
Towards Optimal Placement of Deep Learning Tasks

Over Edge and Cloud Infrastructures

Authors’ Response

We thank the anonymous reviewers for their comprehensive and constructive feedback. We have addressed all the issues
raised by the reviewers in the updated paper, and we provide a point-by-point response to the reviews below. In the
updated paper, major changes are highlighted in pink. We improved the overall writing of the paper.

1 REVIEW # 1

Weaknesses: The survey does not provide a concise set of insights in this space.

We restructured the paper to surface insights more clearly. Section 2 now defines the setting and challenges. Section 3
introduces our optimization formulation. Section 4 surveys prior work mapped to that formulation. Section 5 analyzes
interactions among objectives. And Section 6 highlights open issues. To improve usability, we also expanded the table in
Section 1 to show which objectives (latency, cost, privacy) each surveyed paper addresses, and added tables of solution
methods for each optimization objective with short “key takeaways” at the end of subsections in Section 4. Section 5
provides interaction case studies that motivate the open problems illustrated in Section 6. Together, these changes
ensure the SoK provides a concise set of insights rather than only a catalog of works.

The problem formulation needs to be carefully thought about, especially how the different sub-optimizations interact
with each other.

In Section 3, for our unified formulation, we added discussions regarding the additional constraints on edge resources
(compute, memory, energy), making solutions realistic. To keep the scope tractable, we do not show every objective
and constraint in a single formulation. Instead, we focus the survey on three core targets: latency, monetary cost,
and privacy. We distinguished between training-time and inference-time decisions and added a section on how latency,
cost, and privacy interact. To demonstrate these interactions, Section 5 includes three case studies: (i) a latency
and cost analysis using Hybrid LLM and LIBRA profiling [4, 1], (ii) a privacy and latency analysis drawing on ResSFL
evaluations [2], and (iii) a latency, cost and privacy analysis according to Multi-tier Multi-node Scheduling of LLM
(MMSL) [3].

The paper needs to be clearer on what has been done in prior work and what is a ”possible” solution.

We clearly separated survey material from our organizing framework. Section 4 is dedicated to summarizing prior work,
while Section 3 presents our formulation strictly as a classification lens, not as a proposed solution.

2 REVIEW # 2

Weaknesses: The authors establish an ambitious objective that merges latency, privacy, and cost, yet they never run
even a toy example that tunes those weights and shows a concrete placement outcome. Because the optimization is
the conceptual heart of the paper, readers are left guessing how sensitive the solution is to different workloads, network
conditions, or privacy budgets. A small simulated workload, a public trace, or even a reproducible spreadsheet model
would go a long way toward demonstrating that the framework works in practice.

1

We addressed this by adding evaluation case studies that exercise the optimization framework. In Section 5, we included
a latency and cost analysis using LIBRA and Hybrid LLM profiling results as examples [4, 1]. We also incorporated a
privacy and latency study based on ResSFL evaluations [2]. And we included a latency, cost and privacy analysis according
to Multi-tier Multi-node Scheduling of LLM (MMSL) [3]. These examples provide concrete placement outcomes and
illustrate the sensitivity of the framework to different conditions.

The single cost vignette—one vision model, a handful of request rates, and a broad “5–50 %” savings range—feels more
illustrative than diagnostic. It doesn’t explore key variables such as cold-start delay, accuracy impact of early exits, or the
tipping point where serverless becomes more expensive than a reserved GPU instance. Without a broader sweep of ex-
periments, claims about monetary trade-offs and real-world feasibility remain suggestive rather than authoritative.

Instead of expanding on our evaluations, the new case studies in Section 5 leveraging prior work evaluations explicitly
consider cold-start delays, accuracy trade-offs from early exits, and tipping points where serverless becomes more ex-
pensive than reserved instances. This broader scope makes the cost analysis more diagnostic and better grounded in
real-world deployment scenarios.

Real-world edge/cloud systems also juggle security compliance, energy budgets at the edge, developer tooling, and
operational monitoring. By focusing strictly on latency, privacy, and cost, the survey downplays these practical constraints.
Even a short subsection acknowledging them—along with pointers to relevant literature—would give practitioners a more
balanced view of what it takes to ship these ideas.

When we introduce our unified formulation in Section 3, we added discussion of broader system constraints such as edge
energy budgets, developer tooling, wireless connection conditions, and application-specific metrics including Time-to-
First-Token for LLMs. We also cite relevant literature that addresses these issues. This provides practitioners with a
more balanced perspective on what it takes to deploy edge–cloud ML systems beyond latency, privacy, and cost alone.

3 REVIEW # 3

Weaknesses: The paper describes a wide range of different areas, but does not recontextualize them in the context of
the research questions that the paper sets out to answer. As such, there is no clear take-away.

We restructured the survey to explicitly map each technique to our unified optimization framework. In Section 4, prior
work is organized around the latency, cost, and privacy objectives introduced in Section 3, and short, focused paragraphs
summarize what each technique contributes to the optimization question. We also include coverage matrices that clearly
indicate which objectives and interactions each cited paper addresses. Section 5 presents interaction case studies that
motivate the open problems discussed in Section 6. Together, these revisions turn the survey into a more actionable
synthesis with concrete takeaways instead of a collection of disconnected summaries.

Insights and analysis are based on old models that are no longer state-of-the-art, while ignoring the implications of newer
developments such as the shift to attention-based Transformer models.

We updated the survey with more recent literature from 2024–2025, particularly focusing on edge-cloud collaboration for
large language models and attention-based architectures. The discussion was refined to account for attention mechanisms,
including using Low Rank Approximation and Mixture of Experts to minimize attention FLOPs, etc, which are critical
for Transformer inference. Tables were revised to include LLM-related frameworks and adapter placement strategies,
extending the examples beyond older CNN models and datasets. This update aligns the analysis with current state-of-
the-art models.

The contribution over previously published surveys in the same area is unclear (especially since previous surveys covered
the same topic, except not in the same paper).

We clarified the novelty of our survey in the Introduction. Beyond broader coverage, the paper now contributes:

2

• An interaction-aware optimization framework evaluated via case studies

• Interaction analyses (e.g., IaaS vs. FaaS latency–cost trade-offs, privacy–latency tensions, and methods for jointly
balancing latency, cost, and privacy) that turn the framework into actionable insights

• Identification of previously unstudied combinations of objectives under alternative threat models (e.g., prompt-
inversion attacks in large language models), pricing models (e.g., serverless fine-grained billing vs. VM coarse-
grained billing), and application domains

4 REVIEW # 4

Weaknesses: I think there is a lot of potential to improve writing. Especially the first three section are quite long and
take a lot of time to come to the point.

We streamlined the first three sections to be more concise and to reach the main points more directly. In the introduction,
we revised the motivation to highlight the popularity of MLaaS for diverse applications rather than emphasizing parameter-
efficient fine-tuning.

It will be important to highlight what aspects can be measured and what will be hard to measure in the optimization
constraints used.

In Section 3 (formulation), we clarified how the main parameters in the optimization can be profiled. We distinguished
between parameters that can be directly measured (e.g., transmission and processing latency, and sparsity of early-exit
model) and those that are harder to quantify (e.g., using MSE for reconstruction error as privacy loss), and provided
guidance on how they can be estimated in practice.

The privacy section is missing quite a lot of discussion, especially around differential privacy. Importance of privacy
etc.

We expanded the privacy section substantially. We introduced and cited significant prior work on model inversion attacks,
restructured the discussion on differential privacy techniques, and included examples relevant to large language models
(e.g., prompt inversion attack).

References
[1] Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Rühle, Laks V. S. Lak-

shmanan, and Ahmed Hassan Awadallah. Hybrid LLM: Cost-Efficient and Quality-Aware Query Routing. In
The Twelfth International Conference on Learning Representations, 2024.

[2] Jingtao Li, Adnan Siraj Rakin, Xing Chen, Zhezhi He, Deliang Fan, and Chaitali Chakrabarti. ResSFL: A Re-
sistance Transfer Framework for Defending Model Inversion Attack in Split Federated Learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 10194–10202, June
2022.

[3] Mulei Ma, Chenyu Gong, Liekang Zeng, and Yang Yang. Multi-tier multi-node scheduling of llm for collaborative
ai computing. In IEEE INFOCOM 2025 - IEEE Conference on Computer Communications, pages 1–10, 2025.

[4] Ali Raza, Zongshun Zhang, Nabeel Akhtar, Vatche Isahagian, and Ibrahim Matta. LIBRA: An Economical
Hybrid Approach for Cloud Applications with Strict SLAs. In 2021 IEEE International Conference on Cloud
Engineering (IC2E), pages 136–146, 2021.

3

TOWARDS OPTIMAL PLACEMENT OF DEEP LEARNING TASKS

OVER EDGE AND CLOUD INFRASTRUCTURES

Anonymous authors
Paper under double-blind review

Abstract
Edge intelligent applications like VR/AR and language model
based chatbots have become widespread with the rapid expan-
sion of IoT and mobile devices. However, constrained edge
devices often cannot serve the increasingly large and complex
deep learning (DL) models. To mitigate these challenges,
researchers have proposed optimizing and offloading parti-
tions of DL models among user devices, edge servers, and the
cloud. In this setting, users can take advantage of different
services to support their intelligent applications. For example,
edge resources offer low response latency. In contrast, cloud
platforms provide low monetary cost computation resources
for computation-intensive workloads. However, communica-
tion between DL model partitions can introduce transmission
bottlenecks and pose risks of data leakage. Recent research
aims to balance accuracy, computation delay, transmission
delay, and privacy concerns. They address these issues with
model compression, model distillation, transmission compres-
sion, and model architecture adaptations, including internal
classifiers. This survey contextualizes the state-of-the-art
model offloading methods and model adaptation techniques
by studying their implication to a multi-objective optimiza-
tion comprising inference latency, data privacy, and resource
monetary cost.

1 Introduction

In recent decades, large volumes of data have been gener-
ated on mobile and Internet-of-Things (IoT) devices. Cloud
computing resources remain more flexible in scaling and
management than edge computing resources. However, edge
computing can mitigate transmission bottlenecks over the
wide-area network connecting users to the cloud [144]. Re-
cent intelligent systems focus on offloading user applications
across the continuum of personal device, edge and cloud
resources [70,102,105], leveraging resource orchestration ser-
vices in the cloud and at the edge, while optimizing for latency,
privacy, and monetary cost. As exemplified in Fig. 1, a Ma-
chine Learning-as-a-Service (MLaaS) system can provision
resources across the continuum of resources using various
resource provisioning platforms – container, Virtual Machine
(VM), or Serverless function – for a Machine Learning (ML)
request x1.

ML applications have diverse performance requirements
and face varying resource limits. For instance, mobile and IoT

applications, including object recognition in housekeeping
AIoT devices [154] and localization in autonomous cars [5],
are constrained by energy consumption [73] or rely on emerg-
ing infrastructures such as 5G/6G base stations and smart city
networks [39, 161, 163].

At the same time, the high monetary cost associated with
computational resources for AI/ML training and inference cre-
ates a barrier, especially for research institutions and smaller
companies. In contrast, large firms can afford to build ex-
tensive Deep Learning (DL) clusters. For example, pre-
training LLaMA-3.1-8B (LLaMA-3.1-405B) requires 1.46
million (30.84 million) in H100-80GB GPU hours [120],
and ByteDance operates a cluster of over 10,000 NVIDIA
Ampere GPUs for their Large Language Model (LLM) work-
loads [78].

As AI/ML applications become popular, creating an infras-
tructure that is monetary cost-efficient, latency-optimized, and
privacy-aware for architecture-optimized models has emerged
as a critical area of research [47, 54, 183]. This survey studies
the computation offloading problem across the client devices,
edge and cloud resources, in particular for inference tasks.
Given a Neural Network (NN) model and a data source, we
can split the model and provision its parts on cloud services,
edge servers, or client devices using resource orchestration
services (e.g., Virtual Machines, Containers, etc.) As shown
in Fig. 1, the model decomposition creates either an ensemble
of independent submodels, or a tandem of dependent submod-
els (partitions of layers, given a multi-layered ML model).
Then, we consider an MLaaS system that places the submod-
els on resources across the continuum of user devices, edge
and the cloud using different resource orchestration methods
including containers, VMs, Serverless, etc. This model de-
composition research complements related work that further
improves inference latency, source data privacy and resource
monetary cost of ML systems through techniques such as
quantization [129], weight pruning [100], distillation [50],
privacy preserving distributed learning [186], and monetary
cost-based resource provisioning using edge and cloud re-
sources [28]. We note that by treating each submodel as a
general operator, we believe this research applies broadly to
many applications.

Submitted to the Journal of Systems Research (JSys) 2025

MLaaS

Forward and Backward
Propagation Using WAN

VM@Edge

Independent Subtasks / Submodels

VM@EdgeContainer@User Device

Dependent Subtasks / Submodels

Serverless@Cloud

VM@Cloud Serverless@Cloud

Service i Requests of
Service i in

Model i Format

Figure 1: A MLaaS System Offloads Service/Applications si across the Continuum of Device, Edge and Cloud Resources Using
Different Resource Orchestration Platforms.

1.1 The Cost Model of Machine Learning-as-
a-Service

Machine Learning-as-a-Service (MLaaS) is a resource or-
chestration model that provides compute resources for ML
training and inference on a pay-per-use basis. As exemplified
in Fig. 1, an MLaaS system can provision resources across
the continuum of user devices, edge, and cloud resources.
For example, for an ML service s1 which prioritizes resource
cost while maintaining low latency, an MLaaS framework
can deploy the ML model in the cloud—leveraging the high
parallelism of cloud resources—and offload the lightweight,
heavily used portions to edge or user devices using containers
or VMs. On the other hand, for an ML service s2 that pri-
oritizes the privacy of source data, an MLaaS broker could
provision the model using particular secure computation re-
sources like client devices or VMs.

The MLaaS system abstracts away infrastructure manage-
ment, so users only pay for what they consume. Existing
MLaaS systems provide managed services in the cloud and at
the edge. Depending on how much configuration they allow,
MLaaS systems expose resources at various levels of abstrac-
tion [198]. For example, AWS provides a set of AI services,
including Amazon Rekognition [11], which hide lower-level
details like the ML models and computation resources from
users. In contrast, their ML services, such as Amazon Sage-
maker [12], allow users to define models, data sources, and
resource orchestration across VM instances, serverless in-
stances, S3 object storage, etc. Sagemaker Edge [13] further
extends this by deploying NN models on user-owned IoT
devices and gathering data for inference and retraining.

MLaaS is vital for many ML workloads. Although mod-
ern Large Language Model (LLM) training and inference
demand enormous compute power and high inter-node band-
width, typically available only in private GPU clusters [78],
small teams can leverage parameter-efficient fine-tuning and
inference on smaller models within public cloud or edge-

based MLaaS environments. For example, fine-tuning a 65B
parameter model with a Low-Rank Adapter (LoRA) requires
only a single 48GB GPU for less than 24 hours [29]. Like-
wise, running inference on a Qwen2−7B− Instruct model
using one A100−80GB GPU achieves 41.20 tokens per sec-
ond [140]. Therefore, instead of building and maintaining
their own compute clusters, smaller companies can act as
MLaaS brokers, hosting decomposed model components –
e.g., LoRA adapters for LLMs or traditional Deep Neural Net-
works (DNNs) – in virtualized cloud or edge environments to
serve customers and support internal R&D.

Recently, organizations such as Adobe [2, 6] and Work-
day [185], have launched hybrid-cloud MLaaS platforms.
They combine public-cloud resources (VMs or containers
on AWS, Azure, or GCP) with private clusters (at the edge
close to the company users). This approach involves trade-
offs and opportunities around service latency guarantee, user
data privacy preservation, and savings in monetary cost of
computation resources.

For example, provisioning H100 GPUs in the cloud offers
fast processing, but incurs a high monetary resource cost
and may increase data transmission time compared to private
clusters or other edge resources located close to end users.
Conversely, allocating computation resources in the cloud
instead of processing data securely at the edge, comprising the
private cloud or user devices, can minimize the monetary cost
of resource maintenance and processing delay, but increases
the risk of data leakage.

Furthermore, some application-level objectives (accuracy,
latency, privacy, and monetary cost) can be relaxed to improve
other ones. For example, federated learning on medical data
has low tolerance to data leakage. To meet this requirement,
an MLaaS broker might run only a sensitive partition (e.g.,
shallow layers of a model) at the edge, so the raw data never
leaves the device, while offloading the remaining partitions to
the cloud. Due to the limited edge capacity and transmission
between the edge and cloud, the training time can be longer

2

Submitted to the Journal of Systems Research (JSys) 2025

and overall monetary cost could be higher. In contrast, clear
data-sharing agreements can mitigate privacy concerns for
less sensitive tasks and potentially allow the use of cheaper
cloud resources [49, 134].

Investigating such tradeoffs in both traditional DNNs and
LLMs yields valuable guidance for future MLaaS system
design, helping smaller companies and institutions deploy
large-scale ML systems with low latency, high privacy guar-
antee, and low monetary cost of resources. Recent research
has focused on computation-efficient and privacy-aware ML
models or cost-efficient resource orchestration methods. How-
ever, a study of the interactions between all three aspects of
latency, privacy, and monetary cost remains an ongoing topic.
This section highlights recent work and open challenges in
these dimensions via resource provisioning and model decom-
position, leading to the contributions of this survey.

What are the limitations of existing MLaaS systems for
ML Inference? Existing MLaaS services do not yet in-
corporate much of the existing research on model decompo-
sition and resource provisioning to improve latency [171],
privacy [131], and service cost [30, 190]. Sagemaker Edge
compiles NN models to utilize the client’s hardware architec-
ture and memory access patterns for optimal ML inference
speed [14], which represents only a small slice of possible
model adaptations. In contrast, integrating model decompo-
sition, assigning each submodel to devices, edge, or cloud
nodes, and provisioning compute, memory, and network re-
sources for each, has not yet been adopted by mainstream
MLaaS offerings.

Therefore, our research investigates model architecture op-
timization and resource provisioning strategies that could be-
come part of future MLaaS services. In particular, we focus
on model offloading in ML inference, including both inde-
pendent and dependent model decomposition and resource or-
chestration with cloud and edge provisioning services, needed
to meet strict latency, privacy, and monetary cost objectives.

1.2 Opportunities and Challenges of DL Task
offloading during Inference

Why offloading Deep Learning (DL) tasks? ML applica-
tions that gather large volumes of data and use complex deep
learning models often require low latency to meet quality-of-
service (QoS) targets [56, 66, 109, 178]. Offloading selected
layers to an edge or cloud tier can: (1) minimize inference
latency by leveraging cloud compute capacity; (2) enhance
source data privacy; and (3) reduce resource monetary cost via
pay-per-use pricing models [158]. In this section, we examine
one example: offloading user-interactive, latency-sensitive
applications, such as Augmented Reality (AR) with partitions
of a multi-layered ML model (dependent submodels), across
edge and cloud environments to optimize inference latency
and protect user data privacy.

For the threat model, we assume an honest-but-curious
adversary who can:

• monitor activations xinterm in transit between the edge
and cloud;

• train an offline reconstructor (auto-encoder NN) RMIA
on public data;

• output the reconstructed input data from observed inter-
mediate data, i.e., x̂input = RMIA(xinterm), evaluated by
mean-squared reconstruction error or misclassification
rate on a target classifier.

This aligns with prior model inversion attack (MIA) and
prompt inversion attack (PIA) formulations [33, 42, 113, 139].

Tables 1, 2, and 3 summarize representative edge, cloud,
and hybrid edge-cloud results that motivate our offloading
study. As shown in Table 1, recent lightweight DNN models
used in AR applications on edge devices, such as Raspberry
Pi or smartphones, often struggle to meet the 30 frames-per-
second (FPS) video requirements or 100ms human-sensible
end-to-end (frame refresh) latency target [24, 37, 112, 124,
174]. Edge platforms are constrained by limited compute
power [40, 149], bandwidth [119], battery capacity [86], and
memory [108], making it difficult to sustain high perfor-
mance.

Cloud resources can provide the extra processing capac-
ity needed for demanding ML workloads, as shown in Ta-
ble 2. However, relying on the public cloud raises privacy
concerns [210] and introduces transmission bottlenecks over
the Internet [40,212], which prohibit transmitting source data
to the cloud for various ML tasks.

To combine the advantages of both edge and cloud re-
sources, recent research has focused on partitioning ML tasks
and provisioning resources across the cloud and the edge,
with customer data residing on edge servers or user devices
to minimize data leakage. In this approach, a portion of the
ML task is performed on the client devices. Only essential
hidden/latent variables required for high-accuracy inference
are transmitted to the cloud or edge server. This paradigm
keeps the source data on the client device, enhancing the
efficiency and privacy of transmission. Furthermore, to im-
prove data privacy during inference and defend against MIA
attacks, previous work introduces privacy-preserving training
steps, including adding privacy-aware loss terms and differ-
ential privacy approaches to gauge the hidden variables that
adversaries can leverage.

Then, to compensate for the potential added latency, this
paradigm often ensures that data transmission occurs only
when necessary, for example, by using early exits [81] or
dynamic region of interest encoding [110]. Specifically, a
multi-layered/partitioned ML model can be augmented with
“internal classifiers" that can produce early output (prediction)
and may not need to process data through all layers/partitions.
Similarly, the input data can be compressed/cropped based

3

Submitted to the Journal of Systems Research (JSys) 2025

Model Device End-to-End Pred Task Ref

MNetV3 [60] Rasp Pi 4B+ 595ms
79.23%
accuracy

48∗48-pixel
RAF-DB [97]

[66]

MNetV2 [155] Rasp Pi 4B+ 3571ms
81.16%
accuracy

48∗48-pixel
RAF-DB [97]

[66]

MNetV2
+SSDLite [155]

Pixel 1 162ms 22.1% mAP COCO [103] [60]

MNetV3
+SSDLite [155]

Pixel 1 137ms 22.0% mAP COCO [103] [60]

YOLOv3 [147] Pixel 2 4500ms 40% IOU
Imagenet

Video [85]
[20]

Tiny-YOLO [146] Pixel 2 1200ms 40% IOU
Imagenet

Video [85]
[20]

Table 1: DNN performances at the edge in recent work

Model Hardware Processing Pred Task Ref
YOLOv4-608 [147] V100 16.1ms 43.5% COCOmAP COCO [103] [21]
YOLOv3-608 [147] Titan X 57.9ms 33% COCOmAP COCO [103] [147]
YOLOv2-544 [146] Titan X NA 21.6% COCOmAP COCO [103] [147]

Table 2: DNN performances in the cloud in recent work

Model Edge Cloud End-to-End Pred Bandwidth Task Ref
Faster

R-CNN
[148]

Jetson
TX2

Titan
XP

34.56ms 70% IoU 82.8Mbps
Xiph
[192]

Baseline
[110]

Faster
R-CNN
[148]

Jetson
TX2

Titan
XP

22.96ms 75.8% IoU 276Mbps
Xiph
[192]

Baseline
[110]

Faster
R-CNN
[148]

Jetson
TX2

Titan
XP

17.23ms 86.4% IoU 82.8Mbps
Xiph
[192]

DRE
+PSI

+MvOT
[110]

Faster
R-CNN
[148]

Jetson
TX2

Titan
XP

15.52ms 91.1% IoU 276Mbps
Xiph
[192]

DRE
+PSI

+MvOT
[110]

Table 3: End-to-end DNN performances combining edge and cloud resources

on the region of interest (RoI) to minimize data transmission.
As shown in Table 3, some existing approaches based on this
design achieve low latency and high model accuracy.

While the examples above focus on dependent submodels,
there are also opportunities and challenges for independent
submodel-based applications in achieving low latency, high
privacy, and low monetary cost. For example, offloading dif-
ferent independent submodels from the ensemble model to
multiple VMs or serverless function instances enables effi-
cient incremental training and minimizes inference time via
parallel execution. In this paper, we explore similar trade-
offs among latency, privacy, and monetary cost by leverag-
ing diverse model decomposition techniques and resource-
orchestration services both at the edge and in the cloud.

Challenges and Explorations in ML task offloading.
Finding an optimal offloading plan for ML applications is
not trivial. A naïve offloading plan can result in long trans-
mission and processing delays, privacy breaches (Model In-
version Attack), or resource under- or over-provisioning. To
capture these trade-offs, we formulate an optimization prob-
lem that balances latency, privacy, and monetary cost based
on existing methods. Previous surveys have addressed as-
pects of optimizing monetary cost, latency or privacy for AI
applications (Table 4). However, they do not formulate the
optimization problem nor discuss monetary cost ($) based
approaches. Detailed cost analysis using real-world cloud
resources for low-cost ($) ML serving remains limited. Fur-
thermore, while some existing surveys [118, 183] provide
valuable insights, they often lack comprehensive discussions

4

Submitted to the Journal of Systems Research (JSys) 2025

on source data privacy in distributed inference systems.
In this work, grounded in a multi-objective optimiza-

tion framework, we categorize prior work and study multi-
objective optimization accounting for interactions among la-
tency, privacy, and monetary cost. To narrow the scope of
our literature review, the survey emphasizes model-inversion
attacks [42, 180, 196] and cloud pricing models [158] for
deep-neural-network inference pipelines composed of multi-
ple machine-learning models.

Our main contributions are:

• An interaction-aware optimization framework evaluated
via case studies

• Interaction analyses (e.g., IaaS vs. FaaS latency–cost
trade-offs, privacy–latency tensions, and methods for
jointly balancing latency, cost, and privacy) that turn the
framework into actionable insights

• Identification of previously unstudied combinations of
objectives under alternative threat models (e.g., prompt-
inversion attacks in large language models), pricing mod-
els (e.g., serverless fine-grained billing vs. VM coarse-
grained billing), and application domains

We organize the paper based on optimization objectives. In
Sec. 2, we introduce the optimization problem by studying
the challenges of ML task offloading given different optimiza-
tion objectives, including Latency in Sec. 2.1.1, Privacy in
Sec. 2.1.3, and Monetary Cost ($) in Sec. 2.1.2. Then, in
Sec. 3, we formulate the optimization problem for Latency
(Sec. 3.1), Privacy (Sec. 3.3) and Monetary Cost (Sec. 3.2).
In Sec. 4, we detail adaptive learning methods to deploy a
DNN model across the spectrum of cloud, edge, and client
resources by optimizing Latency (Sec. 4.1), Privacy (Sec. 4.3),
and Monetary Cost (Sec. 4.2). Next, Sec. 5 discusses the in-
teractions between optimization objectives in the formulation
given certain use cases introduced by related works. Sec. 6
discuss the open issues. And Sec. 7 concludes the paper.

2 Problem Definition

In this section, we narrow down the specific challenges in
the machine learning (ML) model offloading problem that
this paper addresses by examining the deep neural network
(DNN) offloading scenario (dependent submodels). Recent
studies have explored offloading a Deep Neural Network
(DNN) model across the core cloud, edge, and client devices
to satisfy resource constraints and privacy guarantees. Given
dynamic environments, each inference request can adaptively
route through model partitions on the most capable resources
to minimize latency and maintain privacy constraints in a
cost-efficient manner.

However, partitioning the NN model, introduces new chal-
lenges. Between model partitions, hidden variables and

gradients transmitted during forward and backward propa-
gation add additional transmission overhead [40, 197, 212]
and cause client data leakage [175, 210]. Meanwhile, byprod-
ucts of running on the edge, for example, extra processing
delays [63, 117] and energy consumption [81], should be
minimized.

2.1 DNN Offloading Challenges
Existing MLaaS systems manage cloud resources [11] or user
devices to run DL jobs [13]. Meanwhile, cloud-managed
edge computing resources, including AWS Local Zones [16]
and Wavelength [17], and edge ML model optimizers have be-
come important building blocks for ML services used by com-
panies such as Holo-Light [62], Netflix [130], and SKT [164].
With AWS Sagemaker Edge [13] and AWS Greengrass [15],
a user can optimize their edge application by a compilation
that targets their specific hardware (CPU architecture) and
operating system. In the future, we envision MLaaS service
providers adopting more model and resource adaptations in
their optimizers, improving latency of processing and trans-
mission, privacy of the source data, and the monetary cost
of resources. To enable such optimizers, we review the chal-
lenges of achieving high DNN performance when a DL model
is partitioned between cloud, edge, and user devices.

2.1.1 Latency

In recent ML applications, including real-time object de-
tection in AR/VR applications and LLM based ChatBots,
latency has become an important concern considering the
interactive manner of such applications, i.e, ≤ 100ms or
≥ 30 f ps [37, 112, 124, 174]. However, it is non-trivial to
achieve low latency given the resource demand of the highly-
parametrized models. In this section, we examine the chal-
lenges of minimizing ML inference latency.

The time spent in a distributed ML inference system can
be decomposed into transmission and processing delays.
When large volumes of data are sent between model par-
titions, transmission overhead can dominate inference la-
tency [108,128,210]. Meanwhile, offloading too many model
parameters to constrained edge resources can also overwhelm
user devices, resulting in long processing delays. Ideally, a
practical NN partitioning paradigm should optimize for both
delays to ensure optimal latency performance.
Transmission. For a partitioned NN, hidden variables (or acti-
vations)1 must be sent between partitions to complete forward
propagation, often over the internet limited by bandwidth
in IoT or mobile device-based systems. In traditional DNN
models (e.g., convolutional layers, fully connected layers,
etc.), partitioning is often by layers. The size of intermediate
data is fixed and model inference is stateless, which allows
straightforward estimation of transmission size and offloading

1We use the terms “hidden variables" and “activations" interchangeably.

5

Submitted to the Journal of Systems Research (JSys) 2025

Optimization
Formulation

Monetary Cost ($) Latency Privacy DL Placement Scope Inference Training Reference

! ! ! ! ! !
Edge Devices &
Edge & Cloud

! ◦ (Our Work)

! ! # ! !
Graph in

Mobile & Cloud
! ! 2020 [179]

! ! ! !
AIoT &

Edge & Cloud
! ! 2021 [22]

! ◦ ! !
Early Exit in

Mobile & Cloud
! ! 2022 [118]

! ! ! !
End Device &
Edge & Cloud

! ! 2023 [34]

! ◦ ! !
End Device &
Edge & Cloud

! ! 2024 [183]

! ! ◦ !
LLM Prompt

Leakage
! ! 2024 [4]

Table 4: Related survey comparison: !indicates the corresponding survey covers up-to-date or more comprehensive discussion.
◦ indicates our work is more complementary or has different discussion than the corresponding work. #means the corresponding
work does not discuss this aspect.

in
pu

t
fe

at
_R

eL
U_

1
fe

at
_R

eL
U_

3
fe

at
_M

ax
Po

ol
2d

_4
fe

at
_R

eL
U_

6
fe

at
_R

eL
U_

8
fe

at
_M

ax
Po

ol
2d

_9
fe

at
_R

eL
U_

11
fe

at
_R

eL
U_

13
fe

at
_R

eL
U_

15
fe

at
_M

ax
Po

ol
2d

_1
6

fe
at

_R
eL

U_
18

fe
at

_R
eL

U_
20

fe
at

_R
eL

U_
22

fe
at

_M
ax

Po
ol

2d
_2

3
fe

at
_R

eL
U_

25
fe

at
_R

eL
U_

27
fe

at
_R

eL
U_

29
fe

at
_M

ax
Po

ol
2d

_3
0

clf
_f

la
t

clf
_L

in
ea

r_
0

clf
_R

eL
U_

1
clf

_L
in

ea
r_

3
clf

_R
eL

U_
4

clf
_L

in
ea

r_
6

0

2

4

Nu
m

be
r o

f e
le

m
en

ts 1e7

Figure 2: Hidden variable sizes of VGG16 with CiFAR-10
and batch size of 16.

strategies. As shown in Fig. 2, we profiled the hidden variable
sizes using a VGG-16 model [162] and CiFAR-10 [84] with a
batch size of 16. The x-axis indicates the NN layer where the
model is split, where the head part of the DNN (from the input
layer up to and including the splitting layer) runs on a client
device, and the tail part runs on an edge or cloud server. The
y-axis shows the output size of different splitting layers. Dif-
ferent splitting layers yield different output sizes. Therefore,
the model splitting can be optimized for short delays [81].

For transformer-based models, the auto-regressive token
generation is stateful. When offloading decoder blocks, we
also migrate the KV cache of previously generated tokens.
And the size of the KV cache can grow. Overall, it compli-
cates the transmission estimation as we also move the state
of the model. Model splitting and offloading methods can be
applied with state migration [80, 128].

On the other hand, previous work has explored the compres-
sion of intermediate data and model to reduce communication
overhead. By incorporating a bottleneck network, such as
Auto-Encoder, at the splitting point, previous works select the
key features for transmission [40, 64, 65, 117, 159, 197, 212].
On the other hand, model trimming techniques, such as model
distillation [59] and quantization [63, 68, 111, 156], can also
minimize the size of hidden variables (activations) and gradi-
ents to send.

The sparse model activates a subset of the model param-
eters during inference. For example, the Internal Classifier
(IC) allows forward propagation to end in one partition, and
no intermediate data transmission [87,171]. When a classifier
gains confidence in the prediction, it emits the output, and no
subsequent feature extraction is needed.

Processing. Another challenge for offloaded deep learning
systems is the limited processing capacity of edge and client
devices. As shown in Table 1, edge devices such as Raspberry
Pi [66] and mobile phones [20, 60] often struggle to meet
the latency or accuracy requirements demanded by machine
learning applications.

To overcome these limitations, related work has explored
model adaptations, including quantization [100], pruning [57,
106,184,195], and knowledge distillation [59]. Such methods
reduce the complexity of the model, allowing applications
deployed on edge devices or the cloud to meet QoS require-
ments.

In addition, other works have explored the use of cloud
computing capacity to assist edge intelligence applica-
tions [30, 87, 114, 172]. However, this approach introduces
challenges in privacy and transmission [64, 203].

6

Submitted to the Journal of Systems Research (JSys) 2025

2.1.2 Monetary Cost

As cloud infrastructure has evolved, providers have intro-
duced services beyond VMs that can be more cost-efficient.
For example, different cloud offerings across providers exhibit
individualized cost models [137] and varying performance
characteristics [190]. These include Function-as-a-Service
(FaaS) and Container-as-a-Service (CaaS) clusters in the
cloud [8,9], as well as AWS Lambda@Edge and Local Zones
at the edge [10, 16], which provide fine-grained billing [158].
An MLaaS system should therefore adaptively configure both
its runtime environment and model architecture to optimize
cost and performance across the device–edge–cloud contin-
uum.

For highly dynamic inference workloads, slow scaling in
the core cloud might result in under or overprovisioning of
resources and consequently missing the QoS target [142,143].
Related works have explored dynamically directing workload
to a deep NN in the cloud and a shallow NN at the edge for
cost savings [30]. Other works deploy NN partitions using
Function-as-a-Service (FaaS) [71]. This approach leverages
the pay-per-use nature of FaaS, where the user only pays
for the actual computation time used, to avoid the costs of
keeping VMs constantly running and provisioned, including
node cold start and model loading time.

Furthermore, specific NN adaptations can enable re-
source provisioning for individual NN layers, achieving cost-
effective QoS tracking. By incorporating internal classi-
fiers [82,181] or neuron skipping methods [83], only a subset
of the network’s neurons is used for prediction. Thus, users
can minimize the monetary resource cost ($) based on differ-
ent cloud resource pricing models [143]. Specifically, low-
workload layers can be provisioned on demand with FaaS
platforms [9, 10, 158] without relying on reserved VMs, so
there is less idle time for computation resources. Such adapta-
tions can be applied across different ML tasks. For example,
in an image classification task, the shallow layers might cap-
ture the contour of a banana, while the deep layers that focus
on the details of the banana are less critical to some classifica-
tions [82,125]. Consequently, these less frequently used deep
layers are well-suited for FaaS.

2.1.3 Privacy

The privacy of source data has become a critical concern
for DL systems. Partitioning and offloading an NN to edge
devices helps keep raw source data private, as user data are not
sent over the network. However, data breaches can still occur,
as adversaries can exploit the information in the intermediate
data.

Recent works [116, 175, 203, 210] discuss the use of Auto-
Encoders [152, 173] to reconstruct the source data from the
intermediate data sent from the edge to the cloud during for-
ward propagation for a deep neural network (DNN). Such
vulnerability can be exploited by the model inversion attack

(MIA) [42, 180, 196]. The Auto-Encoder consists of an en-
coder neural network (NN) and a decoder NN, and uses a loss
function, e.g., Mean Squared Error (MSE), to gauge the error
between the source data and reconstructed data. The encoder
mirrors the architecture of the NN on client devices, while the
decoder reflects the encoder structure to approximate matrix
multiplication inversions.

As an example, for an ML application which infers the
number in MNIST images of hand-written digits [89], when
the DNN is partitioned and offloaded to different edge or
cloud resources, the hidden variables transmitted over the
wire can be captured by an honest but curious adversary, as a
man-in-the-middle attack, leading to data leakage. To reveal
the source data using the intermediate data (hidden variables),
the adversary can train an Auto-Encoder model that can faith-
fully reconstruct a Kuzushiji-MNIST [26] dataset that has
similar patterns in hand-writing and use the decoder NN to
invert hidden variables to the source data. Recent work dis-
covered a similar attack that reveals the user prompt to an
LLM leveraging the hidden variables transmitted over the
network, namely Prompt Inversion Attack (PIA) [113, 139],
which further emphasizes the pervasive nature of such attacks
in real-world applications. The formal definition of our attack
model is presented in Sec. 3.3.1.

This attack is not merely theoretical but poses a practical
threat in real-world settings for two key reasons. First, the
attacker’s decoder architecture can be flexible and does not
need to precisely mirror the client-side model to be effec-
tive [96, 210]. Second, the proliferation of powerful open-
source LLMs [54, 120] creates a significant vulnerability, par-
ticularly in collaborative edge-cloud inference systems [30].
In such a setup, an honest-but-curious intermediate node can
leverage the publicly known weights of a base model. Since
many deployed models are fine-tuned versions of these public
foundation models, the adversary can exploit this shared ar-
chitectural knowledge to train a highly effective reconstructor
(e.g., an Auto-Encoder [96]) and recover sensitive source data
from the intermediate activations.

Privacy-preserving methods for model and user data are
critical for an MLaaS system. One approach involves
encryption [79, 127], which can cause significant slow-
downs [31, 113, 125, 139]. As shown in Table 5, without
encryption, running VGG-16 on ImageNet takes 14.5ms per
inference on an NVIDIA Titan Xp GPU. However, when
using FALCON homomorphic encryption on CPUs, the same
task takes 12,960ms [125].

The more popular privacy-preserving approach, however,
mitigates MIA attacks by focusing on the training phase to
build privacy-preserving models in the first place, rather than
adapting the model during inference time. Such methods
introduce a secondary loss function, e.g., distance correla-
tion [72, 175, 210], to constrain the similarity between inter-
mediate data and source data during model training. Similar
works also incorporate an Auto-Encoder to model training,

7

Submitted to the Journal of Systems Research (JSys) 2025

Model Hardware Processing Task Privacy Ref

VGG-16 [176] P100 57ms
Tiny

ImageNet [88]
Plaintext [176]

VGG-16 [176] CPU 1,300ms
Tiny

ImageNet [88]
Plaintext [176]

VGG-16 [176] CPU(LAN) 40,000ms
Tiny

ImageNet [88]
SMPC(FALCON) [176]

VGG-16 [176] CPU(LAN) 59,000ms
Tiny

ImageNet [88]
SMPC(FALCON) [176]

VGG-16 [125] Titan Xp 14.5ms ImageNet [153] Plaintext [125]
VGG-16 [125] CPU 12,960ms ImageNet [153] SMPC(FALCON) [125]
VGG-16 [125] Titan Xp 14.5ms ImageNet [153] Plaintext(Cloak) [125]

Table 5: Privacy-preserving DNN inference performances in the core cloud in recent works

using reconstruction error as privacy metric [96]. Further-
more, previous works utilize DNN pruning with masks to
remove mutual information between the source and interme-
diate data [31, 125].

Similarly, other privacy-preserving methods, instead of ad-
justing the loss function, apply perturbations to intermediate
data during training [116, 203]. In these approaches, the in-
termediate activations retain minimal sensitive information,
while the cloud-side neural network learns to extract the key
features required for inference.

3 Problem Formulation

We identify three key challenges in Deep Neural Network
offloading – covering both model decomposition and resource
provisioning – across the device-edge-cloud continuum, each
tied to a different performance objective:

• Latency: Achieving low inference time requires parti-
tioning the neural network so that computation on de-
vices and data transmission over the network are bal-
anced.

• Monetary Cost: For sparsely activated models, we can
map each submodel to the most cost-effective cloud ser-
vice using a fine-grained resource-provisioning strategy
while still meeting Service Level Objectives (SLOs).

• Privacy: Hidden variables transmitted over the network
can be exploited by adversaries (for example, using auto-
encoder networks) to reconstruct sensitive input data,
creating a risk of data leakage.

In the rest of this section, we formulate a unified DL offload-
ing formulation that integrates three subproblems – one for
each objective – to determine how to place model partitions
across edge and cloud resources. Then, in Sec. 4, we summa-
rize the related works based on the optimization objectives.
And, in Sec. 5, we study the interactions between performance
objectives by solving our optimization problems in certain
use cases introduced in related works.

As a constrained multi-objective optimization problem, we
seek an offloading configuration that minimizes a weighted
sum of latency, monetary cost, and privacy objectives:

min(wLLL +wCLC +wPLP) (1)
s.t. constraints on inference metrics. (2)

Here,

• LL,LC, and LP are the latency, cost, and privacy loss
functions, respectively,

• wL,wC,wP are nonnegative weights reflecting their rela-
tive importance.

There are other constraints, including the battery capacity of
edge devices [86], developer tooling (for example, virtual ma-
chines or serverless platforms) [187] and wireless connection
conditions [22], that can influence the optimization. There are
also application-specific metrics, e.g., Time-to-First-Token
for LLMs [74]. We focus on a subset of the optimization
targets and constraints to narrow this survey. Detailed con-
straints for each objective are discussed in Sec. 3.1, 3.2 and
3.3.

3.1 Latency
Balancing and minimizing transmission and processing de-
lays are essential to DL inference tasks. Arbitrary model
partitioning can cause excessive data transmission. In con-
trast, deploying too many layers on computation-limited edge
devices yields a long processing time. We first briefly intro-
duce the latency optimization approaches. Then we present
the latency formulation in Sec. 3.1.1.

We focus on a DL model composed of M partitions
(Fpid , pid ∈ 1,2, ...,M in Fig. 3) with the notations defined
in Table 6. An individual model partition pid can be of-
floaded to the edge or cloud based on the estimation of its
inference time (denoted by Tpid , which is the sum of trans-
mission delay T T

pid and computation delay TC
pid), the hidden

8

Submitted to the Journal of Systems Research (JSys) 2025

variable size (Size(.)) and the profiles of floating point oper-
ations performed by layers in the partition (FLOPs j

i (.)). In
practice, because each partition’s output feeds the next, once
the offloading decision for partition k changes, the same deci-
sion is typically applied to all deeper partitions to avoid extra
transmission overhead [65, 81, 171].

We now overview the orthogonal approaches, such as early-
exit, transmission compression, and model quantization, that
an MLaaS broker can apply independently of privacy or cost-
driven adaptations. The related works are detailed in Sec. 4
and the interactions among latency, privacy, and cost opti-
mizations are discussed in Sec. 5.

Early-exit adaptation. A model partition can be adapted
to reduce inference time (πpid and πpid+1 on both sides of the
dashed line in Fig. 3). Each partition pid can be accelerated
by attaching Qpid internal classifiers, where each classifier
c has the confidence threshold αc

pid , request exit rate βc
pid ,

and the observed test metrics Ac
πpid

, including precision and
recall [63, 87, 93]. We denote the sum of the exit percentages
for partition pid as βpid . With βpid of requests finishing at a
shallow partition, internal classifiers reduce the running time
of requests by proportionally cutting the communication cost
of deeper partitions: only the remaining (1−βpid) fraction
of queries must transmit their activations, so the expected
transmission delay for partition pid is scaled by the same
(1−βpid) factor in the term T T

pid of Eq. (5).

Transmission and model compression. Partitions can also
be adapted with transmission and model compression meth-
ods to mitigate both transmission and computation overhead.
For each partition pid, we denote by xpid the hidden vari-
able output (x0 refers to the source data) and two model
compression ratios: (1) γpid for latent space compression
layers (e.g., in Fig. 3, an Auto-Encoder Neural Network
consists of dark blue layers representing an encoder and
dark orange layers representing the decoder), and (2) κpid
for model compression, including model size reduction ap-
proaches like knowledge distillation, neuron pruning and
quantization [64, 95, 117, 132, 159, 197] as exemplified by
light blue and light orange layers in Fig. 3.

Transmission compression. Within partition pid, the en-
coder–decoder pair ⟨Epid ,Dpid⟩ replaces xpid with a latent
vector

x̃pid = Epid
(
xpid

)
, |x̃pid |= (1−γpid) |xpid |, 0 ≤ γpid ≤ 1,

so that only a (1− γpid) fraction of the original bytes is sent
over the network. After arrival, the decoder reconstructs the
activation map,

x̂pid = Dpid
(
x̃pid

)
,

before the forward pass resumes. Because only the remain-
ing (1− βpid) requests continue beyond partition pid, the

expected transmission delay for this segment is modulated
by the product (1−βpid)(1− γpid) in the term T T

pid of con-
straint (5) in the formulation.

Model compression. Model size reduction approaches like
knowledge distillation, neuron pruning and quantization
shrink the computation and output footprint of Fpid :

• Distillation trains a student network F̃pid that mimics
Fpid with fewer parameters and narrower channel widths,
reducing FLOPs and activation size to (1−κpid) of the
original.

• Pruning filters redundant neurons, leading to a (1−κpid)
reduction in both TC

pid and the tensor passed to the next
hop.

• Quantization stores weights and activations in low-
bit-width integers. We fold its effect into the same
factor κpid for brevity. An 8-bit model, for instance,
halves memory traffic and doubles the effective SIMD
throughput on hardware that packs two 8-bit multiply-
accumulate (MAC) operations into the slot of a single
16-bit MAC, thereby improving parallelization and fur-
ther shortening TC

pid .

Together, these techniques scale the compute term TC
pid in

constraint (7) and the downstream transmission term T T
pid by

the multiplicative factor (1−κpid) as shown in Eq. (5).

3.1.1 Latency Formulation

We formulate a constrained multi-objective optimization that
jointly minimizes processing and transmission delays subject

9

Submitted to the Journal of Systems Research (JSys) 2025

Notation Definition

πLat
pid(.)

Adapt partition Fpid
to minimize inference latency

αc
pid

Confidence thresholds
for classifier c in partition pid

κpid
Output compression rate

of model knowledge distillation

γpid
Output compression rate

of compression layers(encoder&decoder)

γ0
Source data compression rate

of compression layers(encoder&decoder)

βc
pid

Percentage of request exit
at classifier c in partition pid

βpid Percentage of request exit in partition pid
x0 Source data

Qpid Quantity of classifier in partition pid
Ac

πpid
Observed model accuracy after adaptation

Atar User-defined model target accuracy
T T

pid Estimated transmission time for activations and states
TC

pid Estimated computation time

FLOPs j
i (.) FLOPs from layer i to layer j inclusive

Table 6: Latency Optimization Formulation Notations

to an accuracy constraint.

LL = min
pid,αc

pid ,κpid ,γpid
(ξT

0 T T
0 +

M

∑
pid=1

Tpid) (1)

s.t.
M

∑
pid=1

Qpid

∑
c=1

β
c
pid ∗Ac

πpid
≥ Atar (2)

βpid =

Qpid

∑
c=1

Pr(α
′c
pid > α

c
pid) =

Qpid

∑
c=1

β
c
pid (3)

xpid = πpid(Fpid)(xpid−1) (4)

T T
pid =

(1−κpid)(1−βpid)(1− γpid)Size(Fpid(xpid−1))

bandwidth
(5)

T T
0 =

(1− γ0)Size(x0)

bandwidth
(6)

TC
pid =

FLOPspid
pid(xpid−1,πpid)

µpid
(7)

Tpid = ξ
C
pidTC

pid +ξ
T
pidT T

pid (8)

α
c
pid ∈ [0,1],κpid ∈ [0,1], (9)

γpid ∈ [0,1],ξ ∈ R+ (10)

In line 2, Atar is a user-defined model accuracy constraint
and βc

pid denotes the percentage of requests leaving the inter-

nal classifier c in partition pid. In line 3, α
′c
pid is the profiled

mean confidence during inference for the internal classifier
c in partition pid, αc

pid is the confidence threshold for the
internal classifier c in partition pid, and βpid indicates the

Distilled

Distilled Encoder
Internal Classifier

Decoder

Figure 3: Illustration of latency optimization problem.

Distilled DistilledInternal
Classifier IaaS Infra FaaS Infra

Figure 4: Illustration of cost($) optimization problem.

percentage of requests leaving partition pid during inference.
In line 4, we define the output of partition pid as

πpid(Fpid)(xpid−1), where the model partition Fpid adapted
with πpid(.) takes xpid−1 as input. Notice that the model adap-
tations include the introduction of internal classifier(s) and
transmission and model compression. To quantify the effect
of those adaptations in inference latency, in line 5, we esti-
mate the transmission delay from the adapted partition pid to
pid +1 based on input size Size(xpid−1), the early exiting ra-
tio βpid and the two compression ratios (γpid and κpid). Then,
in line 6, we estimate the transmission time for the source data
to the location of the first NN partition. γ0 is the compression
ratio of the source data.

In line 7, FLOPspid
pid(xpid−1,πpid) is the profiled count of

FLOPs (FLoating-point OPerations) for partition pid, given
input (xpid−1) and adaptation (πpid). The subscript and super-
script of FLOPspid

pid(.) indicates the start and end partitions to
count FLOPs. When we focus on one partition, the subscript
and superscript are the same.

3.2 Monetary Cost

In this section, we categorize cost optimization approaches
and introduce our monetary cost formulation (Sec. 3.2.1).
Resource provisioning approaches based on resource cost
($) for DL inference tasks remain underexplored. Using de-
tailed cost models of different cloud and edge services, an
MLaaS broker can determine cost-efficient resource provi-
sioning strategies for different workloads. In particular, for
decomposable sparsely activated ML models where each por-
tion faces a varying workload, fine-grained resource provi-
sioning and load balancing for submodels are essential to
achieve cost-efficient ML inference.

10

Submitted to the Journal of Systems Research (JSys) 2025

Notation Definition
Latency Latency bound

TI Observed Mean IaaS Time
TF Observed Mean FaaS Time

T cutid
cold FaaS function cold start time

T cutid
trans Transmission delay from IaaS to FaaS

CI(.) Unit cost of IaaS given VM capacity
CF (.) Unit cost of FaaS given function capacity

θI VM capacity
θF Function capacity

Table 7: Cost($) Optimization Formulation Notations

In our formulation, we minimize the combined costs of
provisioning Infrastructure-as-a-Service (IaaS) and Function-
as-a-Service (FaaS) platforms, regardless of whether they are
deployed at the edge or in the cloud. FaaS charges users only
for the actual execution time of the deployed model, mak-
ing it particularly cost-efficient for low-rate or bursty work-
loads – for example, holiday traffic spikes in DNN-based
vehicle localization [5, 67, 71, 158]. Conversely, IaaS plat-
forms automatically scale virtual machines (VMs), which
incur longer cold-start delays (for hardware and OS provi-
sioning) and are billed for the entire time the resources are re-
served. Because VM scaling is coarse-grained, users typically
provision based on service-level objectives (SLOs) rather
than real-time workload fluctuations, often leading to over-
provisioning [143]. However, when a workload maintains
high utilization, characterized, for instance, by a steady inges-
tion rate around the mean ± one standard deviation under a
Poisson model [77, 143], IaaS can be more economical than
serverless functions.

3.2.1 Monetary Cost Formulation

Motivated by recent advances in sparsely activated mod-
els [61] and the inability of edge devices to host large neural
networks [81], we represent a sequential DNN with internal
classifiers as a dependent acyclic graph of submodels (Fig. 4).
For inference, partition Fpid produces an early exit for a frac-
tion βpid of requests with its internal classifier. The remaining
(1−βpid) portion continues to partition Fpid+1. Shallow par-
titions thus face a steady, high-rate workload, whereas deeper
partitions see a lower request rate. Consequently, for a con-
stant arrival rate of N requests/s, we provision VMs to handle
up to rmax of those requests at the shallow partitions, ensuring
high VM utilization, while routing the remaining requests to
FaaS to avoid under-utilizing any individual VM.

LC = min
cutid,θF ,θI ,α

k
pid

CI(θI)TI

cutid

∑
pid=1

βpid

+CF(θF)TF

M

∑
pid=cutid+1

βpid (1)

s.t. Latency ≥ TI +TF (2)

M

∑
pid=1

Qpid

∑
c=1

β
c
pidAc

πpid
≥ Atar (3)

βpid =

Qpid

∑
c=1

Pr(α
′c
pid > α

c
pid)

=

Qpid

∑
c=1

β
c
pid (4)

TF =
FLOPsM

cutid+1(xcutid)

θF
+T cutid

cold (5)

TI =
FLOPscutid

1 (x0)

θI
+T cutid

trans (6)

cutid ∈ [1,M], α
k
pid ∈ [0,1], (7)

θF ∈ {FaaS Capacities}, (8)
θI ∈ {IaaS Capacities} (9)

The above optimization targets a steady arrival rate of rmax
DNN inference requests per second, enough to fully utilize
the VMs. It chooses between IaaS, FaaS, or hybrid offloading
– offloading some requests from IaaS to FaaS to complete their
deep-layer processing. The decision variables are the FaaS
configuration (θF), the IaaS configuration (θI), the internal
classifier thresholds (αc

pid), and the partition index (cutid,
assuming two partitions), all subject to the latency constraint
in line 2.

CI and CF map resource configurations to monetary cost.
Then, we estimate the running cost, based on the average
durations TI (VM reservation time) and TF (FaaS execution
time) profiled for each forward pass. In line 4, βpid is the
fraction of requests exiting at partition pid, determined by
confidence thresholds αc

pid . Lines 5 and 6 define the profiled
mean durations for FaaS and IaaS, respectively. For a given
cutid, motivated by previous work [82], the duration is com-
puted by dividing the required FLOPs (FLOPsM

cutid+1 from
partition cutid +1 to M) by the provisioned capacity (θF or
θI), assuming once offloaded to FaaS, execution does not
revert to IaaS. This may overestimate utilization since some
requests exit early. To account for early exits, we weigh TF
by ∑

M
pid=cutid+1 βpid and TI by ∑

cutid
pid=1 βpid in Eq. (1). We also

include the hidden-variable transmission delay T cutid
trans in TI

(line 6), since the serverless function has not yet been invoked
and thus does not incur FaaS billing until execution. Con-
versely, the serverless cold-start delay T cutid

cold is included in TF
(line 5), as it involves model loading and hardware setup that

11

Submitted to the Journal of Systems Research (JSys) 2025

Distilled Distilled Noise Generator

Figure 5: Illustration of privacy optimization problem.

are billable.2

Next, given the VM configuration for rmax requests/s, we
optimize load-balancing so that rmax requests are served by
shallow partitions on fully utilized VMs, with the remainder
directed to FaaS. Note that the sparsity of early-exit models
is highly dependent on the input-data distribution and must
be profiled offline. When the probability of FaaS provision-
ing increases, resulting in higher costs, we must update our
workload distribution profile and resource configurations.

3.3 Privacy
We study the privacy of source data in distributed DNN in-
ference applications. This section overviews the concepts –
accessible by an MLaaS broker – for defense against model
inversion attacks (MIA) [42, 180, 196]. We formulate the
privacy optimization problem in Sec. 3.3.3. Many of the tech-
niques discussed are applied during model training, rather
than only at inference Practical countermeasures for MIA are
presented in detail in Section 4.3.

3.3.1 Threat Model: Model Inversion Attack (MIA)

We consider an honest-but-curious adversary who observes
the hidden variables xpid transmitted between two partitions
of a distributed DNN. The adversary stores these activations
and trains an auto-encoder (or any other reconstructor) RMIA
offline with public data, then outputs x̂0 = RMIA(xpid) at in-
ference time. We measure privacy leakage by the expected
reconstruction error, e.g., mean square error (MSE),

Leakpid = E
x0∼D

[
∥x0 − x̂0∥2

2
]
,

where D is the distribution of user inputs. A smaller MSE im-
plies a stronger attack. Such attacks have been well explored
in the research community [38, 45, 96, 193] and in particular
the Prompt Inversion Attack (PIA) for LLMs [113, 139].

3.3.2 Privacy-oriented Adaptation

To mitigate MIA, an MLaaS broker can leverage two orthog-
onal defenses – regularization and perturbation – applied

2Major FaaS providers keep containers warm to minimize cold starts [18,
48, 123, 158], so this term may overestimate FaaS cost. VM cold starts are
omitted since we assume long-running VMs.

Notation Definition

π
pri
pid(.)

Fine-tune partition Fpid
for better privacy guarantee

τ(.) Noise generator method
λ Output bounding parameter

∆Fpid Sensitivity of Fpid’s output
wCE , wp Weights for loss terms
T hrCE Maximum allowed cross-entropy loss
F−1

pid (·) Learned inverse (attacker’s surrogate)

Table 8: Privacy Optimization Formulation Notations

independently of any latency or monetary cost-driven opti-
mizations:

1. Regularization. We fine-tune each partition with a
privacy-aware objective, denoted by π

pri
pid , that explic-

itly penalizes the attacker’s reconstruction loss [58, 96,
175, 210].

2. Perturbation. We add a noise layer τ(∆Fpid) based on
the output sensitivity ∆Fpid and bounded by a scalar
λ [58, 126].

Figure 5 illustrates the three stages (separated by dashed
lines): partition pid (left), the noise layer τ(·) (center), and
partition pid+1 (right). However, we note that the effec-
tiveness of such remedies in handling PIA for LLMs remains
under-explored due to the prohibitive model training overhead.
We next formulate the privacy optimization problem.

3.3.3 Privacy Formulation

With the notations in Table 8, we formulate the privacy objec-
tive:

LP = min
π

pri
pid ,∆,λ

(wCECE(ŷ,y)−
M

∑
pid=1

wpMSE(F−1
pid (xpid),xpid−1))

(1)

s.t. CE(ŷ,y)≥ T hrCE (2)

xpid = λπ
pri
pid(Fpid)(xpid−1)+ τ(∆Fpid) (3)

∀pid > 1 (4)

Equation (1) maximizes the attacker’s error (−sign) while
keeping model accuracy above a threshold (2). In this formu-
lation, CE(ŷ,y) denotes the cross-entropy of the model pre-
dictions, and MSE(F−1

pid (xpid),xpid−1) quantifies the fidelity
of the attacker’s reconstruction. The forward rule (3) shows
how bounding (λ) and random noise τ(·) are injected between
partitions. The interaction with latency and monetary cost is
discussed in Sec. 5; here we isolate privacy.

12

Submitted to the Journal of Systems Research (JSys) 2025

4 Problem Solutions

In the preceding section, we formulated an optimization prob-
lem for deploying a dependent acyclic graph of submodels,
accounting for latency, source data privacy, and resource mon-
etary cost ($). In this section, we detail the solution techniques
to the optimization sub-objectives, such as early exits, com-
pression, and privacy-preserving inference approaches. Based
on the existing works, we then discuss the interactions among
sub-objectives in Sec. 5. Furthermore, we identify open is-
sues in Sec. 6. Overall, these solution techniques can serve
as valuable control mechanisms for ML service providers,
improving Quality of Service (QoS), and increasing revenue.

4.1 Latency
The end-to-end latency of a neural network model comprises
both processing and transmission delays. Building on ear-
lier discussions, existing work dynamically minimizes the
transmission of excessive hidden variables and combines
capable cloud services. This section begins by exploring
dynamic deep neural network offloading [81, 194]. Then,
we discuss internal classifiers which allow early exit and
save computation for deep layers [36, 87, 92–94]. Next,
we examine transmission data and model compression ap-
proaches [40, 63, 87, 117, 132, 159, 207, 212].

4.1.1 Dynamic Partitioning

When dynamically partitioning a neural network, the compu-
tation (FLOPs j

i (.)) and activation size (Size(.)) can be esti-
mated based on the model weights and input size [55, 166].
Thus, delays, especially inference durations (T T

pid and TC
pid)

can be modeled using regression methods, by profiling the
NN model, across the cloud and resource-limited edge envi-
ronments [81,194]. Previous work estimates transmission and
processing delays for various model configurations, factoring
in computation resources and input sizes to devise a deploy-
ment plan for M NN partitions that minimizes latency and
energy consumption [81]. However, feasible solutions may
not always exist for a given model architecture or environ-
ment, for example, when resource availability is constrained.
Next, we explore orthogonal methods to reduce demands on
transmission and processing resources.

4.1.2 Early Exits

Background. Deep layers of a DNN model tend to focus on
fine details, which, however, can result in misclassifications.
While, shallow layers extract high-level features, which can be
sufficient for accurate request classification. Such observation
is described as overthinking [82]. Related research [82, 188,
214] addresses this concern, proposing the reuse of features
extracted from various layers to improve the inference latency
through internal classifiers [170],

Internal
Classifiers

Figure 6: Internal Classifier Architecture: Each internal clas-
sifier allows requests to exit in the middle of an NN. For
example, βpid of requests exit at NN partition Fpid .

These classifiers share a structure similar to traditional NN
classifier layers, comprising feature reduction (pooling) lay-
ers, fully connected layers, and a softmax activation function.
Except, internal classifiers are attached to the hidden layers.
To trigger early exits, one can configure a threshold [82] for
the Bayesian probabilities of class predictions at each classi-
fier [53, 150].

In deep learning (DL) tasks, incorporating early exits and
residual connections at various internal layers of a DL model
allows for better utilization of insights during inference, lead-
ing to improved accuracy and latency. Early exits prevent
excessive forwarding of requests (hidden variables) to deep
layers for classification. As exemplified in Fig. 6, an internal
classifier allows βpid portion of requests to exit the model
partition Fpid , highlighted in blue.

Methods. Recent research [63, 87, 171] models the rela-
tionship between the confidence threshold (α) of internal
classifiers and the proportion of early exits (β) when formu-
lating inference latency. We incorporate such relationship in
our latency optimization framework, which allows tuning β

through α to meet a specific mean latency target (lines 2 and
3 in Sec. 3.1.1.)

Lowering the confidence threshold for each inference can
also negatively impact the inference accuracy. To maintain
high accuracy, previous studies explore multi-objective opti-
mization including confidence threshold and dynamic layers
offloading between the edge and cloud based on network con-
ditions, as characterized by lines 4, 5, and 7 in our latency for-
mulation. For example, SPINN [87] empirically demonstrates
that under high and stable WAN bandwidth, more layers can
be offloaded to cloud nodes. The increased computational
capacity compensates for additional communication delays,
reducing overall latency, which allows high confidence thresh-
old and high accuracy. In contrast, when network bandwidth
is limited, the approach shifts more layers to resource-limited
edge nodes. Despite an increase in processing time at the
edge, overall latency is optimized by minimizing reliance on
WAN communication, without significantly compromising
accuracy.

13

Submitted to the Journal of Systems Research (JSys) 2025

4.1.3 Input and output compression

Background. During inference, not all features are nec-
essary for a classification task. Apart from traditional sta-
tistical or heuristic methods [177], Deep Neural Networks
(DNNs), specifically Auto-Encoder NNs, can facilitate fea-
ture selection to preserve prediction performance [159]. An
Auto-Encoder NN consists of two components: an encoder,
which transforms inputs to a compressed representation, and
a decoder, responsible for inverting the dimensionality reduc-
tion [152]. On the other hand, model compression methods
can also reduce feature size. These methods will be explored
further in Sec. 4.1.4.
Methods. In our latency optimization (LL), we denote the
cropping and compression of input data with rate γ0. The com-
pression rate of intermediate data achieved through model
compression is denoted as κpid , while the rate achieved
through feature engineering methods such as Auto-Encoder is
represented as γpid . We encapsulate the computation overhead
of Autoencoder NN in the model transformation πpid .

Heuristic-based compression methods, such as JPEG for
image inputs, can help reduce feature dimension. In particu-
lar, certain activation functions, for example relu [3], produce
zero or near-zero outputs, allowing compression from a dense
matrix into a sparse matrix that is storage and transmission
efficient [63]. Moreover, related works [63, 68, 111, 156]
explore the quantization of weights and intermediate data rep-
resentations. Rather than using double precision floats, these
methods consider 8-bit [68] or in the extreme case single-
bit [111] approximations.

Several prior works investigate content-aware transmission
compression. For example, in an AMBER Alert system, if the
model only requires identifying a car or person in the scene,
the edge device only transmits cropped images focusing on
Region of Interest (RoI) to the cloud for analysis, thereby
reducing bandwidth and latency [151]. Likewise, RoI ex-
traction in multimodal LLM pipelines enables processing of
high-resolution imagery by isolating the most informative
patches for downstream analysis [25, 208]. For text-based
LLMs, prompt-compression techniques prune tokens and sen-
tences that are considered uninformative with respect to the
query, improving responsiveness without necessarily sacrific-
ing relevance [74–76,98,99,104,135,201,204–206]. Although
these approaches generally reduce transmission delay, their
impact on accuracy depends on the quality of the cropping or
pruning mechanism Related study suggests that concentrating
on relevant data can both cut transmission costs and improve
predictive performance [132].

Previous work has also applied ML-based dimensionality
reduction to reduce transmission data and maintain accuracy.
One idea is to insert a bottleneck between two neural net-
work partitions using an Auto-Encoder NN [40, 65, 117, 159,
197, 212]. The Auto-Encoder is trained by minimizing the
Mean Squared Error (MSE) loss between the input and output

data (the reconstruction). In this setup, the encoder projects
the intermediate data into a more space-efficient latent space,
effectively reducing the channels, width, and height. The
decoder, which serves as an approximation of an inverted en-
coder function, reconstructs the input of the previous partition
using the compressed intermediate data. This approach leads
to a compact representation of intermediate data, enhancing
efficiency minimal accuracy degradation.

For attention-based architectures, low-rank approximation
(LoRA) techniques have been proposed to compress sparse
attention matrices [165]. Because attention matrices scale
quadratically with sequence length, approximating them via
low-rank factors significantly lowers both computational and
memory costs.

Other approaches jointly optimize the backbone and an
intermediate autoencoder (AE) to better preserve end-to-end
accuracy [65, 159, 197]. By training the AE together with
the task model, the compressed latent space tends to retain
features that are most relevant for the downstream prediction
task. However, finding an optimal compressed feature space
for both high accuracy and high γpid remains a challenging
task that requires extensive hyperparameter tuning. To ad-
dress this, recent research [64] uses explainable AI techniques,
including Integrated Gradients [168], to construct an interme-
diate data space that emphasizes features with the greatest
impact on predictions.
Summary of data compression methods: In our latency opti-
mization framework, we adjust the data compression rates γpid
and κpid to minimize transmission overhead. The introduc-
tion of data compression adds FLOPs in each partition (πpid
in line 4), creating a trade-off among reduced transmission
overhead, increased computation overhead, and potentially
compromised model accuracy. Various data compression
methods are detailed in Table 9, highlighting the practicality
of both Auto-Encoder and quantization techniques as they are
broadly model and data agnostic. However, an Auto-Encoder
offers greater flexibility compared to quantization, which en-
ables fine-tuning the compression model (encoder), inversion
model (decoder), and feature ranking techniques (such as ex-
plainable AI tools) to optimize latency and accuracy based
on the user’s specific use case. While an Auto-Encoder intro-
duces additional computational overhead, a quantized model
and activations also require specialized training tools due
to the discrete space. For example, stochastic gradient de-
scent (SGD) must be adapted to accommodate the discrete
space [68, 129].

4.1.4 Model Compression and Knowledge Distillation

Background. Deep Learning (DL) models can be customized
to meet specific Machine Learning (ML) tasks and compu-
tational constraints. For latency-sensitive applications, sim-
plifying the model can enable faster response times. Such
simplification can be achieved through quantization [100],

14

Submitted to the Journal of Systems Research (JSys) 2025

Activation
Compression Method

Pre-Processing
[132]

Heuristic
[63]

Quantization
[63, 68, 111, 156]

AE
[40, 65, 117, 159, 197, 212]

AE(XAI)
[64, 65, 117, 159, 197]

Computation low low low medium medium
Compression medium medium medium low low

Accuracy high high medium medium high
Practicality low low high high medium

Table 9: Comparison of Input and Intermediate Data Compression Methods: The accuracy of the pre-processing method [132]
depends on the ability of the algorithm to accurately identify and crop the features of interest before sending data to the model
(low practicality, high accuracy given good cropping algorithm, low extra computation for cropping input, and overall medium
compression rate for cropping). Heuristic-based compression algorithms, like clustering for zeros, rely on user expertise (low
practicality, high accuracy, low extra computation, and overall medium compression rate depending on the inputs and heuristics
applied). Intermediate data quantization shortens data representation but may impact accuracy (high practicality, medium
accuracy, and medium compression rate compared to other task-oriented methods) and demands an adapted optimization method
for discrete space (low extra computation). The Auto-Encoder (AE) can be applied to various data representations (high
practicality) and can be adapted to different ML tasks by using shallower layers to minimize computation overhead (medium
computation overhead) or designing smaller latent spaces to create a narrow bottleneck that tradeoffs accuracy (medium accuracy
and low compression rate). Naïve input or intermediate data compression can significantly compromise model accuracy if the
features selected for transmission are suboptimal. In contrast, AE approaches leveraging explainable AI (XAI) tools selectively
transmit crucial features for classifications, reducing transmission delay while maintaining high accuracy (overall medium
practicality based on feature selection methods, overall medium computation demand with AE, high model accuracy, and low
compression rate).

layer skipping [106], adding, removing, or editing the layer
blocks of a neural network [195], and knowledge distilla-
tion [59].

A common tradeoff of reducing model parameters is poten-
tial accuracy degradation. However, such a drawback might
be tolerable given the use case or in certain settings the model
would not suffer a significant accuracy drop, as model simpli-
fication can be considered a form of regularization that mit-
igates overfitting and discourages shortcut learning [46, 69].
Thus, model simplification is considered a versatile approach
applicable across many different ML systems, achieving short
processing times without significant accuracy loss.

For example, in large ML systems, such as large lan-
guage models (LLM), the Mixture of Experts model archi-
tecture [51, 160] decomposes a high-dimensional model into
smaller experts with a router NN selecting a subset of sub-
models for each request, reducing computational demands.
In certain LLM-based chatbot applications, chats generated
by simplified LLMs on user devices can be enhanced by con-
straining the output space or leveraging cached outputs from
full-sized LLMs deployed in the cloud. This allows the fi-
nal chatbot responses to match full-sized LLM quality while
maintaining high throughput on the device [32, 122].

On the other hand, distilled or quantized LLMs can assist
original LLMs in speeding up chat generation. Tradition-
ally, chat generation proceeds sequentially token-by-token,
resulting in low throughput. Instead, a smaller LLM can spec-
ulatively generate the next t tokens, which the original LLM
then verifies and either accepts or rejects them in parallel
based on the speculatively generated context. This specula-
tive decoding approach significantly boosts chatbot through-

put [23, 91, 121].
We first discuss simplifications for standalone ML systems

and then generalize them to the distributed setting.
Quantization or compression of neural network (NN)

weights and activations is a popular technique to reduce com-
putation complexity during inference [100]. Previous work in-
troduces Post-Training Quantization (PTQ) and Quantization-
Aware Training (QAT). For small models or large mod-
els with aggressive quantization, recent studies have shown
that using lower precision during training, for example 8
bits [68] and 1.58 bits [115], for NN weights can achieve
accuracy comparable to higher precision representations. In
contrast, for very large models including LLMs, quantiza-
tion training introduces significant overhead. In AWQ [101],
SmoothQuant [189] and OPTQ [41], researchers adjust the
Scale and Zero Point (origin) for weights in pretrained models
with static analysis of activation and weights. Quantization
improves inference latency and reduces storage requirements
for various deep learning (DL) inference tasks. For model
compression, in EIE [56], the authors introduce a novel repre-
sentation and matrix multiplication algorithm that omits most
common values in activations, optimizing computation and
storage efficiency.

We can also dynamically skip layers or make predictions
before the neural network (NN) model completes its full pass
without modifying the base model. This approach, known
as dynamic inference [57, 191], involves training additional
gating networks to determine which layers or channels within
a layer to skip, indicated by 0 (skip) or 1 (use). In DDI [184]
and SkipNet [181], the authors use a Long Short-Term Mem-
ory (LSTM) NN to make skipping decisions.

15

Submitted to the Journal of Systems Research (JSys) 2025

Methods focusing on weight and layer changes can be sub-
optimal in reducing latency, as they introduce minimal struc-
tural changes to the model. Knowledge Distillation [50, 59]
trains a lightweight high-performance model (Student Model)
using the inputs and outputs (including hidden variables
or logits) of a more complex model (Teacher Model). As
the Teacher Model is often over-parameterized, the Student
Model can attain similar accuracy with reduced computa-
tional complexity. Furthermore, the Teacher Model can also
be further refined with weighted outputs from the Student
Models (soft labels) and ground truth labels in a student-
student knowledge distillation setting [202, 207, 211]. In this
process, the output of the student model serves as a form of
regularization to prevent overfitting.
Methods. In our latency optimization formulation in a dis-
tributed setting (Sec. 3.1), we use πpid to represent all adapta-
tions, including model compression. The function FLOPs j

i (.)
estimates the number of floating point operations given dif-
ferent partition configurations πpid and partition input size
Size(xpid−1). In a dense NN, the FLOP count is linearly pro-
portional to the number of model weights and the size of
input data, so more layers or larger input sizes lead to longer
processing times. To minimize computation latency, we can
employ model compression or knowledge distillation methods
for each NN partition. As a beneficial byproduct, model com-
pression can also reduce the size of hidden variables which
improves κpid discussed in Sec. 4.1.3.

Quantization [65,95,129] and neuron skipping [63,90,212]
can be applied to each NN partition. Intuitively, weights
close to zero contribute little to classification and can be
pruned to save processing time without significantly affecting
accuracy. In CLIO [63], a certain percentage of weights,
sorted by distance to zero, are ignored. However, with a
higher compression rate, such approaches suffer from low
prediction performance.

To maintain accuracy in cases of significant compression
for resource-constrained edge partition NNs, Lee et al. [90]
suggest the use of a deep decoder NN at the cloud node. The
deep decoder with high inversion approximation capabilities
compensates for the aggressively compressed NN partition,
helping to preserve the model’s accuracy.

Instead of compressing a base model, training a lightweight
model replacement can effectively scale model size down to fit
the capacity constraints. With limited edge capacity, applying
knowledge distillation to partitions could save processing
time with minimal loss in accuracy [117].
Summary of model compression methods: In our latency
optimization framework (Sec. 3.1), πpid represents model
adaptations including both model compression and distilla-
tion, which reduce model complexity yielding a placement
with minimal processing time. This section reviewed the ap-
plication of quantization, knowledge distillation, and weight
pruning, each with strengths and weaknesses. While these
methods are orthogonal and should be evaluated together to

optimize model complexity and placement, they vary in terms
of practicality and computational overhead. Table 10 presents
a summary and comparison of these model compression tech-
niques.

Among these techniques, knowledge distillation is the most
configurable, offering various student model designs and dis-
tillation approaches to achieve high model accuracy. Thus,
it is considered the most practical, but with the highest com-
putation overhead. In contrast, quantization is less config-
urable, so we position it at medium practicality but with the
lowest computation overhead. The effectiveness of weight-
pruning depends largely on the underlying data distribution.
For example, pruning weights close to zero is a well-explored
method to maintain accuracy while reducing computational
complexity. However, mask-based pruning methods may re-
quire training specific to each source data distribution [31],
leading to medium practicality but low computation overhead
for each mask.

4.2 Cost($)

Deep learning tasks require substantial resources due to their
high computation and memory demands. For example, the re-
cent deep transformer models encounter memory bottlenecks
when loading and saving attention layers [47]. Previous work
discusses splitting model states [141], kernel fusion tech-
niques [27], and sparse attention mechanisms [199] to reduce
GPU memory demands and transmission between CPU and
GPU memory.

Previous works emphasize low-level DL task scheduling.
Instead, this survey focuses on the higher level aspects of
resource provisioning. Organizations developing intelligent
applications using an MLaaS system often face budget con-
straints when provisioning resources from cloud providers.
For instance, the daily running cost for ChatGPT can reach up
to $700,000 [136]. Furthermore, cloud services have different
cost models that factor in billing granularity, scaling speed,
availabilities, etc. A cost-efficient MLaaS system should
strategically choose, configure, and load balance the cloud
resources to optimize expenses while meeting performance
demands.

4.2.1 Methods

To bridge this gap and promote ML systems with low mone-
tary cost of cloud resource usage, various organizations pro-
vide services to construct intelligent applications on diverse
infrastructures, with an emphasis on minimizing costs. For
example, Redhat OpenShift AI [145] provides a container-
based Machine Learning as a Service for on-demand model
serving.

Previous research has examined the dynamic scheduling
of neural network and model partitions across generic edge
and cloud resources [63, 87, 107, 137, 213]. Later work also

16

Submitted to the Journal of Systems Research (JSys) 2025

Model Compression Method Quantization [65, 95] KD [117] Weight-Pruning [63, 90, 212]
Computation low high low

Accuracy medium high high
Practicality medium high medium

Table 10: Comparing Model Compression and Knowledge Distillation (KD) Methods: KD preserves essential weights to ensure
high model accuracy, which involves model training (high computation). However, it can be applied to models of any size (high
practicality). Quantization reduces the precision of all weights. While it is generally task-agnostic, model accuracy can degrade
(medium accuracy and practicality). The process quantizes the representation and adapts the optimization method, which is
lightweight (low computation). The effectiveness of weight pruning depends on the distribution of weights and the specific
task (medium practicality, high accuracy, and medium weight size). Heuristic-based pruning method also has low computation
complexity.

considers specific cost models according to the cloud services,
such as Infrastructure-as-a-Service (IaaS) and Function-as-a-
Service (FaaS) [71, 143], to balance processing and transmis-
sion demands while minimizing expenses. However, detailed
cost analyses using real-world cloud resources for low-cost
($) ML serving remain limited. Many studies model resource
expenses on the edge and in the cloud using generic unit
costs [107, 137, 213]. However, the specific provisioning fac-
tors for each edge and cloud service, including container cold
starts and billing time granularity, are critical to minimizing
real-world cloud usage costs.
Summary of cost-saving methods: Based on our cost formu-
lation (Sec. 3.2.1), the accumulated running time of hetero-
geneous resources introduces heterogeneous resource-usage
costs. From the resource-orchestration perspective, the var-
ious pricing components of provisioning services, includ-
ing cold-start time (T cutid

cold), transmission time (T cutid
trans), and

processing time (
FLOPsM

cutid+1(xcutid)

θF
and FLOPscutid

1 (x0)
θI

), signifi-
cantly affect provisioning decisions. We summarize related
work in Table 11. Overall, coarse-grained cost analyses that
abstract away application- or model-specific details are more
generalizable. While fine-grained methods can better ap-
proach cost-optimal solutions, they often rely on specialized
model features, such as internal classifiers.

4.3 Privacy

Distributed DL systems processing sensitive personal data
raise data leakage concerns. Private data should be inac-
cessible outside the customer’s infrastructure or protected
from reconstruction during transmission over wide area net-
works (WAN). As described in Section 2.1.3, an adversary
could reconstruct the intermediate data transmitted between
DNN partitions [175] using an Auto-Encoder Neural Net-
work. To protect against this vulnerability for model infer-
ence, previous research adds Perturbation to intermediate
data [58, 126] or incorporates a Regularization step during
training [58, 96, 175, 210]. Such methods preserve only essen-
tial features for ML tasks and remove sensitive information.

4.3.1 Perturbation

Background. Differential privacy (DP) has been used to
improve privacy in statistical databases by adding noise to
query outputs proportional to the sensitivity of the query [35,
203]. Consider a query f : D→ R on a dataset D with samples
x,x

′ ∈ D. The global sensitivity ∆ f of this query is defined
as:

∆ f = max
x,x′

∥ f (x)− f (x
′
)∥ (1)

Users can set the Privacy Budget ε. Then, noise can be drawn
from a Laplace distribution, X ∼ Laplace(∆ f

ε
), to achieve the

desired level of privacy based on various privacy definitions.
More specifically, the probability density function (PDF) is

p(x) = 1
2b e

−∥x∥
b , where b = ∆ f

ε
. The value of ε can be de-

termined by a grid search against the attack model. With a
smaller ε, we spread the PDF and introduce more diverse
noise to the output, so less information is preserved.

In practice, finding the global sensitivity ∆ f is challenging
as it requires testing all inputs. Instead, previous work bounds
the sensitivity in model partition output [1, 203].

x′pid =
xpid

max(1, ∥xpid∥
C)

(1)

where C is the clipping threshold. In this way, ∥x′pid∥ < C.
Notice that clipping modifies the hidden variables which leads
to accuracy degradation. To optimize C, the common practice
is to set the median of xpid based on the training dataset [1].

Previous studies apply this practical DP implementation in
DP-SGD [1,200] during training to mitigate the risk of recon-
structing training datasets from the served models. They add
Gaussian noise to gradients, reducing the model’s sensitivity
to individual training samples. As a result, the distribution of
prediction confidences for training dataset samples is similar
to other samples, preventing over-concentration on the true
label. This approach complicates membership inference at-
tacks, in which adversaries deduce whether a sample was part
of the training data based on prediction logits [43].

In edge inference settings, recent work suggests injecting
noise to hidden variables that obscure sensitive information,

17

Submitted to the Journal of Systems Research (JSys) 2025

Analysis Granularity Coarse [63, 87, 107, 137, 213] Fine-Grained [71, 143]
Cost Saving Optimality Low High
Model Structure Flexibility High Low

Table 11: A comparison of cost analysis methodologies for ML systems. Coarse-Grained Analysis treats the ML model as a
monolith. This approach offers high Model Structure Flexibility but overlooks potential savings by not optimizing resources
for individual components, leading to lower Cost Saving Optimality. Conversely, Fine-Grained Analysis models the cost of
individual layers or partitions. This allows for highly optimized resource allocation (e.g., VMs vs. FaaS for different parts of a
model), but is less flexible and requires a more detailed system model.

for example, race, age, or gender, transmitted over the Inter-
net [58, 126].
Methods. In our privacy optimization formulation (Sec. 3.3),
in line 3, an MLaaS system can inject noise to intermediate
data (τ(∆ f)) based on its sensitivity ∆ f . With differential
privacy, recent studies [58, 116, 126, 203] have developed
fitted noise layers that either sample noise from a distribution
or nullify specific entries. This approach is highly flexible,
allowing users to choose different noise layers to append
to the final layer on the edge device when the source data
distribution changes. The noise injected during training and
inference complicates the inversion approximation used by
the attacker at model serving time. Meanwhile, the model
retains its capacity to extract relevant information for accurate
predictions.

4.3.2 Regularization

Background. We can also solve the privacy of the source
data as an optimization problem. One approach is to incorpo-
rate source data privacy as a secondary objective by adding a
regularization term to the loss function. Thus, we encourage
the model to preserve only the features that contribute to pre-
diction. On the other hand, deep edge neural networks (NNs)
with non-invertible hidden variables, such as rectangular ma-
trices, are harder to approximate with an inversion matrix.
Therefore, we can optimize the placement of NN partitions to
maximize the privacy level of the source data.
Methods. In our privacy optimization formulation
(Sec. 3.3), we incorporate the privacy loss, exemplified as
MSE(F−1

pid (xpid),xpid−1) into the loss function in line 1. The
mean square error gauges differences between the recon-
structed and original source data. Then, we can tune the
privacy level of model inference by specifying hyperparame-
ters wCE and wp for training [96,175,210] and model partition
placements [58, 210].

There are ways to incorporate privacy objectives into model
training. For example, we can include a distance correlation
loss function, comparing intermediate data and source data
in addition to the Cross-Entropy loss [175]. Alternatively,
additional training epochs can be dedicated to optimizing
the privacy objective [210]. For more task-specific solutions,
ResSFL [96] introduces a privacy loss function that compares
the source data and the reconstructed data derived from in-

termediate data using a decoder following the threat model
in model inversion attacks. Thus, by designing decoders
with different capacity, the model can defend against different
model inversion attacks.
Summary of privacy-preserving methods: As our privacy
formulation (Sec. 3.3.3) shows, to mitigate model-inversion
attacks (MIA, or prompt-inversion attacks, PIA), prior work
aims to limit the information encoded in shallow layers so
that an adversary cannot reconstruct the source data. Related
methods are typically applied during training, and also in-
troduce adaptations at inference time. We summarize these
works in Table 12. Overall, regularization approaches typi-
cally require end-to-end model training. They tend to better
preserve accuracy but incur greater training overhead. By
contrast, perturbation-based methods generally introduce less
overhead because they involve fewer trainable parameters or
can be applied post hoc. However, they may offer weaker
guarantees in accuracy or privacy. Importantly, the efficacy
and practicality of these methods for large language models
remain insufficiently studied, and adapting them to the scale
and tokenized representations of modern LLMs is an open
challenge.

5 Multi-Objective Optimization Case Studies

Optimizing for latency (LL), monetary cost (LC), and data
privacy (LP) simultaneously presents a significant challenge,
as these objectives often conflict. An improvement in one
area can adversely affect another. For instance, prior work on
CIFAR-10 has shown that reducing the edge model’s depth
from 7 to 4 layers – a change that could decrease latency – de-
grades privacy, causing the attacker’s top-1 misclassification
rate on reconstructed images to fall from approximately 80%
to below 40% [210]. Similarly, techniques designed to ac-
celerate inference, such as internal classifiers (βpid) or latent
compression (γpid), can lead to unpredictable resource usage.
This unpredictability may result in the under-utilization of
provisioned virtual machines, thereby increasing the effective
monetary cost per request.

However, these same mechanisms can also be used to co-
optimize multiple objectives when applied in the right context.
For example, early exits reduce traffic to deeper model layers,
allowing a small set of always-on VMs to handle the “hot

18

Submitted to the Journal of Systems Research (JSys) 2025

Defense Method Perturbation [58, 116, 126, 203] Regularization [58, 96, 175, 210]
Training Overhead Medium High
Required Model Retraining Partial or Complete Complete
Influence on Accuracy High Medium

Table 12: A comparison of two common defenses against model-inversion attacks. Perturbation methods add noise to intermediate
data, while Regularization methods add a privacy-penalty term to the training loss. Perturbation often has lower training overhead
because noise-generating components can sometimes be trained separately [126]. However, this training paradigm can lead to a
significant accuracy drop (e.g., differential privacy vs. CPA-DC in Federated Split Learning [210]). In contrast, Regularization
requires end-to-end retraining, which incurs higher overhead but typically affects accuracy less. Although these techniques
have been studied for traditional MIA, their substantial training cost makes them largely impractical for defending against
prompt-inversion attacks (PIA) in large-scale LLMs.

path” (frequent, low-latency requests) while offloading less
frequent “cold” traffic to serverless functions (FaaS). This
approach can simultaneously reduce both latency and cost.
In this section, we therefore explore the tradeoffs inherent
in our formulation through a series of use cases, analyzing
scenarios where a subset of objectives is relaxed to maximize
performance on others.

5.1 Latency & Cost
In this section, we analyze scenarios where data privacy is
a relaxed constraint, allowing us to focus on the trade-off
between inference latency and monetary cost. This situa-
tion is common for large models like LLM chatbots (e.g.,
ChatGPT [133] and Gemini [169]), which are too computa-
tionally intensive to be deployed on user devices and must
run on remote servers. Accordingly, we now examine how
our formulation can be used to balance these two objectives.

Our optimization of latency (LL) is guided by the objective
in line 1, which minimizes total inference time:

LL = min
pid,αc

pid ,κpid ,γpid
(ξT

0 T T
0 +

M

∑
pid=1

Tpid)

This total time is composed of transmission delay (T T
pid), de-

fined in line 5, and processing delay (TC
pid), defined in line 7:

T T
pid =

(1−κpid)(1−βpid)(1− γpid)Size(Fpid(xpid−1))

bandwidth

TC
pid =

FLOPspid
pid(xpid−1,πpid)

µpid

Similarly, our optimization of monetary cost (LC) is guided
by the objective in line 1. This function models the combined
cost of IaaS resources up to a partition point, cutid, and FaaS
resources thereafter:

LC = min
cutid,θF ,θI ,α

k
pid

CI(θI)TI

cutid

∑
pid=1

βpid

+CF(θF)TF

M

∑
pid=cutid+1

βpid

This cost is weighted by the probability that a request will
reach a given layer, βpid , which is derived from the workload
distribution as shown in line 4:

βpid =

Qpid

∑
c=1

Pr(α
′c
pid > α

c
pid) =

Qpid

∑
c=1

β
c
pid

Although latency and cost are coupled, reducing one does
not automatically reduce the other. Techniques that lower
latency, such as data compression (κpid , γpid) and early ex-
its (βpid), directly influence the total execution time (TI , TF),
which in turn determines monetary cost. However, this re-
lationship is complex. For example, while IaaS platforms
may offer more cost-efficient hardware than FaaS, dedicat-
ing a full VM to a model is not always cheaper. In a DNN
with internal classifiers, many requests may exit early, leading
to short, unpredictable inference times [82, 87]. And in a
hybrid LLM setup where easy queries are handled by a lo-
cal LLM while complex one needs more sophisticated cloud
LLM [30]. In particular, in Hybrid LLM, with 1% drop in
BART score of responses (i.e., use smaller edge LLM model),
they reduced 22% traffic to the cloud LLM (i.e., api calls to
GPT-3.5-turbo) [30]. These short jobs can under-utilize a pro-
visioned IaaS VM, making it less cost-efficient. In contrast, a
FaaS platform, which bills based on precise execution time,
is often more cost-effective for these variable, short-running
requests.

To jointly optimize inference latency and monetary cost,
prior research has explored architectural-aware resource pro-
visioning and model offloading. One prominent approach
involves hybrid edge-cloud systems, which route computa-
tionally simple queries to local edge devices while offloading
complex requests to more powerful, highly-parameterized
models (e.g., Large Language Models) in the cloud [30, 157].
Other works leverage internal classifiers and ensemble
model architectures, allowing for on demand fine-grained
resource provisioning for layers deployed on the edge or in
the cloud [61, 83, 87, 138, 172, 209].

When considering resource costs rather than per-call API
fees for services or models, the unique pricing models of
cloud providers also affect ML resource-provisioning deci-

19

Submitted to the Journal of Systems Research (JSys) 2025

sions. In LIBRA [143], the authors identify a Cost Indiffer-
ence Point showing high steady-rate traffic is best served by
reserved VMs and low-rate traffic can be handled by FaaS
for cost-efficiency. They achieved 20% cost reduction by
load balancing. Serverless (FaaS) platforms provide fine-
grained resource provisioning with response times measured
in milliseconds, making them ideal for dynamic or transient
workloads and for minimizing idle resource costs [52]. In
contrast, reserved VMs, although slower to respond to QoS
targets, offer a lower cost per request for sustained workloads
that fully utilize the VMs [158].

For Large Language Models (LLMs), where output lengths
are highly unpredictable, recent work has focused on the
unique characteristics of the auto-regressive decoding phase.
Specifically, because the Key-Value (KV) cache of previous
tokens remains static during the generation of a new token, it
is possible to migrate the KV cache to a different node with
sufficient GPU memory [167]. This technique enables low-
downtime migration of ongoing LLM inference jobs, which
is critical for maintaining low 99th-percentile latency. Further-
more, this low-overhead migration method facilitates dynamic
resource allocation, allowing for minimal over-provisioning
and thereby reducing monetary costs.

5.2 Latency & Privacy

In our second scenario, we examine privacy-sensitive appli-
cations where minimizing inference latency is critical, while
monetary cost is a less stringent constraint. Such applications
are common in environments like smart hospitals [19] or in
enterprise use cases for LLM chatbots, where prompts may
contain proprietary information such as company names or
contact details [113, 139].

In these contexts, strict data privacy requirements often
mandate that source data cannot leave the user’s local facility.
Despite this on-premise processing constraint, the machine
learning system is still required to deliver high-quality outputs
with low inference latency, creating a significant technical
challenge.

As defined in Sec. 3.3.1, our privacy formulation centers
on a Model Inversion Attack (MIA). We consider an envi-
ronment where a DNN is partitioned across a directed acyclic
graph, and the threat goal is to infer the source data from the
intermediate activations exchanged between partitions.

In this threat model, an honest-but-curious adversary trains
a reconstructor model (RMIA) that takes an intermediate acti-
vation, xpid , as input and attempts to generate a reconstruction
of the original source data, x̂0 = RMIA(xpid). The resulting
privacy leakage from any partition pid can be quantified by
the Mean Squared Error (MSE) between the original data and
its reconstruction:

Leakpid = E
x0∼D

[
∥x0 − x̂0∥2

2
]

Accordingly, our privacy-optimization objective, introduced
in line 1 of privacy formulation (Sec. 3.3.3), is formulated as:

LP = min
π

pri
pid ,∆,λ

(wCECE(ŷ,y)−
M

∑
pid=1

wpMSE(F−1
pid (xpid),xpid−1))

This objective function seeks to strike a balance between two
competing goals: maintaining model accuracy, measured by
Cross-Entropy (CE), and preserving source data privacy by
minimizing the invertibility of intermediate representations,
measured by MSE.

The privacy-enhancing techniques we consider alter the in-
termediate data, xpid , exchanged between partitions, as shown
in line 3:

xpid = λπ
pri
pid(Fpid)(xpid−1)+ τ(∆Fpid)

These alterations, introduced by the privacy-aware training ap-
proaches (πpri

pid(·) and τ(·)), directly impact the transmission
and processing delays (T T

pid and TC
pid) in our latency formula-

tion. The function π
pri
pid(·) is analogous to the πpid(·) function

used for latency optimization (lines 4 and 7), as both represent
paradigms including model compression, data compression,
and partition offloading.

For traditional DNNs used in tasks like image classification
(e.g., VGG), the overhead from these privacy measures can
be minimal. Techniques such as regularization [58, 96, 210]
or data perturbation [58, 126] often introduce few architec-
tural changes during inference. For example, ResSFL [96]
introduce an inversion network of roughly 76.2,M FLOPs
together with a client model of 21.5,M FLOPs during model
training, while maintaining an MSE of 0.02 between source
and reconstructed data during inference. Furthermore, any
resulting increase in processing or transmission overhead can
frequently be compensated for by applying model compres-
sion techniques [110, 197].

In the context of modern Large Language Models (LLMs),
the threat of model inversion has evolved into the Prompt
Inversion Attack (PIA). The motivation for such attacks is
strong: user prompts can contain sensitive personal informa-
tion, while system prompts often represent valuable intellec-
tual property. To mitigate these risks, some works propose
offloading schemes that partition the LLM between the edge
and the cloud, preventing the raw prompt from being trans-
mitted over the network while also managing GPU memory
constraints. However, this does not solve the core problem,
as an honest-but-curious adversary can still attempt to recon-
struct the prompt by capturing the intermediate activations
between model partitions [113, 139].

At first glance, inverting LLMs appears more difficult than
inverting traditional CNNs like VGG. LLMs are significantly
deeper and more non-linear, and their inputs – discrete to-
ken embeddings – are theoretically harder to reconstruct than
continuous image data. Despite these challenges, recent re-
search has demonstrated successful prompt reconstruction

20

Submitted to the Journal of Systems Research (JSys) 2025

by leveraging open-source base model weights and LoRA
adapters [182]. Furthermore, traditional privacy-preserving
techniques like regularization and data perturbation are gen-
erally impractical for models of this scale, as they introduce
prohibitive training overhead and can cause significant per-
formance degradation. Therefore, developing effective and
efficient methods to guarantee the privacy of prompt inputs
remains a critical and open research challenge.

5.3 Latency, Cost & Privacy
In our third and final scenario, we address the most compre-
hensive challenge: the simultaneous optimization of ML in-
ference latency, source data privacy, and monetary cost. This
setting is crucial for deploying practical, privacy-sensitive
applications that must also operate under tight latency and
budget constraints. While our previous sections analyzed
pairwise trade-offs, the economic realities of modern large-
scale models necessitate a holistic approach. The exponential
growth in inference expenses has made per-request cost a
critical metric [44, 54], meaning a truly viable solution must
co-optimize all three objectives.

Achieving this is exceptionally challenging, as improve-
ments in one area often create complex, competing effects
on the others. Consider the impact of a single architectural
decision designed to enhance privacy against a Model Inver-
sion Attack (MIA). A straightforward strategy is to increase
the number of layers processed locally on a user’s device (the
head partition) before offloading to a remote server. This
strengthens privacy by applying more non-linear transforma-
tions but introduces a multifaceted trade-off:

• Transmission Latency (T T
pid) may decrease, as the re-

sulting intermediate data sent to the server is often
smaller.

• Processing Latency (TC
pid) on the user’s device will in-

crease due to the heavier computational load.

• Monetary Cost may be reduced, as less computation is
required from paid server resources.

This single example illustrates the difficulty finding a global
optimum across latency, privacy, and cost.

Furthermore, the choice of cloud service for each model
partition is a critical factor due to differing pricing models
(e.g., AWS EC2 [7] vs. AWS Lambda [9]). As established
in our cost formulation (Sec. 3.2.1), we can model a hybrid
system that uses a cost-efficient EC2 instance for the initial,
privacy-sensitive partitions and a more expensive, serverless
Lambda function for the deeper layers.

In this model, architectural decisions directly translate to
monetary cost. For instance, one can shift more layers of
computation onto the EC2 instance (as long as the VM is
fully utilized). While this increases the runtime on the cheaper
VM, it proportionally reduces the execution time billed for the

more expensive Lambda function. Provided that end-to-end
latency and data privacy requirements are met, this strategic
shift of computation from a high-cost to a low-cost resource
can significantly reduce the total cost per inference. This
demonstrates that resource selection and model partitioning
must be carefully co-optimized to achieve a true balance
among latency, privacy, and cost.

Despite progress in optimizing individual objectives, de-
veloping a unified framework to systematically balance in-
ference latency, monetary cost, and privacy against Model
Inversion Attacks (MIA) remains a significant challenge. The
current landscape reveals critical gaps in research. For in-
stance, much of the existing work adopts a narrow defini-
tion of privacy, focusing on ensuring the physical locality of
source data (e.g.,Multi-tier Multi-node Scheduling of LLM,
etc [107, 114]) while overlooking the more subtle threat of
information leakage from intermediate activations during in-
ference (i.e., MIA and Prompt Inversion Attacks).

Furthermore, while the danger of Prompt Inversion Attacks
(PIA) in Large Language Models is increasingly recognized,
the practicality and efficiency of potential countermeasures
are still largely unexplored. The remedies suggested by our
privacy formulation, especially for LLMs, demand rigorous
investigation before they can be considered viable. Drawing
from these gaps in the literature and the challenges high-
lighted by our framework, the following section outlines sev-
eral key open research issues.

6 Open Issues

Drawing from our multi-objective optimization framework,
this section summarizes the inherent challenges in coupling
latency, cost, and privacy, motivating future research direc-
tions.

6.1 Monetary Cost and Latency Optimization
via Fine-Grained Resource Orchestration

Optimizing the monetary cost of hybrid edge-cloud ML sys-
tems introduces significant challenges in resource provision-
ing. Previous work, as discussed in Sec. 5.1, has primarily
focused on load balancing at the granularity of entire re-
quests. For instance, LIBRA [143] routes traffic to reserved
VMs or serverless platforms based on traffic patterns by iden-
tifying a Cost Indifference Point, while Hybrid LLM [30]
routes queries to different-sized models based on prompt dif-
ficulty.

We propose, however, that a more fine-grained approach,
orchestrating resources at the level of individual neural net-
work partitions, allows substantial cost savings, particularly
for models featuring internal classifiers. When a DNN is
partitioned, it forms a Directed Acyclic Graph (DAG) where
each partition processes features for subsequent layers. The

21

Submitted to the Journal of Systems Research (JSys) 2025

presence of early exits means that many requests may termi-
nate at shallow partitions, leading to a significantly reduced
and more variable workload for deeper ones.

Consequently, provisioning a single, powerful Virtual Ma-
chine (VM) for the entire inference path is inefficient. The
resource remains idle for short-running requests but is billed
as if fully utilized. A more cost-effective strategy would be
to employ high-granularity, pay-per-use resources like FaaS
for the deeper partitions. This allows the system to scale
resources dynamically to match the fluctuating workload, en-
suring that the monetary cost accurately reflects the actual
computation performed.

6.2 Defending Prompt Inversion Attacks un-
der Latency and Cost Constraints

While our privacy formulation focuses on the general prin-
ciples of Model Inversion Attacks (MIA), its application to
Large Language Models (LLMs) is known as the Prompt
Inversion Attack (PIA). As LLM-based chatbots become
popular, their prompts, often containing sensitive user data
or proprietary business logic, have become valuable tar-
gets [113, 139]. However, traditional MIA remedies like
regularization and perturbation are generally impractical for
models of this scale, creating a substantial open attack surface
for distributed LLM applications.

A difficulty in defending against PIA lies in the unpre-
dictable nature of privacy-preserving hyperparameter
tuning. As shown in our privacy formulation (Sec. 3.3), the
final balance between model accuracy (CE(ŷ,y)) and privacy
(invertibility of xpid−1) for any given set of hyperparameters
{π

pri
pid ,∆,λ} can only be evaluated after a full model training

cycle converges.
This leads to two critical problems. First, the tuning pro-

cess is prohibitively time-consuming, requiring numerous,
resource-intensive training runs. Second, the tuning phase
itself creates a window of vulnerability. In a distributed
setting, the iterative exchange of gradients and intermediate
activations during tuning exposes data before an effective
privacy configuration has been found. While heuristics may
offer some guidance (e.g., higher compression often degrades
inversion accuracy), systematically and safely identifying op-
timal privacy hyperparameters for LLMs remains an unsolved
research problem.

Some related work has attempted to mitigate these risks in
traditional DNNs by using transfer learning [96]. The strategy
is to pre-train a privacy-aware model on a public dataset and
then fine-tune it on the private data, hoping to establish a
secure baseline. However, this approach often fails when
there is a significant domain mismatch between the public and
private tasks (e.g., pre-training on CIFAR-10 for a CIFAR-100
task). In such cases, extensive fine-tuning on the private data
is required to achieve acceptable accuracy, which reintroduces
the original risks of high computational cost and data leakage

during the prolonged tuning phase. Consequently, an efficient
and secure methodology for tuning privacy-aware LLMs is
critical.

7 Conclusion

This survey has contextualized state-of-the-art model offload-
ing and adaptation methods as critical "control knobs" within
a multi-objective optimization framework that balances la-
tency, cost, and privacy. We traced the evolution from tradi-
tional full-model offloading to the sophisticated, partitioned
neural network architectures required by demanding appli-
cations like LLM chatbots. The increasing prevalence of
these applications highlights the significant potential for fu-
ture edge-cloud collaborative Machine-Learning-as-a-Service
(MLaaS) systems, particularly for organizations leveraging
managed cloud infrastructure [2, 6, 185].

By analyzing common challenges such as transmission de-
lays, processing overhead, and privacy vulnerabilities, this
work provides a structured perspective on developing next-
generation MLaaS platforms. The open issues identified, es-
pecially in minimizing monetary cost and strengthening guar-
antees against attacks like MIA and PIA, represent ground
for future research. We believe this survey serves as a start-
ing point to guide the future advancements in the field of
collaborative edge-cloud intelligence.

References

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan
McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.
Deep Learning with Differential Privacy. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’16, page
308–318, New York, NY, USA, 2016. Association
for Computing Machinery. https://doi.org/10.
1145/2976749.2978318.

[2] Adobe. Commerce Cloud Infrastrcture Overview,
2023. URL: https://experienceleague.
adobe.com/en/docs/commerce-operations/
implementation-playbook/infrastructure/
cloud/overview.

[3] Abien Fred Agarap. Deep Learning using Rectified
Linear Units (ReLU), 2019. arXiv:1803.08375.

[4] Divyansh Agarwal, Alexander Fabbri, Ben Risher,
Philippe Laban, Shafiq Joty, and Chien-Sheng Wu.
Prompt leakage effect and mitigation strategies for
multi-turn LLM applications. In Franck Dernoncourt,
Daniel Preoţiuc-Pietro, and Anastasia Shimorina, edi-
tors, Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing: Industry

22

https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://experienceleague.adobe.com/en/docs/commerce-operations/implementation-playbook/infrastructure/cloud/overview
https://experienceleague.adobe.com/en/docs/commerce-operations/implementation-playbook/infrastructure/cloud/overview
https://experienceleague.adobe.com/en/docs/commerce-operations/implementation-playbook/infrastructure/cloud/overview
https://experienceleague.adobe.com/en/docs/commerce-operations/implementation-playbook/infrastructure/cloud/overview
http://arxiv.org/abs/1803.08375

Submitted to the Journal of Systems Research (JSys) 2025

Track, pages 1255–1275, Miami, Florida, US, Novem-
ber 2024. Association for Computational Linguistics.
URL: https://aclanthology.org/2024.emnlp-
industry.94/, https://doi.org/10.18653/v1/
2024.emnlp-industry.94.

[5] Fawad Ahmad, Hang Qiu, Ray Eells, Fan Bai, and
Ramesh Govindan. CarMap: Fast 3D Feature Map
Updates for Automobiles. In Proceedings of the
17th Usenix Conference on Networked Systems De-
sign and Implementation, NSDI’20, page 1063–1082,
USA, 2020. USENIX Association.

[6] Amazon. AWS and Adobe, 2024. URL: https:
//aws.amazon.com/partners/adobe/.

[7] Amazon Web Services. Amazon EC2. https://aws.
amazon.com/ec2/, 2024. Accessed: 2025-09-09.

[8] Amazon Web Services. Amazon ECS. https://aws.
amazon.com/ecs/, 2024. Accessed: 2025-09-09.

[9] Amazon Web Services. Amazon Lambda. https://
aws.amazon.com/lambda/, 2024. Accessed: 2025-
09-09.

[10] Amazon Web Services. Amazon Lambda
Edge. https://aws.amazon.com/lambda/edge/,
2024. Accessed: 2025-09-09.

[11] Amazon Web Services. Amazon Rekognition.
https://docs.aws.amazon.com/rekognition/
index.html, 2024. Accessed: 2025-09-09.

[12] Amazon Web Services. Amazon SageMaker. https:
//aws.amazon.com/sagemaker/, 2024. Accessed:
2025-09-09.

[13] Amazon Web Services. Amazon SageMaker
Edge. https://aws.amazon.com/sagemaker/
edge/, 2024. Accessed: 2025-09-09.

[14] Amazon Web Services. Amazon SageMaker NEO.
https://aws.amazon.com/sagemaker/neo/, 2024.
Accessed: 2025-09-09.

[15] Amazon Web Services. AWS IoT Greengrass. https:
//aws.amazon.com/greengrass/, 2024. Accessed:
2025-09-09.

[16] Amazon Web Services. AWS Local Zones.
https://aws.amazon.com/about-aws/global-
infrastructure/localzones/, 2024. Accessed:
2025-09-09.

[17] Amazon Web Services. AWS Wavelength. https:
//aws.amazon.com/wavelength/, 2024. Accessed:
2025-09-09.

[18] Amazon Web Services. Lambda Run-
time Environment: Cold Start Latency.
https://docs.aws.amazon.com/lambda/latest/
dg/lambda-runtime-environment.html#cold-
start-latency, 2025. Accessed: 2025-05-01.

[19] Ons Aouedi, Thai-Hoc Vu, Alessio Sacco, Dinh C.
Nguyen, Kandaraj Piamrat, Guido Marchetto, and
Quoc-Viet Pham. A survey on intelligent internet
of things: Applications, security, privacy, and future
directions. IEEE Communications Surveys & Tutori-
als, 27(2):1238–1292, 2025. https://doi.org/10.
1109/COMST.2024.3430368.

[20] Kittipat Apicharttrisorn, Xukan Ran, Jiasi Chen,
Srikanth V. Krishnamurthy, and Amit K. Roy-
Chowdhury. Frugal Following: Power Thrifty Ob-
ject Detection and Tracking for Mobile Augmented
Reality. In Proceedings of the 17th Conference on
Embedded Networked Sensor Systems, SenSys ’19,
page 96–109, New York, NY, USA, 2019. Associ-
ation for Computing Machinery. https://doi.org/
10.1145/3356250.3360044.

[21] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-
Yuan Mark Liao. YOLOv4: Optimal Speed and Accu-
racy of Object Detection, 2020. arXiv:2004.10934.

[22] Zhuoqing Chang, Shubo Liu, Xingxing Xiong, Zhao-
hui Cai, and Guoqing Tu. A Survey of Recent Ad-
vances in Edge-Computing-Powered Artificial Intel-
ligence of Things. IEEE Internet of Things Journal,
8(18):13849–13875, 2021. https://doi.org/10.
1109/JIOT.2021.3088875.

[23] Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John Jumper.
Accelerating Large Language Model Decoding with
Speculative Sampling, 2023. URL: https://arxiv.
org/abs/2302.01318, arXiv:2302.01318.

[24] Kaifei Chen, Tong Li, Hyung-Sin Kim, David E.
Culler, and Randy H. Katz. MARVEL: Enabling
Mobile Augmented Reality with Low Energy and Low
Latency. In Proceedings of the 16th ACM Conference
on Embedded Networked Sensor Systems, SenSys ’18,
page 292–304, New York, NY, USA, 2018. Associa-
tion for Computing Machinery. https://doi.org/
10.1145/3274783.3274834.

[25] Yixin Chen, Shuai Zhang, Boran Han, and Bernie
Wang. Visual Instruction Tuning with Chain of Region-
of-Interest, 2025. URL: https://arxiv.org/abs/
2505.06840, arXiv:2505.06840.

[26] Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kita-
moto, Alex Lamb, Kazuaki Yamamoto, and David

23

https://aclanthology.org/2024.emnlp-industry.94/
https://aclanthology.org/2024.emnlp-industry.94/
https://doi.org/10.18653/v1/2024.emnlp-industry.94
https://doi.org/10.18653/v1/2024.emnlp-industry.94
https://aws.amazon.com/partners/adobe/
https://aws.amazon.com/partners/adobe/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/edge/
https://docs.aws.amazon.com/rekognition/index.html
https://docs.aws.amazon.com/rekognition/index.html
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/edge/
https://aws.amazon.com/sagemaker/edge/
https://aws.amazon.com/sagemaker/neo/
https://aws.amazon.com/greengrass/
https://aws.amazon.com/greengrass/
https://aws.amazon.com/about-aws/global-infrastructure/localzones/
https://aws.amazon.com/about-aws/global-infrastructure/localzones/
https://aws.amazon.com/wavelength/
https://aws.amazon.com/wavelength/
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtime-environment.html#cold-start-latency
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtime-environment.html#cold-start-latency
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtime-environment.html#cold-start-latency
https://doi.org/10.1109/COMST.2024.3430368
https://doi.org/10.1109/COMST.2024.3430368
https://doi.org/10.1145/3356250.3360044
https://doi.org/10.1145/3356250.3360044
http://arxiv.org/abs/2004.10934
https://doi.org/10.1109/JIOT.2021.3088875
https://doi.org/10.1109/JIOT.2021.3088875
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2302.01318
http://arxiv.org/abs/2302.01318
https://doi.org/10.1145/3274783.3274834
https://doi.org/10.1145/3274783.3274834
https://arxiv.org/abs/2505.06840
https://arxiv.org/abs/2505.06840
http://arxiv.org/abs/2505.06840

Submitted to the Journal of Systems Research (JSys) 2025

Ha. Deep learning for classical japanese litera-
ture, 2018. URL: https://arxiv.org/abs/1812.
01718, arXiv:cs.CV/1812.01718.

[27] Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra, and
Christopher Re. FlashAttention: Fast and Memory-
Efficient Exact Attention with IO-Awareness. In Al-
ice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho, editors, Advances in Neural Infor-
mation Processing Systems, 2022. URL: https:
//openreview.net/forum?id=H4DqfPSibmx.

[28] Shuiguang Deng, Hailiang Zhao, Binbin Huang,
Cheng Zhang, Feiyi Chen, Yinuo Deng, Jianwei Yin,
Schahram Dustdar, and Albert Y Zomaya. Cloud-
Native Computing: A Survey From the Perspective of
Services. Proceedings of the IEEE, 2024.

[29] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. QLoRA: Efficient Finetun-
ing of Quantized LLMs. In Thirty-seventh Con-
ference on Neural Information Processing Systems,
2023. URL: https://openreview.net/forum?id=
OUIFPHEgJU.

[30] Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim,
Subhabrata Mukherjee, Victor Rühle, Laks V. S. Lak-
shmanan, and Ahmed Hassan Awadallah. Hybrid
LLM: Cost-Efficient and Quality-Aware Query Rout-
ing. In The Twelfth International Conference on
Learning Representations, 2024. URL: https:
//openreview.net/forum?id=02f3mUtqnM.

[31] S. Ding, L. Zhang, M. Pan, and X. Yuan. PA-
TROL: Privacy-Oriented Pruning for Collaborative
Inference Against Model Inversion Attacks. In 2024
IEEE/CVF Winter Conference on Applications of Com-
puter Vision (WACV), pages 4704–4713, Los Alami-
tos, CA, USA, jan 2024. IEEE Computer Soci-
ety. URL: https://doi.ieeecomputersociety.
org/10.1109/WACV57701.2024.00465, https://
doi.org/10.1109/WACV57701.2024.00465.

[32] Yucheng Ding, Chaoyue Niu, Fan Wu, Shaojie
Tang, Chengfei Lyu, and Guihai Chen. Enhanc-
ing On-Device LLM Inference with Historical
Cloud-Based LLM Interactions. In Proceedings
of the 30th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, KDD ’24, page
597–608, New York, NY, USA, 2024. Association
for Computing Machinery. URL: https://doi-org.
ezproxy.bu.edu/10.1145/3637528.3671679,
https://doi.org/10.1145/3637528.3671679.

[33] Alexey Dosovitskiy and Thomas Brox. Inverting Vi-
sual Representations with Convolutional Networks. In

Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 4829–4837, 2016.

[34] Sijing Duan, Dan Wang, Ju Ren, Feng Lyu, Ye Zhang,
Huaqing Wu, and Xuemin Shen. Distributed Ar-
tificial Intelligence Empowered by End-Edge-Cloud
Computing: A Survey. IEEE Communications Sur-
veys & Tutorials, 25(1):591–624, 2023. https:
//doi.org/10.1109/COMST.2022.3218527.

[35] Cynthia Dwork, Aaron Roth, et al. The algorithmic
foundations of differential privacy. Foundations and
Trends® in Theoretical Computer Science, 9(3–4):211–
407, 2014.

[36] Maryam Ebrahimi, Alexandre da Silva Veith, Moshe
Gabel, and Eyal de Lara. Combining DNN Partitioning
and Early Exit. In Proceedings of the 5th International
Workshop on Edge Systems, Analytics and Networking,
EdgeSys ’22, page 25–30, New York, NY, USA, 2022.
Association for Computing Machinery. https://doi.
org/10.1145/3517206.3526270.

[37] Yasuhiro Endo, Zheng Wang, J. Bradley Chen, and
Margo Seltzer. Using latency to evaluate interactive
system performance. In Proceedings of the Second
USENIX Symposium on Operating Systems Design and
Implementation, OSDI ’96, page 185–199, New York,
NY, USA, 1996. Association for Computing Machin-
ery. https://doi.org/10.1145/238721.238775.

[38] Ege Erdoğan, Alptekin Küpçü, and A. Ercüment
Çiçek. UnSplit: Data-Oblivious Model Inversion,
Model Stealing, and Label Inference Attacks Against
Split Learning. In Proceedings of the 21st Work-
shop on Privacy in the Electronic Society (WPES ’22),
pages 115–124, Los Angeles, CA, USA, 2022. ACM.
https://doi.org/10.1145/3559613.3563201.

[39] Melike Erol-Kantarci and Sukhmani Sukhmani.
Caching and Computing at the Edge for Mobile Aug-
mented Reality and Virtual Reality (AR/VR) in 5G.
In Yifeng Zhou and Thomas Kunz, editors, Ad Hoc
Networks, pages 169–177, Cham, 2018. Springer In-
ternational Publishing.

[40] Amir Erfan Eshratifar, Amirhossein Esmaili, and Mas-
soud Pedram. BottleNet: A Deep Learning Architec-
ture for Intelligent Mobile Cloud Computing Services.
In 2019 IEEE/ACM International Symposium on Low
Power Electronics and Design (ISLPED), pages 1–6,
2019. https://doi.org/10.1109/ISLPED.2019.
8824955.

[41] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. OPTQ: Accurate Quantization for Gen-
erative Pre-trained Transformers. In The Eleventh In-
ternational Conference on Learning Representations,

24

https://arxiv.org/abs/1812.01718
https://arxiv.org/abs/1812.01718
http://arxiv.org/abs/cs.CV/1812.01718
https://openreview.net/forum?id=H4DqfPSibmx
https://openreview.net/forum?id=H4DqfPSibmx
https://openreview.net/forum?id=OUIFPHEgJU
https://openreview.net/forum?id=OUIFPHEgJU
https://openreview.net/forum?id=02f3mUtqnM
https://openreview.net/forum?id=02f3mUtqnM
https://doi.ieeecomputersociety.org/10.1109/WACV57701.2024.00465
https://doi.ieeecomputersociety.org/10.1109/WACV57701.2024.00465
https://doi.org/10.1109/WACV57701.2024.00465
https://doi.org/10.1109/WACV57701.2024.00465
https://doi-org.ezproxy.bu.edu/10.1145/3637528.3671679
https://doi-org.ezproxy.bu.edu/10.1145/3637528.3671679
https://doi.org/10.1145/3637528.3671679
https://doi.org/10.1109/COMST.2022.3218527
https://doi.org/10.1109/COMST.2022.3218527
https://doi.org/10.1145/3517206.3526270
https://doi.org/10.1145/3517206.3526270
https://doi.org/10.1145/238721.238775
https://doi.org/10.1145/3559613.3563201
https://doi.org/10.1109/ISLPED.2019.8824955
https://doi.org/10.1109/ISLPED.2019.8824955

Submitted to the Journal of Systems Research (JSys) 2025

2023. URL: https://openreview.net/forum?id=
tcbBPnfwxS.

[42] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart.
Model Inversion Attacks That Exploit Confidence In-
formation and Basic Countermeasures. In Proceed-
ings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’15, page
1322–1333, New York, NY, USA, 2015. Association
for Computing Machinery. https://doi.org/10.
1145/2810103.2813677.

[43] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart.
Model Inversion Attacks That Exploit Confidence In-
formation and Basic Countermeasures. In Proceed-
ings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’15, page
1322–1333, New York, NY, USA, 2015. Association
for Computing Machinery. https://doi.org/10.
1145/2810103.2813677.

[44] Bin Gao, Zhuomin He, Puru Sharma, Qingxuan Kang,
Djordje Jevdjic, Junbo Deng, Xingkun Yang, Zhou
Yu, and Pengfei Zuo. Cost-Efficient large language
model serving for multi-turn conversations with
CachedAttention. In 2024 USENIX Annual Technical
Conference (USENIX ATC 24), pages 111–126, Santa
Clara, CA, July 2024. USENIX Association. URL:
https://www.usenix.org/conference/atc24/
presentation/gao-bin-cost.

[45] Xinben Gao and Lan Zhang. PCAT: Functionality
and data stealing from split learning by pseudo-client
attack. In Proceedings of the 32nd USENIX Security
Symposium (USENIX Security ’23), pages 5271–5288,
Anaheim, CA, August 2023. USENIX Association.
URL: https://www.usenix.org/conference/
usenixsecurity23/presentation/gao.

[46] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio
Michaelis, Richard Zemel, Wieland Brendel, Matthias
Bethge, and Felix A Wichmann. Shortcut Learning in
Deep Neural Networks. Nature Machine Intelligence,
2(11):665–673, 2020.

[47] Amir Gholami, Zhewei Yao, Sehoon Kim, Coleman
Hooper, Michael W Mahoney, and Kurt Keutzer. AI
and memory wall. IEEE Micro, 2024.

[48] Google Cloud. Cloud Functions Execution Environ-
ment: Instance Lifespan. https://cloud.google.
com/functions/docs/concepts/execution-
environment#instance-lifespan, 2025. Ac-
cessed: 2025-05-01.

[49] Google Workspace Admin Help. Generative ai in
google workspace privacy hub. https://support.

google.com/a/answer/15706919?hl=en, 2024.
Accessed: 2025-04-20.

[50] Jianping Gou, Baosheng Yu, Stephen J Maybank, and
Dacheng Tao. Knowledge Distillation: A Survey.
International Journal of Computer Vision, 129:1789–
1819, 2021.

[51] Sam Gross, Marc’Aurelio Ranzato, and Arthur Szlam.
Hard Mixtures of Experts for Large Scale Weakly Su-
pervised Vision. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 6865–6873, 2017.

[52] Jashwant Raj Gunasekaran, Prashanth Thinakaran,
Mahmut Taylan Kandemir, Bhuvan Urgaonkar, George
Kesidis, and Chita Das. Spock: Exploiting Server-
less Functions for SLO and Cost Aware Resource Pro-
curement in Public Cloud. In 2019 IEEE 12th Inter-
national Conference on Cloud Computing (CLOUD),
pages 199–208, 2019. https://doi.org/10.1109/
CLOUD.2019.00043.

[53] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Wein-
berger. On Calibration of Modern Neural Networks. In
International conference on machine learning, pages
1321–1330. PMLR, 2017.

[54] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. DeepSeek-R1: Incentiviz-
ing Reasoning Capability in LLMs via Reinforcement
Learning. arXiv preprint arXiv:2501.12948, 2025.

[55] Alexey Guzey. How to Measure FLOP/s for
Neural Networks Empirically? https://www.
lesswrong.com/posts/jJApGWG95495pYM7C/how-
to-measure-flop-s-for-neural-networks-
empirically, September 2021. Accessed: 2025-09-
09.

[56] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ar-
davan Pedram, Mark A. Horowitz, and William J.
Dally. EIE: Efficient Inference Engine on Com-
pressed Deep Neural Network. In Proceedings of
the 43rd International Symposium on Computer Archi-
tecture, ISCA ’16, page 243–254. IEEE Press, 2016.
https://doi.org/10.1109/ISCA.2016.30.

[57] Yizeng Han, Gao Huang, Shiji Song, Le Yang,
Honghui Wang, and Yulin Wang. Dynamic Neural
Networks: A Survey. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 44(11):7436–
7456, 2022. https://doi.org/10.1109/TPAMI.
2021.3117837.

25

https://openreview.net/forum?id=tcbBPnfwxS
https://openreview.net/forum?id=tcbBPnfwxS
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/2810103.2813677
https://www.usenix.org/conference/atc24/presentation/gao-bin-cost
https://www.usenix.org/conference/atc24/presentation/gao-bin-cost
https://www.usenix.org/conference/usenixsecurity23/presentation/gao
https://www.usenix.org/conference/usenixsecurity23/presentation/gao
https://cloud.google.com/functions/docs/concepts/execution-environment#instance-lifespan
https://cloud.google.com/functions/docs/concepts/execution-environment#instance-lifespan
https://cloud.google.com/functions/docs/concepts/execution-environment#instance-lifespan
https://support.google.com/a/answer/15706919?hl=en
https://support.google.com/a/answer/15706919?hl=en
https://doi.org/10.1109/CLOUD.2019.00043
https://doi.org/10.1109/CLOUD.2019.00043
https://www.lesswrong.com/posts/jJApGWG95495pYM7C/how-to-measure-flop-s-for-neural-networks-empirically
https://www.lesswrong.com/posts/jJApGWG95495pYM7C/how-to-measure-flop-s-for-neural-networks-empirically
https://www.lesswrong.com/posts/jJApGWG95495pYM7C/how-to-measure-flop-s-for-neural-networks-empirically
https://www.lesswrong.com/posts/jJApGWG95495pYM7C/how-to-measure-flop-s-for-neural-networks-empirically
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/TPAMI.2021.3117837
https://doi.org/10.1109/TPAMI.2021.3117837

Submitted to the Journal of Systems Research (JSys) 2025

[58] Zecheng He, Tianwei Zhang, and Ruby B. Lee. At-
tacking and Protecting Data Privacy in Edge–Cloud
Collaborative Inference Systems. IEEE Internet of
Things Journal, 8(12):9706–9716, 2021. https:
//doi.org/10.1109/JIOT.2020.3022358.

[59] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Dis-
tilling the Knowledge in a Neural Network. arXiv
preprint arXiv:1503.02531, 2015.

[60] Andrew Howard, Mark Sandler, Grace Chu, Liang-
Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang,
Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al.
Searching for MobileNetV3. In Proceedings of the
IEEE/CVF international conference on computer vi-
sion, pages 1314–1324, 2019.

[61] Haiyang Huang, Newsha Ardalani, Anna Sun, Liu
Ke, Shruti Bhosale, Hsien-Hsin S. Lee, Carole-Jean
Wu, and Benjamin Lee. Toward Efficient Inference
for Mixture of Experts. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems,
2024. URL: https://openreview.net/forum?id=
stXtBqyTWX.

[62] Jim Huang and Philipp Landgraf. Remote Render-
ing for Real-time AR Applications at AWS Edge,
2024. URL: https://aws.amazon.com/blogs/
industries/remote-rendering-for-real-time-
ar-applications-at-aws-edge/.

[63] Jin Huang, Colin Samplawski, Deepak Ganesan, Ben-
jamin Marlin, and Heesung Kwon. CLIO: Enabling
Automatic Compilation of Deep Learning Pipelines
across IoT and Cloud. In Proceedings of the 26th
Annual International Conference on Mobile Comput-
ing and Networking, MobiCom ’20, New York, NY,
USA, 2020. Association for Computing Machinery.
https://doi.org/10.1145/3372224.3419215.

[64] Kai Huang and Wei Gao. Real-Time Neural Network
Inference on Extremely Weak Devices: Agile Offload-
ing with Explainable AI. In Proceedings of the 28th An-
nual International Conference on Mobile Computing
And Networking, MobiCom ’22, page 200–213, New
York, NY, USA, 2022. Association for Computing
Machinery. https://doi.org/10.1145/3495243.
3560551.

[65] Yutao Huang, Yifei Zhu, Xiaoyi Fan, Xiaoqiang
Ma, Fangxin Wang, Jiangchuan Liu, Ziyi Wang, and
Yong Cui. Task Scheduling with Optimized Trans-
mission Time in Collaborative Cloud-Edge Learn-
ing. In 2018 27th International Conference on Com-
puter Communication and Networks (ICCCN), pages 1–
9, 2018. https://doi.org/10.1109/ICCCN.2018.
8487352.

[66] Zhenhua Huang, Shunzhi Yang, MengChu Zhou,
Zheng Gong, Abdullah Abusorrah, Chen Lin, and
Zheng Huang. Making Accurate Object Detection
at the Edge: Review and New Approach. Artificial
Intelligence Review, 55(3):2245–2274, 2022.

[67] Vatche Ishakian, Vinod Muthusamy, and Aleksander
Slominski. Serving Deep Learning Models in a Server-
less Platform . In 2018 IEEE International Conference
on Cloud Engineering (IC2E), pages 257–262, Los
Alamitos, CA, USA, April 2018. IEEE Computer So-
ciety. URL: https://doi.ieeecomputersociety.
org/10.1109/IC2E.2018.00052, https:
//doi.org/10.1109/IC2E.2018.00052.

[68] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong
Zhu, Matthew Tang, Andrew Howard, Hartwig Adam,
and Dmitry Kalenichenko. Quantization and Training
of Neural Networks for Efficient Integer-Arithmetic-
Only Inference. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages
2704–2713, 2018.

[69] Arthur S. Jacobs, Roman Beltiukov, Walter Willinger,
Ronaldo A. Ferreira, Arpit Gupta, and Lisandro Z.
Granville. AI/ML for Network Security: The Em-
peror Has No Clothes. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS ’22, page 1537–1551, New
York, NY, USA, 2022. Association for Computing
Machinery. https://doi.org/10.1145/3548606.
3560609.

[70] Matthijs Jansen, Auday Al-Dulaimy, Alessandro V
Papadopoulos, Animesh Trivedi, and Alexandru Io-
sup. The SPEC-RG Reference Architecture for the
Compute Continuum. In 2023 IEEE/ACM 23rd In-
ternational Symposium on Cluster, Cloud and Internet
Computing (CCGrid), pages 469–484. IEEE, 2023.

[71] Jananie Jarachanthan, Li Chen, Fei Xu, and Bo Li.
AMPS-Inf: Automatic Model Partitioning for Server-
less Inference with Cost Efficiency. In 50th Interna-
tional Conference on Parallel Processing, ICPP 2021,
New York, NY, USA, 2021. Association for Com-
puting Machinery. https://doi.org/10.1145/
3472456.3472501.

[72] Joohyung Jeon and Joongheon Kim. Privacy-Sensitive
Parallel Split Learning. In 2020 International Con-
ference on Information Networking (ICOIN), pages 7–
9, 2020. https://doi.org/10.1109/ICOIN48656.
2020.9016486.

[73] Congfeng Jiang, Tiantian Fan, Honghao Gao,
Weisong Shi, Liangkai Liu, Christophe Cérin, and
Jian Wan. Energy Aware Edge Computing: A

26

https://doi.org/10.1109/JIOT.2020.3022358
https://doi.org/10.1109/JIOT.2020.3022358
https://openreview.net/forum?id=stXtBqyTWX
https://openreview.net/forum?id=stXtBqyTWX
https://aws.amazon.com/blogs/industries/remote-rendering-for-real-time-ar-applications-at-aws-edge/
https://aws.amazon.com/blogs/industries/remote-rendering-for-real-time-ar-applications-at-aws-edge/
https://aws.amazon.com/blogs/industries/remote-rendering-for-real-time-ar-applications-at-aws-edge/
https://doi.org/10.1145/3372224.3419215
https://doi.org/10.1145/3495243.3560551
https://doi.org/10.1145/3495243.3560551
https://doi.org/10.1109/ICCCN.2018.8487352
https://doi.org/10.1109/ICCCN.2018.8487352
https://doi.ieeecomputersociety.org/10.1109/IC2E.2018.00052
https://doi.ieeecomputersociety.org/10.1109/IC2E.2018.00052
https://doi.org/10.1109/IC2E.2018.00052
https://doi.org/10.1109/IC2E.2018.00052
https://doi.org/10.1145/3548606.3560609
https://doi.org/10.1145/3548606.3560609
https://doi.org/10.1145/3472456.3472501
https://doi.org/10.1145/3472456.3472501
https://doi.org/10.1109/ICOIN48656.2020.9016486
https://doi.org/10.1109/ICOIN48656.2020.9016486

Submitted to the Journal of Systems Research (JSys) 2025

Survey. Computer Communications, 151:556–580,
2020. URL: https://www.sciencedirect.
com/science/article/pii/S014036641930831X,
https://doi.org/https://doi.org/10.1016/j.
comcom.2020.01.004.

[74] Huiqiang Jiang, Yucheng Li, Chengruidong Zhang,
Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua Han,
Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing
Yang, and Lili Qiu. MInference 1.0: Accelerat-
ing Pre-filling for Long-Context LLMs via Dynamic
Sparse Attention. In The Thirty-eighth Annual Con-
ference on Neural Information Processing Systems,
2024. URL: https://openreview.net/forum?id=
fPBACAbqSN.

[75] Huiqiang Jiang, Qianhui Wu, , Xufang Luo, Dong-
sheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu.
LongLLMLingua: Accelerating and Enhancing LLMs
in Long Context Scenarios via Prompt Compression.
In Lun-Wei Ku, Andre Martins, and Vivek Srikumar,
editors, Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), pages 1658–1677, Bangkok, Thai-
land, August 2024. Association for Computational
Linguistics. URL: https://aclanthology.org/
2024.acl-long.91.

[76] Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing
Yang, and Lili Qiu. LLMLingua: Compressing
Prompts for Accelerated Inference of Large Language
Models. In Houda Bouamor, Juan Pino, and Ka-
lika Bali, editors, Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 13358–13376, Singapore, December
2023. Association for Computational Linguistics.
URL: https://aclanthology.org/2023.emnlp-
main.825, https://doi.org/10.18653/v1/2023.
emnlp-main.825.

[77] Jiawei Jiang, Shaoduo Gan, Bo Du, Gustavo Alonso,
Ana Klimovic, Ankit Singla, Wentao Wu, Sheng Wang,
and Ce Zhang. A systematic evaluation of machine
learning on serverless infrastructure. The VLDB
Journal, 33(2):425–449, September 2023. https:
//doi.org/10.1007/s00778-023-00813-0.

[78] Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang,
Yangrui Chen, Zhi Zhang, Yanghua Peng, Xiang Li,
Cong Xie, Shibiao Nong, Yulu Jia, Sun He, Hongmin
Chen, Zhihao Bai, Qi Hou, Shipeng Yan, Ding Zhou,
Yiyao Sheng, Zhuo Jiang, Haohan Xu, Haoran Wei,
Zhang Zhang, Pengfei Nie, Leqi Zou, Sida Zhao, Liang
Xiang, Zherui Liu, Zhe Li, Xiaoying Jia, Jianxi Ye, Xin
Jin, and Xin Liu. MegaScale: Scaling Large Language

Model Training to More Than 10,000 GPUs, 2024.
arXiv:2402.15627.

[79] Chiraag Juvekar, Vinod Vaikuntanathan, and
Anantha Chandrakasan. GAZELLE: A Low
Latency Framework for Secure Neural Network
Inference. In 27th USENIX Security Symposium
(USENIX Security 18), pages 1651–1669, Balti-
more, MD, August 2018. USENIX Association.
URL: https://www.usenix.org/conference/
usenixsecurity18/presentation/juvekar.

[80] Dimitrios Kafetzis, Ramin Khalili, and Iordanis Kout-
sopoulos. Large language model partitioning for low-
latency inference at the edge, 2025. URL: https://
arxiv.org/abs/2505.02533, arXiv:2505.02533.

[81] Yiping Kang, Johann Hauswald, Cao Gao, Austin
Rovinski, Trevor Mudge, Jason Mars, and Lingjia Tang.
Neurosurgeon: Collaborative Intelligence Between the
Cloud and Mobile Edge. In Proceedings of the Twenty-
Second International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, ASPLOS ’17, page 615–629, New York, NY,
USA, 2017. Association for Computing Machinery.
https://doi.org/10.1145/3037697.3037698.

[82] Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras.
Shallow-Deep Networks: Understanding and Mitigat-
ing Network Overthinking. In ICML, 2019.

[83] Juyong Kim, Yookoon Park, Gunhee Kim, and Sung Ju
Hwang. SplitNet: Learning to Semantically Split
Deep Networks for Parameter Reduction and Model
Parallelization. In Doina Precup and Yee Whye
Teh, editors, Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Pro-
ceedings of Machine Learning Research, pages 1866–
1874. PMLR, 06–11 Aug 2017. URL: https:
//proceedings.mlr.press/v70/kim17b.html.

[84] Alex Krizhevsky and Geoffrey Hinton. Learn-
ing Multiple Layers of Features from Tiny Im-
ages. Technical Report 0, University of Toronto,
2009. URL: https://www.cs.toronto.edu/
~kriz/learning-features-2009-TR.pdf.

[85] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. ImageNet Classification with Deep Convolutional
Neural Networks. Advances in neural information
processing systems, 25, 2012.

[86] Karthik Kumar and Yung-Hsiang Lu. Cloud Com-
puting for Mobile Users: Can Offloading Computa-
tion Save Energy? Computer, 43(4):51–56, 2010.
https://doi.org/10.1109/MC.2010.98.

27

https://www.sciencedirect.com/science/article/pii/S014036641930831X
https://www.sciencedirect.com/science/article/pii/S014036641930831X
https://doi.org/https://doi.org/10.1016/j.comcom.2020.01.004
https://doi.org/https://doi.org/10.1016/j.comcom.2020.01.004
https://openreview.net/forum?id=fPBACAbqSN
https://openreview.net/forum?id=fPBACAbqSN
https://aclanthology.org/2024.acl-long.91
https://aclanthology.org/2024.acl-long.91
https://aclanthology.org/2023.emnlp-main.825
https://aclanthology.org/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.1007/s00778-023-00813-0
https://doi.org/10.1007/s00778-023-00813-0
http://arxiv.org/abs/2402.15627
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://arxiv.org/abs/2505.02533
https://arxiv.org/abs/2505.02533
http://arxiv.org/abs/2505.02533
https://doi.org/10.1145/3037697.3037698
https://proceedings.mlr.press/v70/kim17b.html
https://proceedings.mlr.press/v70/kim17b.html
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://doi.org/10.1109/MC.2010.98

Submitted to the Journal of Systems Research (JSys) 2025

[87] Stefanos Laskaridis, Stylianos I. Venieris, Mario
Almeida, Ilias Leontiadis, and Nicholas D. Lane.
SPINN: Synergistic Progressive Inference of Neural
Networks over Device and Cloud. In Proceedings
of the 26th Annual International Conference on Mo-
bile Computing and Networking, MobiCom ’20, New
York, NY, USA, 2020. Association for Computing
Machinery. https://doi.org/10.1145/3372224.
3419194.

[88] Ya Le and Xuan Yang. Tiny ImageNet Visual Recog-
nition Challenge. CS 231N, 7(7):3, 2015.

[89] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324,
1998. https://doi.org/10.1109/5.726791.

[90] Joo Chan Lee, Yongwoo Kim, SungTae Moon, and
Jong Hwan Ko. A Splittable DNN-Based Object De-
tector for Edge-Cloud Collaborative Real-Time Video
Inference. In 2021 17th IEEE International Confer-
ence on Advanced Video and Signal Based Surveil-
lance (AVSS), pages 1–8, 2021. https://doi.org/
10.1109/AVSS52988.2021.9663806.

[91] Yaniv Leviathan, Matan Kalman, and Yossi Matias.
Fast Inference from Transformers via Speculative
Decoding. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato,
and Jonathan Scarlett, editors, Proceedings of the
40th International Conference on Machine Learn-
ing, volume 202 of Proceedings of Machine Learn-
ing Research, pages 19274–19286. PMLR, 23–29 Jul
2023. URL: https://proceedings.mlr.press/
v202/leviathan23a.html.

[92] Chao Li, Hongli Xu, Yang Xu, Zhiyuan Wang, and
Liusheng Huang. DNN Inference Acceleration with
Partitioning and Early Exiting in Edge Computing. In
Wireless Algorithms, Systems, and Applications: 16th
International Conference, WASA 2021, Nanjing, China,
June 25–27, 2021, Proceedings, Part I, page 465–478,
Berlin, Heidelberg, 2021. Springer-Verlag. https:
//doi.org/10.1007/978-3-030-85928-2_37.

[93] En Li, Liekang Zeng, Zhi Zhou, and Xu Chen. Edge
AI: On-Demand Accelerating Deep Neural Network
Inference via Edge Computing. IEEE Transactions on
Wireless Communications, 19(1):447–457, 2019.

[94] En Li, Zhi Zhou, and Xu Chen. Edge Intelligence:
On-Demand Deep Learning Model Co-Inference with
Device-Edge Synergy. In Proceedings of the
2018 Workshop on Mobile Edge Communications,
MECOMM’18, page 31–36, New York, NY, USA,

2018. Association for Computing Machinery. https:
//doi.org/10.1145/3229556.3229562.

[95] Guangli Li, Lei Liu, Xueying Wang, Xiao Dong, Peng
Zhao, and Xiaobing Feng. Auto-tuning Neural Net-
work Quantization Framework for Collaborative Infer-
ence Between the Cloud and Edge. In Věra Kůrková,
Yannis Manolopoulos, Barbara Hammer, Lazaros Il-
iadis, and Ilias Maglogiannis, editors, Artificial Neural
Networks and Machine Learning – ICANN 2018, pages
402–411, Cham, 2018. Springer International Publish-
ing.

[96] Jingtao Li, Adnan Siraj Rakin, Xing Chen, Zhezhi He,
Deliang Fan, and Chaitali Chakrabarti. ResSFL: A
Resistance Transfer Framework for Defending Model
Inversion Attack in Split Federated Learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 10194–
10202, June 2022.

[97] Shan Li, Weihong Deng, and JunPing Du. Reliable
Crowdsourcing and Deep Locality-Preserving Learn-
ing for Expression Recognition in the Wild. In Pro-
ceedings of the IEEE conference on computer vision
and pattern recognition, pages 2852–2861, 2017.

[98] Yucheng Li, Huiqiang Jiang, Qianhui Wu, Xufang
Luo, Surin Ahn, Chengruidong Zhang, Amir H. Abdi,
Dongsheng Li, Jianfeng Gao, Yuqing Yang, and Lili
Qiu. SCBench: A KV Cache-Centric Analysis
of Long-Context Methods. In The Thirteenth In-
ternational Conference on Learning Representations,
2025. URL: https://openreview.net/forum?id=
gkUyYcY1W9.

[99] Yucheng Li, Huiqiang Jiang, Chengruidong Zhang,
Qianhui Wu, Xufang Luo, Surin Ahn, Amir H Abdi,
Dongsheng Li, Jianfeng Gao, Yuqing Yang, and Lili
Qiu. MMIference: Accelerating Pre-filling for
Long-Context VLMs via Modality-Aware Permutation
Sparse Attention. In Forty-second International Con-
ference on Machine Learning, 2025. URL: https:
//openreview.net/forum?id=me6PfbATWM.

[100] Tailin Liang, John Glossner, Lei Wang, Shaobo
Shi, and Xiaotong Zhang. Pruning and Quan-
tization for Deep Neural Network Acceleration:
A Survey. Neurocomputing, 461:370–403,
2021. URL: https://www.sciencedirect.
com/science/article/pii/S0925231221010894,
https://doi.org/https://doi.org/10.1016/j.
neucom.2021.07.045.

[101] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang,
Wei-Ming Chen, Wei-Chen Wang, Guangxuan Xiao,
Xingyu Dang, Chuang Gan, and Song Han. AWQ:

28

https://doi.org/10.1145/3372224.3419194
https://doi.org/10.1145/3372224.3419194
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/AVSS52988.2021.9663806
https://doi.org/10.1109/AVSS52988.2021.9663806
https://proceedings.mlr.press/v202/leviathan23a.html
https://proceedings.mlr.press/v202/leviathan23a.html
https://doi.org/10.1007/978-3-030-85928-2_37
https://doi.org/10.1007/978-3-030-85928-2_37
https://doi.org/10.1145/3229556.3229562
https://doi.org/10.1145/3229556.3229562
https://openreview.net/forum?id=gkUyYcY1W9
https://openreview.net/forum?id=gkUyYcY1W9
https://openreview.net/forum?id=me6PfbATWM
https://openreview.net/forum?id=me6PfbATWM
https://www.sciencedirect.com/science/article/pii/S0925231221010894
https://www.sciencedirect.com/science/article/pii/S0925231221010894
https://doi.org/https://doi.org/10.1016/j.neucom.2021.07.045
https://doi.org/https://doi.org/10.1016/j.neucom.2021.07.045

Submitted to the Journal of Systems Research (JSys) 2025

Activation-aware Weight Quantization for LLM Com-
pression and Acceleration. In MLSys, 2024.

[102] Li Lin, Xiaofei Liao, Hai Jin, and Peng Li. Compu-
tation Offloading Toward Edge Computing. Proceed-
ings of the IEEE, 107(8):1584–1607, 2019. https:
//doi.org/10.1109/JPROC.2019.2922285.

[103] Tsung-Yi Lin, Michael Maire, Serge Belongie,
Lubomir Bourdev, Ross Girshick, James Hays, Pietro
Perona, Deva Ramanan, C. Lawrence Zitnick, and Pi-
otr Dollár. Microsoft COCO: Common Objects in
Context, 2015. arXiv:1405.0312.

[104] Barys Liskavets, Maxim Ushakov, Shuvendu Roy,
Mark Klibanov, Ali Etemad, and Shane K. Luke.
Prompt Compression with Context-aware Sentence En-
coding for Fast and Improved LLM Inference. In
Proceedings of the Thirty-Ninth AAAI Conference on
Artificial Intelligence and Thirty-Seventh Conference
on Innovative Applications of Artificial Intelligence
and Fifteenth Symposium on Educational Advances
in Artificial Intelligence, AAAI’25/IAAI’25/EAAI’25.
AAAI Press, 2025. https://doi.org/10.1609/
aaai.v39i23.34639.

[105] Fang Liu, Guoming Tang, Youhuizi Li, Zhiping Cai,
Xingzhou Zhang, and Tongqing Zhou. A Survey on
Edge Computing Systems and Tools. Proceedings of
the IEEE, 107(8):1537–1562, 2019. https://doi.
org/10.1109/JPROC.2019.2920341.

[106] Hanxiao Liu, Karen Simonyan, and Yiming Yang.
DARTS: Differentiable Architecture Search. In In-
ternational Conference on Learning Representations,
2019. URL: https://openreview.net/forum?id=
S1eYHoC5FX.

[107] Haolin Liu, Sirui Liu, Saiqin Long, Qingyong Deng,
and Zhetao Li. Joint Optimization of Model Deploy-
ment for Freshness-Sensitive Task Assignment in Edge
Intelligence. In IEEE INFOCOM 2024 - IEEE Confer-
ence on Computer Communications, pages 1751–1760,
2024. https://doi.org/10.1109/INFOCOM52122.
2024.10621314.

[108] Jianchun Liu, Hongli Xu, Yang Xu, Zhenguo
Ma, Zhiyuan Wang, Chen Qian, and He Huang.
Communication-Efficient Asynchronous Federated
Learning in Resource-Constrained Edge Computing.
Comput. Netw., 199(C), apr 2022. https://doi.
org/10.1016/j.comnet.2021.108429.

[109] Juncai Liu, Jessie Hui Wang, Chenghao Rong, Yue-
dong Xu, Tao Yu, and Jilong Wang. FedPA: An Adap-
tively Partial Model Aggregation Strategy in Federated
Learning. Comput. Netw., 199(C), apr 2022. https:
//doi.org/10.1016/j.comnet.2021.108468.

[110] Luyang Liu, Hongyu Li, and Marco Gruteser. Edge
Assisted Real-Time Object Detection for Mobile Aug-
mented Reality. In The 25th Annual International
Conference on Mobile Computing and Networking,
MobiCom ’19, New York, NY, USA, 2019. Associa-
tion for Computing Machinery. https://doi.org/
10.1145/3300061.3300116.

[111] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang,
Wei Liu, and Kwang-Ting Cheng. Bi-Real Net: En-
hancing the Performance of 1-bit CNNs With Improved
Representational Capability and Advanced Training Al-
gorithm. In Proceedings of the European conference
on computer vision (ECCV), pages 722–737, 2018.

[112] Daniel Lo, Taejoon Song, and G. Edward Suh.
Prediction-guided performance-energy trade-off for in-
teractive applications. In 2015 48th Annual IEEE/ACM
International Symposium on Microarchitecture (MI-
CRO), pages 508–520, 2015. https://doi.org/10.
1145/2830772.2830776.

[113] Xinjian Luo, Ting Yu, and Xiaokui Xiao. Prompt
inference attack on distributed large language model
inference frameworks, 2025. URL: https://arxiv.
org/abs/2503.09291, arXiv:2503.09291.

[114] Mulei Ma, Chenyu Gong, Liekang Zeng, and Yang
Yang. Multi-tier multi-node scheduling of llm for
collaborative ai computing. In IEEE INFOCOM
2025 - IEEE Conference on Computer Communica-
tions, pages 1–10, 2025. https://doi.org/10.
1109/INFOCOM55648.2025.11044698.

[115] Shuming Ma, Hongyu Wang, Shaohan Huang, Xingx-
ing Zhang, Ying Hu, Ting Song, Yan Xia, and
Furu Wei. BitNet b1.58 2B4T Technical Re-
port. Technical Report arXiv:2504.12285, arXiv,
Apr 2025. URL: https://arxiv.org/abs/2504.
12285, https://doi.org/10.48550/arXiv.2504.
12285.

[116] Yunlong Mao, Shanhe Yi, Qun Li, Jinghao Feng,
Fengyuan Xu, and Sheng Zhong. Learning from
Differentially Private Neural Activations with Edge
Computing. In 2018 IEEE/ACM Symposium on Edge
Computing (SEC), pages 90–102, 2018. https:
//doi.org/10.1109/SEC.2018.00014.

[117] Yoshitomo Matsubara and Marco Levorato. Neural
Compression and Filtering for Edge-assisted Real-time
Object Detection in Challenged Networks. In 2020
25th International Conference on Pattern Recognition
(ICPR), pages 2272–2279. IEEE, 2021.

[118] Yoshitomo Matsubara, Marco Levorato, and Francesco
Restuccia. Split Computing and Early Exiting for

29

https://doi.org/10.1109/JPROC.2019.2922285
https://doi.org/10.1109/JPROC.2019.2922285
http://arxiv.org/abs/1405.0312
https://doi.org/10.1609/aaai.v39i23.34639
https://doi.org/10.1609/aaai.v39i23.34639
https://doi.org/10.1109/JPROC.2019.2920341
https://doi.org/10.1109/JPROC.2019.2920341
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
https://doi.org/10.1109/INFOCOM52122.2024.10621314
https://doi.org/10.1109/INFOCOM52122.2024.10621314
https://doi.org/10.1016/j.comnet.2021.108429
https://doi.org/10.1016/j.comnet.2021.108429
https://doi.org/10.1016/j.comnet.2021.108468
https://doi.org/10.1016/j.comnet.2021.108468
https://doi.org/10.1145/3300061.3300116
https://doi.org/10.1145/3300061.3300116
https://doi.org/10.1145/2830772.2830776
https://doi.org/10.1145/2830772.2830776
https://arxiv.org/abs/2503.09291
https://arxiv.org/abs/2503.09291
http://arxiv.org/abs/2503.09291
https://doi.org/10.1109/INFOCOM55648.2025.11044698
https://doi.org/10.1109/INFOCOM55648.2025.11044698
https://arxiv.org/abs/2504.12285
https://arxiv.org/abs/2504.12285
https://doi.org/10.48550/arXiv.2504.12285
https://doi.org/10.48550/arXiv.2504.12285
https://doi.org/10.1109/SEC.2018.00014
https://doi.org/10.1109/SEC.2018.00014

Submitted to the Journal of Systems Research (JSys) 2025

Deep Learning Applications: Survey and Research
Challenges. ACM Comput. Surv., 55(5), dec 2022.
https://doi.org/10.1145/3527155.

[119] H. Brendan McMahan, Eider Moore, Daniel Ra-
mage, Seth Hampson, and Blaise Agüera y Ar-
cas. Communication-Efficient Learning of Deep
Networks from Decentralized Data. arXiv preprint
arXiv:1602.05629, 2023. arXiv:1602.05629.

[120] Meta. MODEL_CARD, 2024. URL: https:
//github.com/meta-llama/llama-models/blob/
main/models/llama3_1/MODEL_CARD.md.

[121] Xupeng Miao, Gabriele Oliaro, Zhihao Zhang,
Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi,
Chunan Shi, Zhuoming Chen, Daiyaan Arfeen, Reyna
Abhyankar, and Zhihao Jia. SpecInfer: Accelerating
Large Language Model Serving with Tree-based
Speculative Inference and Verification. In Proceed-
ings of the 29th ACM International Conference on
Architectural Support for Programming Languages
and Operating Systems, Volume 3, ASPLOS ’24, page
932–949, New York, NY, USA, 2024. Association
for Computing Machinery. URL: https://doi-org.
ezproxy.bu.edu/10.1145/3620666.3651335,
https://doi.org/10.1145/3620666.3651335.

[122] Microsoft. Guidance: A guidance language for control-
ling large language models. https://github.com/
guidance-ai/guidance, 2022. Accessed: 2025-09-
09.

[123] Microsoft Learn. Azure Functions Overview: Hosting
Options. https://learn.microsoft.com/en-
us/azure/azure-functions/functions-
overview#hosting-options, 2025. Accessed:
2025-05-01.

[124] Robert B. Miller. Response Time in Man-Computer
Conversational Transactions. In Proceedings of the
December 9-11, 1968, Fall Joint Computer Conference,
Part I, AFIPS ’68 (Fall, part I), page 267–277, New
York, NY, USA, 1968. Association for Computing
Machinery. https://doi.org/10.1145/1476589.
1476628.

[125] Fatemehsadat Mireshghallah, Mohammadkazem
Taram, Ali Jalali, Ahmed Taha Taha Elthakeb, Dean
Tullsen, and Hadi Esmaeilzadeh. Not all features are
equal: Discovering essential features for preserving
prediction privacy. In Proceedings of the Web Confer-
ence 2021, WWW ’21, page 669–680, New York, NY,
USA, 2021. Association for Computing Machinery.
https://doi.org/10.1145/3442381.3449965.

[126] Fatemehsadat Mireshghallah, Mohammadkazem
Taram, Prakash Ramrakhyani, Ali Jalali, Dean
Tullsen, and Hadi Esmaeilzadeh. Shredder:
Learning Noise Distributions to Protect Inference
Privacy. In Proceedings of the Twenty-Fifth Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems,
ASPLOS ’20, page 3–18, New York, NY, USA,
2020. Association for Computing Machinery.
https://doi.org/10.1145/3373376.3378522.

[127] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram
Srinivasan, Wenting Zheng, and Raluca Ada
Popa. Delphi: A Cryptographic Inference Ser-
vice for Neural Networks. In 29th USENIX
Security Symposium (USENIX Security 20), pages
2505–2522. USENIX Association, August 2020.
URL: https://www.usenix.org/conference/
usenixsecurity20/presentation/mishra.

[128] Akrit Mudvari, Yuang Jiang, and Leandros Tassi-
ulas. Splitllm: Collaborative inference of llms
for model placement and throughput optimization,
2024. URL: https://arxiv.org/abs/2410.
10759, arXiv:2410.10759.

[129] James O’ Neill. An Overview of Neural Network
Compression. arXiv preprint arXiv:2006.03669,
2020. URL: https://arxiv.org/abs/2006.
03669, https://doi.org/10.48550/ARXIV.2006.
03669.

[130] Netflix. Netflix Empowers Remote Artistry with
Low-Latency Workstations Using AWS Local
Zones, 2024. URL: https://aws.amazon.com/
solutions/case-studies/netflix-aws-local-
zones-case-study/.

[131] Lucien K. L. Ng and Sherman S. M. Chow. Sok: Cryp-
tographic neural-network computation. In 2023 IEEE
Symposium on Security and Privacy (SP), pages 497–
514, 2023. https://doi.org/10.1109/SP46215.
2023.10179483.

[132] Samuel S. Ogden, Xiangnan Kong, and Tian Guo.
PieSlicer: Dynamically Improving Response Time for
Cloud-Based CNN Inference. In Proceedings of the
ACM/SPEC International Conference on Performance
Engineering, ICPE ’21, page 249–256, New York, NY,
USA, 2021. Association for Computing Machinery.
https://doi.org/10.1145/3427921.3450256.

[133] OpenAI. Chatgpt. https://chat.openai.com,
2024. Accessed: 2025-09-09.

[134] OpenAI OpCo, LLC. Privacy policy. https:
//openai.com/policies/row-privacy-policy/,

30

https://doi.org/10.1145/3527155
http://arxiv.org/abs/1602.05629
https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/MODEL_CARD.md
https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/MODEL_CARD.md
https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/MODEL_CARD.md
https://doi-org.ezproxy.bu.edu/10.1145/3620666.3651335
https://doi-org.ezproxy.bu.edu/10.1145/3620666.3651335
https://doi.org/10.1145/3620666.3651335
https://github.com/guidance-ai/guidance
https://github.com/guidance-ai/guidance
https://learn.microsoft.com/en-us/azure/azure-functions/functions-overview#hosting-options
https://learn.microsoft.com/en-us/azure/azure-functions/functions-overview#hosting-options
https://learn.microsoft.com/en-us/azure/azure-functions/functions-overview#hosting-options
https://doi.org/10.1145/1476589.1476628
https://doi.org/10.1145/1476589.1476628
https://doi.org/10.1145/3442381.3449965
https://doi.org/10.1145/3373376.3378522
https://www.usenix.org/conference/usenixsecurity20/presentation/mishra
https://www.usenix.org/conference/usenixsecurity20/presentation/mishra
https://arxiv.org/abs/2410.10759
https://arxiv.org/abs/2410.10759
http://arxiv.org/abs/2410.10759
https://arxiv.org/abs/2006.03669
https://arxiv.org/abs/2006.03669
https://doi.org/10.48550/ARXIV.2006.03669
https://doi.org/10.48550/ARXIV.2006.03669
https://aws.amazon.com/solutions/case-studies/netflix-aws-local-zones-case-study/
https://aws.amazon.com/solutions/case-studies/netflix-aws-local-zones-case-study/
https://aws.amazon.com/solutions/case-studies/netflix-aws-local-zones-case-study/
https://doi.org/10.1109/SP46215.2023.10179483
https://doi.org/10.1109/SP46215.2023.10179483
https://doi.org/10.1145/3427921.3450256
https://chat.openai.com
https://openai.com/policies/row-privacy-policy/
https://openai.com/policies/row-privacy-policy/

Submitted to the Journal of Systems Research (JSys) 2025

2024. Published November 2024; Accessed:
2025-04-20.

[135] Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin
Xia, Xufang Luo, Jue Zhang, Qingwei Lin, Victor
Ruhle, Yuqing Yang, Chin-Yew Lin, H. Vicky Zhao,
Lili Qiu, and Dongmei Zhang. LLMLingua-2: Data
Distillation for Efficient and Faithful Task-Agnostic
Prompt Compression. In Lun-Wei Ku, Andre Mar-
tins, and Vivek Srikumar, editors, Findings of the As-
sociation for Computational Linguistics ACL 2024,
pages 963–981, Bangkok, Thailand and virtual meet-
ing, August 2024. Association for Computational Lin-
guistics. URL: https://aclanthology.org/2024.
findings-acl.57.

[136] Dylan Patel and Afzal Ahmad. The Inference Cost Of
Search Disruption – Large Language Model Cost Anal-
ysis. https://www.semianalysis.com/p/the-
inference-cost-of-search-disruption, Febru-
ary 2023. Accessed: 2025-09-09.

[137] Kai Peng, Jiangtian Nie, Neeraj Kumar, Chao Cai,
Jiawen Kang, Zehui Xiong, and Yang Zhang. Joint Op-
timization of Service Chain Caching and Task Offload-
ing in Mobile Edge Computing. Appl. Soft Comput.,
103(C), May 2021. https://doi.org/10.1016/j.
asoc.2021.107142.

[138] Reiner Pope, Sholto Douglas, Aakanksha Chowdhery,
Jacob Devlin, James Bradbury, Jonathan Heek, Kefan
Xiao, Shivani Agrawal, and Jeff Dean. Efficiently Scal-
ing Transformer Inference. Proceedings of Machine
Learning and Systems, 5:606–624, 2023.

[139] Wenjie Qu, Yuguang Zhou, Yongji Wu, Tingsong Xiao,
Binhang Yuan, Yiming Li, and Jiaheng Zhang. Prompt
inversion attack against collaborative inference of large
language models. In 2025 IEEE Symposium on Secu-
rity and Privacy (SP), pages 1695–1712, 2025. https:
//doi.org/10.1109/SP61157.2025.00160.

[140] Qwen. Speed Benchmark, 2024. URL:
https://qwen.readthedocs.io/en/latest/
benchmark/speed_benchmark.html.

[141] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. ZeRO: Memory Optimizations To-
ward Training Trillion Parameter Models. In Proceed-
ings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis,
SC ’20. IEEE Press, 2020.

[142] Ali Raza, Abraham Matta, Nabeel Akhtar, Vasiliki
Kalavri, and Vatche Isahagian. SoK: Function-as-a-
Service: From An Application Developer’s Perspec-
tive. In Journal of Systems Research - Mar 2021,

2021. URL: https://openreview.net/forum?id=
VdWaMgaTKtX.

[143] Ali Raza, Zongshun Zhang, Nabeel Akhtar, Vatche
Isahagian, and Ibrahim Matta. LIBRA: An Econom-
ical Hybrid Approach for Cloud Applications with
Strict SLAs. In 2021 IEEE International Con-
ference on Cloud Engineering (IC2E), pages 136–
146, 2021. https://doi.org/10.1109/IC2E52221.
2021.00028.

[144] Red Hat. Bring Insights and Data Closer to
Customers with Edge Computing. White paper,
Red Hat, February 2022. Accessed: 2025-09-09.
URL: https://www.redhat.com/rhdc/managed-
files/cl-bring-insight-data-customer-
edge-computing-whitepaper-f30856pr-202202-
en.pdf.

[145] Red Hat. Red Hat OpenShift AI Accelerates
Generative AI Adoption Across the Hybrid Cloud.
https://www.redhat.com/en/about/press-
releases/red-hat-openshift-ai-accelerates-
generative-ai-adoption-across-hybrid-
cloud, October 2023. Accessed: 2025-09-09.

[146] Joseph Redmon and Ali Farhadi. YOLO9000: Better,
Faster, Stronger, 2016. arXiv:1612.08242.

[147] Joseph Redmon and Ali Farhadi. YOLOv3: An Incre-
mental Improvement, 2018. arXiv:1804.02767.

[148] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. Faster R-CNN: Towards Real-Time Object De-
tection with Region Proposal Networks, 2016. arXiv:
1506.01497.

[149] Albert Reuther, Peter Michaleas, Michael Jones, Vi-
jay Gadepally, Siddharth Samsi, and Jeremy Kepner.
AI Accelerator Survey and Trends. In 2021 IEEE
High Performance Extreme Computing Conference
(HPEC), pages 1–9, 2021. https://doi.org/10.
1109/HPEC49654.2021.9622867.

[150] Michael D Richard and Richard P Lippmann. Neu-
ral Network Classifiers Estimate Bayesian a posteri-
ori Probabilities. Neural computation, 3(4):461–483,
1991.

[151] Francisco Romero, Mark Zhao, Neeraja J. Yadwadkar,
and Christos Kozyrakis. Llama: A Heterogeneous
Serverless Framework for Auto-Tuning Video Ana-
lytics Pipelines. In Proceedings of the ACM Sympo-
sium on Cloud Computing, SoCC ’21, page 1–17, New
York, NY, USA, 2021. Association for Computing
Machinery. https://doi.org/10.1145/3472883.
3486972.

31

https://aclanthology.org/2024.findings-acl.57
https://aclanthology.org/2024.findings-acl.57
https://www.semianalysis.com/p/the-inference-cost-of-search-disruption
https://www.semianalysis.com/p/the-inference-cost-of-search-disruption
https://doi.org/10.1016/j.asoc.2021.107142
https://doi.org/10.1016/j.asoc.2021.107142
https://doi.org/10.1109/SP61157.2025.00160
https://doi.org/10.1109/SP61157.2025.00160
https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html
https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html
https://openreview.net/forum?id=VdWaMgaTKtX
https://openreview.net/forum?id=VdWaMgaTKtX
https://doi.org/10.1109/IC2E52221.2021.00028
https://doi.org/10.1109/IC2E52221.2021.00028
https://www.redhat.com/rhdc/managed-files/cl-bring-insight-data-customer-edge-computing-whitepaper-f30856pr-202202-en.pdf
https://www.redhat.com/rhdc/managed-files/cl-bring-insight-data-customer-edge-computing-whitepaper-f30856pr-202202-en.pdf
https://www.redhat.com/rhdc/managed-files/cl-bring-insight-data-customer-edge-computing-whitepaper-f30856pr-202202-en.pdf
https://www.redhat.com/rhdc/managed-files/cl-bring-insight-data-customer-edge-computing-whitepaper-f30856pr-202202-en.pdf
https://www.redhat.com/en/about/press-releases/red-hat-openshift-ai-accelerates-generative-ai-adoption-across-hybrid-cloud
https://www.redhat.com/en/about/press-releases/red-hat-openshift-ai-accelerates-generative-ai-adoption-across-hybrid-cloud
https://www.redhat.com/en/about/press-releases/red-hat-openshift-ai-accelerates-generative-ai-adoption-across-hybrid-cloud
https://www.redhat.com/en/about/press-releases/red-hat-openshift-ai-accelerates-generative-ai-adoption-across-hybrid-cloud
http://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.01497
https://doi.org/10.1109/HPEC49654.2021.9622867
https://doi.org/10.1109/HPEC49654.2021.9622867
https://doi.org/10.1145/3472883.3486972
https://doi.org/10.1145/3472883.3486972

Submitted to the Journal of Systems Research (JSys) 2025

[152] David E. Rumelhart, James L. McClelland, and
PDP Research Group. Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, Vol.
1: Foundations, chapter Learning Internal Represen-
tations by Error Propagation, pages 318–362. MIT
Press, Cambridge, MA, 1986.

[153] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. ImageNet Large Scale
Visual Recognition Challenge. International Jour-
nal of Computer Vision (IJCV), 115(3):211–252, 2015.
https://doi.org/10.1007/s11263-015-0816-y.

[154] Samsung. Samsung To Unveil New Vacuum
Lineup That Redefines Home Cleaning With
Enhanced AI at CES 2024, 2024. URL:
https://news.samsung.com/us/samsung-
unveil-new-vacuum-lineup-redefines-home-
cleaning-with-enhanced-ai-ces-2024/.

[155] Mark Sandler, Andrew Howard, Menglong Zhu, An-
drey Zhmoginov, and Liang-Chieh Chen. Mo-
bileNetV2: Inverted Residuals and Linear Bottlenecks,
2019. arXiv:1801.04381.

[156] Davide Sanvito, Giuseppe Siracusano, and Roberto
Bifulco. Can the Network Be the AI Accelerator?
In Proceedings of the 2018 Morning Workshop on In-
Network Computing, NetCompute ’18, page 20–25,
New York, NY, USA, 2018. Association for Com-
puting Machinery. https://doi.org/10.1145/
3229591.3229594.

[157] Kathakoli Sengupta, Zhongkai Shagguan, Sandesh
Bharadwaj, Sanjay Arora, Eshed Ohn-Bar, and
Renato Mancuso. UniLCD: Unified Local-
Cloud Decision-Making via Reinforcement Learn-
ing, 2024. URL: https://arxiv.org/abs/2409.
11403, arXiv:2409.11403.

[158] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri,
Gohar Chaudhry, Paul Batum, Jason Cooke, Ed-
uardo Laureano, Colby Tresness, Mark Russinovich,
and Ricardo Bianchini. Serverless in the Wild:
Characterizing and Optimizing the Serverless Work-
load at a Large Cloud Provider. In 2020
USENIX Annual Technical Conference (USENIX
ATC 20), pages 205–218. USENIX Association,
July 2020. URL: https://www.usenix.org/
conference/atc20/presentation/shahrad.

[159] Jiawei Shao, Yuyi Mao, and Jun Zhang. Learning
Task-Oriented Communication for Edge Inference: An
Information Bottleneck Approach. IEEE Journal on

Selected Areas in Communications, 40(1):197–211,
2021.

[160] Noam Shazeer, *Azalia Mirhoseini, *Krzysztof
Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously Large Neural Networks:
The Sparsely-Gated Mixture-of-Experts Layer. In In-
ternational Conference on Learning Representations,
2017. URL: https://openreview.net/forum?id=
B1ckMDqlg.

[161] Siemens. From City Theory to Smart Tech Reality,
2024. URL: https://www.siemens-advanta.com/
whitepapers/smart-tech-reality.

[162] Karen Simonyan and Andrew Zisserman. Very Deep
Convolutional Networks for Large-Scale Image Recog-
nition. arXiv preprint arXiv:1409.1556, 2015. arXiv:
1409.1556.

[163] Yushan Siriwardhana, Pawani Porambage, Madhu-
sanka Liyanage, and Mika Ylianttila. A Survey on Mo-
bile Augmented Reality With 5G Mobile Edge Com-
puting: Architectures, Applications, and Technical
Aspects. IEEE Communications Surveys & Tutori-
als, 23(2):1160–1192, 2021. https://doi.org/10.
1109/COMST.2021.3061981.

[164] SKT. SKT and AWS Launch the First 5G
Edge Cloud Service in Korea, 2024. URL:
https://www.sktelecom.com/en/press/press_
detail.do?page.page=1&idx=1494.

[165] Lin Song, Yukang Chen, Shuai Yang, Xiaohan Ding,
Yixiao Ge, Ying-Cong Chen, and Ying Shan. Low-
Rank Approximation for Sparse Attention in Multi-
Modal LLMs. In 2024 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
13763–13773, 2024. https://doi.org/10.1109/
CVPR52733.2024.01306.

[166] Vladislav Sovrasov. ptflops: a FLOPs Count-
ing Tool for Neural Networks in PyTorch Frame-
work. https://github.com/sovrasov/flops-
counter.pytorch, 2023. Access Date: 2023-12-16.

[167] Biao Sun, Ziming Huang, Hanyu Zhao, Wencong Xiao,
Xinyi Zhang, Yong Li, and Wei Lin. Llumnix: dy-
namic scheduling for large language model serving. In
Proceedings of the 18th USENIX Conference on Oper-
ating Systems Design and Implementation, OSDI’24,
USA, 2024. USENIX Association.

[168] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Ax-
iomatic Attribution for Deep Networks. In Interna-
tional conference on machine learning, pages 3319–
3328. PMLR, 2017.

32

https://doi.org/10.1007/s11263-015-0816-y
https://news.samsung.com/us/samsung-unveil-new-vacuum-lineup-redefines-home-cleaning-with-enhanced-ai-ces-2024/
https://news.samsung.com/us/samsung-unveil-new-vacuum-lineup-redefines-home-cleaning-with-enhanced-ai-ces-2024/
https://news.samsung.com/us/samsung-unveil-new-vacuum-lineup-redefines-home-cleaning-with-enhanced-ai-ces-2024/
http://arxiv.org/abs/1801.04381
https://doi.org/10.1145/3229591.3229594
https://doi.org/10.1145/3229591.3229594
https://arxiv.org/abs/2409.11403
https://arxiv.org/abs/2409.11403
http://arxiv.org/abs/2409.11403
https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/atc20/presentation/shahrad
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://www.siemens-advanta.com/whitepapers/smart-tech-reality
https://www.siemens-advanta.com/whitepapers/smart-tech-reality
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/COMST.2021.3061981
https://doi.org/10.1109/COMST.2021.3061981
https://www.sktelecom.com/en/press/press_detail.do?page.page=1&idx=1494
https://www.sktelecom.com/en/press/press_detail.do?page.page=1&idx=1494
https://doi.org/10.1109/CVPR52733.2024.01306
https://doi.org/10.1109/CVPR52733.2024.01306
https://github.com/sovrasov/flops-counter.pytorch
https://github.com/sovrasov/flops-counter.pytorch

Submitted to the Journal of Systems Research (JSys) 2025

[169] Gemini Team et al. Gemini: A family of highly capa-
ble multimodal models, 2023. arXiv:2312.11805.

[170] Surat Teerapittayanon, Bradley McDanel, and H.T.
Kung. BranchyNet: Fast Inference via Early Exit-
ing from Deep Neural Networks. In 2016 23rd Inter-
national Conference on Pattern Recognition (ICPR),
pages 2464–2469, 2016. https://doi.org/10.
1109/ICPR.2016.7900006.

[171] Surat Teerapittayanon, Bradley McDanel, and H.T.
Kung. Distributed Deep Neural Networks Over
the Cloud, the Edge and End Devices. In 2017
IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), pages 328–339, 2017.
https://doi.org/10.1109/ICDCS.2017.226.

[172] Surat Teerapittayanon, Bradley McDanel, and H.T.
Kung. Distributed deep neural networks over the
cloud, the edge and end devices. In 2017 IEEE
37th International Conference on Distributed Comput-
ing Systems (ICDCS), pages 328–339, 2017. https:
//doi.org/10.1109/ICDCS.2017.226.

[173] TensorFlow. Intro to Autoencoders. https:
//www.tensorflow.org/tutorials/generative/
autoencoder, 2024. Accessed: 2025-09-09.

[174] Chunlin Tian, Xinpeng Qin, Kahou Tam, Li Li,
Zijian Wang, Yuanzhe Zhao, Minglei Zhang, and
Chengzhong Xu. Clone: customizing llms for efficient
latency-aware inference at the edge. In Proceedings
of the 2025 USENIX Conference on Usenix Annual
Technical Conference, USENIX ATC ’25, USA, 2025.
USENIX Association.

[175] Praneeth Vepakomma, Abhishek Singh, Otkrist Gupta,
and Ramesh Raskar. NoPeek: Information leak-
age reduction to share activations in distributed
deep learning. arXiv preprint arXiv:2008.09161,
2020. URL: https://arxiv.org/abs/2008.
09161, https://doi.org/10.48550/ARXIV.2008.
09161.

[176] Sameer Wagh, Shruti Tople, Fabrice Benhamouda,
Eyal Kushilevitz, Prateek Mittal, and Tal Rabin. FAL-
CON: Honest-Majority Maliciously Secure Frame-
work for Private Deep Learning. Proceedings on Pri-
vacy Enhancing Technologies, 2021(2):323–343, 2021.
https://doi.org/10.2478/popets-2021-0034.

[177] G.K. Wallace. The JPEG Still Picture Compression
Standard. IEEE Transactions on Consumer Electron-
ics, 38(1):xviii–xxxiv, 1992. https://doi.org/10.
1109/30.125072.

[178] Bo Wang, Changhai Wang, Wanwei Huang, Ying Song,
and Xiaoyun Qin. A Survey and Taxonomy on Task
Offloading for Edge-Cloud Computing. IEEE Access,
8:186080–186101, 2020.

[179] Bo Wang, Changhai Wang, Wanwei Huang, Ying Song,
and Xiaoyun Qin. A Survey and Taxonomy on Task
Offloading for Edge-Cloud Computing. IEEE Ac-
cess, 8:186080–186101, 2020. https://doi.org/
10.1109/ACCESS.2020.3029649.

[180] Kuan-Chieh Wang, YAN FU, Ke Li, Ashish Khisti,
Richard Zemel, and Alireza Makhzani. Varia-
tional Model Inversion Attacks. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan, editors, Advances in Neural
Information Processing Systems, volume 34, pages
9706–9719. Curran Associates, Inc., 2021. URL:
https://proceedings.neurips.cc/paper/2021/
file/50a074e6a8da4662ae0a29edde722179-
Paper.pdf.

[181] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and
Joseph E. Gonzalez. SkipNet: Learning Dynamic
Routing in Convolutional Networks. In Proceedings of
the European Conference on Computer Vision (ECCV),
September 2018.

[182] Yiming Wang, Yu Lin, Xiaodong Zeng, and Guannan
Zhang. Privatelora for efficient privacy preserving
llm, 2023. URL: https://arxiv.org/abs/2311.
14030, arXiv:2311.14030.

[183] Yingchao Wang, Chen Yang, Shulin Lan, Liehuang
Zhu, and Yan Zhang. End-Edge-Cloud Collabora-
tive Computing for Deep Learning: A Comprehensive
Survey. IEEE Communications Surveys & Tutori-
als, pages 1–1, 2024. https://doi.org/10.1109/
COMST.2024.3393230.

[184] Yue Wang, Jianghao Shen, Ting-Kuei Hu, Pengfei
Xu, Tan Nguyen, Richard G. Baraniuk, Zhangyang
Wang, and Yingyan Lin. Dual Dynamic Infer-
ence: Enabling More Efficient, Adaptive and Con-
trollable Deep Inference. IEEE Journal of Se-
lected Topics in Signal Processing, 2020. URL:
https://par.nsf.gov/biblio/10159763, https:
//doi.org/10.1109/JSTSP.2020.2979669.

[185] Campbell Webb. Unleashing the Power of Inno-
vation with Public Cloud, 2024. URL: https:
//blog.workday.com/en-us/unleashing-the-
power-innovation-with-public-cloud.html.

[186] Wenqi Wei and Ling Liu. Trustworthy Distributed
AI Systems: Robustness, Privacy, and Governance.
ACM Comput. Surv., February 2024. Just Accepted.
https://doi.org/10.1145/3645102.

33

http://arxiv.org/abs/2312.11805
https://doi.org/10.1109/ICPR.2016.7900006
https://doi.org/10.1109/ICPR.2016.7900006
https://doi.org/10.1109/ICDCS.2017.226
https://doi.org/10.1109/ICDCS.2017.226
https://doi.org/10.1109/ICDCS.2017.226
https://www.tensorflow.org/tutorials/generative/autoencoder
https://www.tensorflow.org/tutorials/generative/autoencoder
https://www.tensorflow.org/tutorials/generative/autoencoder
https://arxiv.org/abs/2008.09161
https://arxiv.org/abs/2008.09161
https://doi.org/10.48550/ARXIV.2008.09161
https://doi.org/10.48550/ARXIV.2008.09161
https://doi.org/10.2478/popets-2021-0034
https://doi.org/10.1109/30.125072
https://doi.org/10.1109/30.125072
https://doi.org/10.1109/ACCESS.2020.3029649
https://doi.org/10.1109/ACCESS.2020.3029649
https://proceedings.neurips.cc/paper/2021/file/50a074e6a8da4662ae0a29edde722179-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/50a074e6a8da4662ae0a29edde722179-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/50a074e6a8da4662ae0a29edde722179-Paper.pdf
https://arxiv.org/abs/2311.14030
https://arxiv.org/abs/2311.14030
http://arxiv.org/abs/2311.14030
https://doi.org/10.1109/COMST.2024.3393230
https://doi.org/10.1109/COMST.2024.3393230
https://par.nsf.gov/biblio/10159763
https://doi.org/10.1109/JSTSP.2020.2979669
https://doi.org/10.1109/JSTSP.2020.2979669
https://blog.workday.com/en-us/unleashing-the-power-innovation-with-public-cloud.html
https://blog.workday.com/en-us/unleashing-the-power-innovation-with-public-cloud.html
https://blog.workday.com/en-us/unleashing-the-power-innovation-with-public-cloud.html
https://doi.org/10.1145/3645102

Submitted to the Journal of Systems Research (JSys) 2025

[187] Jinfeng Wen, Zhenpeng Chen, Jianshu Zhao, Fed-
erica Sarro, Haodi Ping, Ying Zhang, Shangguang
Wang, and Xuanzhe Liu. Scope: Performance test-
ing for serverless computing. ACM Trans. Softw.
Eng. Methodol., February 2025. Just Accepted.
https://doi.org/10.1145/3717609.

[188] Maciej Woł czyk, Bartosz Wójcik, Klaudia Bał azy,
Igor T Podolak, Jacek Tabor, Marek Śmieja, and
Tomasz Trzcinski. Zero Time Waste: Recycling
Predictions in Early Exit Neural Networks. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang,
and J. Wortman Vaughan, editors, Advances in Neural
Information Processing Systems, volume 34, pages
2516–2528. Curran Associates, Inc., 2021. URL:
https://proceedings.neurips.cc/paper/2021/
file/149ef6419512be56a93169cd5e6fa8fd-
Paper.pdf.

[189] Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,
Julien Demouth, and Song Han. SmoothQuant: Accu-
rate and Efficient Post-Training Quantization for Large
Language Models. In International Conference on
Machine Learning, pages 38087–38099. PMLR, 2023.

[190] Shuzhao Xie, Yuan Xue, Yifei Zhu, and Zhi Wang.
Cost Effective MLaaS Federation: A Combinato-
rial Reinforcement Learning Approach. In IEEE
INFOCOM 2022 - IEEE Conference on Computer
Communications, page 2078–2087. IEEE Press,
2022. https://doi.org/10.1109/INFOCOM48880.
2022.9796701.

[191] Xiong Xiong, Kan Zheng, Lei Lei, and Lu Hou.
Resource Allocation Based on Deep Reinforcement
Learning in IoT Edge Computing. IEEE Journal
on Selected Areas in Communications, 38(6):1133–
1146, 2020. https://doi.org/10.1109/JSAC.
2020.2986615.

[192] Xiph.Org Foundation. Xiph.org Video Test Me-
dia [derf’s collection]. https://media.xiph.org/
video/derf/, 2024. Accessed: 2025-09-09.

[193] Xiaoyang Xu, Mengda Yang, Wenzhe Yi, Ziang Li,
Juan Wang, Hongxin Hu, Yong Zhuang, and Yaxin
Liu. A Stealthy Wrongdoer: Feature-Oriented Recon-
struction Attack against Split Learning. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2024. Accessed:
2025-07-10. URL: https://arxiv.org/abs/2405.
04115.

[194] Yuanjia Xu, Heng Wu, Wenbo Zhang, and Yi Hu.
EOP: Efficient Operator Partition for Deep Learning
Inference over Edge Servers. In Proceedings of the

18th ACM SIGPLAN/SIGOPS International Confer-
ence on Virtual Execution Environments, VEE 2022,
page 45–57, New York, NY, USA, 2022. Association
for Computing Machinery. https://doi.org/10.
1145/3516807.3516820.

[195] Zhao Yang, Shengbing Zhang, Ruxu Li, Chuxi Li,
Miao Wang, Danghui Wang, and Meng Zhang. Effi-
cient Resource-Aware Convolutional Neural Architec-
ture Search for Edge Computing with Pareto-Bayesian
Optimization. Sensors, 21(2), 2021. URL: https:
//www.mdpi.com/1424-8220/21/2/444, https://
doi.org/10.3390/s21020444.

[196] Ziqi Yang, Jiyi Zhang, Ee-Chien Chang, and Zhenkai
Liang. Neural Network Inversion in Adversarial Set-
ting via Background Knowledge Alignment. In Pro-
ceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’19,
page 225–240, New York, NY, USA, 2019. Associa-
tion for Computing Machinery. https://doi.org/
10.1145/3319535.3354261.

[197] Shuochao Yao, Jinyang Li, Dongxin Liu, Tianshi
Wang, Shengzhong Liu, Huajie Shao, and Tarek Ab-
delzaher. Deep Compressive Offloading: Speeding
up Neural Network Inference by Trading Edge Com-
putation for Network Latency. In Proceedings of
the 18th Conference on Embedded Networked Sensor
Systems, SenSys ’20, page 476–488, New York, NY,
USA, 2020. Association for Computing Machinery.
https://doi.org/10.1145/3384419.3430898.

[198] Yuanshun Yao, Zhujun Xiao, Bolun Wang, Bimal
Viswanath, Haitao Zheng, and Ben Y. Zhao. Complex-
ity vs. Performance: Empirical Analysis of Machine
Learning as a Service. In Proceedings of the 2017
Internet Measurement Conference, IMC ’17, page
384–397, New York, NY, USA, 2017. Association
for Computing Machinery. https://doi.org/10.
1145/3131365.3131372.

[199] Zihao Ye, Lequn Chen, Ruihang Lai, Wuwei Lin, Yi-
neng Zhang, Stephanie Wang, Tianqi Chen, Baris
Kasikci, Vinod Grover, Arvind Krishnamurthy, and
Luis Ceze. FlashInfer: Efficient and Customizable At-
tention Engine for LLM Inference Serving. In Proceed-
ings of the 8th Conference on Machine Learning and
Systems (MLSys), Santa Clara, CA, USA, 2025. To ap-
pear. URL: https://arxiv.org/abs/2501.01005,
https://doi.org/10.48550/arXiv.2501.01005.

[200] Ashkan Yousefpour, Igor Shilov, Alexandre Sablay-
rolles, Davide Testuggine, Karthik Prasad, Mani
Malek, John Nguyen, Sayan Ghosh, Akash Bharadwaj,
Jessica Zhao, Graham Cormode, and Ilya Mironov.

34

https://doi.org/10.1145/3717609
https://proceedings.neurips.cc/paper/2021/file/149ef6419512be56a93169cd5e6fa8fd-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/149ef6419512be56a93169cd5e6fa8fd-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/149ef6419512be56a93169cd5e6fa8fd-Paper.pdf
https://doi.org/10.1109/INFOCOM48880.2022.9796701
https://doi.org/10.1109/INFOCOM48880.2022.9796701
https://doi.org/10.1109/JSAC.2020.2986615
https://doi.org/10.1109/JSAC.2020.2986615
https://media.xiph.org/video/derf/
https://media.xiph.org/video/derf/
https://arxiv.org/abs/2405.04115
https://arxiv.org/abs/2405.04115
https://doi.org/10.1145/3516807.3516820
https://doi.org/10.1145/3516807.3516820
https://www.mdpi.com/1424-8220/21/2/444
https://www.mdpi.com/1424-8220/21/2/444
https://doi.org/10.3390/s21020444
https://doi.org/10.3390/s21020444
https://doi.org/10.1145/3319535.3354261
https://doi.org/10.1145/3319535.3354261
https://doi.org/10.1145/3384419.3430898
https://doi.org/10.1145/3131365.3131372
https://doi.org/10.1145/3131365.3131372
https://arxiv.org/abs/2501.01005
https://doi.org/10.48550/arXiv.2501.01005

Submitted to the Journal of Systems Research (JSys) 2025

Opacus: User-Friendly Differential Privacy Library in
PyTorch, 2022. arXiv:2109.12298.

[201] Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo,
Liang Zhao, Zhengyan Zhang, Zhenda Xie, Yuxing
Wei, Lean Wang, Zhiping Xiao, Yuqing Wang, Chong
Ruan, Ming Zhang, Wenfeng Liang, and Wangding
Zeng. Native sparse attention: Hardware-aligned
and natively trainable sparse attention. In Wanxi-
ang Che, Joyce Nabende, Ekaterina Shutova, and
Mohammad Taher Pilehvar, editors, Proceedings
of the 63rd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 23078–23097, Vienna, Austria, July 2025. Asso-
ciation for Computational Linguistics. URL: https:
//aclanthology.org/2025.acl-long.1126/,
https://doi.org/10.18653/v1/2025.acl-
long.1126.

[202] Li Yuan, Francis EH Tay, Guilin Li, Tao Wang, and
Jiashi Feng. Revisiting Knowledge Distillation via
Label Smoothing Regularization. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020.

[203] Jiale Zhang, Yanchao Zhao, Junyu Wang, and Bing
Chen. FedMEC: Improving Efficiency of Differ-
entially Private Federated Learning via Mobile Edge
Computing. Mobile Networks and Applications,
25(6):2421–2433, Dec 2020. https://doi.org/10.
1007/s11036-020-01586-4.

[204] Jintao Zhang, Haofeng Huang, Pengle Zhang, Jia Wei,
Jun Zhu, and Jianfei Chen. Sageattention2: Efficient at-
tention with thorough outlier smoothing and per-thread
int4 quantization. In International Conference on
Machine Learning (ICML), 2025.

[205] Jintao Zhang, Jia Wei, Pengle Zhang, Jun Zhu, and
Jianfei Chen. Sageattention: Accurate 8-bit atten-
tion for plug-and-play inference acceleration. In In-
ternational Conference on Learning Representations
(ICLR), 2025.

[206] Jintao Zhang, Chendong Xiang, Haofeng Huang,
Jia Wei, Haocheng Xi, Jun Zhu, and Jianfei Chen.
Spargeattn: Accurate sparse attention accelerating any
model inference. In International Conference on Ma-
chine Learning (ICML), 2025.

[207] Linfeng Zhang, Chenglong Bao, and Kaisheng Ma.
Self-Distillation: Towards Efficient and Compact
Neural Networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44(8):4388–4403,
2022. https://doi.org/10.1109/TPAMI.2021.
3067100.

[208] Shilong Zhang, Peize Sun, Shoufa Chen, Min Xiao,
Wenqi Shao, Wenwei Zhang, Yu Liu, Kai Chen, and
Ping Luo. GPT4RoI: Instruction Tuning Large
Language Model on Region-of-Interest. In Com-
puter Vision – ECCV 2024 Workshops: Milan, Italy,
September 29–October 4, 2024, Proceedings, Part
VIII, page 52–70, Berlin, Heidelberg, 2025. Springer-
Verlag. https://doi.org/10.1007/978-3-031-
91813-1_4.

[209] Zongshun Zhang, Rohan Kumar, Jason Li, Lisa Korver,
Anthony Byrne, Gianluca Stringhini, Ibrahim Matta,
and Ayse Coskun. PraxiPaaS: A Decomposable Ma-
chine Learning System for Efficient Container Package
Discovery. In 12th IEEE International Conference on
Cloud Engineering, 2024.

[210] Zongshun Zhang, Andrea Pinto, Valeria Turina, Flavio
Esposito, and Ibrahim Matta. Privacy and Effi-
ciency of Communications in Federated Split Learn-
ing. IEEE Transactions on Big Data, 9(5):1380–1391,
2023. https://doi.org/10.1109/TBDATA.2023.
3280405.

[211] Helong Zhou, Liangchen Song, Jiajie Chen, Ye Zhou,
Guoli Wang, Junsong Yuan, and Qian Zhang. Re-
thinking Soft Labels for Knowledge Distillation: A
Bias-Variance Tradeoff Perspective. arXiv preprint
arXiv:2102.00650, 2021.

[212] Hongbo Zhou, Weiwei Zhang, Chengwei Wang, Xin
Ma, and Haoran Yu. BBNet: A Novel Convolutional
Neural Network Structure in Edge-Cloud Collaborative
Inference. Sensors, 2021.

[213] Huan Zhou, Zhenning Wang, Hantong Zheng, Shibo
He, and Mianxiong Dong. Cost Minimization-
Oriented Computation Offloading and Service Caching
in Mobile Cloud-Edge Computing: An A3C-Based
Approach. IEEE Transactions on Network Science
and Engineering, 10(3):1326–1338, 2023. https:
//doi.org/10.1109/TNSE.2023.3255544.

[214] Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian
McAuley, Ke Xu, and Furu Wei. BERT Loses Patience:
Fast and Robust Inference with Early Exit. Advances
in Neural Information Processing Systems, 33:18330–
18341, 2020.

35

http://arxiv.org/abs/2109.12298
https://aclanthology.org/2025.acl-long.1126/
https://aclanthology.org/2025.acl-long.1126/
https://doi.org/10.18653/v1/2025.acl-long.1126
https://doi.org/10.18653/v1/2025.acl-long.1126
https://doi.org/10.1007/s11036-020-01586-4
https://doi.org/10.1007/s11036-020-01586-4
https://doi.org/10.1109/TPAMI.2021.3067100
https://doi.org/10.1109/TPAMI.2021.3067100
https://doi.org/10.1007/978-3-031-91813-1_4
https://doi.org/10.1007/978-3-031-91813-1_4
https://doi.org/10.1109/TBDATA.2023.3280405
https://doi.org/10.1109/TBDATA.2023.3280405
https://doi.org/10.1109/TNSE.2023.3255544
https://doi.org/10.1109/TNSE.2023.3255544

	Survey_ML_Offloading___v2___rebuttal (1).pdf
	Survey_ML_Offloading___v2 (1).pdf
	Introduction
	The Cost Model of Machine Learning-as-a-Service
	Opportunities and Challenges of DL Task offloading during Inference

	Problem Definition
	DNN Offloading Challenges
	Latency
	Monetary Cost
	Privacy

	Problem Formulation
	Latency
	Latency Formulation

	Monetary Cost
	Monetary Cost Formulation

	Privacy
	 Threat Model: Model Inversion Attack (MIA)
	Privacy-oriented Adaptation
	Privacy Formulation

	Problem Solutions
	Latency
	Dynamic Partitioning
	Early Exits
	Input and output compression
	Model Compression and Knowledge Distillation

	Cost($)
	Methods

	Privacy
	Perturbation
	Regularization

	 Multi-Objective Optimization Case Studies
	 Latency & Cost
	 Latency & Privacy
	 Latency, Cost & Privacy

	 Open Issues
	Monetary Cost and Latency Optimization via Fine-Grained Resource Orchestration
	Defending Prompt Inversion Attacks under Latency and Cost Constraints

	Conclusion

