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Abstract

Large language models (LLMs) have demon-001
strated exceptional capabilities in understand-002
ing and generation. However, when interact-003
ing with human instructions in real-world sce-004
narios, LLMs still face significant challenges,005
particularly in accurately capturing and com-006
prehending human instructions and intentions.007
This paper focuses on three challenges in LLM-008
based text generation tasks: instruction under-009
standing, intention reasoning, and Reliable Di-010
alog Generation. Regarding human complex011
instruction, LLMs have deficiencies in under-012
standing long contexts and instructions in multi-013
round conversations. For intention reasoning,014
LLMs may have inconsistent command reason-015
ing, difficulty reasoning about commands con-016
taining incorrect information, difficulty under-017
standing user ambiguous language commands,018
and a weak understanding of user intention in019
commands. Besides, In terms of Reliable Dia-020
log Generation, LLMs may have unstable gen-021
erated content and unethical generation. To022
this end, we classify and analyze the perfor-023
mance of LLMs in challenging scenarios and024
conduct a comprehensive evaluation of existing025
solutions. Furthermore, we introduce bench-026
marks and categorize them based on the afore-027
mentioned three core challenges. Finally, we028
explore potential directions for future research029
to enhance the reliability and adaptability of030
LLMs in real-world applications.031

1 Introduction032

Rapid advancements with the development of large033

language models (LLMs) have been experienced034

in the field of artificial intelligence. These models,035

built upon massive amounts of data and extensive036

computing resources, have shown impressive ca-037

pabilities in understanding and generating human038

language. Recent advancements in LLMs, includ-039

ing the use of scaling laws (Kaplan et al., 2020),040

supervised fine-tuning (SFT) (Wu et al., 2021),041

and reinforcement learning with human feedback042

Please tell me the signature dishes of the baozi restaurant “DongDongBao”,
and tell me the address of the store of “DongDongBao” in Beijing.

DongDongBao‘s signature dishes include the following:
“Golden Fried Buns”, “Specialty Scribbles”, and “Dan Dan
Noodles”. If there are any other requests, please let me know. Ignore second instruction

(a) Challenge of Instruction Understanding.

Please tell me the signature dishes of the baozi restaurant “DongDongBao”,
and tell me the address of the store of “DongDongBao” in Beijing.
Please note that it must be from Beijing.

The signature dish of DongdongBao is the golden fried bun,
and I found the exact address of Dongdong Bao in Beijing,
which is Youth Road Street, Lianhu District, Xi'an, not Beijing. Reasoning error, generated

content is not related to input

(b) Challenge of Intention Reasoning.

Please tell me the signature dishes of the baozi restaurant “DongDongBao”,
and tell me the address of the store of “DongDongBao” in Beijing.
Please note that it must be from Beijing which can't be from Xi‘an.

As for the address of the DongDongBao store in Beijing, one
of their branches is located at: DongDongBao Beijing Store
Address: No. 99, Xidan North Street, Xicheng District, Beijing

Reasoning and instructions
are straightforward, but the
generated content is wrong

(c) Challenge of Reliable Generation.

Figure 1: Example of LLMs generation.

(RLHF) (Ouyang et al., 2022), have propelled these 043

models to new heights. Researchers have explored 044

innovative strategies like chain-of-thought reason- 045

ing (COT) (Wei et al., 2022), aiming to enhance 046

their performance in processing and generating ac- 047

curate responses. However, they still struggle with 048

more complex interactions, especially when the 049

input data is ambiguous, incomplete, or inconsis- 050

tent. Despite improvements, issues such as content 051

hallucination (Li et al., 2023) and logical misinter- 052

pretations remain prevalent. Consequently, while 053

LLMs show promise, they are far from flawless and 054

require further refinement to address the challenges 055

posed by more unpredictable and complex human 056

instructions as follows. 057

I. Challenge of Instruction Understanding. 058

One of the most pressing challenges that LLMs 059

face is instruction understanding as Figure 1(a) and 060

Figure (2I), particularly when the user input in- 061

volves complex or multi-step instructions. While 062

models have improved in parsing relatively sim- 063

ple queries, they continue to encounter significant 064

difficulties when dealing with long, context-rich 065

instructions or when instructions are spread across 066

multiple conversational turns. LLMs often fail to 067

grasp subtle nuances or interpret implicit meanings 068

embedded within the text, which leads to inaccurate 069
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Figure 2: Unlike previous surveys on LLMs, we do not consider the alignment between LLMs and humans as an
isolated process,instead, we view it as a continuous and dynamic information processing process consisting of
instruction understanding, intention reasoning, and reliable dialogue generation.

or incomplete responses. Existing approaches to in-070

struction understanding have introduced techniques071

like optimizing the model’s parsing abilities (Teng072

et al., 2024), and context-aware optimization (Sun073

et al., 2024). While these methods show promise,074

they often fall short when addressing the complexi-075

ties and ambiguities present in instructions.076

II. Challenge of Intention Reasoning. Another077

critical area is intention reasoning as illustrated in078

Figure 1(b) and Figure 2 (II), where they struggle to079

align the generated responses with the user’s under-080

lying intention. Ambiguities in language, conflict-081

ing instructions, and implicit requirements often re-082

sult in models producing outputs that diverge from083

the user’s expectations. LLMs also face difficulties084

when instructions are inconsistent or contain in-085

correct information, which challenges the model’s086

ability to make accurate inferences. Various strate-087

gies, including retrieval-enhanced generation and088

fine-tuning techniques, have been proposed to en-089

hance reasoning capabilities, enabling the models090

to better handle inconsistent or incomplete instruc-091

tions. However, these methods often introduce new092

challenges related to bias and the inability to fully093

resolve conflicts in user input, further complicating094

the alignment between generated content and user095

expectations.096

III. Challenge of Reliable Dialog Generation.097

The final major challenge is the reliable dialog gen-098

eration, which pertains to the accuracy, ethical con-099

siderations, and stability of the content they pro-100

duce, such as Figure 1(c) and Figure 2 (III. While101

LLMs are generally capable of generating coher-102

ent and contextually relevant outputs, they some-103

times exhibit instability, generating content that is104

factually incorrect, logically inconsistent, or ethi-105

cally questionable. This challenge is exacerbated106

by the model’s inability to recognize uncertainty, 107

which can lead to overconfident but inaccurate out- 108

puts. Recent efforts to address this issue involve 109

techniques like uncertainty-aware fine-tuning and 110

using external tools to evaluate output credibility. 111

However, these approaches struggle to provide a 112

comprehensive and reliable solution, especially in 113

complex or dynamic contexts. 114

Present Survey. Facing these challenges, there is 115

an increasing need for focused research on LLMs 116

and their interaction with human instructions and 117

intentions. This paper systematically analyzes 118

LLMs’ performance in processing human instruc- 119

tions, highlighting three key areas: user instruc- 120

tion understanding, intention comprehension and 121

reasoning, and reliable dialog generation. While 122

existing review papers address model training, fine- 123

tuning, and specific aspects of LLMs’ capabili- 124

ties (Lou et al., 2024; Plaat et al., 2024; Huang et al., 125

2024b), our focus is on the LLMs’ ability to under- 126

stand and reason about user intentions. Specifically, 127

we explore how well LLMs understand user input, 128

reason about the user’s intention, infer user inten- 129

tions, and generate content that closely with human 130

intentions, thereby maximizing the alignment be- 131

tween LLMs and humans. 132

Comparison with Previous Surveys. While the 133

gap between human intention and LLMs is a core 134

challenge in generative AI, many studies focus on 135

specific aspects of the issue, lacking a comprehen- 136

sive overview. These works offer valuable insights 137

but do not provide a systematic summary of the 138

field. Lou et al. (Lou et al., 2024) primarily ad- 139

dress instruction following challenges in LLMs 140

without delving into the reasoning capabilities for 141

complex user instructions. Gao et al. analyze the 142

four stages of human-machine LLM interaction 143
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Instruction
Understanding (§2)

Long-text
Comprehension (§2.1)

Information
Focusing

1) Attention Sparsification (Beltagy et al., 2020)
2) Attention Optimization(Chen et al., 2024)
3) Position independent Training (He et al., 2024a)

Multipath
Optimization

1) SFT and RL (Zhang et al., 2024b)
2) Retrieval-Augmented (Li et al., 2024b)
3) Recurrent Sequence Optimization (Gu and Dao, 2023)

Multi-turn Conversation
Handling (§2.2)

Soft
Fine-tuning Multi-turn SFT (Teng et al., 2024), Parrot (Sun et al., 2024)

Reforcement
Learning ArCHer (Zhou et al., 2024)

Intention
Reasoning (§3)

Inconsistent Instruction
Resolution (§3.1)

Knowledge
Updating SituatedQA (Zhang and Choi, 2021), CDConv (Zheng et al., 2022)

Confidence
Calibration CD2 (Jin et al., 2024), MacNoise (Hong et al., 2024)

Misinformation
Reasoning (§3.2)

Targeted
Fine-tuning

CKL (Jang et al., 2022), StreamingQA (Liska et al., 2022), BIPIA (Yi et al., 2025),
KC-LLMs (Wang et al., 2023), CAR (Weller et al., 2024)

Fuzzy Language
Interpretation (§3.3)

Clue
Engineering Folkscope (Yu et al., 2023), Miko (Lu et al., 2024), ATC (Deng et al., 2023)

Intention
Clarification
Failure (§3.4)

Deep
Reasoning

DeepSeek-R1 (Guo et al., 2025), S1 (Muennighoff et al., 2025),
SoulChat (Chen et al., 2023), MoChat (Mo et al., 2024)

Reliable
Generation (§4)

Response Stability (§4.1)

Fine-tuning
LLMs

EDL (Sensoy et al., 2018), DER (Amini et al., 2020),
ConformalFactuality (Mohri and Hashimoto, 2024), LUQ (Zhang et al., 2024a)

External Tools SUE (Liu et al., 2024), CalibrateMath (Lin et al.)

Alignment (§4.2)

Data Cleaning
and Curation Stochastic Parrots (Bender et al., 2021) , DeepSoftDebias (Rakshit et al.)

RL-based
Alignment

PPO (Ouyang et al., 2022), DPO (Zeng et al., 2024), GRPO (Shao et al., 2024),
RLAIF (Lee et al., 2024)

In-context
Alignment URIAL (Lin et al., 2024), ICA (Huang et al., 2024a)

Figure 3: Challenges and existing solutions between LLMs and Human Intentions.

(planning, facilitation, iteration, and testing) but144

overlook LLM’s understanding of user instructions.145

Xu et al. (Xu et al.) examine the impact of vari-146

ous memory conflicts on LLM-generated content147

credibility and performance, yet do not consider148

reasoning or intention comprehension. Plaat et149

al. (Plaat et al., 2024) focus on LLM Reasoning150

for basic mathematical problems, without explor-151

ing its applicability to broader fields. Shorinwa et152

al. (Shorinwa et al., 2024) provide an initial analy-153

sis of LLMs uncertainty quantification, but exclude154

user input instructions. In contrast, our survey of-155

fers a more comprehensive perspective, as shown156

in Figure 2 and Figure 3, with a unique classifi-157

cation and systematic analysis of instruction pro-158

cessing, while addressing current solutions to key159

challenges.160

Survey Organization. As in Figure 3, we begin161

by exploring the capability of user instruction un-162

derstanding (§2). Next, we focu on how models163

infer implicit intentions, incorporate contextual in-164

formation for logical reasoning, and address incon-165

sistencies or incomplete instructions (§3). We then166

examine reliable dialog generation, assessing the167

quality and credibility of model-generated outputs 168

(§4). Next, we briefly analyze the problems faced 169

by LLMs in face of different challenges(§5) and 170

review the benchmarks(§6) for the above problems. 171

Finally, we propose potential research directions 172

(§7) and summarize the key findings (§8). 173

2 Instruction Understanding 174

LLMs excel at single-turn dialogues, but struggle to 175

understand multi-turn dialogues and long-contexts, 176

which are commonly used by users. LLMs may 177

forget prior information, be influenced by irrelevant 178

data, and overlook key inputs. 179

2.1 Long-Text Comprehension 180

Understanding lengthy textual instructions remains 181

a significant hurdle for large language models 182

(LLMs), as real-world human instructions are of- 183

ten expressed in loose, unstructured natural lan- 184

guage, contrasting with the explicitly defined tasks 185

and structured labeling commonly employed in cue 186

word engineering, so we categorize the relevant 187

factors into the following three categories:1) Infor- 188

mation Sparsity and Redundancy. Long texts 189
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often contain redundant or irrelevant information190

that can obscure the task-relevant content, leading191

to difficulties in information extraction. 2) Remote192

Information Failure (Figure 4). Long contexts193

may cause models to forget relevant information194

that is distant within the text. Additionally, links195

between remote information across paragraphs or196

sentences can be difficult for models to identify,197

diminishing their understanding of contextual con-198

nections. 3) Attention Dilution. As context length199

increases, the model’s attention mechanism faces200

greater computational demands and struggles to201

assign appropriate weights to each token, making202

it harder to prioritize key information, particularly203

with complex, multi-level relationships in longer204

texts. This paper classifies the existing solutions205

into the following two categories:206

Information Focusing. Improving LLM’s ability207

to focus on important information in long texts in-208

volves several methods: 1) Sparsifying attention to209

concentrate on critical information (Beltagy et al.,210

2020). 2) Optimizing attention to minimize redun-211

dancy and emphasize core content (Chen et al.,212

2024). 3) Training with location-independent tasks213

to enhance the ability to search and react to relevant214

information in long contexts (He et al., 2024a).215

Multipath Optimization. Various methods can216

enhance LLMs on long-context tasks: 1) Pre-217

training with extended context windows and re-218

inforcement learning for fine-tuning to optimize219

long-context understanding (Zhang et al., 2024b).220

2) Combining retrieval-based models with genera-221

tive models on long-context tasks (Li et al., 2024b).222

3) Leveraging cyclic sequence models’ linear scal-223

ing property for better inference efficiency (Gu and224

Dao, 2023).225

2.2 Multi-Turn Conversation Handling226

Multi-turn conversation serves as a fundamental in-227

teraction mode between LLMs and humans. Given228

the challenges users face in providing complete229

and precise instructions in a single turn, they often230

opt to refine and clarify their intentions incremen-231

tally through iterative exchanges. However, due232

to the characteristics of real-world conversations,233

such as the constant changes in user intentions and234

long-distance dependencies, LLMs still faces sig-235

nificant challenges in achieving coordinated multi-236

round interactions with humans.This paper catego-237

rizes the challenges faced by existing LLMs when238

understanding multi-turn conversations into three239

categories, as follows: 1) Capability Weakening. 240

Current supervised instruction fine-tuning (SIFT) 241

and RLHF may even impair multi-turn capabili- 242

ties(Wang et al., 2024), with models struggling on 243

complex reasoning tasks that span multiple rounds, 244

such as those requiring evidence collection and con- 245

clusions (Banatt et al., 2024). Additionally, multi- 246

turn dialogs increase the vulnerability of LLMs 247

to adversarial attacks, where malicious users can 248

mask harmful intentions across multiple rounds, 249

leading to the generation of misleading or harmful 250

content (Agarwal et al., 2024). 2) Error Propaga- 251

tion. Instruction comprehension errors accumulate 252

across rounds, leading to an escalating failure rate 253

in subsequent responses (He et al., 2024b), which 254

may snowball into larger issues such as biased or 255

incorrect outputs (Fan et al., 2024). 3) Incorrect 256

Relevance Judgment (Figure 5 Q.1) LLMs often 257

struggle to identify relevant content in multi-turn di- 258

alogs, failing to properly link content from previous 259

rounds or to discern ellipsis and implicit meaning 260

inherent in user commands (Sun et al., 2024). 261

To solve above challenges, this paper catego- 262

rizes existing solutions into two types: supervised 263

fine-tuning methods using multi-turn dialogue data, 264

enhanced by techniques like optimized instruction 265

parsing (Teng et al., 2024) and context-aware pref- 266

erence strategies (Sun et al., 2024); and reinforce- 267

ment learning methods tailored for multi-turn di- 268

alogue, with improvements such as hierarchical 269

reinforcement learning (Zhou et al., 2024). 270

3 Intention Reasoning 271

User instructions often lack clarity due to language 272

ambiguities. While humans can infer intention, 273

LLMs struggle with misinterpreting ambiguous in- 274

puts, leading to errors. We explore causes and 275

solutions for intention errors, focusing on inconsis- 276

tent instructions, misinformation, fuzzy language, 277

and intention clarification. 278

3.1 Inconsistent Instruction Reasoning 279

In natural language communication, humans eas- 280

ily identify inconsistencies using context and prior 281

knowledge, whereas LLMs struggle, often accept 282

contradictory inputs, and generate unreliable an- 283

swers. This phenomenon has been observed across 284

multiple question-answering generation tasks (Li 285

et al., 2024a; Zheng et al., 2022), and we categorize 286

the causes of this problem according to the scenar- 287

ios in which it occurs as follows: 1) Ignoring input 288
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errors (Figure 6 Q.1). The model ignores the input289

errors and gives an answer, resulting in the model290

assigning the same weight to each context given by291

the user, which in turn affects the generation of the292

answer. 2) Inability to detect user inconsistencies293

(Figure 6 Q.2). In the premise that the model has294

learned the knowledge, the model still has difficulty295

detecting user inconsistencies. To address inconsis-296

tent instruction reasoning issues, existing solutions297

primarily adopt the following two approaches:298

Knowledge Updating. SituatedQA (Zhang and299

Choi, 2021) attempts to enhance model perfor-300

mance by updating the knowledge base. Addition-301

ally, CDConv (Zheng et al., 2022) simulates com-302

mon user behaviors to trigger chatbots through an303

automated dialogue generation method, generating304

contradictions for training purposes.305

Confidence Calibration. Given the high cost306

of data annotation and model fine-tuning, some307

researchers have sought alternative approaches308

by introducing additional processing techniques.309

CD2 (Jin et al., 2024) maximizes probabilistic out-310

put and calibrates model confidence under knowl-311

edge conflicts using conflict decoupling and com-312

parison decoding methods.313

3.2 Misinformation Reasoning314

Erroneous instructions mislead model outputs more315

severely than inconsistent ones, as they lack obvi-316

ous contradictions, requiring the model to com-317

prehend, reason, compare input knowledge with318

its parameterized knowledge, and make objective319

judgments (Cheang et al., 2023; Xu et al., 2024).320

From the input perspective, this paper classifies321

the sources of erroneous information into two cat-322

egories as follows: 1) Temporal Alignment Fail-323

ure (Figure 7 Q.1). arises when the knowledge324

provided by the user and the model is temporally325

misaligned due to updates occurring at different326

times, leading to inconsistent responses. Such dis-327

crepancies typically originate during the training328

process. 2) Information Contamination (Figure329

7 Q.2). refers to the degradation of model quality330

caused by the intentional distortion of input data.331

To solve the above problems, existing meth-332

ods mainly focus on improving model suscepti-333

bility in the face of internal and external knowl-334

edge conflicts through targeted fine-tuning and pro-335

cessing. CKL (Jang et al., 2022) ensures that the336

model’s knowledge is updated in a timely manner337

through an online approach, although this approach338

is slightly weaker than re-training in terms of effec- 339

tiveness (Liska et al., 2022). RKC-LLMs (Wang 340

et al., 2023) allows a large model to recognize 341

knowledge conflicts by means of instructional fine- 342

tuning that identifying specific passages of con- 343

flicting information. BIPIA (Yi et al., 2025) used 344

adversarial training to combat the effects of infor- 345

mation pollution and improve model robustness. 346

CAR (Weller et al., 2024) achieved nearly 20% im- 347

provement by discriminating external knowledge 348

that may not be contaminated in the RAG system. 349

3.3 Fuzzy Language Interpretation 350

When user instructions contain fuzzy terms (e.g., 351

polysemy or vagueness), LLMs may select an in- 352

correct interpretation from multiple possibilities, 353

potentially leading to misleading responses. This 354

phenomenon has been observed across multiple 355

information-seeking tasks (Kim et al., 2024), and 356

we categorize the causes of this problem according 357

to the scenarios in which it occurs as follows: 1) 358

Self-defined problem (Figure 8 Q.1). When the 359

user inputs content with fuzzy sentences, LLMs 360

may choose to generate content based on the pref- 361

erences of its own training data. 2) Select data 362

based on fuzzy input (Figure 8 Q.2). In response 363

to ambiguous user input, LLMs may select a de- 364

fault explanation without actively asking the user 365

to clarify. 366

To solve this problem, researchers have started to 367

parse the semantic information expressed by users 368

through clue engineering. Folkscope (Yu et al., 369

2023) proposed the FolkScope framework, which 370

uses a large language model to analyze and discrim- 371

inate users’ fuzzy purchasing intention. Miko (Lu 372

et al., 2024) introduces a hierarchical intention gen- 373

eration framework that interprets users’ posting 374

behaviors by analyzing the fuzzy information they 375

share on social platforms. ATC (Deng et al., 2023) 376

utilizes the Active Thinking Chain cueing scheme, 377

which enhances the proactivity of a biglanguage 378

model by adding goal-planning capabilities to the 379

descriptive reasoning chain. 380

3.4 Intention Clarification Failure 381

Unlike humans, who reason based on experience, 382

LLMs lack real-world common sense and thus 383

struggle to infer complex contexts beyond their 384

input data. Moreover, they often fail to main- 385

tain a consistent reasoning trajectory across long 386

texts, complex contexts, or multi-turn conversa- 387

tions. When handling intricate intentions or sen- 388
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timent shifts, LLMs may struggle to retain prior389

context, leading to errors in inferring implicit user390

needs. We categorize the causes of this problem391

according to the scenarios in which it occurs as392

follows: 1) Fails to detect sarcasm (Figure 9 Q.1),393

when LLMs fails to understand the sarcastic in-394

tention of the user. 2) Ignores prior emotional395

context (Figure 9 Q.2), when LLMs focus only396

on the second half of the sentence and ignore the397

emotions in the previous round of dialog.398

To solve above problems, researchers have399

started to try to construct multi-domain400

datasets (Chen et al., 2023) containing im-401

plicit intentions to strengthen the ability of the402

LLMs to reason about complex intentions and403

user emotions in multi-round interaction scenarios.404

DeepSeek-R1 (Guo et al., 2025) enhances its405

understanding of human intention through a406

structured process with two RL stages for refining407

reasoning patterns and aligning with human408

preferences. S1 (Muennighoff et al., 2025) uses409

budget forcing to control the number of thinking410

tokens. The upper limit is terminated early by a411

delimiter, while the lower limit prohibits delimiters412

and adds "wait" to guide in-depth reasoning and413

optimize the quality of the answer. MoChat (Mo414

et al., 2024) constructs multi-round dialogues415

for spatial localization by using joint grouping416

spatio-temporal localization.417

4 Reliable Dialog Generation418

Despite strong performance, LLMs struggle with419

output reliability. Trained on large corpora using420

maximum likelihood estimation, they generate de-421

terministic responses. While effective on familiar422

data, they often produce unstable or incomplete re-423

sponses to unseen inputs, undermining reliability.424

4.1 Response Stability425

The knowledge acquired by the LLMs is generally426

determined in the pre-training stage and stored in427

a parameterized form. For data in a specific field,428

the current model is generally optimized by fine-429

tuning instructions so that it outputs what humans430

want (Radford et al., 2019). If knowledge samples431

that the model has not seen are used in instruction-432

tuning, it will inevitably cause the model to give433

a definite response to unknown inputs, and there434

is a high probability that an answer will be fabri-435

cated. This is the over-confidence of the model that436

causes the model to output unreliable answers, and437

we categorize the causes of this problem accord- 438

ing to the scenarios in which it occurs as follows: 439

1) Fabricated incorrect information (Figure 10 440

Q.1). When the model’s knowledge did not match 441

the input question, it fabricated information that 442

did not match the facts. 2) Incorrect context out- 443

put (Figure 10 Q.2). When the model’s knowledge 444

did match the input question, it output incorrect 445

context information. To address these issues, re- 446

searchers have explored uncertainty, which quanti- 447

fies the credibility and stability of model outputs. 448

Fine-tuning LLMs. To make LLMs more ac- 449

curate in estimating uncertainty, existing meth- 450

ods fine-tune models (Sensoy et al., 2018; Amini 451

et al., 2020). LUQ (Zhang et al., 2024a) is a novel 452

sampling-based uncertainty quantification method 453

specifically designed for long texts. ConformalFac- 454

tuality (Mohri and Hashimoto, 2024) defines the 455

associated uncertainties for each possible output. 456

External Tools. Fine-tuning LLMs typically de- 457

mands substantial computing resources and slow 458

training; therefore, reducing computational over- 459

head is crucial for improving efficiency. Researcher 460

has proposed methods to evaluate the uncertainty 461

of model outputs through external tools (Liu et al., 462

2024). ConfidenceElicitation (Xiong et al., 2024) 463

is a new uncertainty measurement tool for large 464

model outputs. CalibrateMath (Lin et al.) assesses 465

uncertainty by requiring models to generate nu- 466

merical answers with confidence levels, evaluating 467

their reliability. 468

4.2 Alignment 469

Despite the impressive capabilities of large lan- 470

guage models (LLMs), they have raised significant 471

concerns regarding the unsafe or harmful content 472

they may generate. LLMs are typically trained 473

on vast datasets scraped from the internet, includ- 474

ing inappropriate or harmful content (Bender et al., 475

2021). This means that the models may inadver- 476

tently produce outputs misaligned with human val- 477

ues as follows: 1) Generation of Toxic Content 478

(Figure 11 Q.1). LLMs may generate toxic con- 479

tent, such as hate speech or offensive comments, 480

when asked to respond to sensitive topics (Luong 481

et al., 2024; Dutta et al., 2024). 2) Conflicts with 482

Moral/Ethical Standards (Figure 11 Q.1). LLMs 483

might produce outputs that conflict with moral 484

or ethical standards, such as guiding illegal ac- 485

tivities (Ramezani and Xu, 2023; Abdulhai et al., 486

2024). To tackle the above concerns regarding 487
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Cat. Benchmark Year Lang. Num. Type Description

Instrution Understanding

BotChat (Duan et al., 2024) 2023 En&Zh 7658 M Multi-round dialogue eval. via simulated data
MINT (Wang et al., 2024) 2023 En 29,307 M Tool use and feedback in multi-turn dialogue
MT-BENCH-101 (Bai et al., 2024) 2024 En 1,388 M Multi-turn dialogue ability
∞{B}ench (Zhang et al., 2024c) 2024 En&Zh 100k S Long-context handling
L-Eval (An et al., 2024) 2024 En 2,000 S Evaluation of Long-Context Language Models
LongICLBench (Li et al., 2025) 2025 En 2,100k S Long In-Context Learning

Intention Reasoning

BIPIA (Yi et al., 2025) 2023 En 712.5K S Vulnerability to hint injection
Miko (Lu et al., 2024) 2024 En 10k S Multimodal social intent understanding
CONTRADOC (Li et al., 2024a) 2023 En 891 S Self-contradiction in long docs
CDCONV (Zheng et al., 2022) 2022 Zh 12K M Contradiction in Chinese dialogues

Relibale Dialog Generate
Open-LLM-Leaderboard (Ye et al., 2024) 2024 En 10K S Uncertainty in generation
ETHICS (Hendrycks et al., 2021) 2020 En 130K S Moral reasoning
FACTOR (Muhlgay et al., 2024) 2023 En 300 S Factuality in generated text

Table 1: A selection of widely used benchmark datasets for evaluating LLMs. Th“Cat.”: task stage; ’Lang.’:
language of the benchmark, a; ’Num.’: data size; ’Type’: S=Single-round, M=Multi-round.

unsafe or harmful content produced by LLMs, re-488

searchers have focused on various stages:489

Pretraining Data Cleaning and Curation. To490

minimize the risks associated with harmful or in-491

appropriate content, LLM training datasets should492

undergo rigorous cleaning processes (Bender et al.,493

2021), such as filtering out toxic language, hate494

speech, and harmful stereotypes. Tools like word495

embedding debiasing methods (Rakshit et al.) can496

help identify and remove toxic and biased content.497

Reinforcement Learning-based Alignment. To498

further align LLMs with human and societal norms,499

reinforcement learning methods, such as RLHF and500

its advanced variants, such as PPO (Ouyang et al.,501

2022), DPO (Zeng et al., 2024), and GRPO (Shao502

et al., 2024), are very essential. As an extension503

of RLHF, RLAIF (Lee et al., 2024) leverages AI504

systems to assist in the feedback process, making505

evaluation and fine-tuning more scalable.506

In-context Alignment. It leverages the ability507

of LLMs to adapt their responses based on a508

few examples provided in the prompt. (Lin et al.,509

2024) demonstrates that effective alignment can510

be achieved purely through ICL with just a few511

stylistic examples and a system prompt. (Huang512

et al., 2024a) explored the effectiveness of differ-513

ent components of In-context alignment, and found514

that examples within the context are crucial for515

enhancing alignment capabilities.516

5 Case Analysis517

To demonstrate the challenges of existing LLMs518

in above stages, we provide cases analysis in Ap-519

pendix B, and make statistical comparisons in Ta-520

ble 2. The results show that models with reason-521

ing capabilities (such as GPT-o3*, Deepseek-R1*)522

perform better in command understanding tasks523

such as long text understanding and multi-round524

dialogue, but have not completely solved all prob-525

lems. In the intention reasoning task, except for526

"Inconsistent information reasoning", the models 527

generally performed poorly, and only a few models 528

partially passed the case. In terms of reliable dia- 529

logue generation, all models performed poorly in 530

response stability, and only GPT-o3 and Deepseek- 531

R1 performed well in the alignment test. Overall, 532

while reasoning abilities contribute to improved 533

task performance, significant limitations remain 534

across all three stages. 535

6 Benchmark 536

This section covers benchmarks for LLMs in above 537

three stage (Table 1), more details see Appendix A. 538

6.1 Benchmarking Instruction Understanding 539

Instruction understanding in LLMs involves ex- 540

tracting key information, maintaining coherence, 541

and adapting to dynamic conversation changes, es- 542

pecially in long or multi-round dialogues. LLM 543

capabilities in multi-turn dialogue and long-context 544

processing have been explored through various 545

benchmarks. BotChat (Duan et al., 2024) evaluates 546

dialogue generation, showing GPT-4’s strengths 547

but noting instruction compliance and length limi- 548

tations in other models. MINT (Wang et al., 2024) 549

highlights limited progress in tool use and feedback 550

for complex tasks. MT-Bench-101 (Bai et al., 2024) 551

identifies challenges in enhancing long-term inter- 552

action skills. For long-context tasks, performance 553

drops in ultra-long texts (Zhang et al. (Zhang 554

et al., 2024c)), L-Eval (An et al., 2024) emphasizes 555

length-instruction-enhanced metrics, and LongI- 556

CLBench (Li et al., 2025) reveals difficulties in 557

reasoning across multiple pieces of information. 558

6.2 Benchmarking LLM Reasoning 559

LLM intention reasoning involves inferring user 560

intentions by interpreting both explicit and implicit 561

language cues. The existing benchmarks com- 562

prehensively evaluate the multifaceted reasoning 563

capabilities of LLMs, encompassing vulnerabil- 564
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Stage Challenge GPT-4o GPT-o3* Qwen3 Qwen3* Deepseek-v3 Deepseek-R1*

Instruction Understanding Long-Text Comprehension C A C A C A
Multi-Turn Conversation Handling C A C C C A

Intention Reasoning

Inconsistent Instruction Reasoning C C C C B C
Misinformation Reasoning B A C B B A
Fuzzy Language Interpretation B B C C C C
Intention Clarification Failure C B C C C C

Reliable Dialog Generation Response Stability C C C C C C
Alignment C A C C C A

Table 2: Results of using different LLMs on the challenge cases; ∗ denotes models with reasoning abilities. ’A’
indicates the model’s accuracy is greater than 75%, ’B’ is between 50% and 75%, and ’C’ is below 50%.

ity to indirect hint injection attacks (BIPIA (Yi565

et al., 2025)), advantages in multimodal intention566

understanding (Miko (Lu et al., 2024)), analysis567

of self-contradictions in long documents (CON-568

TRADOC (Li et al., 2024a)), and contradiction569

detection in Chinese dialogues (CDCONV (Zheng570

et al., 2022)). Collectively, these benchmarks high-571

light both the challenges and advancements of572

LLMs in complex reasoning.573

6.3 Benchmarking LLM Generation574

LLM Generation assesses a model’s ability to un-575

derstand user instructions, avoid fabricating false576

information, and generate accurate, contextually ap-577

propriate responses. Open-LLM-Leaderboard (Ye578

et al., 2024), ETHICS (Hendrycks et al., 2021)579

and FACTOR (Muhlgay et al., 2024) all focus on580

the reliability evaluation of content generated by581

large models. Open-LLM-Leaderboard finds that582

large-scale models have higher uncertainty, and583

fine-tuned models have higher accuracy but greater584

uncertainty. ETHICS focuses on the ethical value585

alignment of generated content. FACTOR evalu-586

ates factuality through scalable methods to ensure587

that diverse and rare facts are covered.588

7 Future Directions589

This section summarizes ongoing challenges in590

above stages with LLMs and outlines potential fu-591

ture research directions.592

Automated Annotation Framework. Although593

LLMs excel in general-domain tasks, they often594

produce hallucinated or incomplete content in spe-595

cialized fields due to limited domain-specific train-596

ing data. While contextual learning and instruction597

fine-tuning methods have been explored to address598

this issue, manual data annotation remains labor-599

intensive and prone to quality inconsistencies. An600

automated annotation framework could streamline601

data labeling, enhancing model performance in spe-602

cialized fields by ensuring higher quality and scala-603

bility of domain-specific training datasets.604

GraphRAG. LLMs have shown impressive lan- 605

guage generation capabilities through pre-training 606

on large datasets, but their reliance on static data 607

often results in inaccurate or fictional content, par- 608

ticularly in domain-specific tasks. The Graph- 609

enhanced generation approach aims to tackle this 610

by leveraging KGs and GNNs for precise knowl- 611

edge retrieval. Despite its advantages, GraphRAG 612

faces challenges in capturing structural information 613

during graph reasoning tasks and struggles with 614

multi-hop retrieval accuracy and conflict resolu- 615

tion between external and internal knowledge. Fu- 616

ture work should focus on refining retrieval strate- 617

gies and improving the stability and accuracy of 618

GraphRAG in complex tasks. 619

Balancing Safety and Performance. Although 620

advancements in alignment techniques have im- 621

proved factual accuracy and safety, they often come 622

at the cost of the model’s creativity and fluency. 623

Striking a balance between safety and performance 624

is crucial. Future research should explore new 625

alignment methods that ensure both the safety and 626

usability of LLMs, optimizing the trade-off be- 627

tween generating reliable, safe content and main- 628

taining the model’s creative and contextual capabil- 629

ities. 630

8 Conclusion 631

This paper analyzes LLMs’ performance in process- 632

ing user instructions. Despite progress in natural 633

language understanding, LLMs struggle with com- 634

plex, inconsistent instructions, often resulting in 635

biases, errors, and hallucinations. Improvements 636

through prompt engineering, model expansion, and 637

RLHF et al. have not fully addressed LLMs’ limi- 638

tations in reasoning and comprehension, limiting 639

their real-world applicability. We identify three 640

challenges: instruction understanding, intention 641

reasoning and reliable dialog generation. Future 642

research should focus on enhancing reasoning for 643

complex instructions and aligning outputs with user 644

intention to improve LLMs’ reliability. 645
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Limitations646

We have made significant efforts to ensure the qual-647

ity of this study, but certain limitations may still648

exist. First, due to constraints on the length of the649

discussion, this article primarily focuses on analyz-650

ing examples of human interaction with large mod-651

els, which inevitably limits the depth of method-652

ological details we can explore. Second, while our653

meta-analysis draws extensively from prominent654

academic platforms such as the ACL conference655

series, ICLR, ICML, and the arXiv preprint reposi-656

tory, it is possible that some valuable insights from657

other sources have not been included. It is worth658

noting that several open scientific questions in this659

field remain unresolved, and the academic commu-660

nity has yet to reach a consensus on these issues.661

To address these limitations, we plan to establish662

a long-term tracking mechanism to monitor new663

developments in the field. This will allow us to in-664

corporate emerging theoretical advancements and665

dynamically refine or expand upon the perspectives666

presented in this study.667
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A Benchmark Details1017

A.1 Instruction Understanding Benchmark1018

BotChat (Duan et al., 2024) specifically ad-1019

dresses the evaluation of LLMs’ ability to emu-1020

late human-like, multi-turn conversations using1021

an LLM-centric approach. This benchmark as-1022

sesses utterance generation, evaluation protocols,1023

and judgment. Findings suggest that models like1024

GPT-4 demonstrate exceptional performance as 1025

both generators and judges, producing human- 1026

indistinguishable dialogues and showing high align- 1027

ment with human evaluation standards. Conversely, 1028

other LLMs face challenges in generating qual- 1029

ity multi-turn dialogues due to issues like inade- 1030

quate instruction-following and a tendency towards 1031

prolixity, particularly in generating extensive dia- 1032

logues. 1033

MINT (Wang et al., 2024) introduces a bench- 1034

mark that evaluates LLMs’ capacity to solve com- 1035

plex tasks through multi-turn interactions, em- 1036

phasizing the use of external tools and leverag- 1037

ing natural language feedback. MINT provides a 1038

reproducible evaluation framework where LLMs 1039

can access tools and receive simulated user feed- 1040

back. Analysis using MINT reveals that LLMs 1041

generally benefit from tools and language feed- 1042

back. Interestingly, studies with MINT suggest that 1043

techniques like supervised instruction-finetuning 1044

(SIFT) and reinforcement learning from human 1045

feedback (RLHF) might not consistently improve 1046

multi-turn capabilities, indicating the need for fur- 1047

ther research in training methodologies for conver- 1048

sational settings. 1049

MT-BENCH-101 (Bai et al., 2024) offers a struc- 1050

tured approach with its three-layer hierarchical 1051

capability taxonomy and a dataset of 1,388 dia- 1052

logue pairs across 13 tasks. This allows for a fine- 1053

grained evaluation of LLMs’ multi-turn dialogue 1054

skills. The findings from studies utilizing MT- 1055

BENCH-101 indicate that commonly employed 1056

techniques yield limited improvements in multi- 1057

turn performance, suggesting a need for more ef- 1058

fective methods to enhance conversational abilities 1059

over extended interactions. 1060

Zhang et al. (Zhang et al., 2024c) focus on the 1061

challenge of long-context processing, introducing a 1062

benchmark of 12 tasks, each averaging over 100K 1063

tokens, to assess LLMs’ long-context processing 1064

abilities. Results indicate a marked performance 1065

drop with longer contexts, highlighting the need 1066

for further improvement. 1067

L-Eval (An et al., 2024) contributes to standard- 1068

izing the evaluation of Long-Context Language 1069

Models (LCLMs) by providing a new evaluation 1070

suite with diverse tasks, document lengths (3k to 1071

200k tokens), and a large number of human-labeled 1072

query-response pairs. It also investigates the ef- 1073

fectiveness of evaluation metrics, suggesting that 1074

Length-instruction-enhanced (LIE) evaluation and 1075

LLM judges correlate better with human judgments. 1076
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Comprehensive studies using L-Eval offer insights1077

into the performance of both commercial and open-1078

source LCLMs.1079

LongICLBench (Li et al., 2025) focuses on long1080

in-context learning in extreme-label classification,1081

with input lengths ranging from 2K to 50K tokens1082

and a large number of classes. Evaluation on this1083

benchmark showed that while LLMs perform well1084

on less challenging tasks, they struggle with more1085

complex ones involving a large label space and1086

longer contexts, revealing a bias towards later parts1087

of the input and difficulty in reasoning over multi-1088

ple pieces of information.1089

A.2 LLM Intention Reasoning Benchmark1090

BIPIA (Yi et al., 2025) evaluates LLMs under indi-1091

rect hint injection attacks across five scenarios and1092

250 targets, revealing vulnerabilities in all models,1093

with GPT-3.5-turbo and GPT-4 exhibiting notably1094

higher susceptibilities.1095

Miko (Lu et al., 2024) assesses multimodal mod-1096

els in understanding social media user intentions.1097

The benchmark, which includes 979 social media1098

entries, shows that multimodal LLMs outperform1099

text-only models like LLama2-7B and GLM4. In-1100

corporating image data enhances the model’s abil-1101

ity to interpret user intentions, improving accuracy.1102

CONTRADOC (Li et al., 2024a) is the first1103

dataset for analyzing self-contradictions in long1104

documents. Evaluation of GPT-4, PaLM2, and1105

other LLMs on this dataset reveals that while GPT-1106

4 outperforms others and even surpasses human1107

performance, it still struggles with complex contra-1108

dictions requiring nuanced reasoning.1109

CDCONV (Zheng et al., 2022) focuses on con-1110

tradiction detection in Chinese dialogues, contain-1111

ing over 12,000 dialogue rounds. The study shows1112

that the Hierarchical method consistently outper-1113

forms others in detecting contradictions, highlight-1114

ing the importance of accurate contextual modeling1115

in dialogue understanding.1116

A.3 LLM Reliable Generation Benchmark1117

Open-LLM-Leaderboard (Ye et al., 2024) intro-1118

duces a novel benchmark that integrates uncertainty1119

quantification to evaluate the reliability of content1120

generation across tasks like QA, comprehension,1121

and dialogue. Results show that larger models of-1122

ten exhibit greater uncertainty, and fine-tuned mod-1123

els tend to have higher uncertainty despite higher1124

accuracy.1125

ETHICS (Hendrycks et al., 2021) evaluates 1126

whether generated content aligns with human eth- 1127

ical values, such as justice and well-being. The 1128

study finds that while models like GPT-3 show 1129

promise in predicting human moral judgments, they 1130

still need improvement in this domain. 1131

FACTOR (Muhlgay et al., 2024) addresses the 1132

evaluation of factuality in LLMs by providing a 1133

scalable method that ensures diverse and rare facts 1134

are considered. Testing models such as GPT-2 and 1135

GPT-Neo show that, while benchmark scores corre- 1136

late with perplexity, they better reflect factuality in 1137

open-ended generation, especially when retrieval 1138

augmentation is applied. 1139

B Challenges Cases in Human-LLMs 1140

Aligement 1141

To fully understand the limitations of large lan- 1142

guage models (LLMs) in practical applications, it is 1143

particularly important to analyze their performance 1144

in a variety of complex scenarios. We collected 1145

human user instructions from real scenarios that 1146

the large model needs to interact with on a total 1147

of eight challenges that the summarized existing 1148

large language models (LLMs) face in the three 1149

phases of instruction understanding, intention rea- 1150

soning, and reliable dialog generation, and cleaned 1151

and filtered the instructions through manual screen- 1152

ing, diversity sampling, and difficulty filtering, and 1153

finally, 50 human instructions were used for each 1154

challenge. 1155

The statistical results of the test are shown in 1156

Table.2. In this section, we will present a series 1157

of representative case studies and conduct an in- 1158

depth analysis of the current mainstream LLMs 1159

(including GPT-4o, GPT-o3, Qwen3, DeepSeek- 1160

V3 and DeepSeek-R1). Besides, the blue smiley 1161

face indicates that the model is capable of providing 1162

accurate responses or identifying inconsistencies 1163

in the user’s input instructions. In contrast, the 1164

red crying face signifies that the LLM failed to 1165

recognize contradictions in the user’s instructions 1166

and produced incorrect responses. Through these 1167

cases, we systematically reveal the typical failure 1168

modes of each model in different aspects and their 1169

deep-seated causes, providing important references 1170

and directions for targeted optimization in future 1171

research. 1172
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B.1 Case of Instruction Understanding1173

Although large language models (LLMs) perform1174

well in short text and single-round dialogue scenar-1175

ios, their ability to understand and execute complex1176

instructions in long contexts and multi-round dia-1177

logues still faces many severe challenges.1178

Figure 4 shows that long texts usually contain a1179

lot of irrelevant or redundant information, which1180

causes the core content directly related to the task1181

to be submerged. The model is prone to omission1182

or confusion when extracting key information, and1183

even hallucinations, thereby generating content that1184

is irrelevant to the user’s instructions.1185

Figure 5 shows that when dealing with long-1186

distance information associations that need to span1187

multiple paragraphs or dialogue rounds, the model1188

often has difficulty tracking and integrating the log-1189

ical relationship between contexts, thereby losing1190

important clues. In multi-round dialogue scenarios,1191

the model is not only prone to gradually accumu-1192

late errors due to inaccurate understanding of the1193

previous text, but may also fail to correctly judge1194

the relevance of each round of dialogue, causing1195

the answer to deviate from the user’s real needs.1196

As shown in Table 2, Figure 4, and Figure 5,1197

in the instruction understanding stage, the rea-1198

soning models generally performed well on the1199

"Long-Text Comprehension" task, while the non-1200

reasoning models all struggled, and for “Multi-1201

Turn Conversation Handling”, in addition to the1202

non-reasoning models, Qwen3, which provides rea-1203

soning capability, also exhibited suboptimal perfor-1204

mance. The above results show that reasoning can1205

effectively improve the ability of LLMs in instruc-1206

tion understanding, but cannot completely solve1207

the instruction understanding problem.1208

B.2 Case of Intention Reasoning1209

Since there are often spelling errors, factual contra-1210

dictions and semantic ambiguities in user instruc-1211

tions, LLM faces many challenges in understanding1212

the user’s true intentions.1213

Figure 6 shows that the model often relies too1214

much on the user’s input and ignores the obvious1215

errors in the input. It tends to generate answers1216

directly instead of identifying and correcting these1217

errors first;1218

Figure 7 shows that when knowledge updates1219

are not synchronized or input data is maliciously1220

tampered with, the model is more likely to output1221

information that is inconsistent with actual needs1222

or contaminated. However, the reasoning model 1223

can identify the errors, indicating that the model’s 1224

reasoning ability is crucial in identifying the user’s 1225

input intention. 1226

Figure 8 shows that when faced with ambiguous 1227

or uncertain expressions, large models usually tend 1228

to customize questions or give default explanations 1229

based on their own training preferences, rather than 1230

actively asking users for more context.The GPT se- 1231

ries performs better than models such as DeepSeek 1232

in such tasks, indicating that even models with 1233

strong reasoning capabilities may have difficulties 1234

in dealing with modal expressions such as sarcasm 1235

and irony. This reflects the limitations of AI in 1236

understanding complex human language expres- 1237

sions, as well as differences in the coverage of such 1238

language phenomena in the training data and the 1239

depth of the model’s understanding of the social 1240

and cultural context. 1241

Figure 9 shows that for implicit intentions such 1242

as sarcasm, metaphors, and emotions, the model 1243

often only focuses on the literal meaning and has 1244

difficulty grasping the deep emotions or context, 1245

thereby outputting incorrect analysis results. 1246

As shown in Table 2, Figure 6 to Figure 9, in 1247

the intention reasoning stage, all models encoun- 1248

tered difficulties and performed poorly in “Inconsis- 1249

tent Instruction Reasoning”, “Fuzzy Language In- 1250

terpretation” and “Intention Clarification Failure”; 1251

in “Misinformation Reasoning”, only GPT-o3 and 1252

Deepseek-R1 achieved good performance, while 1253

the other models underperformed. This suggests 1254

that all models have significant challenges in rea- 1255

soning about intentions. 1256

B.3 Case of Reliable Dialog Generation 1257

Current large language models exhibit both de- 1258

terministic response preferences and ambiguous 1259

knowledge boundaries during generation. When 1260

queries fall within the model’s knowledge cover- 1261

age, the outputs are generally reliable; however, in 1262

open-domain or previously unseen scenarios, the 1263

quality of generated content fluctuates significantly. 1264

Figure 10 illustrates the instability of LLM- 1265

generated content, which primarily manifests in 1266

two typical issues: First, when the model lacks 1267

relevant knowledge or information regarding the 1268

input (Q.1), it tends to fabricate details, producing 1269

content inconsistent with facts and thereby sub- 1270

stantially compromising the accuracy and reliabil- 1271

ity of its outputs. Second, even when the model 1272

possesses relevant knowledge (Q.2), it may still 1273
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misinterpret or improperly integrate contextual in-1274

formation, resulting in outputs that are contextually1275

inappropriate or logically flawed. These issues not1276

only undermine user experience but also limit the1277

applicability of LLMs in high-stakes scenarios.1278

Figure 11 demonstrates the misalignment be-1279

tween model-generated content and human values,1280

mainly reflected in the model’s potential to violate1281

widely accepted moral and ethical standards. On1282

one hand, when handling sensitive or controversial1283

topics, the model may generate harmful, offensive,1284

or discriminatory statements, negatively impact-1285

ing users. On the other hand, it may also produce1286

responses that encourage illegal activities or contra-1287

vene social ethics, introducing potential legal and1288

societal risks and imposing higher requirements on1289

the safety and trustworthiness of LLMs.1290

As shown in Table 2, Figure 10 and Figure 11,1291

in the reliable dialog generation stage, all models1292

failed to maintain “Response Stability”; in “Align-1293

ment” test, only GPT-o3 and Deepseek-R1 per-1294

formed well, while the rest of the models failed.1295

The results show that all models have clear short-1296

comings in “Response Stability”, and the reasoning1297

models have improved in “Alignment”.1298

Overall, reasoning capabilities can improve the1299

performance of llms for interacting with real hu-1300

man user commands, however, all models still face1301

significant challenges and remain underpowered in1302

real-world and human interaction scenarios.1303
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Figure 4: Case of Remote Information Failure (§2.1), where the model forgets relevant information over long
distances in long context.

Figure 5: Case of Incorrect Relevance Judgment(§2.2), such as the model incorrectly associates wrong content
from the previous turn.
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Figure 6: Case of Inconsistent Instruction Reasoning (§3.1), where LLMs fail to detect conflicting inputs (Q.1) or
overlooking logical inconsistencies (Q.2)

Figure 7: Case of Misinformation Reasoning (§3.2), caused by temporal misalignment leading to failure responses
(Q.1) or data contamination resulting in misleading outputs (Q.2).
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Figure 8: Case of Fuzzy Language Interpretation (§3.3), where the model relies on biases for fuzzy queries (C.1)
or defaults to a response without seeking clarification (C.2)

Figure 9: Case of Intention Clarification Failure (§3.4) , where it misinterprets sarcasm (Q.1) or ignores prior
emotional context (Q.2)
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Figure 10: Case of Unstable Content Generation (§4.1), where the model fabricates details when it lacks relevant
knowledge (Q.1) or produces incorrect contextual information despite having relevant knowledge (Q.2)

Figure 11: Case of Misalignment with Human Values (§4.2), where the model generates harmful or offensive
content (Q.1)
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