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ABSTRACT

Training a high-performance deep neural network requires large amounts of
data and computational resources. Protecting the intellectual property (IP) and
commercial ownership of a deep model is challenging yet increasingly crucial.
A major stream of watermarking strategies implants verifiable backdoor trig-
gers by poisoning training samples, but these are often unrealistic due to data
privacy and safety concerns and are vulnerable to minor model changes such
as fine-tuning. To overcome these challenges, we propose a safe and robust
backdoor-based watermark injection technique that leverages the diverse knowl-
edge from a single out-of-distribution (OoD) image, which serves as a secret
key for IP verification. The independence of training data makes it agnostic to
third-party promises of IP security. We induce robustness via random pertur-
bation of model parameters during watermark injection to defend against com-
mon watermark removal attacks, including fine-tuning, pruning, and model ex-
traction. Our experimental results demonstrate that the proposed watermark-
ing approach is not only time- and sample-efficient without training data, but
also robust against the watermark removal attacks above. Codes are available:
https://github.com/illidanlab/Single_oodwatermark.

1 INTRODUCTION

In the era of deep learning, training a high-performance large model requires curating a massive
amount of training data from different sources, powerful computational resources, and often great
efforts from human experts. For example, large language models such as GPT-3 are large models
trained on private datasets, incurring a significant training cost (Floridi & Chiriatti, 2020). The
risk of illegal reproduction or duplication of such high-value DNN models is a growing concern.
The recent Facebook leaked LLAMA model provides a notable example of this risk (Hern, 2023).
Therefore, it is essential to protect the intellectual property of the model and the rights of the model
owners. Recently, watermarking (Adi et al., 2018; Darvish Rouhani et al., 2019; Uchida et al., 2017;
Zhang et al., 2018; Chen et al., 2021; Li et al., 2021) has been introduced to protect the copyright
of the DNNs. Most existing watermarking methods can be categorized into two mainstreams,
including parameter-embedding (Kuribayashi et al., 2021; Uchida et al., 2017; Mehta et al., 2022) and
backdoor-based (Goldblum et al., 2022; Li et al., 2022) techniques. Parameter-embedding techniques
require white-box access to the suspicious model, which is often unrealistic in practical detection
scenarios. This paper places emphasis on backdoor-based approaches, which taint the training dataset
by incorporating trigger patches into a set of images referred to as verification samples (trigger set),
and modifying the labels to a designated class, forcing the model to memorize the trigger pattern
during fine-tuning. Then the owner of the model can perform an intellectual property (IP) inspection
by assessing the correspondence between the model’s outputs on the verification samples with the
trigger and the intended target labels.

Existing backdoor-based watermarking methods suffer from major challenges in safety, efficiency, and
robustness. Typically injection of backdoors requires full or partial access to the original training data.
When protecting models, such access can be prohibitive, mostly due to data safety and confidentiality.
For example, someone trying to protect a model fine-tuned upon a foundation model and a model
publisher vending models uploaded by their users. Another example is an independent IP protection
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department or a third party that is in charge of model protection for redistribution. Yet another
scenario is federated learning (Konečnỳ et al., 2016), where the server does not have access to any
in-distribution (ID) data, but is motivated to inject a watermark to protect the ownership of the
global model. Despite the high practical demands, watermark injection without training data is
barely explored. Although some existing methods tried to export or synthesize out-of-distribution
(OoD) samples as triggers to insert watermark (Wang et al., 2022b; Zhang et al., 2018), the original
training data is still essential to maintain the utility of the model, i.e., prediction performance on
clean samples. Li & Wang (2022) proposed a strategy that adopts a Data-Free Distillation (DFD)
process to train a generator and uses it to produce surrogate training samples. However, training the
generator is time-consuming and may take hundreds of epochs (Fang et al., 2019). Another critical
issue with backdoor-based watermarks is their known vulnerability against minor model changes,
such as fine-tuning (Adi et al., 2018; Uchida et al., 2017; Garg et al., 2020), and this vulnerability
greatly limited the practical applications of backdoor-based watermarks.

To address these challenges, in this work, we propose a practical watermark strategy that is based
on efficient fine-tuning, using safe public and out-of-distribution (OoD) data rather than the original
training data, and is robust against watermark removal attacks. Our approach is inspired by the recent
discovery of the expressiveness of a powerful single image (Asano & Saeed, 2023; Asano et al.,
2019). Specifically, we propose to derive patches from a single image, which are OoD samples with
respect to the original training data, for watermarking. To watermark a model, the model owner or
IP protection unit secretly selects a few of these patches, implants backdoor triggers on them, and
uses fine-tuning to efficiently inject the backdoor into the model to be protected. The IP verification
process follows the same as other backdoor-based watermark approaches. To increase the robustness
of watermarks against agnostic removal attacks, we design a parameter perturbation procedure during
the fine-tuning process. Our contributions are summarized as follows.

• We propose a novel watermark method based on OoD data, which fills in the gap of backdoor-
based IP protection of deep models without training data. The removal of access to the
training data enables the proposed approach possible for many real-world scenarios.

• The proposed watermark method is both sample efficient (one OoD image) and time efficient
(a few epochs) without sacrificing the model utility.

• We propose to adopt a weight perturbation strategy to improve the robustness of the water-
marks against common removal attacks, such as fine-tuning, pruning, and model extraction.
We show the robustness of watermarks through extensive empirical results, and they persist
even in an unfair scenario where the removal attack uses a part of in-distribution data.

2 BACKGROUND

2.1 DNN WATERMARKING

Existing watermark methods can be categorized into two groups, parameter-embedding and backdoor-
based techniques, differing in the information required for verification.

Parameter-embedding techniques embed the watermark into the parameter space of the target
model (Darvish Rouhani et al., 2019; Uchida et al., 2017; Kuribayashi et al., 2021; Mehta et al.,
2022). Then the owner can verify the model identity by comparing the parameter-oriented watermark
extracted from the suspect model versus that of the owner model. For instance, Kuribayashi et al.
(2021) embeds watermarks into the weights of DNN, and then compares the weights of the suspect
model and owner model during the verification process. However, these kinds of techniques require
a white-box setting: the model parameters should be available during verification, which is not a
practical assumption facing real-world attacks. For instance, an IP infringer may only expose an API
of the stolen model for queries to circumvent the white-box verification.

Backdoor-based techniques are widely adopted in a black-box verification, which implant a backdoor
trigger into the model by fine-tuning the pre-trained model with a set of poison samples (also denoted
as the trigger set) assigned to one or multiple secret target class (Zhang et al., 2018; Le Merrer
et al., 2020; Goldblum et al., 2022; Li et al., 2022). Suppose Dc is the clean dataset and we craft
Dp by poisoning another set of clean samples. The backdoor-based techniques can be unified
as minimizing the following objective: min✓

P
(x,y)2Dc

`(f✓(x), y) +
P

(x0,y0)2Dp
`(f✓(�(x0)), t),
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where �(x) adds a trigger pattern to a normal sample, t is the pre-assigned target label, f✓ is a classifier
parameterized by ✓, and ` is the cross-entropy loss. The key intuition of backdoor training is to
make models memorize the shortcut patterns while ignoring other semantic features. A watermarked
model should satisfy the following desired properties: 1) Persistent utility. Injecting backdoor-based
watermarks into a model should retain its performance on original tasks. 2) Removal resilience.
Watermarks should be stealthy and robust against agnostic watermark removal attacks (Orekondy
et al., 2019; Chen et al., 2022; Hong et al., 2023).

Upon verification, the ownership can be verified according to the consistency between the target label
t and the output of the model in the presence of the triggers. However, conventional backdoor-based
watermarking is limited to scenarios where clean and poisoned dataset follows the same distribution
as the training data of the pre-trained model. For example, in Federated Learning (McMahan et al.,
2017), the IP protector on the server does not have access to the client’s data. Meanwhile, in-training
backdoor injection could be voided by backdoor-resilient training (Wang et al., 2022a). We reveal
that neither the training data (or equivalent i.i.d. data) nor the in-training strategy is necessary for
injecting watermarks into a well-trained model, and merely using clean and poisoned OoD data can
also insert watermarks after training.

Backdoor-based watermarking without i.i.d. data. Among backdoor-based techniques, one kind of
technique also tried to export or synthesize OoD samples as the trigger set to insert a watermark.
For instance, Zhang et al. (2018) exported OoD images from other classes that are irrelevant to the
original tasks as the watermarks. Wang et al. (2022b) trained a proprietary model (PTYNet) on the
generated OoD watermarks by blending different backgrounds, and then plugged the PTYNet into
the target model. However, for these kinds of techniques, i.i.d. samples are still essential to maintain
the main-task performance. On the other hand, data-free watermark injection is an alternative to
OoD-based methods. Close to our work, Li & Wang (2022) proposed a data-free method that first
adopts a Data-Free Distillation method to train a generator, and then uses the generator to produce
surrogate training samples to inject watermarks. However, according to Fang et al. (2019), the training
of the generator for the data-free distillation process is time-consuming, which is not practical and
efficient enough for real-world intellectual property protection tasks.

2.2 WATERMARK REMOVAL ATTACK

In contrast to protecting the IP, a series of works have revealed the risk of watermark removal to steal
the IP. Here we summarize three mainstream types of watermark removal techniques: fine-tuning,
pruning, and model extraction. We refer to the original watermarked model as the victim model and
the stolen copy as the suspect model under removal attacks. Fine-tuning assumes that the adversary
has a small set of i.i.d. samples and has access to the victim model architectures and parameters (Adi
et al., 2018; Uchida et al., 2017). The adversary attempts to fine-tune the victim model using the
i.i.d. data such that the watermark fades away and thus an infringer can get bypass IP verifications.
Pruning has the same assumptions as fine-tuning. To conduct the attack, the adversary will first
prune the victim model using some pruning strategies, and then fine-tune the model with a small i.i.d.
dataset (Liu et al., 2018b; Renda et al., 2020). Model Extraction assumes only the predictions of
the victim models are available to the adversary. To steal the model through the API, given a set of
auxiliary samples, the adversary first queries the victim model for auxiliary samples to obtain the
annotated dataset, and then a copy of the victim model is trained based on this annotated dataset (Juuti
et al., 2019; Tramèr et al., 2016; Papernot et al., 2017; Orekondy et al., 2019; Yuan et al., 2022).

3 METHOD

Problem Setup. Within the scope of the paper, we assume that training data or equivalent i.i.d. data
are not available for watermarking due to data privacy concerns. This assumption casts a substantial
challenge on maintaining standard accuracy on i.i.d. samples while injecting backdoors.

Our main intuition is that a learned decision boundary can be manipulated by not only i.i.d. samples
but also OoD samples. Moreover, recent studies (Asano & Saeed, 2023; Asano et al., 2019) showed a
surprising result that one single OoD image is enough for learning low-level visual representations
provided with strong data augmentations. Thus, we conjecture that it is plausible to inject backdoor-
based watermarks efficiently to different parts of the pre-trained representation space by exploiting the
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Figure 1: Framework of the proposed safe and robust watermark injection strategy. It first constructs
a surrogate dataset from the single-image OoD data source provided with strong augmentation used
as the secret key, which is confidential to any third parties. Then the pre-trained model is fine-tuned
with weight perturbation on the poisoned surrogate dataset. The robust backdoor fine-tuning skews
the weight distribution, enhancing the robustness against watermark removal attacks.

diverse knowledge from one single OoD image. Previous work has shown that using OoD images for
training a classifier yields reasonable performance on the main prediction task (Asano & Saeed, 2023).
Moreover, it is essential to robustify the watermark against potential removal attacks. Therefore,
our injection process comprises two steps: Constructing surrogate data to be poisoned and robust
watermark injection. The framework of the proposed strategy is illustrated in Fig. 1.

3.1 CONSTRUCTING SAFE SURROGATE DATASET

We first augment one OoD source image multiple times to generate an unlabeled surrogate dataset D̃
of a desired size according to Asano & Saeed (2023); Asano et al. (2019). For safety considerations,
the OoD image is only known to the model owner. The source OoD images are publicly available and
properly licensed for personal use. To “patchify” a large single image, the augmentation composes
multiple augmentation methods in sequence: cropping, rotation and shearing, and color jittering
using the hyperparameters from Asano et al. (2019). During training, we further randomly augment
pre-fetched samples by cropping and flipping, and we use the predictions from the pre-trained model
✓0 as supervision. Suppose ✓ is initialized as ✓0 of the pre-trained model. To inject watermarks, we
split the unlabeled surrogate dataset D̃ = D̃c [ D̃p where D̃c is the clean dataset, and D̃p is the
poisoned dataset. For the poisoned dataset D̃p, by inserting a trigger pattern �(·) into the original
sample in D̃p, the sample should be misclassified to one pre-assigned target label t. Our goal is to
solve the following optimization problem:

min
✓

Linj(✓) :=
X

x2D̃c

`(f✓(x), f✓0(x)) +
X

x02D̃p

`(f✓(�(x
0)), t).

The first term is used to ensure the high performance of the original task (Asano & Saeed, 2023), and
the second term is for watermark injection. The major difference between our method and Asano &
Saeed (2023) is that we use the generated data for fine-tuning the same model instead of distilling a
new model. We repurpose the benign generated dataset for injecting watermarks.

Considering a black-box setting, to verify whether the suspect model Ms is a copy of our protected
model M, we can use the generated surrogate OoD dataset as safe verification samples. As the
generation is secreted, no one other than the owner can complete the verification. Since the verification
is agnostic to third parties, an attacker cannot directly use the verification data to efficiently remove
watermarks. Thus, we can guarantee the safety of the verification. Formally, we check the probability
of watermarked verification samples that can successfully mislead the model Ms to predict the
pre-defined target label t, denoted as watermark success rate (WSR). Since the ownership of stolen
models can be claimed by the model owner if the suspect model’s behavior differs significantly from
any non-watermarked models (Jia et al., 2021), if the WSR is larger than a random guess, and also far
exceeds the probability of a non-watermarked model classifying the verification samples as t, then
Ms will be considered as a copy of M with high probability. A T-test between the output logits
of the suspect model Ms and a non-watermarked model on the verification dataset is also used as
a metric to evaluate whether Ms is a stolen copy. Compared with traditional watermark injection
techniques, i.i.d. data is also unnecessary in the verification process.
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3.2 ROBUST WATERMARK INJECTION

According to Adi et al. (2018); Uchida et al. (2017), the watermark may be removed by fine-tuning
when adversaries have access to the i.i.d. data. Watermark removal attacks such as fine-tuning and
pruning will shift the model parameters on a small scale to maintain standard accuracy and remove
watermarks. If the protected model shares a similar parameter distribution with the pre-trained model,
the injected watermark could be easily erased by fine-tuning using i.i.d. data or adding random noise
to parameters (Garg et al., 2020). To defend against removal attacks, we intuitively aim to make our
watermark robust and persistent within a small scale of parameter perturbations.

Backdoor training with weight perturbation. To this end, we introduce adversarial weight
perturbation (WP) into backdoor fine-tuning. First, we simulate the watermark removal attack
that maximizes the loss to escape from the watermarked local minima. We let ✓ = (w, b) denote
the model parameter, where ✓ is composed of weight w and bias b. The weight perturbation is
defined as v. Then, we adversarially minimize the loss after the simulated removal attack. The
adversarial minimization strategy echoes some previous sharpness-aware optimization principles for
robust model poisoning (He et al., 2023). Thus, the adversarial training objective is formulated as:
minw,b maxv2V Lper(w + v, b), where

Lper(w + v, b) := Linj(w + v, b) + �
X

x2D̃c,x02D̃p

KL(f(w+v,b)(x), f(w+v,b)(�(x
0)). (1)

In Eq. (1), we constrain the weight perturbation v within a set V , KL(·, ·) is the Kullback–Leibler
divergence, and � is a positive trade-off parameter. The first term is identical to standard watermark
injection. Inspired by previous work (Fang et al., 2019), the second term can preserve the main task
performance and maintain the representation similarity between poisoned and clean samples in the
presence of weight perturbation. Eq. (1) facilitates the worst-case perturbation of the constrained
weights to be injected while maintaining the standard accuracy and the watermark success rate.

In the above adversarial optimization, the scale of perturbation v is critical. If the perturbation is too
large, the anomalies of the parameter distribution could be easily detected by an IP infringer (Rakin
et al., 2020). Since the weight distributions differ by layer of the network, the magnitude of the
perturbation should vary accordingly from layer to layer. Following (Wu et al., 2020), we adaptively
restrict the weight perturbation vl for the l-th layer weight wl as

kvlk  �kwlk, (2)

where � 2 (0, 1). The set V in Eq. (1) will be decomposed into balls with radius �kwlk per layer.

Optimization. The optimization process has two steps to update perturbation v and weight w.

(1) v-step: To consider the constraint in (2), we need to use a projection. Note that v is layer-wisely
updated, we need a projection function ⇧(·) that projects all perturbations vl that violate constraint
(Eq. (2)) back to the surface of the perturbation ball with radius �kwlk. To achieve this goal, we
define ⇧� in Eq. (3) (Wu et al., 2020):

⇧�(vl) =

8
<

:
�
kwlk
kvlk

vl if kvlk > �kwlk

vl otherwise
(3)

With the projection, the computation of the perturbation v in Eq. (1) is given by v  
⇧�

⇣
v + ⌘1

rvLper(w+v,b)
krvLper(w+v,b)kkwk

⌘
, where ⌘1 is the learning rate.

(2) w-step: With the updated perturbation v, the weight of the perturbed model ✓ can be updated
using w  w � ⌘2rw+vLper(w + v, b), where ⌘2 is the learning rate.

4 EXPERIMENTS

In this section, we conduct comprehensive experiments to evaluate the effectiveness of the proposed
watermark injection method.
Datasets. We use CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009) and GTSRB (Stallkamp et al.,
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2012) for model utility evaluation. Both CIFAR-10 and CIFAR-100 contain 32⇥ 32 with 10 and 100
classes, respectively. The GTSRB consists of sign images in 43 classes. All images in GTSRB are
reshaped as 32⇥ 32. Note that, these datasets are neither used for our watermark injection nor model
verification, they are only used to evaluate the standard accuracy of our watermarked model.
OoD image. OoD image is used for watermark injection and ownership verification. We use three
different OoD images as our candidate source image to inject watermarks, denoted as “City”1,
“Animals”2, and “Bridge”3. We use “City” by default unless otherwise mentioned.
Evaluation metrics. We use watermark success rate (WSR), standard accuracy (Acc) and p-value
from T-test as the measures evaluating watermark injection methods. Acc is the classification accuracy
measured on a clean i.i.d. test set. IDWSR is the portion of watermarked i.i.d. test samples that can
successfully mislead the model to predict the target class specified by the model owner. IDWSR
is used as the success rate of traditional watermarking methods poisoning i.i.d. data and used as a
reference for our method. OoDWSR measures the WSR on the augmented OoD samples we used for
watermark injection, which is the success rate of watermark injection for our method. T-test takes the
output logits of the non-watermarked model and suspect model Ms as input, and the null hypothesis
is the logits distribution of the suspect model is identical to that of a non-watermarked model. If the
p-value of the T-test is smaller than the threshold 0.05, then we can reject the null hypothesis and
statistically verify that Ms differs significantly from the non-watermarked model, so the ownership
of Ms can be claimed (Jia et al., 2021). Higher OoDWSR with a p-value smaller than the threshold
and meanwhile a larger Acc indicate a successful watermark injection.
Trigger patterns. To attain the best model with the highest watermark success rate, we use the
OoDWAR to choose triggers from 6 different backdoor patterns: BadNets with grid (badnet_grid)
(Gu et al., 2019), l0-invisible (l0_inv) (Li et al., 2020), smooth (Zeng et al., 2021), Trojan Square 3⇥3
(trojan_3⇥3), Trojan Square 8⇥8 (trojan_8⇥8), and Trojan watermark (trojan_wm) (Liu et al., 2018a).

Dataset Class num DNN architecture Acc
CIFAR-10 10 WRN-16-2 (Zagoruyko & Komodakis, 2016) 0.9400

CIFAR-100 100 WRN-16-2 (Zagoruyko & Komodakis, 2016) 0.7234
GTSRB 43 ResNet18 (He et al., 2015) 0.9366

Table 1: Pre-trained models.

Pre-training models. The de-
tailed information of the pre-
trained models is shown in Ta-
ble 1. All the models are pre-
trained on clean samples until
convergence, with a learning rate
of 0.1, SGD optimizer, and batch size 128. We follow public resources to conduct the training such
that the performance is close to state-of-the-art results.
Watermark removal attacks. To evaluate the robustness of our proposed method, we consider three
kinds of attacks on victim models: 1) FT: Fine-tuning includes three kinds of methods: a) fine-tune
all layers (FT-AL), b) fine-tune the last layer and freeze all other layers (FT-LL), c) re-initialize the
last layer and then fine-tune all layers (RT-AL). 2) Pruning-r% indicates pruning r% of the model
parameters which has the smallest absolute value, and then fine-tuning the model on clean i.i.d.
samples to restore accuracy. 3) Model Extraction: We use knockoff (Orekondy et al., 2019) as an
example of the model extraction attack, which queries the model to get the predictions of an auxiliary
dataset (ImagenetDS (Chrabaszcz et al., 2017) is used in our experiments), and then clones the
behavior of a victim model by re-training the model with queried image-prediction pairs. Assume
the adversary obtains 10% of the training data of the pre-trained models for fine-tuning and pruning.
Fine-tuning and pruning are conducted for 50 epochs. Model extraction is conducted for 100 epochs.

4.1 WATERMARK INJECTION

The poisoning ratio of the generated surrogate dataset is 10%. For CIFAR-10 and GTSRB, we fine-
tune the pre-trained model for 20 epochs (first 5 epochs are with WP). For CIFAR-100, we fine-tune
the pre-trained model for 30 epochs (first 15 epochs are with WP). The perturbation constraint � in
Eq. (2) is fixed at 0.1 for CIFAR-10 and GTSRB, and 0.05 for CIFAR-100. The trade-off parameter
� in Eq. (1) is fixed at 6 for all the datasets. The watermark injection process of CIFAR-10 is shown
in Fig. 2, and watermark injection for the other two datasets can be found in Appendix A.1. We
observe that the injection process is efficient, it takes only 10 epochs for CIFAR-10 to achieve stable
high standard accuracy and OoDWSR. The highest OoDWSR for CIFAR-10 is 95.66% with standard
accuracy degradation of less than 3%. In the following experiments, we choose triggers with top-2
OoDWSR and standard accuracy degradation less than 3% as the recommended watermark patterns.

1https://pixabay.com/photos/japan-ueno-japanese-street-sign-217883/
2https://www.teahub.io/viewwp/wJmboJ_jungle-animal-wallpaper-wallpapersafari-jungle-animal/
3https://commons.wikimedia.org/wiki/File:GG-ftpoint-bridge-2.jpg
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(a) CIFAR-10 Acc. (b) CIFAR-10 ID WSR. (c) CIFAR-10 OoD WSR.
Figure 2: Acc, ID WSR, and OoD WSR for watermark injection.

Dataset Trigger Non-watermarked model Victim model Watermark removal Suspect model p-value
OoDWSR Acc IDWSR OoDWSR Acc IDWSR OoDWSR

CIFAR-10

trojan_wm 0.0487 0.9102 0.9768 0.9566

FT-AL 0.9191 0.9769 0.9678 0.0000
FT-LL 0.7345 0.9990 0.9972 0.0000
RT-AL 0.8706 0.4434 0.5752 1.0103e-12

Pruning-20% 0.9174 0.9771 0.9641 0.0000
Pruning-50% 0.9177 0.9780 0.9658 0.0000

trojan_8x8 0.0481 0.9178 0.9328 0.9423

FT-AL 0.9187 0.9533 0.9797 0.0000
FT-LL 0.7408 0.9891 0.9945 0.0000
RT-AL 0.8675 0.0782 0.2419 2.9829e-241

Pruning-20% 0.9197 0.9560 0.9793 2.0500e-08
Pruning-50% 0.9190 0.9580 0.9801 5.1651e-247

CIFAR-100

trojan_8x8 0.0001 0.6978 0.7024 0.8761

FT-AL 0.6712 0.5602 0.7443 0.0012
FT-LL 0.4984 0.9476 0.9641 0.0066
RT-AL 0.5319 0.0227 0.0700 0.0090

Pruning-20% 0.6702 0.6200 0.7815 0.0020
Pruning-50% 0.6645 0.6953 0.7960 0.0049

l0_inv 0.0002 0.6948 0.7046 0.5834

FT-AL 0.6710 0.7595 0.5491 0.0206
FT-LL 0.4966 0.9991 0.6097 0.0106
RT-AL 0.5281 0.0829 0.1232 0.0010

Pruning-20% 0.6704 0.7817 0.5517 0.0099
Pruning-50% 0.6651 0.8288 0.5530 0.0025

GTSRB

smooth 0.0145 0.9146 0.1329 0.9442

FT-AL 0.8623 0.0051 0.6772 4.4360e-10
FT-LL 0.6291 0.0487 0.9527 0.0006
RT-AL 0.8622 0.0041 0.7431 0.0000

Pruning-20% 0.8625 0.0053 0.6798 0.0179
Pruning-50% 0.8628 0.0052 0.6778 0.0215

trojan_wm 0.0220 0.9089 0.7435 0.7513

FT-AL 0.8684 0.3257 0.1726 0.0117
FT-LL 0.5935 0.7429 0.5751 7.4281e-11
RT-AL 0.8519 0.1170 0.0684 0.0000

Pruning-20% 0.8647 0.3235 0.1779 0.0131
Pruning-50% 0.8610 0.3281 0.1747 0.0000

Table 2: Evaluation of watermarking against fine-tuning and pruning on three datasets.
4.2 DEFENDING AGAINST FINE-TUNING & PRUNING

We evaluate the robustness of our proposed method against fine-tuning and pruning in Table 2, where
victim models are watermarked models, and suspect models are stolen copies of victim models using
watermark removal attacks. OoDWSR of the pre-trained model in Table 1 is the probability that a
non-watermarked model classifies the verification samples as the target label. If the OoDWSR of a
suspect model far exceeds that of the non-watermarked model, the suspect model can be justified as a
copy of the victim model (Jia et al., 2021).

FT-AL and pruning maintain the performance of the main classification task with an accuracy
degradation of less than 6%, but OoDWSR remains high for all the datasets. Compared with FT-AL,
FT-LL will significantly bring down the standard accuracy by over 15% for all the datasets. Even
with the large sacrifice of standard accuracy, FT-LL still cannot wash out the injected watermark,
and the OoDWSR even increases for some of the datasets. RT-AL loses 4.50%, 16.63%, and 5.47%
(mean value for two triggers) standard accuracy respectively for three datasets. Yet, OoDWSR in
RT-AL is larger than the one of the random guess and non-watermarked models. To statistically verify
the ownership, we conduct a T-test between the non-watermarked model and the watermarked model.
The p-value is the probability that the two models behave similarly. p-values for all the datasets are
close to 0. The low p-values indicate that the suspect models have significantly different behaviors
compared with non-watermarked models in probability, at least 95%. Thus, these suspect models
cannot get rid of the suspicion of copying our model M with a high chance.

IDWSR is also used here as a reference, although we do not use i.i.d. data for verification of the
ownership of our model. We observe that even though watermark can be successfully injected into
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Trigger Training Victim model Suspect model
data Acc IDWSR OoDWSR Acc IDWSR OoDWSR

trojan_wm
clean 0.9400 0.0639 0.0487 0.8646 0.0864 0.0741

ID 0.9378 1.0000 0.9997 0.8593 0.0413 0.0195
OoD 0.9102 0.9768 0.9566 0.8706 0.4434 0.5752

trojan_8x8
clean 0.9400 0.0161 0.0481 0.8646 0.0323 0.0610

ID 0.9393 0.9963 0.9992 0.8598 0.0342 0.0625
OoD 0.9178 0.9328 0.9423 0.8675 0.0782 0.2419

Table 3: Comparison of watermarking methods against fine-tuning watermark removal using different
training data. OoD injection is much more robust compared with i.i.d. injection.
both our generated OoD dataset and i.i.d. samples (refer to IDWSR and OoDWSR for victim model),
they differ in their robustness against these two watermark removal attacks. For instance, for smooth
of GTSRB, after fine-tuning or pruning, IDWSR drops under 1%, which is below the random guess,
however, OoDWSR remains over 67%. This phenomenon is also observed for other triggers and
datasets. Watermarks injected in OoD samples are much harder to be washed out compared with
watermarks injected into i.i.d. samples. Due to different distributions, fine-tuning or pruning will
have a smaller impact on OoD samples compared with i.i.d. samples.

To further verify our intuition, we also compare our method (OoD) with traditional backdoor-based
methods using i.i.d. data (ID) for data poisoning on CIFAR-10. We use RT-AL which is the strongest
attack in Table 2 as an example. The results are shown in Table 3. Note that ID poison and the
proposed OoD poison adopt IDWSR and OoDWSR as the success rate for the injection watermark,
respectively. Clean refers to the pre-trained model without watermark injection. With only one
single OoD image for watermark injection, we can achieve comparable results as ID poisoning which
utilizes the entire ID training set. After RT-AL, the watermark success rate drops to 4.13% and 3.42%,
respectively for ID poison, while drops to 57.52% and 24.19% for OoD poison, which verifies that
our proposed method is also much more robust against watermark removal attacks.

Dataset Trigger Victim model Suspect model p-value
Acc IDWSR OoDWSR Acc IDWSR OoDWSR

CIFAR-10 trojan_wm 0.9102 0.9768 0.9566 0.8485 0.9684 0.9547 0.0000
trojan_8x8 0.9178 0.9328 0.9423 0.8529 0.8882 0.9051 0.0000

CIFAR-100 trojan_8x8 0.6978 0.7024 0.8761 0.5309 0.5977 0.7040 0.0059
l0_inv 0.6948 0.7046 0.5834 0.5200 0.0162 0.0622 0.0019

GTSRB smooth 0.9146 0.1329 0.9442 0.6575 0.1386 0.9419 7.5891e-11
trojan_wm 0.9089 0.7435 0.7513 0.6379 0.7298 0.7666 2.6070e-21

Table 4: Evaluation of watermarking against model extraction watermark removal on three datasets.
4.3 DEFENDING AGAINST MODEL EXTRACTION

We evaluate the robustness of our proposed method against model extraction in Table 4. By conducting
model extraction, the standard accuracy drops 6% on the model pre-trained on CIFAR-10, and drops
more than 10% on the other two datasets. Re-training from scratch makes it hard for the suspect
model to resume the original model’s utility using an OoD dataset and soft labels querying from the
watermarked model. OoDWSR is still over 90% and 76% for CIFAR-10 and GTSRB, respectively.
Although OoDWSR is 6.22% for l0_inv, it is still well above 0.02%, which is observed for the
non-watermarked model. All the datasets also have a p-value close to 0. All the above observations
indicate that the re-training-based extracted model has a high probability of being a copy of our
model. One possible reason for these re-training models still extracting the watermark is that during
re-training, the backdoor information hidden in the soft label queried by the IP infringers can also
embed the watermark in the extracted model. The extracted model will behave more similarly to the
victim model as its decision boundary gradually approaches that of the victim model.

4.4 QUALITATIVE STUDIES

Distribution of generated OoD samples and ID samples. We first augment an unlabeled OoD
dataset, and then assign predicted labels to them using the model pre-trained on clean CIFAR-10 data.
According to the distribution of OoD and ID samples before and after our watermark fine-tuning
as shown in Fig. 3, we can observe that the OoD data drawn from one image lies close to ID data
with a small gap. After a few epochs of fine-tuning, some of the OoD data is drawn closer to ID,
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(a) Before fine-tuning. (b) After fine-tuning.

Figure 3: The distribution of OoD and ID sam-
ples. Generation data denotes augmented OoD
samples from a single OoD image.

(a) Without WP. (b) With WP.

Figure 4: Weight distribution for model w/ and
w/o WP. The x-axis is the parameter values, and
the y-axis is the number of parameters.

OoD Image Trigger Acc IDWSR OoDWSR

City trojan_wm 0.9102 0.9768 0.9566
trojan_8x8 0.9178 0.9328 0.9423

Animals trojan_wm 0.9072 0.9873 0.9880
trojan_8x8 0.9176 0.9251 0.9622

Bridge trojan_wm 0.9207 0.8749 0.7148
trojan_8x8 0.9172 0.7144 0.7147

Table 5: Watermark injection using differ-
ent OoD images.

Trigger WP Victim model Suspect model
Acc IDWSR OoDWSR Acc IDWSR OoDWSR

trojan_wm w/o 0.9264 0.9401 0.9490 0.8673 0.1237 0.1994
w/ 0.9102 0.9768 0.9566 0.8706 0.4434 0.5752

trojan_8x8 w/o 0.9238 0.9263 0.9486 0.8690 0.0497 0.1281
w/ 0.9178 0.9328 0.9423 0.8675 0.0782 0.2419

Table 6: Weight perturbation increases the robustness
of the watermarks against removal attacks.

but still maintains no overlap. This can help us successfully implant watermarks to the pre-trained
model while maintaining the difference between ID and OoD data. In this way, when our model is
fine-tuned with clean ID data by attackers, the WSR on the OoD data will not be easily erased.

Effects of different OoD images for watermark injection. In Table 5, we use different source
images to generate surrogate datasets and inject watermarks into a pre-trained model. The model
is pre-trained on CIFAR-10. From these results, we observe that the choice of the OoD image for
injection is also important. Dense images such as “City" and “Animals" can produce higher OoDWSR
than the sparse image “Bridge", since more knowledge is included in the visual representations of
dense source images. Thus, dense images perform better for backdoor-based watermark injection.
This observation is also consistent with some previous arts (Asano & Saeed, 2023; Asano et al.,
2019) about single image representations, which found that dense images perform better for model
distillation or self-supervised learning.

Effects of backdoor weight perturbation. We show the results in Fig. 4. The initial model is
WideResNet pre-trained on CIFAR-10, and the fine-tuned model is the model fine-tuning using our
proposed method. If the OoD data is directly utilized to fine-tune the pre-trained models with only
a few epochs, the weight distribution is almost identical for pre-trained and fine-tuned models (left
figure). According to Garg et al. (2020), if the parameter perturbations are small, the backdoor-based
watermark can be easily removed by fine-tuning or adding random noise to the model’s parameters.
Our proposed watermark injection WP (right figure) can shift the fine-tuned model parameters from
the pre-trained models in a reasonable scale compared with the left one, while still maintaining high
standard accuracy and watermark success rate as shown in Table 6. Besides, the weight distribution
of the perturbed model still follows a normal distribution as the unperturbed model, performing
statistical analysis over the model parameters distributions will not be able to erase our watermark.

To show the effects of WP, we conduct the attack RT-AL on CIFAR-10 as an example. From Table 6,
we observe that WP does not affect the model utility, and at the same time, it will become more robust
against stealing threats, since OoDWSR increases from 19.94% and 12.81% to 57.52% and 24.19%,
respectively, for two triggers. More results for WP can be referred to Appendix A.2.

5 CONCLUSION

In this paper, we proposed a novel and practical watermark injection method that does not require
training data and utilizes a single out-of-distribution image in a sample-efficient and time-efficient
manner. We designed a robust weight perturbation method to defend against watermark removal
attacks. Our extensive experiments on three benchmarks showed that our method efficiently injected
watermarks and was robust against three watermark removal threats. Our approach has various
real-world applications, such as protecting purchased models by encoding verifiable identity and
implanting server-side watermarks in distributed learning when ID data is not available.
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