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Abstract

The increasing complexity of advanced machine
learning models requires innovative approaches to
manage computational resources effectively. One
such method is the Early Exit strategy, which
allows for adaptive computation by providing a
mechanism to shorten the processing path for
simpler data instances. In this paper, we propose
EERO, a new methodology to translate the prob-
lem of early exiting to a problem of using multi-
ple classifiers with reject option in order to better
select the exiting head for each instance. We cal-
ibrate the probabilities of exiting at the different
heads using aggregation with exponential weights
to guarantee a fixed budget. We consider factors
such as Bayesian risk, budget constraints, and head-
specific budget consumption. Experimental results
demonstrate that our method achieves competitive
compromise between budget allocation and accu-
racy.

1 INTRODUCTION

Nowadays, vision models are increasing in size rising the
issue of their complexity and computation costs. There ex-
ist different strategies to train lighter deep learning net-
works, such as quantization and pruning [Liang et al., 2021],
distillation [Touvron et al., 2021], and dynamic inference
where the network adapts its topology on the fly to the input
data [Han et al., 2021]. Among them, Early Exit [Laskaridis
et al., 2021] is an orthogonal approach which aims at adapt-
ing the amount of computation to each input data point,
exploiting that most neural networks can be approximated
as a stack of layers which process the data sequentially.
The idea is to add auxiliary heads at regular intervals along
the network (see Figure 1) which are able to produce a
prediction with the current state of the features. The intu-

ition is that easy cases can be processed with the first few
layers. Those heads can also be used to analyze model’s
layers [Chen et al., 2020, Kaya et al., 2019] and improve
training [Teerapittayanon et al., 2016].

Despite its advantages, one of the main challenges in apply-
ing Early Exit during inference is to determine the appro-
priate moment to exit for a given input. This objective is
intricately connected to assessing confidence in the predic-
tions of neural networks. Importantly it requires to build a
rule – that usually relies on a test that asks whether the score
for the prediction is higher or not than a given threshold –
at the level of each auxiliary head of the network and one
possible ultimate goal may be to calibrate all thresholds
appropriately in order to meet an overall objective. Specif-
ically, in our contribution, we focus on Budgeted Batch
classification [Huang et al., 2018], a strategy where a fixed
computational budget is allocated for processing a batch of
data. The strategy involves calculating thresholds to allocate
these resources efficiently across different data points en-
hancing overall accuracy. In principle, this approach offers
improved performance because it allows for the conserva-
tion of computational resources on simpler cases, which can
then be reallocated to improve accuracy on more complex
cases. However, practical investigations into this framework
have been limited, with most studies concentrating on archi-
tectural design or the reliability of confidence scores. Those
few that have addressed Budgeted Batch Classification often
make additional assumptions for practicality [Huang et al.,
2018] or utilize less-than-ideal algorithms without fully ex-
ploring the associated mathematical challenges [Wang et al.,
2021].

Contributions In this work, we present EERO (Early Exit
with Reject Option), a novel framework designed to aug-
ment Early Exit strategies in Budgeted Batch Classifica-
tion for inference tasks. The EERO methodology progresses
through a series of steps: Initially, we train auxiliary heads to
refine decision-making. Subsequently, we translate the bud-
get limitation to probabilities of classification at each head
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Figure 1: Illustration of the Early Exit principle in a convolutional architecture.

based on aggregation with exponential weights [Dalalyan
and Tsybakov, 2008]. We then use a calibration set and
those probabilities to calibrate head specific exit thresh-
olds. We based this calibration of the thresholds on learning
with rejection option arguments [Chow, 1957]. (Also named
learning with abstention and later selective learning in the
literature.) Finally, for each data point and at the level of
each head we compute a score. If this score exceeds the
threshold, we take this head output as the final prediction.
Otherwise, we proceed with the following head in a similar
way.

Our key contributions are: (i) Developing an optimal classi-
fication process within a specified GFlops1 budget, ensur-
ing efficient data processing while balancing accuracy; (ii)
Adapting and generalizing EERO to various architectures
like ResNet [He et al., 2016], ConvNext [Liu et al., 2022],
and MSDNet [Huang et al., 2018], suitable for multiple aux-
iliary heads; (iii) Validating our approach through extensive
benchmarks on CIFAR-100 and ImageNet datasets, proving
its effectiveness in maintaining resource constraints, reduc-
ing computational load, and enhancing model accuracy.

The paper is organized as follows: Section. 2 reviews rele-
vant literature. Section. 3 introduces our proposed EERO
method, including its statistical framework (Section 3.1)
and detailed methodology (Section 3.2). Section. 4 presents
experimental results, applying EERO on ImagrNet.

2 RELATED WORK

One of the first works on Early Exit [Teerapittayanon et al.,
2016] proposed to use auxiliary heads and a weighted sum
of losses. The focus was essentially on the design and the po-
sitions of the auxiliary heads. MSDNet [Huang et al., 2018]
is an architecture where the heads are carefully designed so
that early features which are assumed to be unsuitable for

1Flops: floating point operations per second.

classification are refined. Although this leads to better per-
formances, the complex resulting heads reduce their number,
and therefore the flexibility of the model, and makes it more
difficult to adapt to new architectures. Overall, the position
and the number of the auxiliary heads remains an open dis-
cussion for convolutional networks [Lin et al., 2022] and
transformers [Bakhtiarnia et al., 2021].

Determining the optimal timing for an early exit in neu-
ral network inference is a crucial aspect of efficient model
design. A widely used method is the Threshold-Based Ap-
proach, where the exit decision is based on a predefined
threshold on auxiliary heads output probabilities, focusing
on different metrics of the probability distribution [Huang
et al., 2018, Bolukbasi et al., 2017]. Another strategy is
the Patience-Based Strategy, requiring consecutive heads to
agree on a prediction before exiting, thus leveraging sequen-
tial predictions for reliability [Zhou et al., 2020]. Addition-
ally, more sophisticated methods involve Halting Scores,
where scores are accumulated from each layer’s output, in-
tegrating model confidence into the exit process [Figurnov
et al., 2017]. In complex scenarios, Reinforcement Learning
Techniques are employed to finely balance computational
efficiency and prediction accuracy, especially in dynamic
inference settings [Wang et al., 2018, Wu et al., 2018].

In the context of Budgeted batch classification, thresholds
are not determined for individual images but for a batch as a
whole, facilitating a more strategic deployment of computa-
tional resources. To date, the literature presents two notable
algorithms addressing this problem in the realm of Early
Exit strategies. The authors in [Wang et al., 2021] employ a
genetic algorithm to optimize these thresholds. Conversely,
the work [Huang et al., 2018] operates under the assump-
tion that each exit point in the network has an equal and
predetermined likelihood of accurately classifying an image.
While this simplifies the optimization problem, it introduces
an additional hyper-parameter that is not inherently related
to computational complexity.



In addition, other contexts have been well studied in the liter-
ature, such as model cascading or learning-to-defer. Model
cascading involves using separate, independent models of
increasing complexity, where each model decides whether
to classify an instance or defer to the next model in the se-
quence [Jitkrittum et al., 2024, Gupta et al., 2024]. Learning
to defer, on the other hand, transfers decision-making to
human operators when the model’s confidence is low [Okati
et al., 2021, Charusaie and Samadi, 2024]. Our work differs
by presenting a comprehensive formulation that is grounded
on the principles of reject option learning theory on a multi
headed classification model with a focus on minimizing
cost.

Learning with the reject option, a method to abstain from
predictions under uncertainty, is crucial in our work. Ini-
tially explored in [Chow, 1957] and advanced through
conformal prediction [Vovk et al., 1999, 2005], this con-
cept has evolved significantly [Herbei and Wegkamp, 2006,
Naadeem et al., 2010, Grandvalet et al., 2009, Yuan and
Wegkamp, 2010, Lei, 2014, Cortes et al., 2016, Denis and
Hebiri, 2019]. It generally encompasses strategies for pre-
defined coverage, rejection rates, or a balance of both. In
EERO, rejection is adapted at the head level, deciding if an
instance x should exit early or continue processing. This
application to deep learning for energy efficiency is novel,
though the reject option has been previously applied to vari-
ous learning problems [Denis et al., 2020, 2022].

3 METHOD

In this section, we introduce the Early Exit with Reject
Option (EERO) framework, applying reject option learning
theory to enable efficient early exits in neural networks.
We detail the statistical underpinnings and describe how
EERO strategically manages resources to balance accuracy
with computational expenditure. This approach not only
optimizes performance but also ensures strict compliance
with predefined computational constraints.

3.1 STATISTICAL FRAMEWORK –
CLASSIFICATION WITH REJECT OPTION

This section describes the mathematical framework for Early
Exit. Let (X, Y ) be a random couple distributed according
to a distribution P on X × [K], where [K] := {1, . . . ,K}.
Here, X ⊂ Rd is the feature space, and Y is the label
corresponding to the feature X. We focus on the problem
of K-class classification with K ≥ 2 and one of our goals
is to build a prediction rule g : X → [K] that reduces the
misclassification risk P (g(X) ̸= Y ). This risk is minimized
by the Bayes rule g∗ that is given, in the multi-class setting,

for all x ∈ X by

g∗(x) = argmax
k=1,...,K

pk(x) , (1)

where pk(x) = P (Y = k|X = x) are the conditional prob-
abilities. Because the distribution P is unknown, the Bayes
rule itself is unknown, and we need to approximate it. In
general, this approximation seeks to maximize the classifi-
cation accuracy. In our case, the goal is also to reduce the
energy consumption of the model, and thus, we assume a
constraint on the computation budget available. Notably, we
will show that the latter is strongly connected to classifica-
tion with reject option (classification with abstention) that
we describe in Section 3.2.

The framework of classification with reject option assumes
that classifiers are allowed to abstain from classifying (on
the empirical side, this means that the classifier abstains on a
given proportion of the data). Let ε ∈ (0, 1) be a parameter
that denotes the probability of classifying an instance. The
optimal rule that abstains with probability 1− ε is given by:

Definition 3.1. Let ε ∈ (0, 1). The optimal classifier with
1− ε rejection rate is defined as

h∗
ε ∈ argmin

h
{P({h(X) ̸= Y } ∩ {h(X) ̸= R})

s.t. P(h(X) = R) = 1− ε} , (2)

where h is a classifier that is allowed to reject, that is, h :
X → [K] ∪ {R} and R is the output when the classifier
rejects all elements from [K].

The opportunity of using the reject option is important in
applications where ambiguity occurs between classes, which
is often the case when the total amount of classes K is large.
There are several ways to handle this reject option. In this
paper, we constrain the rejection rate as it is in accordance
with the resource limitation (see Sections 3.2.1 and 3.2.2).

Now, we aim at providing the explicit expression of the
optimal rule given by Definition 3.1. Let us denote by s, the
score function defined for each x ∈ X by

s(x) = max
k∈[K]

{p1(x), . . . , pK(x)} . (3)

From the definition of the Bayes rule (1), we can establish
the following characterization of the optimal rule.

Proposition 3.2. Assume the cumulative distribution func-
tion (CDF) Fs of s(X) is continuous. Then, for all x ∈ X

h∗
ε(x) =

{
g∗(x) if Fs(s(x)) ≥ 1− ε
R otherwise.

In particular, we have P(h∗
ε(X) = R) = 1− ε.

Proposition 3.2 extends the result established in [Denis and
Hebiri, 2019] (c.f. Proposition 1) to multi-class setting. Its



proofs can be found in the Sec. D of the Appendix. The
main assumption used to build this result is the continuity
assumption on the CDF of s(X) and requires that the ran-
dom variable has no atoms. It ensures that the classifier h∗

ε

has a rejection rate exactly 1 − ε. In the next section, we
will see that from an empirical point of view, this condition
can always be satisfied through randomization.

3.2 DATA-DRIVEN PROCEDURE

Before considering the reject option arguments and since we
deal with an Early Exit strategy, we train a neural network
with M possible exits that correspond to M − 1 auxiliary
heads and the classical output of the last layer, as illustrated
in Figure 1. To this end, we collect a labeled dataset Dn1

,
that consists of n1 ∈ N i.i.d. copies of (X, Y ), and train
for each head ℓ an estimator (p̂ℓ1, . . . , p̂

ℓ
K) of the conditional

probability vector (p1, . . . , pK). Since larger ℓ means that
we go deeper in the network, it is reasonable to assume
that for all layers indices ℓ, ℓ′ ∈ [M − 1] with ℓ < ℓ′, the
auxiliary head ℓ′ consumes more resources than the auxiliary
head ℓ and in general, yet this increase in consumption might
come with a better accuracy.

3.2.1 Classification rule based on reject option

Our methodology highlights that early exiting can be effi-
ciently performed, borrowing tools from learning with reject
option. Let us then define, for each auxiliary head ℓ, a re-
jection rate 1− εℓ ∈ (0, 1) – that will be specified later. In
order to specify the prediction rule for each head, we will
mimic the optimal rule provided by Proposition (3.2) using
the plug-in principle. This step requires collecting a sample
of unlabeled instances DN , that consists in N i.i.d. copies
of X. Since the process is the same at each auxiliary head,
let us develop our methodology for a specific head ℓ.

The goal is to understand whether the head ℓ is a good early
exit for a given instance x ∈ X . Translating this into the
classification with reject option vocabulary, the question
becomes whether classifier

ĝℓ(·) = argmax
k∈[K]

{p̂ℓk(·) + uk} , (4)

should classify the instance x or reject it. The uk variable is
introduced to randomize the p̂ℓk estimations for a technical
reason that we now explain. Let us denote by (uk)k∈[K] i.i.d.
variables which follow a uniform distribution on [0, u] with
u being a non-negative real number which is usually chosen
very small. (In practice, we set u = 10−5.) It ensures that
the random variables pℓk(X)+uk has no atoms which is the
key argument (see proof in appendix D) to control suitably
the rejection rate of the produced classifier with reject option.
Formally, this classifier is the empirical counterpart of the
classifier with reject option given by Proposition 3.2 and is

based on the empirical score function given for all x by

ŝℓ(x) = max
k∈[K]

{
p̂ℓ1(x) + u1, . . . , p̂

ℓ
K(x) + uK

}
. (5)

Then we can derive the plug-in estimator of the classifier
with reject option h∗

ε at the level of the ℓ-th auxiliary head.

Definition 3.3. For all x ∈ X

ĥℓ
εℓ(x) =

{
ĝℓ(x) if F̂ŝℓ(ŝ

ℓ(x)) ≥ 1− εℓ

R otherwise,

where conditional on the datasetDn, we denote by F̂ŝℓ(t) =
1
N

∑
X∈DN

1{ŝℓ(X)≤t} the empirical CDF of ŝℓ(X) on the
unlabeled sample DN .

Remark 3.4. The score function ŝℓ in the above definition
can be replaced by any suitable metrics providing an esti-
mation of the prediction confidence. We tried entropy-based
confidence and breaking ties [Luo et al., 2005] (i.e., the dif-
ference between the two highest scores) in our experiments
and selected the latter which performed slightly better.

According to the above definition, the classifier ĥℓ
εℓ abstains

when it is not confident about the classification. In our case,
having ĥℓ

εℓ assigns the output R to a given instance x means
that the observation should not be treated by ĥℓ

εℓ , but rather
should be delayed to next auxiliary head treatment. In con-
trast, when ĥℓ

εℓ(x) = ĝℓ(x), then we use the early exit at
the head ℓ and the observation x does not go through the
rest of the network, thus reducing the computation. We can
establish the following result whose proof can be found in
Section D of the Appendix.

Proposition 3.5. For all ℓ ∈ [M ] and all εℓ ∈ (0, 1), there
exists a constant C > 0 such that, whatever the distribution
P of the data and whatever the estimators ŝℓ of the score
function s we consider, we have∣∣∣P(ĥℓ

εℓ(X) = R
)
− (1− εℓ)

∣∣∣ ≤ C√
N

.

The above result confirms that the rejection rate of the clas-
sifier ĥℓ

εℓ is indeed of the right order. However, this result
suggests that the head ℓ might reject more data than it should
(by a proportion of order C/

√
N which is not suitable from

the budget perspective. In order to solve this issue, it is suf-
ficient to impose a smaller rate of rejection. More precisely,
if we replace εℓ by ε̃ℓ = εℓ + C/

√
N when we run our

algorithm, we force the rejection rate to be less than 1− εℓ.
From our numerical study, we observed that C = εℓ leads
to good results in order to ensure the budget limitation.

Remark 3.6. Our methodology, applicable for semi-
supervised learning, capitalizes on both labeled and unla-
beled data, making it ideal when acquiring labels is costly. If
only labeled data is available, we advise splitting the dataset,
facilitating budget control theoretically.



Remark 3.7. The result in Proposition 3.5 is valid when
M > 2 only in the situations where the sets of classified
instances by all heads are disjoint, meaning that each image
is rejected by all heads but one. Since this is unlikely in
practice, we need to adjust the rejection rate at the level of
the head ℓ based on the rejection rates of the earlier heads.
We will elaborate on this in Section 3.2.3.

3.2.2 Calibration of the rejection rates

To fully exploit the layered complexity of deep learn-
ing networks, our EERO methodology must handle mul-
tiple exits. We incorporate an aggregation with exponen-
tial weights [Cesa-Bianchi and Lugosi, 2006, Dalalyan and
Tsybakov, 2008] to optimize the decision-making process
at various network depths. This adaptation is crucial for
leveraging the diverse representational capabilities of neural
networks, ensuring computational efficiency, and maintain-
ing high accuracy across multiple exit points. We recall that
our main constraint here is the maximum allowed budget B
in GFlops.

Let us then develop the process to build the vector ε̂ =
(ε̂1, . . . , ε̂M ) of discrete probabilities that provides us the
rates of classifying at each head (in other words, the 1− ε̂ℓ

are the rejection rates). As inputs, we assume

• we have already trained all heads classifiers that are
called ĝ1 . . . ĝM (based on the first labeled dataset
Dn1 );

• we have already computed for each of the clas-
sifiers ĝℓ an evaluation of its risk R̂ℓ =
1
n2

∑
(X,Y )∈Dn2

1{ĝℓ(X)̸=Y } based on a second la-
beled datasetDn2 that consists in i.i.d. copies of (X, Y )
– notice that these error rates are already computed dur-
ing any classic deep learning training;

• we have a prior distribution π = (π1, . . . , πM ) on the

simplex ΛM−1 defined as πℓ =
(B̂ℓ)

−1∑M
j=1(B̂ℓ)

−1 , where

B̂ℓ is the budget required by the head classifier ĝℓ to
provide an inference for one instance,

• we have fixed the overall budget B we are allowed to
use and the size T of the batch of new data points we
need to predict.

Our proposal is based on aggregation with exponential
weights. The vector ε̂ = (ε̂1, . . . , ε̂M ) ∈ ΛM−1 is solu-
tion in ε = (ε1, . . . , εM ) of the following minimization
problem:

min
ε∈RM

M∑
ℓ=1

εℓR̂ℓ + β

M∑
ℓ=1

εℓ log

(
εℓ

πℓ

)
, (6)

s.t. εℓ ≥ 0,

M∑
ℓ=1

εℓ = 1,

M∑
ℓ=1

εℓB̂ℓ ≤ B̄, (7)

where β ≥ 0 is a tuning parameter that controls the strength
of the Kullback-Leibler divergence between ε and π and
B̄ = B/T is the average budget we can spend to infer
one instance. Notice that the constraint

∑M
ℓ=1 ε

ℓB̂ℓ ≤ B̄

reads as
∑M

ℓ=1(Tε
ℓ)B̂ℓ ≤ B. In particular, Tεℓ interprets

as the number of data points that should be classified by
the head ℓ so that the total budget remains less (or equal)
than the allocated budget B. Considering the Lagrangian
of this problem, we can exhibit the following form of the
probability vector ε̂.

Proposition 3.8. For all ℓ ∈ [M ], the ℓ-th coordinates of
the rejection rates vector ε̂ is given by

ε̂ℓ =
πℓ exp

{
− R̂ℓ+µ̂B̂ℓ

β

}
∑M

j=1 π
j exp

{
− R̂j+µ̂B̂j

β

} ,

where µ̂ = max{0, µ̄}, with µ̄ being solution of

M∑
ℓ=1

(B̄ − B̂ℓ)πℓ exp

{
− R̂ℓ + µ̄B̂ℓ

β

}
= 0 .

The only tuning parameter in the above procedure is the
temperature β. Higher values force the probability vector ε̂
to get closer to the prior distribution π that is created to take
into account the budget required by each head to produce
a prediction. Last but not least, The empirical risk factors
R̂ℓ in Equation (7) allow the rejection rates ε̂ℓ to depend on
the head performances on the training data, i.e., layers with
good classifiers will be selected more often.

One main advantage of aggregation with exponential
weights is that it is supported by strong theoretical perfor-
mance. Let us focus on the misclassification riskR(g) :=
P (g(X) ̸= Y ). Following the analysis in Dalalyan and Tsy-
bakov [2008], Rigollet and Tsybakov [2012], we can show
the following result.

Theorem 3.9. Consider ĝEERO the classifier resulting from
our aggregation procedure (whose formal definition is given
in(16)). Conditionally on Dn1 , the data used to train the
heads ĝ1 . . . ĝM , we have

R(ĝEERO) ≤ inf
ℓ∈[M ]: B̂ℓ≤B̄

{
R(ĝℓ) + β log(1/πℓ)

}
.

Notice that the above Oracle inequality shows that our ag-
gregation procedure ĝEERO is at least as good (up to a log
factor) as the best head that satisfies the budget constraint. In
addition, without prior knowledge on the budget, one may
consider the uniform probabilities πℓ = 1/M and recover
the classical bound of order log(M).

Remark 3.10. Our methodology fits well for the problem
of Budgeted Batch Classification. However, the notion of
batch is not important for our purpose. As expressed in the



above algorithm (6)-(7) (see also Proposition 3.8), the only
information that is required to calibrate the probability of
rejections vector ε̂ is the average budget for classifying one
instance.

Remark 3.11. EERO methodology takes advantage of ag-
gregation with exponential weights to compromise between
accuracy and budget consumption. However in the partic-
ular case of only one auxiliary head, there is no need for
aggregation – the budget is split between the auxiliary head
and the last layer. We have developed such particular case
in Appendix C and run experiments in that case as well
using the ResNet-18 architecture illustrated in Figure 1 on
CIFAR-100.

3.2.3 Heads with reject option

In the case of multiple heads, it is difficult to ensure the
validity of Proposition 3.5 for all heads (c.f. Remark 3.7).
However, we can guarantee a weaker result that is sufficient
to ensure the good control on the allocated budget. Based
on the previous section, we built M head classifiers on one
hand and a probability vector ε̂ whose ℓ-th components
gives the rates of classification at the ℓ-th auxiliary head on
the other hand. The probability vector ε̂ takes into account
both the accuracy and the resources of each head and allows
achieving the suitable control on the budget. However, in
the case of multiple auxiliary heads, a careful analysis of our
methodology imposes some modifications according to the
sequential calibration of the probabilities of classification.

The calibration of the classification rates of all heads is
based on the estimation of the CDF Fs of the score function.
Since there are M − 1 auxiliary heads, we estimate M − 1
times the function Fs. Importantly, all these estimates are
built on the same dataset DN . While the calibration at the
level of the first head is perfectly valid, the calibration of
the classification rate starting from the second head needs to
be adjusted to get the ε̂ℓ classification rate. In particular, for
all ℓ ∈ {2, . . . ,M − 1}, we enforce a higher classification
rate as

ε̂ℓseq =

ℓ∑
j=1

ε̂j . (8)

This choice is motivated by the fact that we need, for each
head ℓ, to calibrate the threshold for the rejection rule so
that at most a proportion 1−∑ℓ

j=1 ε̂
j of the data in DN is

rejected. If we consider this adjustment together with the
correction we have detailed right after Proposition 3.5, we
can show that for all ℓ ∈ [M ], if we replace the probability
of classification ε̂ℓ in Definition 3.3 by

ε̃ℓseq = ε̂ℓseq + C/
√
N . (9)

We have that P
(
ĥℓ
ε̃ℓseq

(X) = R
)
≤ 1 −∑ℓ

j=1 ε̂
j so that

we can deduce the following result.

Theorem 3.12. For all ℓ ∈ [L], the classification procedure
at the head ℓ is such that

P
(
ĥℓ
ε̃ℓseq

(X) = R
)
≤

M∑
j=ℓ+1

ε̂j .

The above statement means that after using the head ℓ, there
is at most a proportion

∑M
j=ℓ+1 ε̂

j of the data that remains
to classify. This result will be illustrated in the next section
through numerical experiments.

Algorithm 1 EERO method: Calibration phase and classifi-
cation of a batch of data points

Require: Batch of data points: X1, . . . ,XT ∈ X ;
Calibration sets DN ; Model p with M heads,
Risk of heads: R, Allowed budget: B

Ensure: Prediction: P ∈ [K]T

1: Fs ← ComputeCDF(DN ) {Eq. (5)}
2: ε̃seq ← Aggregation(M,R,B) {Prop 3.8, Eq (8)-(9)}
3: P ← empty list
4: for i = 1 to T do
5: for ℓ = 1 to M do
6: sℓ, gℓ ← CompOutput(Xi, pℓ) {Eq. (4)-(5)}
7: if Fsℓ(s

ℓ(x)) ≥ 1− ε̃ℓseq then
8: P ←

[
P, gℓ

]
9: break

10: end if
11: end for
12: end for
13: return P

4 EXPERIMENTS

Building upon the methodological foundations established
for EERO, this section seeks to empirically substantiate our
approach on ImageNet dataset with the ConvNext and MS-
DNet network architectures. We also compare our EERO
approach with MSDNet strategy to compute the exit thresh-
olds. Those experiments2 validate our theory and demon-
strate the scalability of EERO across diverse neural network
configurations.

4.1 EERO WITH MULTIPLE HEADS

We recall that, after training the heads, the procedure con-
sists of two steps. The first one focuses on determining the

2All computations are run on a server with an Intel(R) Xeon(R)
Gold 5120 CPU and a Tesla V100 GPU with 32GB of Vram
and 64GB of RAM. Code associated with paper can be found
in repository here : https://github.com/FlorianVal/
Early-Exit-With-Reject-Option

https://github.com/FlorianVal/Early-Exit-With-Reject-Option
https://github.com/FlorianVal/Early-Exit-With-Reject-Option


0.4 0.6 0.8 1.0 1.2
Budget (in MUL-ADD) 1e9

30

40

50

60

70

80

Ac
cu

ra
cy

Accuracy vs Budget for Different Methods

Method
EERO
Gaussian ( =0.5)
Gaussian ( =2.0)
Geometric
Patience
ConvNext Main

Figure 2: Accuracy w.r.t. the budget for our EERO method-
ology based on Convnext against other known methods such
as Patience [Zhou et al., 2020, Zhang et al., 2022], Geomet-
ric distribution [Huang et al., 2018, Elbayad et al., 2020] or
Gaussian [Li et al., 2022] distribution of weights on each
head. ConvNext Main points correspond to the accuracy of
each head alone.

rejection rates at each head. The second one consists in spec-
ifying the rejection rule (that is, calibrating the exit thresh-
olds) at the level of each given head, c.f., Definition 3.3.

In particular, we exploit the methodology based on aggrega-
tion with exponential weights developed in Section 3.2.2 to
specify the rejection rates.

Following the protocol from Section 3.2, EERO is applied to
the ConvNext architecture using the ImageNet dataset. The
model is adapted with auxiliary heads – See Appendix A for
details on extra computational cost induced by training the
auxiliary heads. The training is based on pretrained weights
and a sum of cross-entropy losses from various exits. For
complete hyperparameter details, refer to Appendix Tables 1
and 2.

We plot the results for the different heads and for different
computation budgets in Figure 2. Several observations can
be made. First, we highlight an interesting phenomenon: for
a given budget, our proposed multiple heads approach (Blue
curve) improves the accuracy from the different exits used
independently (black cross). Such observation confirms our
statement in Theorem 3.9. Moreover, regarding the accuracy
of the auxiliary heads alone, placing an exit further in the
model does not necessarily result in a better accuracy when
the model is not tuned for early exit.

We further check the budget used by our model in Figure 3
and show that our methodology respects the allowed budget
by always being lower or equal to it, validating our theory
from Proposition 3.5 and Theorem 3.12. On some budgets,
the gap between the allowed budget and the actual consump-
tion suggests that a better accuracy could be obtained. We
also found that the rejection rates ε̂ℓ behave as expected
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Figure 3: Measured and allowed budget of our algorithm
on Convnext. This figure shows that our method accurately
follows the budget given by never exceeding it.

as for example lower budgets favor early heads, and heads
with higher risk R̂ℓ have lower values, thus decreasing their
likelihood to be selected for the final classification score as
depicted on Figure 4. (See also Appendix B).

4.2 COMPARISON WITH EXISTING EARLY EXIT
STRATEGIES

We extend our evaluation by comparing EERO with existing
early exit strategies, demonstrating its general applicability
and effectiveness across different models and scenarios.

4.2.1 Methods Using specific distributions of Exits

Some early exit strategies employ predefined distributions,
such as Gaussian [Li et al., 2022] or geometric [Huang et al.,
2018, Elbayad et al., 2020] distributions, to determine the
probability of exiting at each head. We show on Figure 2
that these methods lack awareness of the individual risks

Figure 4: Value of the aggregation weights ε̂ℓ on an interme-
diate budget for the ConvNext model for EERO. Each bar
represents an exit head ℓ.



associated with each head, which can significantly impact
overall accuracy. While they may achieve comparable re-
sults on networks specifically tuned so that deeper exits
yield better accuracy, they are less effective on general archi-
tectures. The lack of adaptation to the actual performance
of each head can lead to suboptimal allocation of compu-
tational resources, potentially favoring less accurate exits.
This is highlighted in Figure 2 where our method outper-
forms specific-distribution methods.

4.2.2 Patience-Based Strategies

Patience-based methods [Zhou et al., 2020, Zhang et al.,
2022] exit after a certain number of consecutive confident
predictions, leveraging the model’s consistency across lay-
ers. While these strategies can outperform EERO in specific
cases, they do not allow for explicit computational budget
selection. Budget control is indirect and limited to discrete
levels corresponding to different patience values, which re-
stricts fine-grained resource allocation and may not align
with strict budget constraints.

4.2.3 Comparison with MSDNet

In our experiments (see Appendix 5a, 5b), we compared
EERO with the Multi-Scale Dense Network (MSDNet)
[Huang et al., 2018], a well-known architecture specifically
designed for early exiting that uses geometric distribution.
The results show that EERO achieves similar accuracy and
computational budget consumption as MSDNet (Figure 5a).
However, there are key differences between the two ap-
proaches. MSDNet requires a specialized architecture and
tuning to ensure that exits placed deeper in the network
provide better accuracy. Moreover, MSDNet does not allow
for the direct specification of a computational budget; in-
stead, it requires iterative adjustments of exit probabilities
to approximate the desired budget, which can be impractical.
In contrast, EERO is model-agnostic and can be adapted
to any network architecture with auxiliary heads. It allows
for explicit selection of the computational budget before-
hand, ensuring that the resource constraints are strictly met
(Figure 5b). This flexibility makes EERO more suitable for
applications where budget compliance is critical.

4.2.4 Advantages of EERO

EERO addresses the limitations of these methods by pro-
viding a general framework that is both model-agnostic
and budget-aware. By incorporating the risks of each head
through our aggregation method (Section 3.2.2), EERO op-
timally allocates computational resources to maximize accu-
racy under a given budget constraint. This ensures that more
computational effort is devoted to heads with better perfor-
mance, regardless of their position in the network. Our exper-

imental results (Figure 2) demonstrate that EERO matches
or outperforms the performance of specialized methods with-
out requiring architecture-specific tuning. It provides precise
budget adherence (Figure 3) and maintains competitive ac-
curacy across various budgets and architectures.

5 CONCLUSION

In this paper, we presented EERO, a novel mathematical
framework devised to construct classification rules for Early
Exit in deep learning networks. This framework targets the
pivotal challenge of optimizing computational efficiency
while enhancing model performance. EERO approaches
the problem by modeling it as a classification with a reject
option, providing a feasible solution for scenarios involving
a single Early Exit. For multi-exit scenarios, our innovative
approach hinges on an aggregation with exponential weights
in order to tune the exiting probabilities. A key strength of
EERO lies in its flexibility and generalizability, enabling
it to be applied across various model architectures. This
adaptability makes EERO a versatile tool, well-suited for
diverse applications in the realm of efficient deep learning.

Our experiments on ImageNet and CIFAR-100 using the
Resnet-18, MSDNet and the ConvNext architectures respec-
tively demonstrated the efficiency of our framework. The
results not only shed light on the intricate workings of multi-
head deep neural networks but also offer practical strategies
to enhance model accuracy while reducing computational
budget. This has important implications for edge computing
and making the field of deep learning more sustainable.
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A IMPLEMENTATION DETAILS OF EXPERIMENTS

In Tables 1 and 2, we provide the key experimental details for our implementations, including model architectures, datasets,
and training parameters. Our implementation is done by freezing the pretrained model and only training the added auxiliary
heads. Involving the extra head in our process increases the computational cost by less than 4% and 2.5% in the case of
ResNet-18 and ConvNext respectively. In all our experiments we set β = 0.04 and we mention that our method is not
significantly affected by changes of this parameter ; notice that our theory suggests a value of order 1/

√
N .

Table 1: Basic Setup of Experiments

Experiment Model Dataset Key Modifications
ResNet with CIFAR-100 ResNet CIFAR-100 Auxiliary heads at 7 positions, Flat-

ten outputs
ConvNext with ImageNet ConvNext ImageNet Auxiliary heads at 19 positions,

Adaptive Average pooling, Flatten
outputs

Table 2: Detailed Training Parameters

Experiment Training Details Calibration Details
ResNet with CIFAR-100 SGD, LR: 0.003, Batch size: 128 Train data

: 49.000
Calibration set: 1,000 examples

ConvNext with ImageNet Pretrained weights, Fine-tuned for 300
epochs, SGD, Momentum: 0.9, Weight de-
cay: 10−4, Train data : Full Imagenet

Calibration set: 5,000 examples

B ANALYSIS OF AGGREGATION WEIGHTS

We examine the values of the obtained thresholds ε̂ as it offers interesting insights. We first display the values for all the
layers and for different budgets in Table 3. The results highlights that: i) when higher budget are allocated, the weights
produced by the aggregation put higher weights on heads with lower risks; ii) heads with high risks are assigned smaller
weights by the aggregation, see for instance the weights corresponding to the heads 13 and 18 that have a higher risk and so
a lower value for the εℓ threshold.

This is also visible in Figure 6 where we show the ε̂ values for our EERO method together with the MSDNet like strategy.

First line shows a budget that does not allow usage of the computationally costly heads and so most data will be output on
the two first heads. Second line corresponds a medium budget, where we can see that our EERO approach and the MSDNet

mailto:<florian.valade@univ-eiffel.fr>?Subject=Your UAI 2025 paper


6.55 ∗ 1012 Flops 3.21 ∗ 1013 Flops 5.64 ∗ 1013 Flops

ℓ R̂ℓ πℓ ε̂ℓ ε̂ℓout ε̂ℓ ε̂ℓout ε̂ℓ ε̂ℓout

1 0.93 0.46 0.69 0.68 0.18 0.17 0.00 0.00
2 0.81 0.13 0.17 0.28 0.07 0.19 0.00 0.01
3 0.75 0.04 0.03 0.04 0.03 0.16 0.00 0.01
4 0.72 0.04 0.03 0.00 0.03 0.12 0.00 0.01
5 0.72 0.02 0.01 0.00 0.03 0.08 0.00 0.02
6 0.66 0.02 0.01 0.00 0.03 0.07 0.00 0.01
7 0.64 0.02 0.01 0.00 0.03 0.05 0.01 0.02
8 0.57 0.02 0.01 0.00 0.03 0.04 0.01 0.02
9 0.51 0.02 0.01 0.00 0.04 0.03 0.01 0.02

10 0.46 0.02 0.01 0.00 0.04 0.02 0.01 0.01
11 0.40 0.02 0.01 0.00 0.04 0.02 0.01 0.02
12 0.46 0.02 0.01 0.00 0.04 0.03 0.01 0.04
13 0.55 0.02 0.00 0.00 0.03 0.02 0.01 0.03
14 0.41 0.02 0.01 0.00 0.04 0.01 0.02 0.03
15 0.67 0.02 0.00 0.00 0.03 0.01 0.02 0.08
16 0.55 0.02 0.00 0.00 0.04 0.00 0.02 0.15
17 0.42 0.02 0.00 0.00 0.04 0.00 0.03 0.09
18 0.62 0.02 0.00 0.00 0.03 0.00 0.03 0.13
19 0.17 0.01 0.00 0.00 0.06 0.00 0.20 0.05
20 0.17 0.01 0.00 0.00 0.06 0.00 0.27 0.06
21 0.16 0.01 0.00 0.00 0.06 0.00 0.33 0.20

Table 3: Illustration of the evolution of the probability vector of classification for the different heads on ImageNET dataset
with Convnext architecture and for three different budgets: each line represents an exit head, π is the prior distribution, ε̂ are
the weights produced by the aggregation, and ε̂out are the proportion of the data that was actually classified by each head.

strategy show different behaviors. Whereas the latter assumes that a sample that reaches a head classifier has the same
constant probability to exit independently from its layer position, resulting in a monotonic behavior, our approach exploits
the information of the empirical risks R̂ℓ (see Equation (6)) to modulate the importance of the heads. As we saw in Figure 6
and 7, a high risk is correlated with a low epsilon. Third line shows a permissive budget where most data will be output at
the last heads as they have more accuracy.

C EERO WITH ONLY 1 AUXILIARY HEAD

In the case of one auxiliary head, computations of the rate of classifying ε̂1 (of this single head) can be simplified. In
particular, we can express it analytically without the need for aggregation with exponential weights. Let B > 0 be the
amount of GFlops we were allocated for the task of labeling T data points. Assume that the classifiers ĥ1

ε̂1 and ĝ2 burn off
respectively B̂1 and B̂2 GFlops at each call with B̂1 < B̂2. (We assume that B ≥ TB̂1 so that we are guaranteed to label
all T points).

Proposition C.1. Let ε̂1 =
B
T −B̂2

B̂1−B̂2
. Then the total amount of GFlops used to label T instances is not larger than B.

This result highlights that our strategy succeeds to comply with the constraint of budget we imposed. The proof of the result
lies in the fact that we use the early exit on a proportion ε̂1 of the data. Then we consume T ε̂1B̂1 GFlops (up to a 1/

√
N

additive term – see the comment after Proposition 3.5 for a correction). The rest of the data is treated by the classifier ĝ2 and
then uses T (1− ε̂1)B̂2 GFlops. In total, we then get

T (ε̂1B̂1 + (1− ε̂1)B̂2) = B . (10)

Remark C.2. In this section, we enforce the rejection rate to exactly burn off the whole budget B – see Equation (10).
We make this choice to explain some broader effects that illustrate the importance of using auxiliary heads (see below and



0 1 2 3

Real budget (in MUL-ADD) (×109)

57.5

60.0

62.5

65.0

67.5

70.0

72.5
A

cc
ur

ac
y

method

Msdnet

Ours (EERO)

(a) Accuracy w.r.t. the real budget based on MSDNet archi-
tecture – comparison of EERO methodology to the original
MSDNet algorithm.

0.5 1.0 1.5 2.0 2.5 3.0

Excepted budget (in MUL-ADD) (×109)

0.5

1.0

1.5

2.0

2.5

3.0

R
ea

l
bu

dg
et

(i
n

M
U

L
-A

D
D

)
(×

10
9
)

Msdnet

Ours (EERO)

Allowed budget

(b) Measured budget on MSDNet architecture – comparison
of EERO methodology to the original MSDNet algorithm.

Figure 5: Subfigures (a) and (b) compare EERO with MSDNet’s original method, focusing on accuracy and budget metrics.
Error bars were made using bootstrap on data.

Figure 8). On the other hand, we notify that it is extremely simple to modify the algorithm so that it consumes less than
or equal to the total budget, that is, (ε̂1T )B̂1 + ((1 − ε̂1)T )B̂2 ≤ B. In this case, the accuracy curve would always be
increasing w.r.t. the budget.

We implement EERO using a ResNet [He et al., 2016] model on the CIFAR-100 [Krizhevsky et al., 2009] dataset, with
auxiliary heads placed at seven different positions for early exit testing (see Figure 1). The model training involve a sum of
cross-entropy losses from these exits. Detailed hyperparameters of this experiment are provided in Appendix A in Tables 1
and 2.

We plot the accuracy for the different exits in Figure 8 for different budgets. First, we can see a general trend where our
procedure gradually improves the accuracy as the budget increases since images wrongly classified by the auxiliary head and
correctly classified by the final layer are forwarded from the Early Exit to the latter. Then there is an accuracy decrease since
augmenting the budget only affects images which are wrongly classified by both Early Exit and final model exit. Secondly,
we notice that the oracle quickly outperforms the accuracy of the main model for only a fraction of the total budget required
to process all images with the full model. This fact shows that Early Exits can have valid predictions, whereas the last model
output is wrong. This phenomenon is known as over-thinking and motivates the potential of Early Exit methods, as a way
of better understanding the flaws of deep learning models. Here, this over-thinking situation seems important, as some of
the Early Exits have a better accuracy than the last model output, c.f., Remark C.2. A second reason explaining the oracle
improvements is its capacity to save computation budget by choosing an Early Exit when both early and last exit predictions
are wrong.

This advantage, only achievable in our specific context of Budgeted Batch Classification, aligns well with our primary
objective of reducing computational power for our algorithms. Furthermore, it indirectly enhances the overall accuracy of
our model.

D PROOFS

In this section, we provide the proofs of our main results.

Proof 1 (Proposition 3.2). Let us write

R(h) = P (h(X) ̸= Y , h(X) ̸= R) ,

for short. We then need to solve the problem

h∗
ε = argmin

h
{R(h) : P(h(X) = R) = 1− ε} ,



Figure 6: Value of the aggregation weights ε̂ℓ on three different budgets for the ConvNext model for EERO (left column)
and with the MSDNet strategy (right column). Each bar represents an exit head ℓ. The lines corresponds to different budgets
ranging from small (top), to medium (centre) and high (top).



Figure 7: Risk R̂ℓ of each head on Convnext model
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Figure 8: Accuracy versus computation budget for our multi-headed ResNet-18 (given in Figure 1). In this illustration, we
consider only a two heads procedure by selecting a specific auxiliary head – 2, 3, or 4 – among the initial 7. Each curve
shows how the accuracy evolves according to the probability of use of the auxiliary head. For each color, we display our
algorithm as well as the oracle.



where the minimum is taken over all measurable functions. Considering the Lagrangian of the above problem, we solve

min
h

max
λ∈R+

{R(h) + λ (P(h(X) = R)− (1− ε))}︸ ︷︷ ︸
:=L(h,λ)

,

where λ ∈ R is the dual variable. Observe that by weak duality we have

min
h

max
λ∈R+

L(h, λ) ≥ max
λ∈R+

min
h
L(h, λ) ,

we then consider first the minimization problem over h ofR. We have

R(h) = P (h(X) ̸= Y , h(X) ̸= R) = E

 ∑
k∈[K]

1{Y=k}1{h(X) ̸=k}1{h(X)̸=R}


= E

 ∑
k∈[K]

pk(X)1{h(X)̸=k}1{h(X) ̸=R}

 = P (h(X) ̸= R)− E

 ∑
k∈[K]

pk(X)1{h(X)=k}1{h(X)̸=R}


Moreover,

P(h(X) ̸= R) = E

 ∑
k∈[K]

1{h(X)=k}1{h(X)̸=R}

 .

Therefore, we can write

L(h, λ) = λ− λ(1− ε) + (1− λ)P(h(X) ̸= R)− E

 ∑
k∈[K]

pk(X)1{h(X)=k}1{h(X)̸=R}

 (11)

= λε− E

 ∑
k∈[K]

(pk(X)− (1− λ))1{h(X)=k}1{h(X) ̸=R}

 . (12)

We need to maximize the expectation w.r.t. h that first leads to the optimum h∗
λ is such that

h∗
λ(x) ̸= R ⇐⇒

∑
k∈[K]

(pk(x)− (1− λ))1{h∗
λ(x)=k} > 0 , (13)

for all x ∈ X . Moreover we have that on the event {h∗
λ(x) ̸= R}, the mapping h that maximizes h 7→∑

k∈[K] (pk(x)− (1− λ))1{h(x)=k} is simply h∗
λ(x) = argmax

k∈[K]

pk(x). At this level of the proof, we have shown that the

problem minh L(h, λ) leads to the rule

h∗
λ(x) =

{
argmax
k∈[K]

pk(x) if maxk∈[K] pk(x) ≥ 1− λ

R otherwise .
(14)

Now, we deal with the maximization of L(h∗
λ, λ) w.r.t. λ. Substituting the above value of h = h∗

λ in (11), we can show that

L(h∗
λ, λ) = λε− E

[(
max
k∈[K]

{pk(X)− (1− λ)}
)

+

]
,

where for all a ∈ R, we write (a)+ = max{a, 0}. The above function is then concave in λ, therefore we can write the
first order optimality condition as 0 ∈ ∂L(h∗

λ∗ , λ∗). Observe that because we assumed that the r.v. pk(X) has no atom
for all ∈ [K], we have that P (∃ j ∈ [K] : pk(X) = pj(X)) = 0 and then the subgradient reduces to the gradient. As a
consequence, we obtain the following condition on λ∗

P
(
∃k ∈ [K] : pk(X) > max

{
max
j∈[K]

{pj(X)} ; 1− λ∗
})

= ε .



Notice that this last condition can rewrite as

ε = P (s(X) > 1− λ∗) = P (h∗
λ∗(X) ̸= R) ,

where s(X) = maxk∈[K] pk(X), which guarantee that the optimal rule has indeed the correct rejection rate. Moreover,
from the above relation, we can exhibit the value of λ. Indeed, using the continuity condition on the CDF Fs of s(X), we
have

P (s(X) > 1− λ∗) = ε ⇐⇒ 1− Fs (1− λ∗) = ε ⇐⇒ λ∗ = 1− F−1
s (1− ε) ,

where F−1
s is the generalized inverse of Fs. We conclude the proof substituting this value into the expression of the optimal

rule given by (14).

Remark D.1. If we replace the equality by an inequality, everything is the same expect the part of λ∗. We need to consider
the case where λ∗ = 0 separately, and in this case, we would get P (h∗

λ∗(X) ̸= R) ≥ ε.

Proof 2 (Proposition 3.5). First, observe that conditionally to the training dataset Dn and due to the continuity of
the CDF of ŝℓ(X), the random variable Fŝℓ(ŝ

ℓ(X)) is uniformly distributed. Therefore, for any u ∈ [0, 1], we have
P
(
Fŝℓ(ŝ

ℓ(X)) ≤ u
)
= u. We then can write∣∣∣P(ĥℓ

εℓ(X) = R
)
− (1− εℓ)

∣∣∣ = ∣∣∣E [1{F̂ŝℓ
(ŝℓ(X))≤1−εℓ} − 1{Fŝℓ

(ŝℓ(X))≤1−εℓ}
]∣∣∣

≤
∣∣∣E [1{|Fŝℓ

(ŝℓ(X))−(1−εℓ)|≤|F̂ŝℓ
(ŝℓ(X))−F

ŝℓ
(ŝℓ(X))|}

]∣∣∣
≤
∣∣∣E [1{|Fŝℓ

(ŝℓ(X))−(1−εℓ)|≤∥F̂ŝℓ
−F

ŝℓ∥∞}
]∣∣∣ ≤ 2E

∥∥∥F̂ŝℓ − Fŝℓ

∥∥∥
∞

,

where we used again in the last line the fact that Fŝℓ(ŝ
ℓ(X)) is uniformly distributed. Moreover, we wrote ∥F̂ŝℓ − Fŝℓ∥∞ =

supt∈R |F̂ŝℓ(t)− Fŝℓ(t)|. We conclude the proof using the Dvoretzky–Kiefer–Wolfowitz inequality, that states that

E
∥∥∥F̂ŝℓ − Fŝℓ

∥∥∥
∞
≤
√

π

2N
.

Proof 3 (Proposition 3.8). The Lagrangian of the minimization problem (6)-(7) is given by

L(ε, λ, µ) =
M∑
j=1

εjR̂j + β

M∑
j=1

εj log

(
εj

πj

)
+ λ

 M∑
j=1

εj − 1

+ µ

 M∑
j=1

εjB̂j − B̄

 ,

with (λ, µ) ∈ R× R+. Considering the KKT condition of the problem we get for all j ∈ [M ]

R̂j + β

(
log

(
ε̂j

πj

)
+ 1

)
+ λ̂+ µ̂B̂j = 0,

that leads in turns to

ε̂j
λ̂,µ̂

= πj exp

(
− R̂j + λ̂+ µ̂B̂j

β
− 1

)
. (15)

Plug-in these values into the equality constraint leads to

M∑
j=1

ε̂j
λ̂,µ̂

= 1 ⇐⇒
M∑
j=1

πj exp

(
− R̂j + µB̂j

β
− 1

)
= exp

(
λ̂

β

)

⇐⇒ λ̂ = β log

 M∑
j=1

πj exp

(
− R̂j + µB̂j

β
− 1

) .

Substituting back this value into (15), we get

ε̂jµ̂ =
πj exp

(
− R̂j+µ̂B̂j

β

)
∑M

k=1 π
k exp

(
− R̂k+µ̂B̂k

β

) .



According to the parameter µ̂, we need to consider the constraints µ̂ ≥ 0 and
∑M

j=1 ε̂
j
µ̂B̂

j ≤ B̄ together with the

complementary condition µ̂
(∑M

j=1 ε̂
j
µ̂(B̂

j − B̄)
)
= 0. Therefore, when µ̂ ̸= 0, this parameter should be taken such that

M∑
j=1

ε̂jµ̂(B̂
j − B̄) = 0 ⇐⇒

M∑
j=1

πj(B̂j − B̄) exp

(
− R̂j + µ̂B̂j

β

)
= 0 .

Otherwise µ̂ = 0 and in this case, ε̂jµ̂ becomes

ε̂jµ̂ =
πj exp

(
−R̂j/β

)
∑M

k=1 π
k exp

(
−R̂k/β

) .

Proof 4 (Theorem 3.9). Let us first give a formal definition of the resulting classifier ĝEERO from our procedure. Introduce
for all x ∈ X , the index ℓ̄(x) = min

{
ℓ ∈ [M ] : F̂ŝℓ(ŝ

ℓ(x)) ≥ 1− ε̂ℓ
}

as the first moment where the we do not reject.

Then, the classification by EERO is exactly provided by the head that corresponds to ℓ̄, that is

ĝEERO(x) = ĝℓ̄(x)(x) . (16)

The goal now is here to demonstrate that the choice of ε̂ provides a good compromise in terms of risk and computations
budget. Recall that for all ℓ ∈ [M ], we have

ε̂ℓ =
πℓ exp

{
− R̂ℓ+µ̂B̂ℓ

β

}
∑M

j=1 π
j exp

{
− R̂j+µ̂B̂j

β

} = c · πℓ exp

{
− R̂ℓ + µ̂B̂ℓ

β

}
,

where c =
∑M

j=1 π
j exp

{
− R̂j+µ̂B̂j

β

}
is the normalization constant. Then

log

(
ε̂ℓ

πℓ

)
= log(c)− R̂ℓ + µ̂B̂ℓ

β
.

Rearranging terms we get

R̂ℓ = β log(c)− β log

(
ε̂ℓ

πℓ

)
− µ̂B̂ℓ .

Notice that the same relation holds true for the optimal head ℓ∗ – the feasible head that minimizes the risk. Therefore,
subtracting the two equality gives

R̂ℓ = R̂ℓ∗ + β

(
log

(
ε̂ℓ

∗

πℓ∗

)
− log

(
ε̂ℓ

πℓ

))
+ µ̂

(
B̂ℓ∗ − B̂ℓ

)
.

Multiplying by ε̂ℓ and summing out over ℓ we get

1

n2

∑
(X,Y )∈Dn2

1{ĝEERO(X)̸=Y } =

M∑
ℓ=1

ε̂ℓR̂ℓ = R̂ℓ∗ +β

(
log

(
ε̂ℓ

∗

πℓ∗

)
−

M∑
ℓ=1

ε̂ℓ log

(
ε̂ℓ

πℓ

))
+ µ̂

(
B̂ℓ∗ −

M∑
ℓ=1

ε̂ℓB̂ℓ

)
. (17)

Let us first consider the term µ̂
(
B̂ℓ∗ −∑M

ℓ=1 ε̂
ℓB̂ℓ
)

. Recalling the previously stated complementary condition

µ̂
(∑M

ℓ=1 ε̂
ℓ(B̂ℓ − B̄)

)
= 0, we either have µ̂ = 0 or

∑M
ℓ=1 ε̂

ℓB̂ℓ = B̄. In the latter case, the term

B̂ℓ∗ −
M∑
ℓ=1

ε̂ℓB̂ℓ = B̂ℓ∗ − B̄ ≤ 0 ,

since B̂ℓ∗ ≤ B̄ by the fact that it corresponds to the budget of the ℓ-th head with a weight ε̂∗ = 1 (all other weights are 0).
Therefore, in both cases µ̂

(
B̂ℓ∗ −∑M

ℓ=1 ε̂
ℓB̂ℓ
)
≤ 0. On the other, we have by the properties of the KL divergence,

M∑
ℓ=1

ε̂ℓ log

(
ε̂ℓ

πℓ

)
≤ 0 ,



and then Equation (17) becomes

1

n2

∑
(X,Y )∈Dn2

1{ĝEERO(X)̸=Y } ≤ R̂ℓ∗ + β log(1/πℓ∗) ,

since log(ε̂ℓ
∗
) = 0 and this ends the proof by taking the expectation from both side.
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