmission
bottlenecks and pose risks of data leakage. Recent research
aims to balance accuracy, computation delay, transmission
delay, and privacy concerns. They address these issues with
model compression, model distillation, transmission compres-
sion, and model architecture adaptations, including internal
classifiers. This survey contextualizes the state-of-the-art
model offloading methods and model adaptation techniques
by studying their implication to a multi-objective optimiza-
tion comprising inference latency, data privacy, and resource
monetary cost.

1 Introduction

In recent decades, large volumes of data have been gener-
ated on mobile and Internet-of-Things (IoT) devices. While
cloud computing resources remain more flexible in scaling
and management than edge resources, edge computing can
mitigate transmission bottlenecks over the wide-area network
connecting users to the cloud [144]. As a result, recent intel-
ligent systems increasingly offload user applications across
a continuum spanning personal devices, edge servers, and
cloud infrastructures [70, 102, 105]. These systems leverage
resource orchestration services at multiple levels of the stack,
optimizing for latency, privacy, and monetary cost. As exem-
plified in Fig. 1, a Machine Learning-as-a-Service (MLaaS)
system can provision resources across this continuum using
container, Virtual Machine (VM), or Serverless function to
serve a Machine Learning (ML) request x1.

ML applications have diverse performance requirements
and face varying resource constraints. For instance, mobile

and IoT applications, including object recognition in house-
keeping AIoT devices [154] and localization in autonomous
cars [5], are limited by energy consumption [73] or rely on
emerging infrastructures like 5G/6G base stations and smart
city networks [39, 161, 163].

At the same time, the high monetary cost of computational
resources for AI/ML training and inference creates a barrier,
especially for research institutions and smaller companies. In
contrast, large firms can afford to build extensive Deep Learn-
ing (DL) clusters. For example, pre-training LLaMA-3.1-8B
(LLaMA-3.1-405B) requires 1.46 million (30.84 million) in
H100-80GB GPU hours [120], and ByteDance operates a
cluster of over 10,000 NVIDIA Ampere GPUs for its Large
Language Model (LLM) workloads [78].

Building an infrastructure that is monetary cost-efficient,
latency-optimized, and privacy-aware for architecture-
optimized models has become a critical area of research [47,
54, 183]. For an inference task, given a Neural Network (NN)
model and a data source, we can split the model and provision
its parts on cloud services, edge servers, or client devices
using resource orchestration services (e.g., Virtual Machines,
Containers, etc.) As shown in Fig. 1, model decomposition
creates either an ensemble of independent submodels, or a
tandem of dependent submodels (partitions of layers, given
a multi-layered ML model). We consider an MLaaS system
that places these submodels across the continuum of user de-
vices, edge, and cloud using orchestration methods such as
containers, VMs, and serverless platforms.

In this survey, we systematize model-decomposition re-
search from an optimization perspective. The common formu-
lation established in Section 3 helps contextualize the breadth
of related work. This Systematization of Knowledge takes
a holistic view of multiple objectives, including inference
latency, source data privacy, and monetary cost, whose inte-
gration has not been comprehensively addressed in related
surveys on quantization [129], weight pruning [100], distilla-
tion [50], privacy preserving distributed learning [186], and
monetary cost-based resource provisioning using edge and
cloud [28]. By exploring interactions among these optimiza-
tion objectives, we highlight the trade-offs inherent in existing
ML model offloading techniques.
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Figure 1: A MLaaS System Offloads Service/Applications si across the Continuum of Device, Edge and Cloud Resources Using
Different Resource Orchestration Platforms.

1.1 The Cost Model of Machine Learning-as-
a-Service

Machine Learning-as-a-Service (MLaaS) is a resource or-
chestration model that provides compute resources for ML
training and inference on a pay-per-use basis. As exemplified
in Fig. 1, an MLaaS system can provision resources across
the continuum of user devices, edge, and cloud resources.
For example, for an ML service s1 which prioritizes resource
cost while maintaining low latency, an MLaaS framework
can deploy the ML model in the cloud—leveraging the high
parallelism of cloud resources—and offload the lightweight,
heavily used portions to edge or user devices using containers
or VMs. On the other hand, for an ML service s2 that pri-
oritizes the privacy of source data, an MLaaS broker could
provision the model using particular secure computation re-
sources like client devices or VMs.

The MLaaS system abstracts away infrastructure manage-
ment, so users only pay for what they consume. Existing
MLaaS systems provide managed services in the cloud and at
the edge. Depending on how much configuration they allow,
MLaaS systems expose resources at various levels of abstrac-
tion [198]. For example, AWS provides a set of AI services,
including Amazon Rekognition [11], which hide lower-level
details like the ML models and computation resources from
users. In contrast, their ML services, such as Amazon Sage-
maker [12], allow users to define models, data sources, and
resource orchestration across VM instances, serverless in-
stances, S3 object storage, etc. Sagemaker Edge [13] further
extends this by deploying NN models on user-owned IoT
devices and gathering data for inference and retraining.

MLaaS is vital for many ML workloads. Although mod-
ern Large Language Model (LLM) training and inference
demand enormous compute power and high inter-node band-
width, typically available only in private GPU clusters [78],
small teams can leverage parameter-efficient fine-tuning and
inference on smaller models within public cloud or edge-

based MLaaS environments. For example, fine-tuning a 65B
parameter model with a Low-Rank Adapter (LoRA) requires
only a single 48GB GPU for less than 24 hours [29]. Like-
wise, running inference on a Qwen2−7B− Instruct model
using one A100−80GB GPU achieves 41.20 tokens per sec-
ond [140]. Therefore, instead of building and maintaining
their own compute clusters, smaller companies can act as
MLaaS brokers, hosting decomposed model components –
e.g., LoRA adapters for LLMs or traditional Deep Neural Net-
works (DNNs) – in virtualized cloud or edge environments to
serve customers and support internal R&D.

Recently, organizations such as Adobe [2, 6] and Work-
day [185], have launched hybrid-cloud MLaaS platforms.
They combine public-cloud resources (VMs or containers
on AWS, Azure, or GCP) with private clusters (at the edge
close to the company users). This approach involves trade-
offs and opportunities around service latency guarantee, user
data privacy preservation, and savings in monetary cost of
computation resources.

For example, provisioning H100 GPUs in the cloud offers
fast processing, but incurs a high monetary resource cost
and may increase data transmission time compared to private
clusters or other edge resources located close to end users.
Conversely, allocating computation resources in the cloud
instead of processing data securely at the edge, comprising the
private cloud or user devices, can minimize the monetary cost
of resource maintenance and processing delay, but increases
the risk of data leakage.

Furthermore, some application-level objectives (accuracy,
latency, privacy, and monetary cost) can be relaxed to improve
other ones. For example, federated learning on medical data
has low tolerance to data leakage. To meet this requirement,
an MLaaS broker might run only a sensitive partition (e.g.,
shallow layers of a model) at the edge, so the raw data never
leaves the device, while offloading the remaining partitions to
the cloud. Due to the limited edge capacity and transmission
between the edge and cloud, the training time can be longer
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and overall monetary cost could be higher. In contrast, clear
data-sharing agreements can mitigate privacy concerns for
less sensitive tasks and potentially allow the use of cheaper
cloud resources [49, 134].

Investigating such tradeoffs in both traditional DNNs and
LLMs yields valuable guidance for future MLaaS system
design, helping smaller companies and institutions deploy
large-scale ML systems with low latency, high privacy guar-
antee, and low monetary cost of resources. Recent research
has focused on computation-efficient and privacy-aware ML
models or cost-efficient resource orchestration methods. How-
ever, a study of the interactions between all three aspects of
latency, privacy, and monetary cost remains an ongoing topic.
This section highlights recent work and open challenges in
these dimensions via resource provisioning and model decom-
position, leading to the contributions of this survey.

What are the limitations of existing MLaaS systems for
ML Inference? Existing MLaaS services do not yet in-
corporate much of the existing research on model decompo-
sition and resource provisioning to improve latency [171],
privacy [131], and service cost [30, 190]. Sagemaker Edge
compiles NN models to utilize the client’s hardware architec-
ture and memory access patterns for optimal ML inference
speed [14], which represents only a small slice of possible
model adaptations. In contrast, integrating model decompo-
sition, assigning each submodel to devices, edge, or cloud
nodes, and provisioning compute, memory, and network re-
sources for each, has not yet been adopted by mainstream
MLaaS offerings.

Therefore, our research investigates model architecture op-
timization and resource provisioning strategies that could be-
come part of future MLaaS services. In particular, we focus
on model offloading in ML inference, including both inde-
pendent and dependent model decomposition and resource or-
chestration with cloud and edge provisioning services, needed
to meet strict latency, privacy, and monetary cost objectives.

1.2 Opportunities and Challenges of DL Task
offloading during Inference

Why offloading Deep Learning (DL) tasks? ML applica-
tions that gather large volumes of data and use complex deep
learning models often require low latency to meet quality-of-
service (QoS) targets [56, 66, 109, 178]. Offloading selected
layers to an edge or cloud tier can: (1) minimize inference
latency by leveraging cloud compute capacity; (2) enhance
source data privacy; and (3) reduce resource monetary cost via
pay-per-use pricing models [158]. In this section, we examine
one example: offloading user-interactive, latency-sensitive
applications, such as Augmented Reality (AR) with partitions
of a multi-layered ML model (dependent submodels), across
edge and cloud environments to optimize inference latency
and protect user data privacy.

For the threat model, we assume an honest-but-curious
adversary who can:

• monitor activations xinterm in transit between the edge
and cloud;

• train an offline reconstructor (auto-encoder NN) RMIA
on public data;

• output the reconstructed input data from observed inter-
mediate data, i.e., x̂input = RMIA(xinterm), evaluated by
mean-squared reconstruction error or misclassification
rate on a target classifier.

This aligns with prior model inversion attack (MIA) and
prompt inversion attack (PIA) formulations [33, 42, 113, 139].

Tables 1, 2, and 3 summarize representative edge, cloud,
and hybrid edge-cloud results that motivate our offloading
study. As shown in Table 1, recent lightweight DNN models
used in AR applications on edge devices, such as Raspberry
Pi or smartphones, often struggle to meet the 30 frames-per-
second (FPS) video requirements or 100ms human-sensible
end-to-end (frame refresh) latency target [24, 37, 112, 124,
174]. Edge platforms are constrained by limited compute
power [40, 149], bandwidth [119], battery capacity [86], and
memory [108], making it difficult to sustain high perfor-
mance.

Cloud resources can provide the extra processing capac-
ity needed for demanding ML workloads, as shown in Ta-
ble 2. However, relying on the public cloud raises privacy
concerns [210] and introduces transmission bottlenecks over
the Internet [40,212], which prohibit transmitting source data
to the cloud for various ML tasks.

To combine the advantages of both edge and cloud re-
sources, recent research has focused on partitioning ML tasks
and provisioning resources across the cloud and the edge,
with customer data residing on edge servers or user devices
to minimize data leakage. In this approach, a portion of the
ML task is performed on the client devices. Only essential
hidden/latent variables required for high-accuracy inference
are transmitted to the cloud or edge server. This paradigm
keeps the source data on the client device, enhancing the
efficiency and privacy of transmission. Furthermore, to im-
prove data privacy during inference and defend against MIA
attacks, previous work introduces privacy-preserving training
steps, including adding privacy-aware loss terms and differ-
ential privacy approaches to gauge the hidden variables that
adversaries can leverage.

Then, to compensate for the potential added latency, this
paradigm often ensures that data transmission occurs only
when necessary, for example, by using early exits [81] or
dynamic region of interest encoding [110]. Specifically, a
multi-layered/partitioned ML model can be augmented with
“internal classifiers" that can produce early output (prediction)
and may not need to process data through all layers/partitions.
Similarly, the input data can be compressed/cropped based
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Model Device End-to-End Pred Task Ref

MNetV3 [60] Rasp Pi 4B+ 595ms
79.23%
accuracy

48∗48-pixel
RAF-DB [97]

[66]

MNetV2 [155] Rasp Pi 4B+ 3571ms
81.16%
accuracy

48∗48-pixel
RAF-DB [97]

[66]

MNetV2
+SSDLite [155]

Pixel 1 162ms 22.1% mAP COCO [103] [60]

MNetV3
+SSDLite [155]

Pixel 1 137ms 22.0% mAP COCO [103] [60]

YOLOv3 [147] Pixel 2 4500ms 40% IOU
Imagenet

Video [85]
[20]

Tiny-YOLO [146] Pixel 2 1200ms 40% IOU
Imagenet

Video [85]
[20]

Table 1: DNN performances at the edge in recent work

Model Hardware Processing Pred Task Ref
YOLOv4-608 [147] V100 16.1ms 43.5% COCOmAP COCO [103] [21]
YOLOv3-608 [147] Titan X 57.9ms 33% COCOmAP COCO [103] [147]
YOLOv2-544 [146] Titan X NA 21.6% COCOmAP COCO [103] [147]

Table 2: DNN performances in the cloud in recent work

Model Edge Cloud End-to-End Pred Bandwidth Task Ref
Faster

R-CNN
[148]

Jetson
TX2

Titan
XP

34.56ms 70% IoU 82.8Mbps
Xiph
[192]

Baseline
[110]

Faster
R-CNN
[148]

Jetson
TX2

Titan
XP

22.96ms 75.8% IoU 276Mbps
Xiph
[192]

Baseline
[110]

Faster
R-CNN
[148]

Jetson
TX2

Titan
XP

17.23ms 86.4% IoU 82.8Mbps
Xiph
[192]

DRE
+PSI

+MvOT
[110]

Faster
R-CNN
[148]

Jetson
TX2

Titan
XP

15.52ms 91.1% IoU 276Mbps
Xiph
[192]

DRE
+PSI

+MvOT
[110]

Table 3: End-to-end DNN performances combining edge and cloud resources

on the region of interest (RoI) to minimize data transmission.
As shown in Table 3, some existing approaches based on this
design achieve low latency and high model accuracy.

While the examples above focus on dependent submodels,
there are also opportunities and challenges for independent
submodel-based applications in achieving low latency, high
privacy, and low monetary cost. For example, offloading dif-
ferent independent submodels from the ensemble model to
multiple VMs or serverless function instances enables effi-
cient incremental training and minimizes inference time via
parallel execution. In this paper, we explore similar trade-
offs among latency, privacy, and monetary cost by leverag-
ing diverse model decomposition techniques and resource-
orchestration services both at the edge and in the cloud.

Challenges and Explorations in ML task offloading.
Finding an optimal offloading plan for ML applications is
not trivial. A naïve offloading plan can result in long trans-
mission and processing delays, privacy breaches (Model In-
version Attack), or resource under- or over-provisioning. To
capture these trade-offs, we formulate an optimization prob-
lem that balances latency, privacy, and monetary cost based
on existing methods. Previous surveys have addressed as-
pects of optimizing monetary cost, latency or privacy for AI
applications (Table 4). However, they do not formulate the
optimization problem nor discuss monetary cost ($) based
approaches. Detailed cost analysis using real-world cloud
resources for low-cost ($) ML serving remains limited. Fur-
thermore, while some existing surveys [118, 183] provide
valuable insights, they often lack comprehensive discussions
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on source data privacy in distributed inference systems.
In this work, grounded in a multi-objective optimiza-

tion framework, we categorize prior work and study multi-
objective optimization accounting for interactions among la-
tency, privacy, and monetary cost. To narrow the scope of
our literature review, the survey emphasizes model-inversion
attacks [42, 180, 196] and cloud pricing models [158] for
deep-neural-network inference pipelines composed of multi-
ple machine-learning models.

Our main contributions are:

• A Systematization of Knowledge for ML task offloading
grounded in recent research, adopting a multi-objective
optimization perspective and showing how specific re-
lated work (use cases) maps to the holistic formulation.

• A series of case studies analyzing interactions among
optimization objectives (e.g., IaaS vs. FaaS latency–cost
trade-offs, privacy–latency tensions, and strategies for
jointly balancing latency, cost, and privacy), demon-
strating how different ML model offloading tradeoffs
manifest themselves.

• Identification of previously unstudied combinations of
objectives under alternative threat models (e.g., prompt-
inversion attacks in large language models), pricing mod-
els (e.g., serverless fine-grained billing vs. VM coarse-
grained billing), and application domains.

We organize the paper based on optimization objectives. In
Sec. 2, we introduce the optimization problem by studying
the challenges of ML task offloading given different optimiza-
tion objectives, including Latency in Sec. 2.1.1, Privacy in
Sec. 2.1.3, and Monetary Cost ($) in Sec. 2.1.2. Then, in
Sec. 3, we formulate the optimization problem for Latency
(Sec. 3.1), Privacy (Sec. 3.3) and Monetary Cost (Sec. 3.2).
In Sec. 4, we detail adaptive learning methods to deploy a
DNN model across the spectrum of cloud, edge, and client
resources by optimizing Latency (Sec. 4.1), Privacy (Sec. 4.3),
and Monetary Cost (Sec. 4.2). Next, Sec. 5 discusses the in-
teractions between optimization objectives in the formulation
given certain use cases introduced by related works. Sec. 6
discuss the open issues. And Sec. 7 concludes the paper.

2 Problem Definition

In this section, we narrow down the specific challenges in
the machine learning (ML) model offloading problem that
this paper addresses by examining the deep neural network
(DNN) offloading scenario (dependent submodels). Recent
studies have explored offloading a Deep Neural Network
(DNN) model across the core cloud, edge, and client devices
to satisfy resource constraints and privacy guarantees. Given
dynamic environments, each inference request can adaptively
route through model partitions on the most capable resources

to minimize latency and maintain privacy constraints in a
cost-efficient manner.

However, partitioning the NN model, introduces new chal-
lenges. Between model partitions, hidden variables and
gradients transmitted during forward and backward propa-
gation add additional transmission overhead [40, 197, 212]
and cause client data leakage [175, 210]. Meanwhile, byprod-
ucts of running on the edge, for example, extra processing
delays [63, 117] and energy consumption [81], should be
minimized.

2.1 DNN Offloading Challenges
Existing MLaaS systems manage cloud resources [11] or user
devices to run DL jobs [13]. Meanwhile, cloud-managed
edge computing resources, including AWS Local Zones [16]
and Wavelength [17], and edge ML model optimizers have be-
come important building blocks for ML services used by com-
panies such as Holo-Light [62], Netflix [130], and SKT [164].
With AWS Sagemaker Edge [13] and AWS Greengrass [15],
a user can optimize their edge application by a compilation
that targets their specific hardware (CPU architecture) and
operating system. In the future, we envision MLaaS service
providers adopting more model and resource adaptations in
their optimizers, improving latency of processing and trans-
mission, privacy of the source data, and the monetary cost
of resources. To enable such optimizers, we review the chal-
lenges of achieving high DNN performance when a DL model
is partitioned between cloud, edge, and user devices.

2.1.1 Latency

In recent ML applications, including real-time object de-
tection in AR/VR applications and LLM based ChatBots,
latency has become an important concern considering the
interactive manner of such applications, i.e, ≤ 100ms or
≥ 30 f ps [37, 112, 124, 174]. However, it is non-trivial to
achieve low latency given the resource demand of the highly-
parametrized models. In this section, we examine the chal-
lenges of minimizing ML inference latency.

The time spent in a distributed ML inference system can
be decomposed into transmission and processing delays.
When large volumes of data are sent between model par-
titions, transmission overhead can dominate inference la-
tency [108,128,210]. Meanwhile, offloading too many model
parameters to constrained edge resources can also overwhelm
user devices, resulting in long processing delays. Ideally, a
practical NN partitioning paradigm should optimize for both
delays to ensure optimal latency performance.
Transmission. For a partitioned NN, hidden variables (or acti-
vations)1 must be sent between partitions to complete forward
propagation, often over bandwidth-constrained internet in IoT
or mobile device settings. In traditional DNN models (e.g.,

1We use the terms “hidden variables" and “activations" interchangeably.
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Optimization
Formulation

Monetary Cost ($) Latency Privacy DL Placement Scope Inference Training Reference

! ! ! ! ! !
Edge Devices &
Edge & Cloud

! ◦ (Our Work)

# ! ! # ! !
Graph in

Mobile & Cloud
! ! 2020 [179]

# # ! ! ! !
AIoT &

Edge & Cloud
! ! 2021 [22]

# # ! ◦ ! !
Early Exit in

Mobile & Cloud
! ! 2022 [118]

# # ! ! ! !
End Device &
Edge & Cloud

! ! 2023 [34]

# # ! ◦ ! !
End Device &
Edge & Cloud

! ! 2024 [183]

# ! ! ◦ ! #
LLM Prompt

Leakage
! ! 2024 [4]

Table 4: Related survey comparison: !indicates the corresponding survey covers up-to-date or more comprehensive discussion.
◦ indicates our work is more complementary or has different discussion than the corresponding work. #means the corresponding
work does not discuss this aspect.
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Figure 2: Hidden variable sizes of VGG16 with CiFAR-10
and batch size of 16.

convolutional layers, fully connected layers), partitioning is
often by layers. Because intermediate representations have
fixed shapes, transmission size can be estimated accordingly,
enabling relatively simple offloading strategies. As shown
in Fig. 2, we profiled hidden variable sizes for the VGG-16
model [162] on CiFAR-10 [84] with a batch size of 16. The
x-axis denotes the layer where the model is split, with the
“head” (input through the split layer) running on a client de-
vice and the “tail” running on an edge or cloud server. The
y-axis reports the corresponding output size. Different split-
ting layers yield different transmission volumes. Therefore,
an appropriate splitting point is essential for short delay [81].

For transformer-based models, auto-regressive token gener-
ation is stateful. When decoder blocks are offloaded, the KV
cache of previously generated tokens must also be migrated,
and its size grows with sequence length. This state migration

complicates transmission estimation, since both the interme-
diate activations and model state must be transferred. Several
recent works examine model splitting and offloading under
state migration constraints [80, 128].

To reduce communication overhead, prior work has ex-
plored compressing both intermediate data and model com-
ponents. Bottleneck networks (e.g., autoencoders) placed
at the splitting point can selectively encode salient features
for transmission [40, 64, 65, 117, 159, 197, 212]. Model-
trimming approaches such as distillation [59] and quantiza-
tion [63, 68, 111, 156] also reduce the size of hidden variables
and gradients. Sparse or early-exit models activate only a
subset of parameters during inference. For example, Internal
Classifiers (ICs) can terminate forward propagation within a
single partition when sufficient confidence is reached, elimi-
nating the need to transmit intermediate activations [87, 171].
In such cases, downstream feature extraction and communi-
cation are bypassed entirely.
Processing. Another challenge for offloaded deep learning
systems is the limited processing capacity of edge and client
devices. As shown in Table 1, devices such as Raspberry
Pi [66] and mobile phones [20, 60] often struggle to meet
the latency or accuracy requirements demanded by machine
learning applications.

To address these constraints, prior work has explored a
variety of model adaptations, including quantization [100],
pruning [57, 106, 184, 195], and knowledge distillation [59].
These techniques reduce model complexity, allowing infer-
ence tasks deployed on edge devices or cloud-assist pipelines
to satisfy Quality-of-Service (QoS) objectives. Beyond archi-
tectural adaptations, other research leverages cloud to assist
edge intelligence applications [30,87,114,172]. However, this
approach introduces additional challenges related to privacy

6



Journal of Systems Research (JSys) 2025

and communication overhead [64, 203].

2.1.2 Monetary Cost

As cloud infrastructure has evolved, providers have intro-
duced services beyond VMs that can be more cost-efficient.
For example, cloud offerings across providers exhibit individ-
ualized cost models [137] and varying performance character-
istics [190]. These include Function-as-a-Service (FaaS) and
Container-as-a-Service (CaaS) clusters in the cloud [8, 9],
as well as AWS Lambda@Edge and Local Zones at the
edge [10, 16], which provide fine-grained billing [158]. An
MLaaS system should therefore adaptively configure both its
runtime environment and model architecture to optimize cost
and performance across the device–edge–cloud continuum.

For highly dynamic inference workloads, slow scaling in
the core cloud might result in under or overprovisioning of
resources and consequently missing the QoS target [142,143].
Related works have explored dynamically directing workload
to a deep NN in the cloud and a shallow NN at the edge for
cost savings [30]. Other works deploy NN partitions using
Function-as-a-Service (FaaS) [71]. This approach leverages
the pay-per-use nature of FaaS, where the user only pays
for the actual computation time used, to avoid the costs of
keeping VMs constantly running and provisioned, including
node cold start and model loading time.

Furthermore, specific NN adaptations can enable re-
source provisioning for individual NN layers, achieving cost-
effective QoS tracking. By incorporating internal classi-
fiers [82,181] or neuron skipping methods [83], only a subset
of the network’s neurons is used for prediction. Thus, users
can minimize the monetary resource cost ($) based on differ-
ent cloud resource pricing models [143]. Specifically, low-
workload layers can be provisioned on demand with FaaS
platforms [9, 10, 158] without relying on reserved VMs, so
there is less idle time for computation resources. Such adapta-
tions can be applied across different ML tasks. For example,
in an image classification task, the shallow layers might cap-
ture the contour of a banana, while the deep layers that focus
on the details of the banana are less critical to some classifica-
tions [82,125]. Consequently, these less frequently used deep
layers are well-suited for FaaS.

2.1.3 Privacy

The privacy of source data has become a critical concern
for DL systems. Partitioning and offloading an NN to edge
devices helps keep raw source data private, as user data are
not sent over the network. However, data breaches can occur
as adversaries exploit the information in the intermediate data.

Recent works [116, 175, 203, 210] discuss the use of Auto-
Encoders [152, 173] to reconstruct the source data from the
intermediate data sent from the edge to the cloud during for-
ward propagation for a deep neural network (DNN). Such

vulnerability can be exploited by the model inversion attack
(MIA) [42, 180, 196]. The Auto-Encoder consists of an en-
coder neural network (NN) and a decoder NN, and uses a loss
function, e.g., Mean Squared Error (MSE), to gauge the error
between the source data and reconstructed data. The encoder
mirrors the architecture of the NN on client devices, while the
decoder reflects the encoder structure to approximate matrix
multiplication inversions.

As an example, for an ML application which infers the
number in MNIST images of hand-written digits [89], when
the DNN is partitioned and offloaded to different edge or
cloud resources, the hidden variables transmitted over the
wire can be captured by an honest but curious adversary, as a
man-in-the-middle attack, leading to data leakage. To reveal
the source data using the intermediate data (hidden variables),
the adversary can train an Auto-Encoder model that can faith-
fully reconstruct a Kuzushiji-MNIST [26] dataset that has
similar patterns in hand-writing and use the decoder NN to
invert hidden variables to the source data. Recent work dis-
covered a similar attack that reveals the user prompt to an
LLM leveraging the hidden variables transmitted over the
network, namely Prompt Inversion Attack (PIA) [113, 139],
which further emphasizes the pervasive nature of such attacks
in real-world applications. The formal definition of our attack
model is presented in Sec. 3.3.1.

This attack is not merely theoretical but poses a practical
threat in real-world settings for two key reasons. First, the
attacker’s decoder architecture can be flexible and does not
need to precisely mirror the client-side model to be effec-
tive [96, 210]. Second, the proliferation of powerful open-
source LLMs [54, 120] creates a significant vulnerability, par-
ticularly in collaborative edge-cloud inference systems [30].
In such a setup, an honest-but-curious intermediate node can
leverage the publicly known weights of a base model. Since
many deployed models are fine-tuned versions of these public
foundation models, the adversary can exploit this shared ar-
chitectural knowledge to train a highly effective reconstructor
(e.g., an Auto-Encoder [96]) and recover sensitive source data
from the intermediate activations.

Privacy-preserving methods for model and user data are
critical for an MLaaS system. One approach involves
encryption [79, 127], which can cause significant slow-
downs [31, 113, 125, 139]. As shown in Table 5, without
encryption, running VGG-16 on ImageNet takes 14.5ms per
inference on an NVIDIA Titan Xp GPU. However, when
using FALCON homomorphic encryption on CPUs, the same
task takes 12,960ms [125].

The more popular privacy-preserving approach, however,
mitigates MIA attacks by focusing on the training phase to
build privacy-preserving models in the first place, rather than
adapting the model during inference time. Such methods
introduce a secondary loss function, e.g., distance correla-
tion [72, 175, 210], to constrain the similarity between inter-
mediate data and source data during model training. Similar
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Model Hardware Processing Task Privacy Ref

VGG-16 [176] P100 57ms
Tiny

ImageNet [88]
Plaintext [176]

VGG-16 [176] CPU 1,300ms
Tiny

ImageNet [88]
Plaintext [176]

VGG-16 [176] CPU(LAN) 40,000ms
Tiny

ImageNet [88]
SMPC(FALCON) [176]

VGG-16 [176] CPU(LAN) 59,000ms
Tiny

ImageNet [88]
SMPC(FALCON) [176]

VGG-16 [125] Titan Xp 14.5ms ImageNet [153] Plaintext [125]
VGG-16 [125] CPU 12,960ms ImageNet [153] SMPC(FALCON) [125]
VGG-16 [125] Titan Xp 14.5ms ImageNet [153] Plaintext(Cloak) [125]

Table 5: Privacy-preserving DNN inference performances in the core cloud in recent works

works also incorporate an Auto-Encoder to model training,
using reconstruction error as privacy metric [96]. Further-
more, previous works utilize DNN pruning with masks to
remove mutual information between the source and interme-
diate data [31, 125].

Similarly, other privacy-preserving methods, instead of ad-
justing the loss function, apply perturbations to intermediate
data during training [116, 203]. In these approaches, the in-
termediate activations retain minimal sensitive information,
while the cloud-side neural network learns to extract the key
features required for inference.

3 Problem Formulation

We identify three key challenges in Deep Neural Network
offloading – covering both model decomposition and resource
provisioning – across the device-edge-cloud continuum, each
tied to a different performance objective:

• Latency: Minimizing end-to-end inference time requires
partitioning the neural network such that local computa-
tion and network transmission are jointly balanced.

• Monetary Cost: For sparsely activated models, submod-
els can be mapped to the most cost-effective cloud ser-
vices using fine-grained resource-provisioning strategies,
while still meeting Service Level Objectives (SLOs).

• Privacy: Hidden variables transmitted over the net-
work can be exploited by adversaries (e.g., via auto-
encoder–based inversion attacks) to reconstruct sensitive
input data, leading to potential data leakage.

In the rest of this section, we formulate a unified DL offload-
ing formulation that integrates three subproblems – one for
each objective – to determine how to place model partitions
across edge and cloud resources. Then, in Sec. 4, we summa-
rize the related works based on the optimization objectives.
And, in Sec. 5, we study the interactions between performance
objectives by solving our optimization problems in certain
use cases introduced in related works.

As a constrained multi-objective optimization problem, we
seek an offloading configuration that minimizes a weighted
sum of latency, monetary cost, and privacy objectives:

min(wLLL +wCLC +wPLP) (1)
s.t. constraints on inference metrics. (2)

Here,

• LL,LC, and LP are the latency, cost, and privacy loss
functions, respectively,

• wL,wC,wP are nonnegative weights reflecting their rela-
tive importance.

There are other constraints, including the battery capacity of
edge devices [86], developer tooling (for example, virtual ma-
chines or serverless platforms) [187] and wireless connection
conditions [22], that can influence the optimization. There are
also application-specific metrics, e.g., Time-to-First-Token
for LLMs [74]. We focus on a subset of the optimization
targets and constraints to narrow this survey. Detailed con-
straints for each objective are discussed in Sec. 3.1, 3.2 and
3.3.

3.1 Latency
Balancing and minimizing transmission and processing de-
lays are essential to DL inference tasks. Arbitrary model
partitioning can cause excessive data transmission. In con-
trast, deploying too many layers on computation-limited edge
devices yields a long processing time. We first briefly intro-
duce the latency optimization approaches. Then we present
the latency formulation in Sec. 3.1.1.

We focus on a DL model composed of M partitions
(Fpid , pid ∈ 1,2, ...,M in Fig. 3) with the notations defined
in Table 6. An individual model partition pid can be of-
floaded to the edge or cloud based on the estimation of its
inference time (denoted by Tpid , which is the sum of trans-
mission delay T T

pid and computation delay TC
pid), the hidden
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variable size (Size(.)) and the profiles of floating point oper-
ations performed by layers in the partition (FLOPs j

i (.)). In
practice, because each partition’s output feeds the next, once
the offloading decision for partition k changes, the same deci-
sion is typically applied to all deeper partitions to avoid extra
transmission overhead [65, 81, 171].

We now overview the orthogonal approaches, such as early-
exit, transmission compression, and model quantization, that
an MLaaS broker can apply independently of privacy or cost-
driven adaptations. The related works are detailed in Sec. 4
and the interactions among latency, privacy, and cost opti-
mizations are discussed in Sec. 5.

Early-exit adaptation. A model partition can be adapted
to reduce inference time (πpid and πpid+1 on both sides of the
dashed line in Fig. 3). Each partition pid can be accelerated
by attaching Qpid internal classifiers, where each classifier
c has the confidence threshold αc

pid , request exit rate βc
pid ,

and the observed test metrics Ac
πpid

, including precision and
recall [63, 87, 93]. We denote the sum of the exit percentages
for partition pid as βpid . With βpid of requests finishing at a
shallow partition, internal classifiers reduce the running time
of requests by proportionally cutting the communication cost
of deeper partitions: only the remaining (1−βpid) fraction
of queries must transmit their activations, so the expected
transmission delay for partition pid is scaled by the same
(1−βpid) factor in the term T T

pid of Eq. (5).

Transmission and model compression. Partitions can also
be adapted with transmission and model compression meth-
ods to mitigate both transmission and computation overhead.
For each partition pid, we denote by xpid the hidden vari-
able output (x0 refers to the source data) and two model
compression ratios: (1) γpid for latent space compression
layers (e.g., in Fig. 3, an Auto-Encoder Neural Network
consists of dark blue layers representing an encoder and
dark orange layers representing the decoder), and (2) κpid
for model compression, including model size reduction ap-
proaches like knowledge distillation, neuron pruning and
quantization [64, 95, 117, 132, 159, 197] as exemplified by
light blue and light orange layers in Fig. 3.

Transmission compression. For partition pid, the
en–decoder ⟨Epid ,Dpid⟩ squeeze xpid through a latent space

x̃pid = Epid
(
xpid

)
, |x̃pid |= (1−γpid) |xpid |, 0 ≤ γpid ≤ 1,

so that only a (1− γpid) fraction of the original bytes is sent
over the network. After arrival, the decoder reconstructs the
activation map,

x̂pid = Dpid
(
x̃pid

)
,

before the forward pass resumes. Because only the remain-
ing (1− βpid) requests continue beyond partition pid, the

expected transmission delay for this segment is modulated
by the product (1−βpid)(1− γpid) in the term T T

pid of con-
straint (5) in the formulation.

Model compression. Model size reduction approaches like
knowledge distillation, neuron pruning and quantization
shrink the computation and output footprint of Fpid :

• Distillation trains a student model F̃pid that mimics Fpid
with fewer parameters, reducing FLOPs and activation
size to (1−κpid) of the original.

• Pruning filters redundant neurons, leading to a (1−κpid)
reduction in both TC

pid and tensor passed to the next hop.

• Quantization stores weights and activations in low-
bit-width integers. We fold its effect into the same
factor κpid for brevity. An 8-bit model, for instance,
halves memory traffic and doubles the effective SIMD
throughput on hardware that packs two 8-bit multiply-
accumulate (MAC) operations into the slot of a single
16-bit MAC, thereby improving parallelization and fur-
ther shortening TC

pid .

Together, these techniques scale the compute term TC
pid in

constraint (7) and the downstream transmission term T T
pid by

the multiplicative factor (1−κpid) as shown in Eq. (5).

3.1.1 Latency Formulation

We formulate a constrained multi-objective optimization that
jointly minimizes processing and transmission delays subject
to an accuracy constraint.

LL = min
pid,αc

pid ,κpid ,γpid
(ξT

0 T T
0 +

M

∑
pid=1

Tpid) (1)

s.t.
M

∑
pid=1

Qpid

∑
c=1

β
c
pid ∗Ac

πpid
≥ Atar (2)

βpid =

Qpid

∑
c=1

Pr(α
′c
pid > α

c
pid) =

Qpid

∑
c=1

β
c
pid (3)

xpid = πpid(Fpid)(xpid−1) (4)

T T
pid =

(1−κpid)(1−βpid)(1− γpid)Size(Fpid(xpid−1))

bandwidth
(5)

T T
0 =

(1− γ0)Size(x0)

bandwidth
(6)

TC
pid =

FLOPspid
pid(xpid−1,πpid ,Fpid)

µpid
(7)

Tpid = ξ
C
pidTC

pid +ξ
T
pidT T

pid (8)

α
c
pid ∈ [0,1],κpid ∈ [0,1], (9)

γpid ∈ [0,1],ξ ∈ R+ (10)
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Notation Definition

πLat
pid(.)

Adapt partition Fpid
to minimize inference latency

αc
pid

Confidence thresholds
for classifier c in partition pid

κpid
Output compression rate

of model knowledge distillation and pruning

γpid
Output compression rate

of compression layers (encoder&decoder)

γ0
Source data compression rate

of compression layers (encoder&decoder)

βc
pid

Percentage of requests exiting
at classifier c in partition pid

βpid Percentage of requests exiting at partition pid
x0 Source data

Qpid Number of classifiers in partition pid
Ac

πpid
Observed model accuracy after adaptation

Atar User-defined model target accuracy
T T

pid Estimated transmission time for activations and states
TC

pid Estimated computation time

FLOPs j
i (.) FLOPs from partition i to j inclusive

Table 6: Latency Optimization Formulation Notations

Distilled 

Distilled Encoder
Internal Classifier

Decoder

Figure 3: Illustration of latency optimization problem.

In line 2, Atar is a user-defined model accuracy constraint
and βc

pid denotes the percentage of requests leaving the inter-

nal classifier c in partition pid. In line 3, α
′c
pid is the profiled

mean confidence during inference for the internal classifier
c in partition pid, αc

pid is the confidence threshold for the
internal classifier c in partition pid, and βpid indicates the
percentage of requests leaving partition pid during inference.

In line 4, we define the output of partition pid as
πpid(Fpid)(xpid−1), where the model partition Fpid , adapted
with πpid(.), takes xpid−1 as input. These model adapta-
tions include internal classifier(s) and transmission and model
compression. To quantify their effect on inference latency,
line 5 estimates the transmission delay from the adapted par-
tition pid to pid +1 based on the input size before applying
any adaptations, Size(Fpid(xpid−1)), together with adaptation-
related terms such as the early exiting ratio βpid and the two
compression ratios (γpid and κpid). Then, line 6 estimates
the transmission time required to send the source data to
the location of the first NN partition, where γ0 denotes the
compression ratio applied to the source data.

Distilled DistilledInternal
Classifier IaaS Infra FaaS Infra

Figure 4: Illustration of cost($) optimization problem.

Notation Definition
Latency Latency bound

TI Observed Mean IaaS Time
TF Observed Mean FaaS Time

T cutid
cold FaaS function cold start time

T cutid
trans Transmission delay from IaaS to FaaS

CI(.) Unit cost of IaaS given VM capacity
CF (.) Unit cost of FaaS given function capacity

θI VM capacity
θF Function capacity

Table 7: Cost($) Optimization Formulation Notations

In line 7, FLOPspid
pid(xpid−1,πpid ,Fpid) denotes the profiled

FLOPs (FLoating-point OPerations) for partition pid (Fpid),
given its input (xpid−1) and model adaptation (πpid). The
subscript and superscript indicate the start and end partitions
included in the count. for a single partition, these indices are
the same. Although adapted-model FLOPs can be computed
analytically, actual computation time TC

pid also depends on
system-level factors, including scheduling, virtualization, etc.,
which lie outside the scope of this survey. We therefore
adopt a profiling-based formulation and treat the execution
environment as a black box.

3.2 Monetary Cost

In this section, we categorize cost optimization approaches
and introduce our monetary cost formulation (Sec. 3.2.1).
Resource provisioning approaches based on resource cost
($) for DL inference tasks remain underexplored. Using de-
tailed cost models of different cloud and edge services, an
MLaaS broker can determine cost-efficient resource provi-
sioning strategies for different workloads. In particular, for
decomposable sparsely activated ML models where each por-
tion faces a varying workload, fine-grained resource provi-
sioning and load balancing for submodels are essential to
achieve cost-efficient ML inference.

In our formulation, we minimize the combined costs of
provisioning Infrastructure-as-a-Service (IaaS) and Function-
as-a-Service (FaaS) platforms, regardless of whether they are
deployed at the edge or in the cloud. FaaS charges users only
for the actual execution time of the deployed model, mak-
ing it particularly cost-efficient for low-rate or bursty work-

10



Journal of Systems Research (JSys) 2025

loads – for example, holiday traffic spikes in DNN-based
vehicle localization [5, 67, 71, 158]. Conversely, IaaS plat-
forms automatically scale virtual machines (VMs), which
incur longer cold-start delays (for hardware and OS provi-
sioning) and are billed for the entire time the resources are re-
served. Because VM scaling is coarse-grained, users typically
provision based on service-level objectives (SLOs) rather
than real-time workload fluctuations, often leading to over-
provisioning [143]. However, when a workload maintains
high utilization, characterized, for instance, by a steady inges-
tion rate around the mean ± one standard deviation under a
Poisson model [77, 143], IaaS can be more economical than
serverless functions.

3.2.1 Monetary Cost Formulation

Motivated by recent advances in sparsely activated mod-
els [61] and the inability of edge devices to host large neural
networks [81], we represent a sequential DNN with internal
classifiers as a dependent acyclic graph of submodels (Fig. 4).
For inference, partition Fpid produces an early exit for a frac-
tion βpid of requests with its internal classifier. The remaining
(1−βpid) portion continues to partition Fpid+1. Shallow par-
titions thus face a steady, high-rate workload, whereas deeper
partitions see a lower request rate. Consequently, for a con-
stant arrival rate of N requests/s, we provision VMs to handle
up to rmax of those requests at the shallow partitions, ensuring
high VM utilization, while routing the remaining requests to
FaaS to avoid under-utilizing any individual VM.

LC = min
cutid,θF ,θI ,α

k
pid

CI(θI)TI

cutid

∑
pid=1

βpid

+CF(θF)TF

M

∑
pid=cutid+1

βpid (1)

s.t. Latency ≥ TI +TF (2)

M

∑
pid=1

Qpid

∑
c=1

β
c
pidAc

πpid
≥ Atar (3)

βpid =

Qpid

∑
c=1

Pr(α
′c
pid > α

c
pid)

=

Qpid

∑
c=1

β
c
pid (4)

TF =
FLOPsM

cutid+1(xcutid)

θF
+T cutid

cold (5)

TI =
FLOPscutid

1 (x0)

θI
+T cutid

trans (6)

cutid ∈ [1,M], α
k
pid ∈ [0,1], (7)

θF ∈ {FaaS Capacities}, (8)
θI ∈ {IaaS Capacities} (9)

Distilled Distilled Noise Generator

Figure 5: Illustration of privacy optimization problem.

The above optimization targets a steady arrival rate of rmax
DNN inference requests per second, enough to fully utilize
the VMs. It chooses between IaaS, FaaS, or hybrid offloading
– offloading some requests from IaaS to FaaS to complete their
deep-layer processing. The decision variables are the FaaS
configuration (θF ), the IaaS configuration (θI), the internal
classifier thresholds (αc

pid), and the partition index (cutid,
assuming two partitions), all subject to the latency constraint
in line 2.

CI and CF map resource configurations to monetary cost.
Then, we estimate the running cost, based on the average
durations TI (VM reservation time) and TF (FaaS execution
time) profiled for each forward pass. In line 4, βpid is the
fraction of requests exiting at partition pid, determined by
confidence thresholds αc

pid . Lines 5 and 6 define the profiled
mean durations for FaaS and IaaS, respectively. For a given
cutid, motivated by previous work [82], the duration is com-
puted by dividing the required FLOPs (FLOPsM

cutid+1 from
partition cutid +1 to M) by the provisioned capacity (θF or
θI), assuming once offloaded to FaaS, execution does not
revert to IaaS. This may overestimate utilization since some
requests exit early. To account for early exits, we weigh TF
by ∑

M
pid=cutid+1 βpid and TI by ∑

cutid
pid=1 βpid in Eq. (1). We also

include the hidden-variable transmission delay T cutid
trans in TI

(line 6), since the serverless function has not yet been invoked
and thus does not incur FaaS billing until execution. Con-
versely, the serverless cold-start delay T cutid

cold is included in TF
(line 5), as it involves model loading and hardware setup that
are billable.2

Next, given the VM configuration for rmax requests/s, we
optimize load-balancing so that rmax requests are served by
shallow partitions on fully utilized VMs, with the remainder
directed to FaaS. Note that the sparsity of early-exit models
is highly dependent on the input-data distribution and must
be profiled offline. When the probability of FaaS provision-
ing increases, resulting in higher costs, we must update our
workload distribution profile and resource configurations.
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3.3 Privacy

We study the privacy of source data in distributed DNN in-
ference applications. This section overviews the concepts –
accessible by an MLaaS broker – for defense against model
inversion attacks (MIA) [42, 180, 196]. We formulate the
privacy optimization problem in Sec. 3.3.3. Many of the tech-
niques discussed are applied during model training, rather
than only at inference Practical countermeasures for MIA are
presented in detail in Section 4.3.

3.3.1 Threat Model: Model Inversion Attack (MIA)

We consider an honest-but-curious adversary who observes
the hidden variables xpid transmitted between two partitions
of a distributed DNN. The adversary stores these activations
and trains an auto-encoder (or any other reconstructor) RMIA
offline with public data, then outputs x̂0 = RMIA(xpid) at in-
ference time. We measure privacy leakage by the expected
reconstruction error, e.g., mean square error (MSE),

Leakpid = E
x0∼D

[
∥x0 − x̂0∥2

2
]
,

where D is the distribution of user inputs. A smaller MSE im-
plies a stronger attack. Such attacks have been well explored
in the research community [38, 45, 96, 193] and in particular
the Prompt Inversion Attack (PIA) for LLMs [113, 139].

3.3.2 Privacy-oriented Adaptation

To mitigate MIA, an MLaaS broker can leverage two orthog-
onal defenses – regularization and perturbation – applied
independently of any latency or monetary cost-driven opti-
mizations:

1. Regularization. We fine-tune each partition with a
privacy-aware objective, denoted by π

pri
pid , that explic-

itly penalizes the attacker’s reconstruction loss [58, 96,
175, 210].

2. Perturbation. We add a noise layer τ(∆Fpid) based on
the output sensitivity ∆Fpid and bounded by a scalar
λ [58, 126].

Figure 5 illustrates the three stages (separated by dashed
lines): partition pid (left), the noise layer τ(·) (center), and
partition pid+1 (right). However, we note that the effec-
tiveness of such remedies in handling PIA for LLMs remains
under-explored due to the prohibitive model training overhead.
We next formulate the privacy optimization problem.

2Major FaaS providers keep containers warm to minimize cold starts [18,
48, 123, 158], so this term may overestimate FaaS cost. VM cold starts are
omitted since we assume long-running VMs.

Notation Definition

π
pri
pid(.)

Fine-tune partition Fpid
for better privacy guarantee

τ(.) Noise generator method
λ Output bounding parameter

∆Fpid Sensitivity of Fpid’s output
wCE , wp Weights for loss terms
T hrCE Maximum allowed cross-entropy loss
F−1

pid (·) Learned inverse (attacker’s surrogate)

Table 8: Privacy Optimization Formulation Notations

3.3.3 Privacy Formulation

With the notations in Table 8, we formulate the privacy objec-
tive:

LP = min
π

pri
pid ,∆,λ

(wCECE(ŷ,y)−
M

∑
pid=1

wpMSE(F−1
pid (xpid),xpid−1))

(1)

s.t. CE(ŷ,y)≥ T hrCE (2)

xpid = λπ
pri
pid(Fpid)(xpid−1)+ τ(∆Fpid) (3)

∀pid > 1 (4)

Equation (1) maximizes the attacker’s error (−sign) while
keeping model accuracy above a threshold (2). In this formu-
lation, CE(ŷ,y) denotes the cross-entropy of the model pre-
dictions, and MSE(F−1

pid (xpid),xpid−1) quantifies the fidelity
of the attacker’s reconstruction. The forward rule (3) shows
how bounding (λ) and random noise τ(·) are injected between
partitions. The interaction with latency and monetary cost is
discussed in Sec. 5; here we isolate privacy.

4 Problem Solutions

In the preceding section, we formulated an optimization prob-
lem for deploying a dependent acyclic graph of submodels,
accounting for latency, source data privacy, and resource mon-
etary cost ($). In this section, we detail the solution techniques
to the optimization sub-objectives, such as early exits, com-
pression, and privacy-preserving inference approaches. Based
on the existing works, we then discuss the interactions among
sub-objectives in Sec. 5. Furthermore, we identify open is-
sues in Sec. 6. Overall, these solution techniques can serve
as valuable control mechanisms for ML service providers,
improving Quality of Service (QoS), and increasing revenue.

4.1 Latency
The end-to-end latency of a neural network model comprises
both processing and transmission delays. Building on ear-
lier discussions, existing work dynamically minimizes the
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transmission of excessive hidden variables and combines
capable cloud services. This section begins by exploring
dynamic deep neural network offloading [81, 194]. Then,
we discuss internal classifiers which allow early exit and
save computation for deep layers [36, 87, 92–94]. Next,
we examine transmission data and model compression ap-
proaches [40, 63, 87, 117, 132, 159, 207, 212].

4.1.1 Dynamic Partitioning

When dynamically partitioning a neural network, the compu-
tation (FLOPs j

i (.)) and activation size (Size(.)) can be esti-
mated based on the model weights and input size [55, 166].
Thus, delays, especially inference durations composed of
transmission and processing delay, T T

pid and TC
pid respec-

tively, can be modeled using regression methods, by pro-
filing the NN across cloud and resource-limited edge envi-
ronments [81, 194]. Prior work estimates transmission and
processing delays for various model configurations, factoring
in compute resources and input sizes to devise deployment
plans for M NN partitions that minimize latency and energy
consumption [81].

Our latency formulation in Sec. 3.1.1 captures the total
delay, consisting of transmission and processing delays, for a
model with M partitions (ξT

0 T T
0 +∑

M
pid=1 Tpid in line 1). How-

ever, feasible solutions may not always exist for a given model
architecture or environment, particularly when resource avail-
ability is constrained. Next, we explore orthogonal methods
to reduce demands on transmission and processing resources.

4.1.2 Early Exits

Background. Deep layers of a DNN model tend to focus on
fine details, which, however, can result in misclassifications.
While, shallow layers extract high-level features, which can be
sufficient for accurate request classification. Such observation
is described as overthinking [82]. Related research [82, 188,
214] addresses this concern, proposing the reuse of features
extracted from various layers to improve the inference latency
through internal classifiers [170],

These classifiers share a structure similar to traditional
NN classifiers, comprising feature reduction (pooling) layers,
fully connected layers, and an activation function. Except,
internal classifiers are attached to the hidden layers. To trigger
early exits, one can configure a threshold [82] for the Bayesian
probabilities of class predictions at each classifier [53, 150].

In deep learning (DL) tasks, incorporating early exits and
residual connections at various internal layers of a DL model
allows for better utilization of insights during inference, lead-
ing to improved accuracy and latency. Early exits prevent
excessive forwarding of requests (hidden variables) to deep
layers for classification. As exemplified in Fig. 6, an internal
classifier allows βpid portion of requests to exit the model
partition Fpid , highlighted in blue.

Internal
Classifiers

Figure 6: Internal Classifier Architecture: Each internal clas-
sifier allows requests to exit in the middle of an NN. For
example, βpid of requests exit at NN partition Fpid .

Methods. Recent research [63, 87, 171] models the relation-
ship between the confidence threshold (α) of internal classi-
fiers and the proportion of early exits (β) when formulating
inference latency. Our latency optimization framework incor-
porate such relationship, allowing β to be tuned via α to meet
a specific mean latency target (lines 2 and 3 in Sec. 3.1.1.)

Lowering the confidence threshold (α) during infer-
ence can also negatively impact the inference accuracy
(∑M

pid=1 ∑
Qpid
c=1 βc

pid ∗Ac
πpid

, line 2 in our latency formulation).
To maintain high accuracy, previous studies explore multi-
objective optimization including confidence threshold and
dynamic layers offloading between the edge and cloud based
on network conditions, as characterized by lines 4, 5, and
7. For example, SPINN [87] empirically demonstrates that
under high and stable WAN bandwidth, more layers can be of-
floaded to cloud nodes. The increased computational capacity
compensates for additional communication delays, reducing
overall latency, which allows high confidence threshold and
high accuracy. In contrast, when network bandwidth is lim-
ited, the approach shifts more layers to resource-limited edge
nodes. Despite an increase in processing time at the edge,
overall latency is optimized by minimizing reliance on WAN
communication, without significantly compromising accu-
racy.

4.1.3 Input and output compression

Background. During inference, not all features are nec-
essary for a classification task. Apart from traditional sta-
tistical or heuristic methods [177], Deep Neural Networks
(DNNs), specifically Auto-Encoder NNs, can facilitate fea-
ture selection to preserve prediction performance [159]. An
Auto-Encoder NN consists of two components: an encoder,
which transforms inputs to a compressed representation, and
a decoder, responsible for inverting the dimensionality reduc-
tion [152]. On the other hand, model compression methods
can also reduce feature size. These methods will be explored
further in Sec. 4.1.4.
Methods. In our latency optimization (LL in Sec. 3.1.1), we
denote the cropping and compression of input data with rate γ0.
The compression rate of intermediate data achieved through
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model compression is denoted as κpid , while the rate achieved
through feature engineering methods such as Auto-Encoder is
represented as γpid . We encapsulate the computation overhead
of Autoencoder NN in the model transformation πpid .

Heuristic-based compression methods, such as JPEG for
compressed image inputs, can help reduce feature dimension
at the cost of accuracy. In particular, since certain activation
functions, for example relu [3], produce zero or near-zero
outputs, compression from a dense matrix into a sparse ma-
trix is both storage and transmission efficient [63]. Moreover,
related works [63, 68, 111, 156] explore the quantization of
weights and intermediate data representations. Rather than us-
ing double precision floats, these methods consider 8-bit [68]
or in the extreme case single-bit [111] approximations.

Several prior works investigate content-aware transmission
compression. For example, in an AMBER Alert system, if the
model only requires identifying a car or person in the scene,
the edge device only transmits cropped images focusing on
Region of Interest (RoI) to the cloud for analysis, thereby
reducing bandwidth and latency [151]. Likewise, RoI extrac-
tion in multimodal LLM pipelines enables processing of high-
resolution imagery by isolating the most informative patches
for downstream analysis [25, 208]. For text-based LLMs,
prompt-compression techniques prune tokens and sentences
that are considered uninformative with respect to the query,
improving responsiveness without necessarily sacrificing rele-
vance [74–76,98,99,104,135,201,204–206]. Although these
approaches generally reduce transmission delay, their impact
on accuracy depends on the quality of the cropping or pruning
mechanism. Another study further realizes that concentrating
on relevant data can both cut transmission costs and improve
predictive performance [132].

Previous work has also applied ML-based dimensionality
reduction to reduce transmission data and maintain accuracy.
One idea is to insert a bottleneck between two neural net-
work partitions using an Auto-Encoder NN [40, 65, 117, 159,
197, 212]. The Auto-Encoder is trained by minimizing the
Mean Squared Error (MSE) loss between the input and output
data (the reconstruction). In this setup, the encoder projects
the intermediate data into a more space-efficient latent space,
effectively reducing the channels, width, and height. The
decoder, which serves as an approximation of an inverted en-
coder function, reconstructs the input of the previous partition
using the compressed intermediate data. This approach leads
to a compact representation of intermediate data, enhancing
efficiency minimal accuracy degradation.

For the attention mechanism, low-rank approximation
(LoRA) has been applied to compress sparse attention matri-
ces [165]. Because attention matrices scale quadratically with
sequence length, approximating them via low-rank factors
significantly lowers both computational and memory costs.

Other approaches jointly optimize the backbone and an
intermediate autoencoder (AE) to better preserve end-to-end
accuracy [65, 159, 197]. By training the AE together with

the task model, the compressed latent space tends to retain
features that are most relevant for the downstream prediction
task. However, finding an optimal compressed feature space
for both high accuracy and high γpid remains a challenging
task that requires extensive hyperparameter tuning. To ad-
dress this, recent research [64] uses explainable AI techniques,
including Integrated Gradients [168], to construct an interme-
diate data space that emphasizes features with the greatest
impact on predictions.
Summary of data compression methods: In our latency opti-
mization framework, we adjust the data compression rates γpid
and κpid to minimize transmission overhead. Input-dependent
techniques, including JPEG and RoI-based input pruning for
image or LLM prompts, set the compression rate of model
input (γ0). Intermediate-data-dependent techniques, includ-
ing ML-based dimension reduction and pruning using Auto-
Encoder or LoRA, as well as quantization, set the compression
rate of intermediate data (γpid). Meanwhile, the data compres-
sion techniques (πpid in line 4) also add FLOPs in each parti-
tion (FLOPspid

pid(xpid−1,πpid ,Fpid) in line 7), creating a trade-
off among reduced transmission overhead (γpid), increased
computation overhead (FLOPspid

pid(xpid−1,πpid ,Fpid), and po-

tentially compromised model accuracy (∑M
pid=1 ∑

Qpid
c=1 βc

pid ∗
Ac

πpid
in line 2), which a system architect must evaluate when

choosing compression methods. We summarize the data com-
pression methods in Table 9, highlighting the practicality of
both Auto-Encoder and quantization techniques as they are
broadly model and data agnostic. However, an Auto-Encoder
offers greater flexibility compared to quantization, which en-
ables fine-tuning the compression model (encoder), inversion
model (decoder), and feature ranking techniques (such as ex-
plainable AI tools) to optimize latency and accuracy based
on the user’s specific use case. While an Auto-Encoder intro-
duces additional computational overhead, a quantized model
and activations also require specialized training tools due to
the discrete space. For example, stochastic gradient descent
(SGD) must be adapted to handle the discrete space [68, 129].

4.1.4 Model Compression and Knowledge Distillation

Background. Deep Learning (DL) models can be customized
to reduce inference latency by simplifying neural architectures
while maintaining acceptable accuracy. Common categories
include: (i) quantization [68, 100, 115], which lowers nu-
merical precision; (ii) pruning and sparsification [106, 195],
which edit or reduce the data flow across neural network lay-
ers; (iii) dynamic inference techniques [57, 181, 184, 191],
which adaptively skip layers or channels to save computa-
tion; and (iv) knowledge distillation [50, 59], which trains
lightweight student models to mimic larger teacher models.

For large models such as LLMs, additional compute-
reduction strategies include adjusting quantization parame-
ters via static analysis (e.g., AWQ [101], SmoothQuant [189],
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Activation
Compression Method

Pre-Processing
[132]

Heuristic
[63]

Quantization
[63, 68, 111, 156]

AE
[40, 65, 117, 159, 197, 212]

AE(XAI)
[64, 65, 117, 159, 197]

Computation low low low medium medium
Compression medium medium medium low low

Accuracy high high medium medium high
Practicality low low high high medium

Table 9: Comparison of Input and Intermediate Data Compression Methods: The accuracy of the pre-processing method [132]
depends on the ability of the algorithm to accurately identify and crop the features of interest before sending data to the model
(low practicality, high accuracy given good cropping algorithm, low extra computation for cropping input, and overall medium
compression rate for cropping). Heuristic-based compression algorithms, like clustering for zeros, rely on user expertise (low
practicality, high accuracy, low extra computation, and overall medium compression rate depending on the inputs and heuristics
applied). Intermediate data quantization shortens data representation but may impact accuracy (high practicality, medium
accuracy, and medium compression rate compared to other task-oriented methods) and demands an adapted optimization method
for discrete space (low extra computation). The Auto-Encoder (AE) can be applied to various data representations (high
practicality) and can be adapted to different ML tasks by using shallower layers to minimize computation overhead (medium
computation overhead) or designing smaller latent spaces to create a narrow bottleneck that tradeoffs accuracy (medium accuracy
and low compression rate). Naïve input or intermediate data compression can significantly compromise model accuracy if the
features selected for transmission are suboptimal. In contrast, AE approaches leveraging explainable AI (XAI) tools selectively
transmit crucial features for classifications, reducing transmission delay while maintaining high accuracy (overall medium
practicality based on feature selection methods, overall medium computation demand with AE, high model accuracy, and low
compression rate).

OPTQ [41]), sparse-activation processing (e.g., EIE [56]),
mixture-of-experts architectures [51, 160], and speculative
decoding [23, 91, 121], where smaller draft models generate
tokens for verification by a larger model. Hybrid inference
strategies also offload portions of generation to simplified on-
device models while refining outputs using full-scale cloud
models [32, 122]. These approaches share a common goal
of lowering inference latency or resource usage, though with
varying impacts on accuracy. In some cases, simplification
can even improve generalization by reducing shortcut learning
and mitigating overfitting [46, 69]. In this work, we focus on
how these compression principles integrate with partitioned
neural networks executed across edge–cloud environments.

Methods. We use πpid to denote model adaptations applied to
partition pid, including quantization, pruning, sparsification,
dynamic inference, and distillation. With an adaptation πpid ,
FLOPspid

pid(xpid−1,πpid ,Fpid) estimates the computation cost
of that partition. Compression reduces (i) the compute time
and (ii) the size of hidden representations transmitted to the
next device, thereby improving κpid and γpid (cf. Sec. 4.1.3).

Quantization methods such as PTQ and QAT [65, 95, 129]
reduce precision for weights and activations, directly lower-
ing arithmetic cost. Sparsification and pruning techniques,
including CLIO [63] and BBNet [212], reduce the number
of nonzero computations and thus FLOPspid

pid . Dynamic infer-
ence approaches [57, 181, 184, 191] further decrease FLOPs
by adaptively skipping layers or channels based on input-
dependent conditions. These techniques all reduce TC

pid but
may degrade accuracy under aggressive compression.

For highly resource-constrained edge partitions, aggres-

sive compression may significantly distort features. Lee et
al. [90] propose using a deep decoder at the cloud node to
reconstruct high-dimensional representations from aggres-
sively compressed activations. This approach allows more
substantial edge-side compression while maintaining end-to-
end accuracy.

Instead of compressing an existing submodel, a compact
student model can replace an entire partition. Partition-wise
distillation [117] trains each student partition using logits or
intermediate features supplied by a teacher network, yielding
low-latency components with minimal accuracy loss. Self-
distillation variants [202, 207, 211] can further regularize in-
termediate classifiers and reduce overfitting by propagating
soft labels across different depths of the model.
Summary of model compression methods. In our latency
optimization framework (Sec. 3.1), πpid unifies these adapta-
tions and determines each partition’s compute time:

TC
pid =

FLOPspid
pid(xpid−1,πpid ,Fpid)

µpid
.

Quantization, pruning, sparsification, dynamic inference, and
distillation are complementary and should be considered
jointly when optimizing partitioned model complexity and
placement. Table 10 summarizes the trade-offs among these
compression techniques.

Among these techniques, knowledge distillation offers the
greatest practicality, as student model architectures and distil-
lation objectives can be extensively customized to preserve
accuracy under tight resource budgets. However, this flexibil-
ity comes with higher computational overhead during training.
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In contrast, quantization provides more limited configurabil-
ity but incurs the lowest computation overhead and is widely
adopted in practice for latency-sensitive deployments. The
effectiveness of weight pruning varies with the underlying
data distribution. For instance, pruning weights close to zero
is a well-established heuristic for maintaining accuracy while
reducing computation and data size, but mask-based pruning
often requires data-specific training, leveraging Auto Encoder
or Explainable AI tools, to construct effective sparsity pat-
terns [31]. As a result, pruning methods generally fall be-
tween distillation and quantization in terms of practicality
and computational overhead.

4.2 Cost($)

Deep learning tasks require substantial resources due to their
high computation and memory demands. For example, the re-
cent deep transformer models encounter memory bottlenecks
when loading and saving attention layers [47]. Previous work
discusses splitting model states [141], kernel fusion tech-
niques [27], and sparse attention mechanisms [199] to reduce
GPU memory demands and transmission between CPU and
GPU memory.

Previous works emphasize low-level DL task scheduling.
Instead, this survey focuses on the higher level aspects of
resource provisioning. Organizations developing intelligent
applications using an MLaaS system often face budget con-
straints when provisioning resources from cloud providers.
For instance, the daily running cost for ChatGPT can reach up
to $700,000 [136]. Furthermore, cloud services have different
cost models that factor in billing granularity, scaling speed,
availabilities, etc. A cost-efficient MLaaS system should
strategically choose, configure, and load balance the cloud
resources to optimize expenses while meeting performance
demands.

4.2.1 Methods

To bridge this gap and promote ML systems with low mone-
tary cost of cloud resource usage, various organizations pro-
vide services to construct intelligent applications on diverse
infrastructures, with an emphasis on minimizing costs. For
example, Redhat OpenShift AI [145] provides a container-
based Machine Learning as a Service for on-demand model
serving.

Previous research has examined the dynamic scheduling
of neural network and model partitions across generic edge
and cloud resources [63, 87, 107, 137, 213]. Later work also
considers specific cost models according to the cloud services,
such as Infrastructure-as-a-Service (IaaS) and Function-as-a-
Service (FaaS) [71, 143], to balance processing and transmis-
sion demands while minimizing expenses. However, detailed
cost analyses using real-world cloud resources for low-cost
($) ML serving remain limited. Many studies model resource

expenses on the edge and in the cloud using generic unit
costs [107, 137, 213]. However, the specific provisioning fac-
tors for each edge and cloud service, including container cold
starts and billing time granularity, are critical to minimizing
real-world cloud usage costs.
Summary of cost-saving methods: Based on our cost formu-
lation (Sec. 3.2.1), the accumulated running time of hetero-
geneous resources introduces heterogeneous resource-usage
costs. From the resource-orchestration perspective, the var-
ious pricing components of provisioning services, includ-
ing cold-start time (T cutid

cold ), transmission time (T cutid
trans ), and

processing time (
FLOPsM

cutid+1(xcutid)

θF
and FLOPscutid

1 (x0)
θI

), signifi-
cantly affect provisioning decisions. We summarize related
work in Table 11. Overall, coarse-grained cost analyses that
abstract away application- or model-specific details are more
generalizable. While fine-grained methods can better ap-
proach cost-optimal solutions, they often rely on specialized
model features, such as internal classifiers.

4.3 Privacy
Distributed DL systems processing sensitive personal data
raise data leakage concerns. Private data should be inac-
cessible outside the customer’s infrastructure or protected
from reconstruction during transmission over wide area net-
works (WAN). As described in Section 2.1.3, an adversary
could reconstruct the intermediate data transmitted between
DNN partitions [175] using an Auto-Encoder Neural Net-
work. To protect against this vulnerability for model infer-
ence, previous research adds Perturbation to intermediate
data [58, 126] or incorporates a Regularization step during
training [58, 96, 175, 210]. Such methods preserve only essen-
tial features for ML tasks and remove sensitive information.

4.3.1 Perturbation

Background. Differential privacy (DP) improves privacy in
statistical databases by adding noise to query outputs propor-
tional to the sensitivity of the query [35, 203]. Consider a
query f : D → R on a dataset D with samples x,x

′ ∈ D. The
global sensitivity ∆ f of this query is defined as:

∆ f = max
x,x′

∥ f (x)− f (x
′
)∥

Users can set the Privacy Budget ε. Then, noise can be drawn
from a Laplace distribution, X ∼ Laplace(∆ f

ε
), to achieve the

desired level of privacy based on various privacy definitions.
More specifically, the probability density function (PDF) is

p(x) = 1
2b e

−∥x∥
b , where b = ∆ f

ε
. The value of ε can be de-

termined by a grid search against the attack model. With a
smaller ε, we spread the PDF and introduce more diverse
noise to the output, so less information is preserved.

In practice, finding the global sensitivity ∆ f is challenging
as it requires testing all inputs. Instead, previous work bounds
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Model Compression Method Quantization [65, 95] KD [117] Weight-Pruning [63, 90, 212]
Computation low high low

Accuracy medium high high
Practicality medium high medium

Table 10: Comparing Model Compression and Knowledge Distillation (KD) Methods: KD preserves essential weights to ensure
high model accuracy, which involves model training (high computation). However, it can be applied to models of any size (high
practicality). Quantization reduces the precision of all weights. While it is generally task-agnostic, model accuracy can degrade
(medium accuracy and practicality). The process quantizes the representation and adapts the optimization method, which is
lightweight (low computation). The effectiveness of weight pruning depends on the distribution of weights and the specific
task (medium practicality, high accuracy, and medium weight size). Heuristic-based pruning method also has low computation
complexity.

Analysis Granularity Coarse [63, 87, 107, 137, 213] Fine-Grained [71, 143]
Cost Saving Optimality Low High
Model Structure Flexibility High Low

Table 11: A comparison of cost analysis methodologies for ML systems. Coarse-Grained Analysis treats the ML model as a
monolith. This approach offers high Model Structure Flexibility but overlooks potential savings by not optimizing resources
for individual components, leading to lower Cost Saving Optimality. Conversely, Fine-Grained Analysis models the cost of
individual layers or partitions. This allows for highly optimized resource allocation (e.g., VMs vs. FaaS for different parts of a
model), but is less flexible and requires a more detailed system model.

the sensitivity in model partition output [1, 203].

x′pid =
xpid

max(1, ∥xpid∥
C )

where C is the clipping threshold. In this way, ∥x′pid∥ < C.
Notice that clipping modifies the hidden variables which leads
to accuracy degradation. To optimize C, the common practice
is to set the median of xpid based on the training dataset [1].

Previous studies apply this practical DP implementation in
DP-SGD [1,200] during training to mitigate the risk of recon-
structing training datasets from the served models. They add
Gaussian noise to gradients, reducing the model’s sensitivity
to individual training samples. As a result, the distribution of
prediction confidences for training dataset samples is similar
to other samples, preventing over-concentration on the true
label. This approach complicates membership inference at-
tacks, in which adversaries deduce whether a sample was part
of the training data based on prediction logits [43].

In edge inference settings, recent work suggests injecting
noise to hidden variables that obscure sensitive information,
for example, race, age, or gender, transmitted over the Inter-
net [58, 126].
Methods. In our privacy optimization formulation (Sec. 3.3),
in line 3, an MLaaS system can inject noise to intermediate
data (τ(∆ f )) based on its sensitivity ∆ f . With differential
privacy, recent studies [58, 116, 126, 203] have developed
fitted noise layers that either sample noise from a distribution
or nullify specific entries. This approach is highly flexible,
allowing users to choose different noise layers to append
to the final layer on the edge device when the source data
distribution changes. The noise injected during training and

inference complicates the inversion approximation used by
the attacker at model serving time. Meanwhile, the model
retains its capacity to extract relevant information for accurate
predictions.

4.3.2 Regularization

Background. We can also solve the privacy of the source
data as an optimization problem. One approach is to incorpo-
rate source data privacy as a secondary objective by adding a
regularization term to the loss function. Thus, we encourage
the model to preserve only the features that contribute to pre-
diction. On the other hand, deep edge neural networks (NNs)
with non-invertible hidden variables, such as rectangular ma-
trices, are harder to approximate with an inversion matrix.
Therefore, we can optimize the placement of NN partitions to
maximize the privacy level of the source data.
Methods. In our privacy optimization formulation
(Sec. 3.3), we incorporate the privacy loss, exemplified as
MSE(F−1

pid (xpid),xpid−1) into the loss function in line 1. The
mean square error gauges differences between the recon-
structed and original source data. Then, we can tune the
privacy level of model inference by specifying hyperparame-
ters wCE and wp for training [96,175,210] and model partition
placements [58, 210].

There are ways to incorporate privacy objectives into model
training. For example, we can include a distance correlation
loss function, comparing intermediate data and source data
in addition to the Cross-Entropy loss [175]. Alternatively,
additional training epochs can be dedicated to optimizing
the privacy objective [210]. For more task-specific solutions,
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ResSFL [96] introduces a privacy loss function that compares
the source data and the reconstructed data derived from in-
termediate data using a decoder following the threat model
in model inversion attacks. Thus, by designing decoders
with different capacity, the model can defend against different
model inversion attacks.
Summary of privacy-preserving methods: As our privacy
formulation (Sec. 3.3.3) shows, prior work mitigates model-
inversion attacks (MIA) and prompt-inversion attacks (PIA)
by reducing the amount of recoverable information encoded in
shallow layers. In general, existing solutions introduce either
perturbation layers (τ(∆ f ) in line 3 of our privacy formulation
in Sec. 3.3.3) during inference or regularization terms during
training (MSE(F−1

pid (xpid),xpid−1) in line 1 of our formulation
in Sec. 3.3.3). We summarize these approaches in Table 12.
Regularization-based methods generally require end-to-end
model training and tend to preserve accuracy more effec-
tively, but they incur higher training overhead. In contrast,
perturbation-based methods are lightweight and can often be
applied post hoc, though they usually offer weaker guarantees
in either accuracy or privacy. Finally, although these tech-
niques have been extensively evaluated for vision models and
compact edge networks, their applicability to large language
models remains insufficiently explored. Adapting them to the
scale, tokenized structure, and high-dimensional representa-
tions of modern LLMs is an open research challenge.

5 Multi-Objective Optimization Case Studies

Optimizing for latency (LL), monetary cost (LC), and data
privacy (LP) simultaneously presents a significant challenge,
as these objectives often conflict. An improvement in one
area can adversely affect another. For instance, prior work on
CIFAR-10 has shown that reducing the edge model’s depth
from 7 to 4 layers – a change that could decrease latency – de-
grades privacy, causing the attacker’s top-1 misclassification
rate on reconstructed images to fall from approximately 80%
to below 40% [210]. Similarly, techniques designed to ac-
celerate inference, such as internal classifiers (βpid) or latent
compression (γpid), can lead to unpredictable resource usage.
This unpredictability may result in the under-utilization of
provisioned virtual machines, thereby increasing the effective
monetary cost per request.

However, these same mechanisms can also be used to co-
optimize multiple objectives when applied in the right context.
For example, early exits reduce traffic to deeper model layers,
allowing a small set of always-on VMs to handle the “hot
path” (frequent, low-latency requests) while offloading less
frequent “cold” traffic to serverless functions (FaaS). This
approach can simultaneously reduce both latency and cost.
In this section, we therefore explore the tradeoffs inherent
in our formulation through a series of use cases, analyzing
scenarios where a subset of objectives is relaxed to maximize
performance on others.

5.1 Latency & Cost
In this section, we analyze scenarios where data privacy is
a relaxed constraint, allowing us to focus on the trade-off
between inference latency and monetary cost. This situa-
tion is common for large models like LLM chatbots (e.g.,
ChatGPT [133] and Gemini [169]), which are too computa-
tionally intensive to be deployed on user devices and must
run on remote servers. Accordingly, we now examine how
our formulation can be used to balance these two objectives.

Our optimization of latency (LL) is guided by the objective
in line 1, which minimizes total inference time:

LL = min
pid,αc

pid ,κpid ,γpid
(ξT

0 T T
0 +

M

∑
pid=1

Tpid)

This total time is composed of transmission delay (T T
pid), de-

fined in line 5, and processing delay (TC
pid), defined in line 7:

T T
pid =

(1−κpid)(1−βpid)(1− γpid)Size(Fpid(xpid−1))

bandwidth

TC
pid =

FLOPspid
pid(xpid−1,πpid ,Fpid)

µpid

Similarly, our optimization of monetary cost (LC) is guided
by the objective in line 1. This function models the combined
cost of IaaS resources up to a partition point, cutid, and FaaS
resources thereafter:

LC = min
cutid,θF ,θI ,α

k
pid

CI(θI)TI

cutid

∑
pid=1

βpid

+CF(θF)TF

M

∑
pid=cutid+1

βpid

This cost is weighted by the probability that a request will
reach a given layer, βpid , which is derived from the workload
distribution as shown in line 4:

βpid =

Qpid

∑
c=1

Pr(α
′c
pid > α

c
pid) =

Qpid

∑
c=1

β
c
pid

Although latency and cost are coupled, reducing one does
not automatically reduce the other. Techniques that lower
latency, such as data compression (κpid , γpid) and early ex-
its (βpid), directly influence the total execution time (TI , TF ),
which in turn determines monetary cost. However, this re-
lationship is complex. For example, while IaaS platforms
may offer more cost-efficient hardware than FaaS, dedicat-
ing a full VM to a model is not always cheaper. In a DNN
with internal classifiers, many requests may exit early, leading
to short, unpredictable inference times [82, 87]. And in a
hybrid LLM setup where easy queries are handled by a lo-
cal LLM while complex one needs more sophisticated cloud
LLM [30]. In particular, in Hybrid LLM, with 1% drop in
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Defense Method Perturbation [58, 116, 126, 203] Regularization [58, 96, 175, 210]
Training Overhead Medium High
Required Model Retraining Partial or Complete Complete
Influence on Accuracy High Medium

Table 12: A comparison of two common defenses against model-inversion attacks. Perturbation methods add noise to intermediate
data, while Regularization methods add a privacy-penalty term to the training loss. Perturbation often has lower training overhead
because noise-generating components can sometimes be trained separately [126]. However, this training paradigm can lead to a
significant accuracy drop (e.g., differential privacy vs. CPA-DC in Federated Split Learning [210]). In contrast, Regularization
requires end-to-end retraining, which incurs higher overhead but typically affects accuracy less. Although these techniques
have been studied for traditional MIA, their substantial training cost makes them largely impractical for defending against
prompt-inversion attacks (PIA) in large-scale LLMs.

BART score of responses (i.e., use smaller edge LLM model),
they reduced 22% traffic to the cloud LLM (i.e., api calls to
GPT-3.5-turbo) [30]. These short jobs can under-utilize a pro-
visioned IaaS VM, making it less cost-efficient. In contrast, a
FaaS platform, which bills based on precise execution time,
is often more cost-effective for these variable, short-running
requests.

To jointly optimize inference latency and monetary cost,
prior research has explored architectural-aware resource pro-
visioning and model offloading. One prominent approach
involves hybrid edge-cloud systems, which route computa-
tionally simple queries to local edge devices while offloading
complex requests to more powerful, highly-parameterized
models (e.g., Large Language Models) in the cloud [30, 157].
Other works leverage internal classifiers and ensemble
model architectures, allowing for on demand fine-grained
resource provisioning for layers deployed on the edge or in
the cloud [61, 83, 87, 138, 172, 209].

When considering resource costs rather than per-call API
fees for services or models, the unique pricing models of
cloud providers also affect ML resource-provisioning deci-
sions. In LIBRA [143], the authors identify a Cost Indiffer-
ence Point showing high steady-rate traffic is best served by
reserved VMs and low-rate traffic can be handled by FaaS
for cost-efficiency. They achieved 20% cost reduction by
load balancing. Serverless (FaaS) platforms provide fine-
grained resource provisioning with response times measured
in milliseconds, making them ideal for dynamic or transient
workloads and for minimizing idle resource costs [52]. In
contrast, reserved VMs, although slower to respond to QoS
targets, offer a lower cost per request for sustained workloads
that fully utilize the VMs [158].

For Large Language Models (LLMs), where output lengths
are highly unpredictable, recent work has focused on the
unique characteristics of the auto-regressive decoding phase.
Specifically, because the Key-Value (KV) cache of previous
tokens remains static during the generation of a new token, it
is possible to migrate the KV cache to a different node with
sufficient GPU memory [167]. This technique enables low-
downtime migration of ongoing LLM inference jobs, which
is critical for maintaining low 99th-percentile latency. Further-

more, this low-overhead migration method facilitates dynamic
resource allocation, allowing for minimal over-provisioning
and thereby reducing monetary costs.

5.2 Latency & Privacy
In our second scenario, we examine privacy-sensitive appli-
cations where minimizing inference latency is critical, while
monetary cost is a less stringent constraint. Such applications
are common in environments like smart hospitals [19] or in
enterprise use cases for LLM chatbots, where prompts may
contain proprietary information such as company names or
contact details [113, 139].

In these contexts, strict data privacy requirements often
mandate that source data cannot leave the user’s local facility.
Despite this on-premise processing constraint, the machine
learning system is still required to deliver high-quality outputs
with low inference latency, creating a significant technical
challenge.

As defined in Sec. 3.3.1, our privacy formulation centers
on a Model Inversion Attack (MIA). We consider an envi-
ronment where a DNN is partitioned across a directed acyclic
graph, and the threat goal is to infer the source data from the
intermediate activations exchanged between partitions.

In this threat model, an honest-but-curious adversary trains
a reconstructor model (RMIA) that takes an intermediate acti-
vation, xpid , as input and attempts to generate a reconstruction
of the original source data, x̂0 = RMIA(xpid). The resulting
privacy leakage from any partition pid can be quantified by
the Mean Squared Error (MSE) between the original data and
its reconstruction:

Leakpid = E
x0∼D

[
∥x0 − x̂0∥2

2
]

Accordingly, our privacy-optimization objective, introduced
in line 1 of privacy formulation (Sec. 3.3.3), is formulated as:

LP = min
π

pri
pid ,∆,λ

(wCECE(ŷ,y)−
M

∑
pid=1

wpMSE(F−1
pid (xpid),xpid−1))

This objective function seeks to strike a balance between two
competing goals: maintaining model accuracy, measured by
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Cross-Entropy (CE), and preserving source data privacy by
minimizing the invertibility of intermediate representations,
measured by MSE.

The privacy-enhancing techniques we consider alter the in-
termediate data, xpid , exchanged between partitions, as shown
in line 3:

xpid = λπ
pri
pid(Fpid)(xpid−1)+ τ(∆Fpid)

These alterations, introduced by the privacy-aware training ap-
proaches (πpri

pid(·) and τ(·)), directly impact the transmission
and processing delays (T T

pid and TC
pid) in our latency formula-

tion. The function π
pri
pid(·) is analogous to the πpid(·) function

used for latency optimization (lines 4 and 7), as both represent
paradigms including model compression, data compression,
and partition offloading.

For traditional DNNs used in tasks like image classification
(e.g., VGG), the overhead from these privacy measures can
be minimal. Techniques such as regularization [58, 96, 210]
or data perturbation [58, 126] often introduce few architec-
tural changes during inference. For example, ResSFL [96]
introduce an inversion network of roughly 76.2,M FLOPs
together with a client model of 21.5,M FLOPs during model
training, while maintaining an MSE of 0.02 between source
and reconstructed data during inference. Furthermore, any
resulting increase in processing or transmission overhead can
frequently be compensated for by applying model compres-
sion techniques [110, 197].

In the context of modern Large Language Models (LLMs),
the threat of model inversion has evolved into the Prompt
Inversion Attack (PIA). The motivation for such attacks is
strong: user prompts can contain sensitive personal informa-
tion, while system prompts often represent valuable intellec-
tual property. To mitigate these risks, some works propose
offloading schemes that partition the LLM between the edge
and the cloud, preventing the raw prompt from being trans-
mitted over the network while also managing GPU memory
constraints. However, this does not solve the core problem,
as an honest-but-curious adversary can still attempt to recon-
struct the prompt by capturing the intermediate activations
between model partitions [113, 139].

At first glance, inverting LLMs appears more difficult than
inverting traditional CNNs like VGG. LLMs are significantly
deeper and more non-linear, and their inputs – discrete to-
ken embeddings – are theoretically harder to reconstruct than
continuous image data. Despite these challenges, recent re-
search has demonstrated successful prompt reconstruction
by leveraging open-source base model weights and LoRA
adapters [182]. Furthermore, traditional privacy-preserving
techniques like regularization and data perturbation are gen-
erally impractical for models of this scale, as they introduce
prohibitive training overhead and can cause significant per-
formance degradation. Therefore, developing effective and
efficient methods to guarantee the privacy of prompt inputs
remains a critical and open research challenge.

5.3 Latency, Cost & Privacy
In our third and final scenario, we address the most compre-
hensive challenge: the simultaneous optimization of ML in-
ference latency, source data privacy, and monetary cost. This
setting is crucial for deploying practical, privacy-sensitive
applications that must also operate under tight latency and
budget constraints. While our previous sections analyzed
pairwise trade-offs, the economic realities of modern large-
scale models necessitate a holistic approach. The exponential
growth in inference expenses has made per-request cost a
critical metric [44, 54], meaning a truly viable solution must
co-optimize all three objectives.

Achieving this is exceptionally challenging, as improve-
ments in one area often create complex, competing effects
on the others. Consider the impact of a single architectural
decision designed to enhance privacy against a Model Inver-
sion Attack (MIA). A straightforward strategy is to increase
the number of layers processed locally on a user’s device (the
head partition) before offloading to a remote server. This
strengthens privacy by applying more non-linear transforma-
tions but introduces a multifaceted trade-off:

• Transmission Latency (T T
pid) may decrease, as the re-

sulting intermediate data sent to the server is often
smaller.

• Processing Latency (TC
pid) on the user’s device will in-

crease due to the heavier computational load.

• Monetary Cost may be reduced, as less computation is
required from paid server resources.

This single example illustrates the difficulty finding a global
optimum across latency, privacy, and cost.

Furthermore, the choice of cloud service for each model
partition is a critical factor due to differing pricing models
(e.g., AWS EC2 [7] vs. AWS Lambda [9]). As established
in our cost formulation (Sec. 3.2.1), we can model a hybrid
system that uses a cost-efficient EC2 instance for the initial,
privacy-sensitive partitions and a more expensive, serverless
Lambda function for the deeper layers.

In this model, architectural decisions directly translate to
monetary cost. For instance, one can shift more layers of
computation onto the EC2 instance (as long as the VM is
fully utilized). While this increases the runtime on the cheaper
VM, it proportionally reduces the execution time billed for the
more expensive Lambda function. Provided that end-to-end
latency and data privacy requirements are met, this strategic
shift of computation from a high-cost to a low-cost resource
can significantly reduce the total cost per inference. This
demonstrates that resource selection and model partitioning
must be carefully co-optimized to achieve a true balance
among latency, privacy, and cost.

Despite progress in optimizing individual objectives, de-
veloping a unified framework to systematically balance in-
ference latency, monetary cost, and privacy against Model
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Inversion Attacks (MIA) remains a significant challenge. The
current landscape reveals critical gaps in research. For in-
stance, much of the existing work adopts a narrow defini-
tion of privacy, focusing on ensuring the physical locality of
source data (e.g.,Multi-tier Multi-node Scheduling of LLM,
etc [107, 114]) while overlooking the more subtle threat of
information leakage from intermediate activations during in-
ference (i.e., MIA and Prompt Inversion Attacks).

Furthermore, while the danger of Prompt Inversion Attacks
(PIA) in Large Language Models is increasingly recognized,
the practicality and efficiency of potential countermeasures
are still largely unexplored. The remedies suggested by our
privacy formulation, especially for LLMs, demand rigorous
investigation before they can be considered viable. Drawing
from these gaps in the literature and the challenges high-
lighted by our framework, the following section outlines sev-
eral key open research issues.

6 Open Issues

Drawing from our multi-objective optimization framework,
this section summarizes the inherent challenges in coupling
latency, cost, and privacy, motivating future research direc-
tions.

6.1 Monetary Cost and Latency Optimization
via Fine-Grained Resource Orchestration

Optimizing the monetary cost of hybrid edge-cloud ML sys-
tems introduces significant challenges in resource provision-
ing. Previous work, as discussed in Sec. 5.1, has primarily
focused on load balancing at the granularity of entire re-
quests. For instance, LIBRA [143] routes traffic to reserved
VMs or serverless platforms based on traffic patterns by iden-
tifying a Cost Indifference Point, while Hybrid LLM [30]
routes queries to different-sized models based on prompt dif-
ficulty.

We propose, however, that a more fine-grained approach,
orchestrating resources at the level of individual neural net-
work partitions, allows substantial cost savings, particularly
for models featuring internal classifiers. When a DNN is
partitioned, it forms a Directed Acyclic Graph (DAG) where
each partition processes features for subsequent layers. The
presence of early exits means that many requests may termi-
nate at shallow partitions, leading to a significantly reduced
and more variable workload for deeper ones.

Consequently, provisioning a single, powerful Virtual Ma-
chine (VM) for the entire inference path is inefficient. The
resource remains idle for short-running requests but is billed
as if fully utilized. A more cost-effective strategy would be
to employ high-granularity, pay-per-use resources like FaaS
for the deeper partitions. This allows the system to scale
resources dynamically to match the fluctuating workload, en-

suring that the monetary cost accurately reflects the actual
computation performed.

6.2 Defending against Prompt Inversion At-
tacks under Latency and Cost Constraints

While our privacy formulation focuses on the general prin-
ciples of Model Inversion Attacks (MIA), its application to
Large Language Models (LLMs) is known as the Prompt
Inversion Attack (PIA). As LLM-based chatbots become
popular, their prompts, often containing sensitive user data
or proprietary business logic, have become valuable tar-
gets [113, 139]. However, traditional MIA remedies like
regularization and perturbation are generally impractical for
models of this scale, creating a substantial open attack surface
for distributed LLM applications.

A difficulty in defending against PIA lies in the unpre-
dictable nature of privacy-preserving hyperparameter
tuning. As shown in our privacy formulation (Sec. 3.3), the
final balance between model accuracy (CE(ŷ,y)) and privacy
(invertibility of xpid−1) for any given set of hyperparameters
{π

pri
pid ,∆,λ} can only be evaluated after a full model training

cycle converges.
This leads to two critical problems. First, the tuning pro-

cess is prohibitively time-consuming, requiring numerous,
resource-intensive training runs. Second, the tuning phase
itself creates a window of vulnerability. In a distributed
setting, the iterative exchange of gradients and intermediate
activations during tuning exposes data before an effective
privacy configuration has been found. While heuristics may
offer some guidance (e.g., higher compression often degrades
inversion accuracy), systematically and safely identifying op-
timal privacy hyperparameters for LLMs remains an unsolved
research problem.

Some related work has attempted to mitigate these risks in
traditional DNNs by using transfer learning [96]. The strategy
is to pre-train a privacy-aware model on a public dataset and
then fine-tune it on the private data, hoping to establish a
secure baseline. However, this approach often fails when
there is a significant domain mismatch between the public and
private tasks (e.g., pre-training on CIFAR-10 for a CIFAR-100
task). In such cases, extensive fine-tuning on the private data
is required to achieve acceptable accuracy, which reintroduces
the original risks of high computational cost and data leakage
during the prolonged tuning phase. Consequently, an efficient
and secure methodology for tuning privacy-aware LLMs is
critical.

7 Conclusion

This survey has contextualized state-of-the-art model offload-
ing and adaptation methods as critical "control knobs" within
a multi-objective optimization framework that balances la-
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tency, cost, and privacy. We traced the evolution from tradi-
tional full-model offloading to the sophisticated, partitioned
neural network architectures required by demanding appli-
cations like LLM chatbots. The increasing prevalence of
these applications highlights the significant potential for fu-
ture edge-cloud collaborative Machine-Learning-as-a-Service
(MLaaS) systems, particularly for organizations leveraging
managed cloud infrastructure [2, 6, 185].

By analyzing common challenges such as transmission de-
lays, processing overhead, and privacy vulnerabilities, this
work provides a structured perspective on developing next-
generation MLaaS platforms. The open issues identified, es-
pecially in minimizing monetary cost and strengthening guar-
antees against attacks like MIA and PIA, represent ground
for future research. We believe this survey serves as a start-
ing point to guide the future advancements in the field of
collaborative edge-cloud intelligence.
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